
ar
X

iv
:1

90
6.

05
42

2v
3 

 [
cs

.D
S]

  1
1 

Ju
l 2

01
9

Lower Bounds for the Happy Coloring Problems⋆

Ivan Bliznets1,2 and Danil Sagunov1

1 St. Petersburg Department of Steklov Institute of Mathematics of the Russian
Academy of Sciences, Saint Petersburg, Russia

iabliznets@gmail.com, danilka.pro@gmail.com
2 National Research University Higher School of Economics, Saint Petersburg, Russia

Abstract. In this paper, we study the Maximum Happy Vertices and
the Maximum Happy Edges problems (MHV and MHE for short). Very
recently, the problems attracted a lot of attention and were studied in
Agrawal ’17, Aravind et al. ’16, Choudhari and Reddy ’18, Misra and
Reddy ’17. Main focus of our work is lower bounds on the computational
complexity of these problems. Established lower bounds can be divided
into the following groups: NP-hardness of the above guarantee parame-
terization, kernelization lower bounds (answering questions of Misra and
Reddy ’17), exponential lower bounds under the Set Cover Conjec-
ture and the Exponential Time Hypothesis, and inapproximability
results. Moreover, we present an O∗(ℓk) randomized algorithm for MHV
and an O∗(2k) algorithm for MHE, where ℓ is the number of colors used
and k is the number of required happy vertices or edges. These algorithms
cannot be improved to subexponential taking proved lower bounds into
account.

1 Introduction

In this paper, we study Maximum Happy Vertices and Maximum Happy
Edges. The problems are motivated by a study of algorithmic aspects of homo-
phyly law in large networks and were introduced by Zhang and Li in 2015 [27].
The law states that in social networks people are more likely to connect with
people they like. Social network is represented by a graph, where each vertex cor-
responds to a person of the network, and an edge between two vertices denotes
that the corresponding persons are connected within the network. Furthermore,
we let vertices have a color assigned. The color of a vertex indicates type, char-
acter or affiliation of the corresponding person in the network. An edge is called
happy if its endpoints are colored with the same color. A vertex is called happy
if all its neighbours are colored with the same color as the vertex itself. Equiva-
lently, a vertex is happy if all edges incident to it are happy. Formal definition of
Maximum Happy Vertices and Maximum Happy Edges is the following.

⋆ This research was supported by the Russian Science Foundation (project 16-11-
10123)

http://arxiv.org/abs/1906.05422v3


2 I. Bliznets and D. Sagunov

Maximum Happy Vertices (MHV)
Input: A graph G, a partial coloring of vertices p : S → [ℓ] for some

S ⊆ V (G) and an integer k.
Question: Is there a coloring c : V (G) → [ℓ] extending partial coloring p such

that the number of happy vertices with respect to c is at least k?

Maximum Happy Edges (MHE)
Input: A graph G, a partial coloring of vertices p : S → [ℓ] for some

S ⊆ V (G) and an integer k.
Question: Is there a coloring c : V (G) → [ℓ] extending partial coloring p such

that the number of happy edges with respect to c is at least k?

Recently, MHV and MHE have attracted a lot of attention and were studied
from parameterized [1, 2, 3, 6, 23] and approximation [27, 28, 26, 25] points of
view as well as from experimental perspective [21].

NP-hardness of MHVand MHE was proved by Zhang and Li even in case
when only three colors are used. Later, Misra and Reddy [23] proved NP-
hardness of both MHV and MHE on split and on bipartite graphs. However,
MHV is polynomially time solvable on cographs and trees [23, 2]. Approxi-
mation results for MHV are presented in Zhang et al. [28]. They showed that
MHV can be approximated within 1

∆+1 , where ∆ is the maximum degree of

the input graph, and MHE can be approximated within 1
2 +

√
2
4 f(ℓ), where

f(ℓ) =
(1−1/ℓ)

√
ℓ(ℓ−1)+1/

√
2

ℓ−1+1/2ℓ . From parameterized point of view the following pa-

rameters were studied: pathwidth [1, 3], treewidth [1, 3], neighbourhood diver-
sity [3], vertex cover [23], distance to clique [23], distance to threshold graphs [6].
Kernelization questions were studied in works [1, 17]. Agrawal [1] provided a
O(k2ℓ2) kernel for MHV where ℓ is the number of colors used and k is the
number of desired happy vertices. Independently, Gao and Gao [17] present
2kℓ+k + kℓ + k + ℓ kernel for general case and 7(kℓ + k) + ℓ − 10 in case of
planar graphs.

Short summary of our results can be found below.

No polynomial kernels: If NP 6⊆ coNP/poly then there are no polynomial
kernels for MHV parameterized by vertex cover, and no polynomial kernels
for MHE under the following parametrizations: number of uncolored ver-
tices, number of happy edges, and distance to almost any reasonable graph
class. Moreover, under NP 6⊆ coNP/poly, there is no O((kdℓ)2−ǫ) and no
O((kdh)2−ǫ) bitsize kernel for MHV. Note that these results answer ques-
tion from [23]: ”Do the Maximum Happy Vertices and Maximum Happy
Edges problems admit polynomial kernels when parameterized by either the
vertex cover or the distance to clique parameters?”

Above guarantee: Above-greedy versions of MHV andMHE are NP-complete
even for budget equal 1.

Exponential lower bounds: Assuming the Set Cover Conjecture, MHV and
MHE do not admit O∗((2 − ǫ)n

′

) algorithms, where n′ is the number of
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uncolored vertices in the input graph. Even with ℓ = 3, there is no 2o(n+m)

algorithm for MHV and MHE, unless ETH fails.
Innaproximability: Unless P = NP, MHV does not admit approximation

algorithm with factors O(n
1
2−ǫ), O(m

1
2−ǫ), O(h1−ǫ), O(ℓ1−ǫ), for any ǫ > 0.

Algorithms: We present O∗(ℓk) randomized algorithm for MHV and O∗(2k)
algorithm for MHE. Running time of this algorithms match with the corre-
sponding lower bounds. We should note that an algorithm with the running
time of O∗(2k) for MHE was also presented by Aravind et al. in [3].

2 Preliminaries

Basic notation. We denote the set of positive integer numbers by N. For each
positive integer k, by [k] we denote the set of all positive integers not exceeding
k, {1, 2, . . . , k}. We use ⊔ for the disjoint union operator, i.e. A⊔B equals A∪B,
with an additional constraint that A and B are disjoint.

We use traditional O-notation for asymptotical upper bounds. We addition-
ally use O∗-notation that hides polynomial factors. Many of our results con-
cern the parameterized complexity of the problems, including fixed-parameter
tractable algorithms, kernelization algorithms, and some hardness results for cer-
tain parameters. For detailed survey in parameterized algorithms we refer to the
book of Cygan et al. [10].

Throughout the paper, we use standard graph notation and terminology,
following the book of Diestel [15]. All graphs in our work are undirected simple
graphs. We may refer to the distance to G parameter, where G is an arbitrary
graph class. For a graph G, we say that a vertex subset S ⊆ V (G) is a G
modulator of G, if G becomes a member of G after deletion of S, i.e. G \ S ∈ G.
Then, the distance to G parameter of G is defined as the size of its smallest G
modulator.

Graph colorings. When dealing with instances of Maximum Happy Ver-
tices or Maximum Happy Edges, we use a notion of colorings. A coloring of
a graph G is a function that maps vertices of the graph to the set of colors. If
this function is partial, we call such coloring partial. If not stated otherwise, we
use ℓ for the number of distinct colors, and assume that colors are integers in
[ℓ]. A partial coloring p is always given as a part of the input for both problems,
along with graph G. We also call p a precoloring of the graph G, and use (G, p)
to denote the graph along with the precoloring. The goal of both problems is to
extend this partial coloring to a specific coloring c that maps each vertex to a
color. We call c a full coloring (or simply, a coloring) of G that extends p. We
may also say that c is a coloring of (G, p). For convenience, introduce the notion
of potentially happy vertices, both for full and partial colorings.

Definition 1. We call a vertex v of (G, p) potentially happy, if there exists a
coloring c of (G, p) such that v is happy with respect to c. In other words, if u
and w are precolored neighbours of v, then p(u) = p(w). We denote the set of
all potentially happy vertices in (G, p) by H(G, p).
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By Hi(G, p) we denote the set of all potentially happy vertices in (G, p) such
that they are either precolored with color i or have a neighbour precolored with
color i:

Hi(G, p) = {v ∈ H(G, p) | N [v] ∩ p−1(i) 6= ∅}.
In other words, if a vertex v ∈ Hi(G, p) is happy with respect to some coloring
c of (G, p), then necessarily c(v) = i.

For a graph with precoloring (G, p), by h = |H(G, p)| we denote the number
of potentially happy vertices in (G, p). Note that if c is a full coloring of a graph
G, then |H(G, c)| is equal to the number of vertices in G that are happy with
respect to c.

3 Polynomial kernels for structural graph parameters

In this section, we study existence of polynomial kernels forMHV orMHE under
several parameterizations. We start with proving lower bounds for structural
graph parameters. We provide reductions to both MHV and MHE from the
following problem.

Bounded Rank Disjoint Sets [16]
Input: A set family F over a universe U with every set S ∈ F having size

at most d, and a positive integer k.
Question: Is there a subfamily F ′ of F of size at least k such that every pair

of sets S1, S2 in F ′ we have S1 ∩ S2 = ∅?

Theorem 1 ([16]). Bounded Rank Disjoint Sets parameterized by kd does
not admit a polynomial compression even if every set S ∈ F consists of exactly
d elements and |U | = kd, unless NP ⊆ coNP/poly.

The following two theorems answer open questions posed in [23].

Theorem 2. Maximum Happy Vertices parameterized by the vertex cover
number does not admit a polynomial compression, unless NP ⊆ coNP/poly.

Proof. We give a polynomial reduction from the Set Packing problem, such
that the vertex cover number of the constructed instance of MHV is at most
the size of the universe of the initial instance of Set Packing plus one. Since
Bounded Rank Disjoint Sets is a special case of Set Packing, from The-
orem 1 the theorem statement will then follow. The reduction is as follows.

Given an instance (U = [n],F = {S1, S2, . . . , Sm}, k) of Set Packing, con-
struct an instance (G, p, k) of MHV. For each i ∈ U , introduce vertex ui in
G and left it uncolored. For each set Sj ∈ F , introduce a vertex sj in G and
precolor it with color j, i.e. p(sj) = j. Thus, the set of colors used in precoloring
p is exactly [m]. Then, for each i ∈ [n] and j ∈ [m] such that i ∈ Sj , introduce
an edge between ui and sj in G. Additionally, introduce two vertices t1 and t2 to
G and precolor them with colors 1 and 2 respectively. Then, introduce an edge
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(t1, t2) to G and for every i ∈ [n] and j ∈ [2], introduce an edge (ui, tj) in G.
Thus, vertices t1 and t2 never become happy and ensure that ui never become
happy for any i ∈ [n]. Finally, set the number of required happy vertices to k.
Observe that {u1, . . . , un} ∪ {t1} forms a vertex cover of G, hence the vertex
cover number of G is at most n+ 1.

We now claim that (U,F , k) is a yes-instance of Set Packing if and only
if (G, p, k) is a yes-instance of MHV. Let Si1 , Si2 , . . . , Sik be the answer to
(U,F , k), i.e. Sip ∩ Siq = ∅ for every distinct p, q ∈ [k]. Since Si1 , Si2 , . . . , Sik

are disjoint, si1 , si2 , . . . , sik do not have any common neighbours in G. Hence,
we can extend coloring p to coloring c in a way that si1 , si2 , . . . , sik are happy
with respect to c (c(ui) is then, in fact, the index of the set containing ui, i.e.
ui ∈ Sc(ui)). At least k vertices become happy in G, hence (G, p, k) is a yes-
instance of MHV.

In the other direction, let c be a coloring of G extending p so that at least
k vertices in G are happy with respect to c. Only vertices that can be happy
in (G, p) are vertices of type si, hence there are vertices si1 , si2 , si3 , . . . , sik that
are happy in G with respect to c. Since these vertices are precolored with pair-
wise distinct colors and are simultaneously happy, they may have no common
neighbours in G. This implies that the corresponding sets of the initial instance
Si1 , Si2 , . . . , Sik are pairwise disjoint. Hence, they form an answer to the initial
instance (U,F , k) of Set Packing. This completes the proof. �

Theorem 3. Maximum Happy Edges parameterized by the number of un-
colored vertices or by the number of happy edges does not admit a polynomial
compression, unless NP ⊆ coNP/poly.

Proof. As in the proof of Theorem 2, we again provide a polynomial reduction
from Bounded Rank Disjoint Sets and then use Theorem 1. In this proof
though, we will use the restricted version Bounded Rank Disjoints Sets
problem itself (and not the Set Packing problem), formulated in Theorem 1.
That is, we will use the constraint that all sets in the given instance are of the
same size d, and the size of the universe |U | is equal to kd. We note that the
following reduction has very much in common with the reduction described in
the proof of Theorem 2.

Given an instance ([n],F = {S1, S2, . . . , Sm}, k) of Bounded Rank Dis-
joint Sets with n = kd and |Si| = d for every i ∈ [m], we construct an instance
(G, p, k′) of MHE. We assume that each element of the universe [n] is contained
in at least one set, otherwise the given instance is a no-instance. Firstly, as in
the proof of Theorem 2, for each element of the universe i ∈ [n], introduce a cor-
responding vertex ui in G. For each set Sj , j ∈ [m], introduce not just one, but
n corresponding vertices sj,1, sj,2, . . . , sj,n. Then again, similarly to the proof
of Theorem 1, for each i, j such that i ∈ Sj , introduce edges between ui and
each vertex sj,t corresponding to the set Sj , i.e. n edges in total. To finish the
construction of G, introduce every possible edge (ui, uj) in G.

Thus, V (G) = {ui | i ∈ [n]} ∪ {sj,t | j ∈ [m], t ∈ [n]} and E(G) = {(ui, sj,t) |
i ∈ Sj , t ∈ [n] ∪ {(ui, uj) | i, j ∈ [n], i 6= j}. Then, precolor the vertices of



6 I. Bliznets and D. Sagunov

G in the usual way, i.e. set p(sj,t) = j for every j ∈ [m] and t ∈ [n], and
leave each vertex ui uncolored. Finally, we set the number of required happy
edges to k′ = n2 + k

(

d
2

)

= (kd)2 + k
(

d
2

)

. Construction of (G, p, k′) is done in
polynomial time. Observe that the number of uncolored vertices in (G, p, k)
equals the size of the universe n, and the number of required happy edges is
polynomial of n. Hence, existence of a polynomial kernel respectively to any of
these two parameters for MHE contradicts the statement of Theorem 1. We
argue that the initial instance is a yes-instance if and only if (G, p, k′) is a yes-
instance of MHE.

We prove first that if ([n],F , k) is a yes-instance, then (G, p, k′) is a yes-
instance. Let ([n],F , k) be a yes-instance of the restricted version of Bounded
Rank Disjoint Sets, and let Si1 , Si2 , . . . , Sik be the instance solution. As
usual, extend p to a coloring c of G by setting c(ui) to the index of the set in
the solution containing ui, i.e. c(ui) = it for some t ∈ k and i ∈ Sc(ui). Since
Si1 , Si2 , . . . , Sik are disjoint, and their total size equals the size of the universe,
such coloring c always exists uniquely for a fixed solution of ([n],F , k). We claim
that there are exactly k′ happy edges in G with respect to c.

All edges in G are either of type (ui, sj,t) or of type (ui, uj). Consider edges
of type (ui, sj,t) for a fixed i ∈ [n]. Happy edges among them are those with
c(sj,t) = c(ui). Since c(sj,t) = p(sj,t) = j and i ∈ Sc(ui), these edges are exacly
(ui, sc(ui),t). Hence, there are n happy edges of this type for a fixed i ∈ [n] and
n2 happy edges of this type in total. It is left to count the number of happy edges
of the clique, i.e. edges of type (ui, uj). Observe that each ui is colored with a
color corresponding to a containing set of the answer. Since each set is of size d,
the vertices ui are split by color into k groups of size d. Each group contributes
exactly

(

d
2

)

happy edges, and no edge connecting vertices from different groups

is happy. Thus, there are exactly k
(

d
2

)

happy edges of type (ui, uj) in G with

respect to c. We get that exactly n2 + k
(

d
2

)

edges of G are happy with respect
to c, hence (G, p, k′) is a yes-instance of MHE.

In the other direction, let (G, p, k′) be a yes-instance of MHE, and let c be
an optimal coloring of G extending p. At least k′ edges are happy in G with
respect to c. Let us show that exactly k′ edges are happy in G with respect to c.

Claim 1. In any optimal coloring c of G extending p, i ∈ Sc(ui) for each i ∈ [n].

Proof of Claim 1. Suppose it is not true, and c is an optimal coloring of (G, p)
and i /∈ Sc(ui) for some i ∈ [n]. For each j with i ∈ Sj , ui is adjacent to n vertices
sj,t, which are precolored with color j. None of edges (ui, sj,t) are happy with
respect to c, since j 6= c(ui). The only other edges incident to ui are n− 1 edges
of the clique. Thus, ui is incident to at most n− 1 happy edges.

Choose arbitrary j with i ∈ Sj, and put c(ui) = j. ui becomes incident to at
least n happy edges. Happiness of edges not incident with ui has not changed.
Thus, the change yields at least one more happy edge. A contradiction with the
optimality of c. �

Claim 2. In any optimal coloring c of G extending p, there are at most k
(

d
2

)

happy edges of type (ui, uj) in G with respect to c.
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Proof of Claim 2. The vertices ui are split into groups containing vertices of the
same color by c, so the happy edges of type (ui, uj) are exactly the edges inside
the groups. By Claim 1, each ui is colored with a color corresponding to a set
containing i in c. Hence, each group contains vertices corresponding to elements
of the same set, and thus contains at most d vertices. So each ui is incident
to at most d − 1 happy edges of type (ui, uj), and in total there are at most

n · (d− 1)/2 = k
(

d
2

)

such happy edges in G with respect to c. �

From Claims 1 and 2 follows that at most n2 + k
(

d
2

)

= k′ edges are happy in
G with respect to c. And as seen in the proof of Claim 2, the only way that yields
exactly k′ happy edges is when ui are split by color into disjoint groups of size
d, each containing vertices corresponding to a set of the initial instance. Hence,
if c yields k′ happy edges in G, {Sc(ui) | i ∈ [n]} is a solution to ([n],F , k). Thus,
([n],F , k) is a yes-instance of Bounded Rank Disjoint Sets. This finishes
the whole proof. �

Definition 2. We call a graph family G uniformly polynomially instantiable, if
there is an algorithm that, given positive integer n as input, outputs a graph G,
such that |V (G)| ≥ n and G ∈ G, in poly(n) time.

Corollary 1. For any uniformly polynomially instantiable graph family G, Max-
imum Happy Edges, parameterized by the distance to graphs in G, does not
admit a polynomial compression, unless NP ⊆ coNP/poly.

Proof. Suppose it is not true and there is a uniformly polynomially instantiable
graph family G, such that MHE parameterized by the distance to graphs in
G admits a polynomial compression. We show how to reduce an instance of
MHE with d uncolored vertices to an instance of MHE with the distance to
graph in G being at most d, and then get a contradiction with Theorem 3.

Let (G, p, k) be an instance of MHE with d uncolored vertices. Denote the
set of all uncolored vertices in (G, p) by U and the set of all precolored vertices
by P , so U ⊔ P = V (G). Assume that G has no edge between vertices in P ,
otherwise delete it and decrease k by one if its endpoints are of the same color
in (G, p). Construct an instance (G′, p′, k′) as follows. Use the algorithm that
output instances of G, with |P | as input. The algorithm gives a graph G′′, such
that |V (G′′)| ≥ |P | and G′′ ∈ G. Take an arbitrary subset P ′ ⊆ V (G′′) of size |P |,
and identify its vertices with vertices in P . Construct G′ by introducing |U | new
vertices to G′′, that are identified with the vertices of U . Denote the set of these
vertices by U ′. Then, add an edge between vertices in U ′ or between vertices
in U ′ and P ′ if there is an edge between corresponding vertices in G. Finally,
construct p′ by precoloring vertices in P ′ with the color of their corresponding
vertices in (G, p), leave the vertices of U ′ uncolored, and precolor all remaining
vertices arbitrarily. There may be some happy edges between precolored vertices
in (G′, p′), let their number be h. Set k′ = k + h.

One may easily show that the constructed instance (G′, p′, k′) is a yes-instanse
of MHE if and only if the initial instance (G, p, k) is a yes-instance of MHE.
Moreover, deletion of U ′ from G′ yields G′′ ∈ G. Hence, G′ has the distance to
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graphs in G being at most |U ′| = |U | = d. We therefore obtain the required
polynomial reduction that leads to the desired contradiction. �

In the rest of the section we study kernel bitsize lower bounds for MHV,
parameterized by either k + ℓ or k + h, where h is the number of potentially
happy vertices. This relates to the result of Agrawal in [1], where the author
showed that MHV admits a polynomial kernel with O(k2ℓ2) vertices. We show
that, for any d > 0 and any ǫ > 0, there is no kernel of bitsize O(kd · ℓ2−ǫ)
for MHV. Similarly, we show that there is no kernel of bitsize O(kd · h2−ǫ) for
MHV. To prove these lower bounds, we refer to the framework of weak cross-
compositions, that originates from works of Dell and van Mekelbeek [14], Dell
and Marx [13] and Hermelin and Wu [19]. These results are finely summarized
by Cygan et al. in the chapter on lower bounds for kernelization [9]. We recall
the notion of weak cross-compositions.

Definition 3 ([9, 13, 19]). Let L ⊆ Σ∗ be a language and Q ⊆ Σ∗ × N be a
parameterized language. We say that L weakly-cross-composes into Q if there ex-
ists a real constant d ≥ 1, called the dimension, a polynomial equivalence relation
R, and an algorithm A, called the weak cross-composition, satisfying the follow-
ing conditions. The algorithm A takes as input a sequence of x1, x2, . . . , xt ∈ Σ∗

that are equivalent with respect to R, runs in time polynomial in
∑t

i=1 |xi|, and
outputs one instance (y, k) ∈ Σ∗ × N such that:

(a) for every δ > 0 there exists a polynomial p(·) such that for every choice of t

and input strings x1, x2, . . . , xt it holds that k ≤ p(maxti=1 |xi|) · t 1
d
+δ, and

(b) (y, k) ∈ Q if and only if there exists at least one index i such that xi ∈ L.

The framework of weak cross-compositions is used for proving conditional
lower bounds on polynomial compression bitsize. This is formulated in the fol-
lowing theorem.

Theorem 4 ([9, 13, 19]). If an NP-hard language L admits a weak cross-
composition of dimension d into a parameterized language Q. Then for any
ǫ > 0, Q does not admit a polynomial compression with bitsize O(kd−ǫ), un-
less NP ⊆ coNP/poly.

Dell and Marx [13] use this framework to show that the Vertex Cover
problem parameterized by the solution size does not admit a kernel with sub-
quadratic bitsize. Their result is the following.

Lemma 1 ([13, 9]). There exists a weak cross composition of dimension 2 from
an NP-hard problem Multicolored Biclique into the Vertex Cover prob-
lem parameterized by the solution size. In fact, this weak cross-composition A,
given instances x1, x2, . . . , xt of Multicolored Biclique as input, outputs an
instance (G, k′) of Vertex Cover satisfying

– |V (G)| ≤ p(maxti=1 |xi|) ·
√
t, and

– |V (G)| − k′ ≤ q(maxti=1 |xi|),
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for some polynomials p and q.

The bound for |V (G)|−k′ is given because one can look at an instance (G, k′)
of Vertex Cover as at an instance (G, |V (G)| − k′) of Independent Set.
Then, the solution parameter of Independent Set is bounded with polynomial
of the maximum input size, independently of the number of instances t. We are
ready to prove the theorem.

Theorem 5. For any fixed constant d and any ǫ > 0, Maximum Happy Ver-
tices does not admit polynomial compressions with bitsizes O((kd · ℓ)2−ǫ) and
O((kd ·h)2−ǫ), where h is the number of potentially happy vertices, unless NP ⊆
coNP/poly.

Proof. Let d be an arbitrary fixed constant. We show that Multicolored Bi-
clique admits a polynomial compression into MHV parameterized either by
kd · ℓ or by kd · h. By Theorem 4, it is sufficient for proving the theorem.

We extend the weak cross-composition A into Vertex Cover from Lemma
1. Thus, we obtain the desired weak cross-composition A′ into MHV. Firstly, A′

runsA to obtain an instance (G, k′) of Vertex Cover. Equivalently, (G, |V (G)|−
k′) is an instance of Independent Set. Let k = |V (G)| − k′. Transform the in-
stance (G, k) of Independent Set into an equivalent instance (G′, p, k), where
G′ is a graph obtained from G by subdivision of each edge of G. The precolor-
ing p colors each vertex of G in G′ with an unique color corresponding to this
vertex, i.e. p(v) = v for each v ∈ V (G). The vertices of G′ that are introduced
because of the subdivision are left uncolored. Thus, the number of colors used
equals ℓ = |V (G)|. Note that all vertices of G are potentially happy in (G′, p), so
the number of potentially happy vertices in (G′, p) also equals h = ℓ = |V (G)|.
The following claim shows that the constructed instance (G′, p, k) is equivalent
to the instance (G, k) of Independent Set.

Claim 3. For any S ⊆ V (G), S is an independent set in G if and only if all
vertices in S can be simultaneously happy in (G′, p).

Proof of Claim 3. Let S be an independent set in G. We construct a coloring c
extending p as follows. For each uncolored vertex euv of G′, that corresponds to
the subdivision of the edge uv ∈ E(G), put

c(euv) =







p(u), if u ∈ S,
p(v), if v ∈ S,
any, otherwise.

Since S is an independent set, u ∈ S and v ∈ S never hold simultaneously.
Thus, for each v ∈ S and each euv ∈ NG′(v), c(euv) = p(v) = c(v). Therefore,
all vertices in S are happy with respect to c.

In the other direction, let c be a coloring of G′ extending p. Firstly, note that
no newly-introduced vertex euv ∈ V (G′)\V (G) can be happy. euv is adjacent to
vertices u and v in G′, but p(u) 6= p(v), as uv is an edge of G and p corresponds
to a proper coloring of G. Hence, if S is a subset of vertices that are happy
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with respect to c, then S ⊆ V (G) necessarily. Suppose now that S is not an
independent set in G, i.e. u, v ∈ S, but uv ∈ E(G). Consider the vertex euv in G′.
Since both u and v are happy with respect to c, c(u) = c(euv) and c(v) = c(euv).
But p(u) 6= p(v), a contradiction. The proof of the claim is finished. �

Finally, A′ outputs the instance (G′, p, k) as an instance of a language pa-
rameterized either by kdℓ or by kdh, i.e. ((G′, p, k), kdℓ) or ((G′, p, k), kdh). Since
h = ℓ, these parameters are equal. We now show that A′ is a weak cross-
composition of dimension 2. We already proved that the instance output by
A′ is equivalent to the instance output by A, so the condition (b) of weak cross-
compositions is satisfied. It suffices to prove that the condition (a) is satisfied as
well.

Note that

kdh = kdℓ = (|V (G)| − k′)d · |V (G)| ≤ (q(
t

max
i=1

|xi|))d · p( t
max
i=1

|xi|) ·
√
t

= (qdp)(
t

max
i=1

|xi|) ·
√
t,

(1)

where p and q are polynomials from Lemma 1. Thus, A′ satisfies the condition
(a) of weak cross-compositions. Hence, A′ is the desired weak cross-composition
from Multicolored Biclique to MHV, and theorem follows. �

4 Parameterization above guarantee

This section concerns the above guarantee parameter for MHV and MHE. By
guarantee we mean the number of happy vertices or edges that can be obtained
with a trivial extension of the precoloring given in input. The definition of trivial
extensions follows.

Definition 4. For a graph with precoloring (G, p), we call a full coloring c a
trivial extension of p, if p can be extended to c by choosing a single color i and
assigning color i to every uncolored vertex. In other words, p(v) = c(v) for every
v ∈ p−1([ℓ]), and c(u) = c(v) for every u, v /∈ p−1([ℓ]).

We formulate the version of MHV where the above guarantee parameter equals
one.

Above Guarantee Happy Vertices
Input: A graph G, a partial coloring p : S → [ℓ] for some S ⊆ V (G) and

integer k, such that there is a trivial extension of p that yields
exactly k happy vertices in G.

Question: Is (G, p, k + 1) a yes-instance of MHV?

TheAbove Guarantee Happy Edges is formulated analogously.We show
that both these problems cannot be solved in polynomial time, unless P = NP.
We start with Above Guarantee Happy Vertices. To prove that it is com-
putationally hard, we provide a chain of polynomial reductions. An intermediate
problem in this chain is the Weighted MAX-2-SAT problem.
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Weighted MAX-2-SAT
Input: A boolean formula in 2-CNF with integer weights assigned to its

clauses, an integer w.
Question: Is there an assignment of the variables of φ satisfying clauses of

total weight at least w in φ?

Lemma 2. Weighted MAX-2-SAT is NP-complete even when the inputs φ
and w satisfy

1. The total weight of all positive clauses (i.e., clauses containing at least one
positive literal) of φ equals w − 1;

2. Each clause of φ is assigned either weight 1 or weight 13;

3. Each variable appears exactly three times in φ, at least once positively in a
clause containing also a negative literal, and at least once negatively in a
clause containing also a positive literal.

Proof. The proof is by a chain of technical polynomial reductions from 3-SAT,
that is a classical NP-complete problem. Most of the reductions below are clas-
sical, but we carefully follow them to ensure that intermediate formulas have
certain important properties.

Let φ0 = C1∧C2 ∧ . . .∧Cm be a formula in CNF on n variables consisting of
m clauses, and each clause consists of no more than three literals. Transform the
formula to φ1 = (C1∨x)∧ (C2∨x)∧ . . .∧ (Cm∨x)∧x, where x is a variable new
to the formula. We obtain an equivalent 4-SAT input formula on n+1 variables
and m+ 1 clauses, where each clause except one contains a positive literal. We
can trivially satisfy m clauses of the formula, but if all m+ 1 clauses of φ1 can
be satisfied, then all clauses of the initial formula φ0 can be satisfied as well.

Now transform the 4-CNF formula φ1 to a 3-CNF formula φ2, so it contains
just one negative clause as well as φ1. Do it as follows. Leave clauses of φ1, that
consist of at most three literals, as is, and introduce them to φ2. For each clause
of φ1 consisting of four literals, replace it with two clauses, introducing a new
variable specific to this clause. That is, take a clause of φ1 of length four, say
a∨ b∨ c∨ x, where a, b, c are some literals (may be positive as well as negative),
but x is necessarily a positive literal. Then, take a new variable zi, and introduce
clauses (a∨ b∨ zi)∧ (zi ∨x) to φ2. Note that these two clauses are both positive.
Hence, φ2 is a 3-CNF formula equivalent to φ1, and the only negative clause in
φ2 is x.

We then need each variable in φ2 to appear at most three times. We use a
standard technique to achieve that. If a variable y appears k > 3 times in φ2,
introduce k new variables y1, y2, . . . , yk to φ2, replace ith occurence of y with a
variable yi, and introduce k clauses (y1 ∨ y2)∧ (y2 ∨ y3)∧ . . .∧ (yk ∨ y1), so that
newly-introduced variables are equal in any satisfying assignment. Note that
no new negative clause is introduced, so the obtained formula φ3 is a formula
in 3-CNF equivalent to φ2, with only one negative clause, and each variable
appears in φ3 at most three times. It is possible to satisfy all except one clause
of φ3 simultaneously, but it is NP-complete to decide whether one can satisfy
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the entire formula. The only negative clause (that is, a clause consisting only of
negative literals) in φ3 consists of a single literal.

We now transform our special instance of 3-SAT into a special instance of
MAX-2-SAT. In our special case, all clauses of length three are positive. We
use the classical reduction from 3-SAT to MAX-2-SAT [18]: given an initial
formula in 3-CNF, we replace each clause of the formula consisting of exactly
three literals, say a ∨ b ∨ c, with ten clauses, introducing a new variable zi:

zi ∧ a ∧ b ∧ c ∧ (a ∨ b) ∧ (b ∨ c) ∧ (a ∨ c) ∧ (zi ∨ a) ∧ (zi ∨ b) ∧ (zi ∨ c).

These ten clauses has a property that, an assignment of the variables of a, b, c
satisfies a∨b∨c if and only if the same assignment satisfies exactly seven clauses
out of these ten clauses, with at least one of the two possible assignments of zi.
Also, no more than seven clauses can be satisfied simultaneously among these
ten clauses.

In our case, a ∨ b ∨ c is a positive clause. If there are three or two positive
literals among a, b, c, replace a ∨ b ∨ c with the ten clauses above, introducing a
new variable zi. If there is only one positive literal among a, b, c, replace a∨ b∨ c
instead with the following ten clauses, where the literals of zi are negated:

zi ∧ a ∧ b ∧ c ∧ (a ∨ b) ∧ (b ∨ c) ∧ (a ∨ c) ∧ (zi ∨ a) ∧ (zi ∨ b) ∧ (zi ∨ c).

Note that after such replacement, the all-true assignment of the variables of
a, b, c and zi satisfies exactly seven out of the ten clauses above.

We do not change any clause consisting of less than three literals. Let the
initial formula consist of m = m1 +m2 +m3 clauses, where mi is the number
of clauses consisting of exactly i literals in the initial formula. Then, after the
transformation, we obtain m1 + m2 + 10m3 clauses consisting of at most two
literals, and we ask to satisfy at least m1 +m2 + 7m3 of them simultaneously.

Now continue our chain of reductions and apply the described reduction to
φ3. We obtain a 2-CNF formula φ4 that consists of m1 + m2 + 10m3 clauses
of length at most two, where mi is the number of clauses of length i in φ3.
Consider the all-true assignment in φ3. It satisfies all clauses of φ3, except the
single clause consisting of one negative literal. Then, the all-true assignment in
φ4 (including the variables that are newly-introduced in φ4) satisfies exactly
(m1 − 1) +m2 + 7m3 clauses of φ4. Thus, we again obtain an NP-hard problem
of satisfying one more clause of the formula than in the all-true assignment. And
now, our formula is in 2-CNF. Moreover, each variable appears at most three
times in φ3, and it gets copied at most four times in φ4. Therefore, our formula
φ4 is a 2-CNF formula that also has a property that each variable appears at
most twelve times in it.

Then, we again reduce the number of occurences of a variable in our formula.
We again do that in the standard way: for each variable y that occurs k times
(even for k < 3), we introduce new variables y1, y2, . . . , yk, replace i

th occurence
with yi for each i ∈ [k], and introduce new clauses (y1∨y2)∧(y2∨y3)∧ . . .∧(yk∨
y1). The obtained formula φ5 is in 2-CNF and each variable appears in φ5 at
most three times, but we can not just ask to satisfy one more clause in φ5 than
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in the all-true assignment. The reason behind this is that now we do not ask to
satisfy the whole formula, so the clauses of type (y1∨y2)∧(y2∨y3)∧. . .∧(yk∨y1)
might not be satisfied completely in an appropriate assignment. Thus, it might
be the case that in an assignment σ that satisfies a sufficient number of clauses of
φ5, σ(yi) 6= σ(yj) for some pair of variables corresponding to the same variable
y of the initial formula φ4. So the obtained problem of satisfying clauses of φ5

is not equivalent to the initial one.

To overcome this difficulty, we assign weights to the clauses of φ5, making
the newly-introduced clauses of type (yi ∨ yi+1) weigh more than the regular
clauses that come from φ4. Specifically, we assign weight 13 to each newly-
introduced clause of φ5, and we assign weight 1 to each remaining clause of
φ5. φ4 consists of m1 + m2 + 10m3 clauses, and (m1 − 1) + m2 + 7m3 clauses
are satisfied in φ4 with the all-true assignment. Let t be the number of newly-
introduced clauses in φ5. Then, φ5 consists of m1 +m2 + 10m3 + t clauses, and
the total weight of clauses that are satisfied in φ5 with the all-true assignment
is (m1 − 1)+m2 +7m3 +13t. We ask whether it is possible to satisfy clauses of
total weight at least m1 +m2 + 7m3 + 13t in φ5. We claim that this problem is
equivalent to the problem of satisfying clauses of φ4.

Claim 4. There is an assignment satisfying at least s clauses of φ4 if and only
if there is an assignment satisfying clauses of total weight at least s+ 13t in φ5.

Proof of Claim 4. The proof in one direction is trivial. Given an appropriate
assignment σ of the variables of φ4, it is easy to construct an appropriate as-
signment σ′ for φ5. Just put σ′(yi) = σ(y) for ith occurence of a variable y in
φ4. σ

′ satisfies all s clauses in φ5 corresponding to the clauses satisfied by σ in
φ4, and satisfies all t newly-introduced clauses of weight 13 in φ5.

In the other direction, take an assignment σ′ that satisfies the maximum
possible number of clauses in φ5 simultaneously. We argue that σ′ satisfies all
clauses of weight 13 in φ5. Suppose it’s not true and for some variable y appearing
k times in φ4, at least one clause in (y1∨y2)∧(y2∨y3)∧ . . .∧(yk∨y1) in φ5 is not
satisfied by σ′. Apart from two of these k clauses of weight 13, each yi appears
in exactly one clause of weight 1 in φ5, that comes from φ4 initially. Recall
that each variable of φ4 appears at most 12 times in φ4. Hence, the variables
y1, y2, . . . , yk together touch at most 12 clauses of weight 1 in φ5. Change σ′

by setting σ′(yi) = 0 for each i ∈ [k]. Some clauses of weight 1 may become
unsatisfied, but there are at most 12 of them. Thus, at most 12 weight is lost
with the change. At the other hand, all clauses of weight 13 become satisfied,
and at least 13 weight is gained with the change. At least 1 weight is gained with
the change of σ′ in total — a contradiction with the optimality of σ′.

Thus, if σ′ satisfies clauses of total weight at least s+ 13t in φ5, we may be
sure that all t clauses of weight 13 are satisfied by σ′. That is, σ′(yi) = σ′(yj)
holds for each pair yi, yj of variables corresponding to occurences of the same
variable y in φ4. We get that an assignment σ, constructed by σ(y) = σ′(y1),
satisfies at least s clauses of φ4. The claim statement follows. �
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We conclude that obtained problem of satisfying clauses of φ5 is equivalent to
the initial problem of satisfying φ0. Moreover, φ5 satisfies the lemma conditions.
All reductions presented are polynomial, and the lemma statement follows. �

The chain continues with the following version of the Independent Set
problem.

Independent Set Above Coloring
Input: A graphG, properly colored with ℓ colors: V (G) = V1⊔V2⊔. . .⊔Vℓ.

Question: Is there an independent set of size at least
ℓ

max
i=1

|Vi|+ 1 in G?

Lemma 3. Independent Set Above Coloring is NP-complete for ℓ = 3.

Proof. We reduce from the special case of Weighted MAX-2-SAT from the
statement of Lemma 2. We reduce to the weighted version of Independent Set
first, and then show how to get rid of the weights.

Let be given a formula φ and an integer w as an instance of Weighted
MAX-2-SAT satisfying the conditions of Lemma 2. We construct a graph G
with weights assigned to its vertices in the same way as in the classical reduction
from Satisfiability to Clique (as a complement of Independent Set) by
Cook [7] or Karp [20]. That is, for each literal in φ, we introduce a new vertex
in G. Since the clauses in φ are weighted, we assign each vertex a weight equal
to the weight of the clause of the corresponding literal. Then, for each clause of
length two in φ, we connect the vertices corresponding to its literals by an edge
in G. Finally, we connect each pair of vertices in G that correspond to opposite
literals of the same variable in φ by an edge. A claim follows.

Claim 5. φ has an assignment satisfying clauses of total weight at least w if
and only if G has an independent set of total weight at least w.

We now show how to color G with three colors properly. Firstly, for each
positive clause of φ, take an arbitrary positive literal of this clause and color the
corresponding vertex in G with color 1. Thus the set V1 of the vertices colored
with color 1 in G becomes constructed. Note that by condition 1 of Lemma 2, the
total weight of the vertices in V1 equals w−1. Moreover, V1 forms an independent
set in G, since its vertices correspond to positive literals from pairwise different
clauses.

Then, take each positive clause of φ that contains a negative literal. That is,
a clause consisting of one negative and one positive literal. Color the negative
literal of the clause with color 2. Note that for now vertices of color 2 form an
independent set in G, since they correspond to negative literals from pairwise
different clauses.

By condition 3 of Lemma 2, each variable of φ has three corresponding ver-
tices in G. Moreover, at least two corresponding vertices are already colored in
G: at least one corresponding to a positive occurence in a negative clause is
colored with color 1 and at least one corresponding to a negative occurence in
a positive clause is colored with color 2. Hence, for each variable of φ, at most
one vertex corresponding to this variable is uncolored.
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Take any uncolored vertex v in G. It corresponds either to a positive literal,
say x, or a negative literal, say x. If it corresponds to a positive literal x, then
this literal is a literal from a clause consisting of two positive literals, otherwise v
would be colored with color 1. Let this clause be x∨y. Since the clause is positive
and the vertex v corresponding to x is uncolored, then the vertex corresponding
to y is colored with color 1. This vertex is connected to v by an edge, so color v
with color 3.

If v corresponds to a literal x, then this literal is necessarily from a negative
clause. If this clause consists just of x, color v with color 2 or color 3 arbitrarily.
Otherwise, the clause is of length two, say x∨y. The vertex corresponding to y is
not colored, since it is not from a positive clause. Both vertices corresponding to
x and y are uncolored, so color one of them with color 2 and the other with color 3
arbitrarily. Note that the vertices colored with color 2 still correspond to negative
literals from pairwise different clauses, hence they still form an independent set
in G. The vertices of color 3 correspond to pairwise different variables from
pairwise different clauses, so they form an independent set in G as well.

We colored G with three colors, that is, partitioned V (G) into V (G) =
V1 ⊔ V2 ⊔ V3, where each of V1, V2, V3 forms an independent set in G. Though
the constructed graph G has weights assigned to its vertices. Note that positive
integer clauses weights can be avoided in Weighted MAX-2-SAT just by re-
placing clause each clause of weight t with t copies of this clause in the formula.
By condition 2 of Lemma 2, some clauses get copied 13 times, and the others
remain appearing just once in the formula. Then, the reduction from MAX-
2-SAT to Independent Set is the same as for the weighted versions of the
problems.

The thing why we needed weights is to simiplify the coloring of G with
three colors. It is easy to see that, after replacing weights with copies in φ, G
remains the same, just vertex weights become replaced with vertex copies. More
importantly, no edge is added between different copies of the same vertex. Thus,
the new, unweighted graph G′ obtained by a reduction from the new, unweighted
formula φ′, can be colored with three colors in the same way as G can. It’s just
that all vertices in G′ that are copies of the same vertex in G receive the same
color as their original vertex in G. Vertices of G′ becomes partitioned in three
independent sets V (G′) = V ′

1 ⊔V ′
2 ⊔V ′

3 , and |V ′
1 | = w−1. Moreover, by Lemma 2

and Claim 5, finding an independent set of size at least w in G′ is an NP-complete
problem. All reductions and algorithms provided in the proof are polynomial,
and the lemma follows. �

Theorem 6. Above Guarantee Happy Vertices is NP-complete even when
ℓ = 3.

Proof. We reduce from Independent Set Above Coloring with ℓ = 3, that
is NP-complete by Lemma 3. Let G be an instance of Independent Set Above
Coloring. That is, G is colored properly with three colors: V (G) = V1⊔V2⊔V3;

and it is asked to find an independent set of size at least
3

max
i=1

|Vi|+ 1 in G.
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We construct an instance (G′, p, k) of Above Guarantee Happy Ver-
tices as follows. Obtain G′ as a subdivision of G. Construct the partial coloring
p as follows. Left all new vertices appeared after subdivision uncolored. For each
other vertex, that is, for each vertex in V (G), precolor it with the same color as it
is colored in G. That is, for each i ∈ [3], and for each v ∈ Vi, put p(v) = i. Finally,

put k =
3

max
i=1

|Vi|. Note that the reduction is done in polynomial time. We for-

mulate that the constructed instance of Above Guarantee Happy Vertices
is equivalent to the initial instance of Independent Set Above Coloring in
the following claim.

Claim 6. For any S ⊆ V (G), S is an independent set in G if and only if all
vertices in S can be simultaneously happy in (G′, p).

Proof of Claim 6. Let S be an independent set in G. We construct a coloring c
extending p as follows. For each uncolored vertex euv of G′, that corresponds to
the subdivision of the edge uv ∈ E(G), put

c(euv) =







p(u), if u ∈ S,
p(v), if v ∈ S,
any, otherwise.

Since S is an independent set, u ∈ S and v ∈ S never hold simultaneously.
Thus, for each v ∈ S and each euv ∈ NG′(v), c(euv) = p(v) = c(v). Therefore,
all vertices in S are happy with respect to c.

In the other direction, let c be a coloring of G′ extending p. Firstly, note that
no newly-introduced vertex euv ∈ V (G′)\V (G) can be happy. euv is adjacent to
vertices u and v in G′, but p(u) 6= p(v), as uv is an edge of G and p corresponds
to a proper coloring of G. Hence, if S is a subset of vertices that are happy
with respect to c, then S ⊆ V (G) necessarily. Suppose now that S is not an
independent set in G, i.e. u, v ∈ S, but uv ∈ E(G). Consider the vertex euv in G′.
Since both u and v are happy with respect to c, c(u) = c(euv) and c(v) = c(euv).
But p(u) 6= p(v), a contradiction. The proof of the claim is finished. �

It is then easy to see that with a trivial extension of p with color i one can
obtain exactly |Vi| happy vertices in G′. Hence, k is indeed a number of happy
vertices that can be obtained with a trivial extension of p. Finally, finding a
coloring yielding at least k + 1 happy vertices in (G′, p) is equivalent to finding
an independent set of size max3i=1 |Vi| + 1. Thus, Above Guarantee Happy
Vertices is NP-complete for ℓ = 3. �

We now turn onto Above Guarantee Happy Edges. We provide a reduc-
tion from the following well-known NP-complete problem.

Exact 3-Cover (X3C) [18, 20]
Input: An integer n, a collection S = {S1, S2, . . . , Sm} of three-element

subsets of [3n].
Question: Is there an exact cover of [3n] with elements of S, i.e. is there a

sequence i1, i2, . . . , in, such that Si1 ∪ Si2 ∪ . . . ∪ Sin = [3n]?
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Theorem 7. Above Guarantee Happy Edges is NP-complete.

Proof. We reduce from the Exact 3-Cover problem. Let (n,S = (S1, S2,
. . . , Sm)) be an instance of X3C. In our reduction, we need n to be an odd
number. If n is even, we can always increase n by one and add the set {3n +
1, 3n+2, 3n+3} to S and obtain an equivalent instance of X3C. We also assume
that each element of [3n] is contained in at least one set in S. Now we construct
an instance (G, p, k) of MHE as follows.

For each integer i ∈ [3n], introduce a new uncolored vertex ui to G. Then,
for each i, j ∈ [3n], i 6= j, introduce an edge between ui and uj in G, so
u1, u2, . . . , u3n form a clique in G. These vertices correspond to the elements
in [3n].

For each set Si ∈ S, introduce 3n new vertices inG, namely vi,1, vi,2, . . . , vi,3n.
Each of these vertices we precolor with color i, i.e. p(vi,j) = i for each j ∈ [3n].
We also connect each of these vertices to all vertices corresponding to the ele-
ments of Si, i.e. introduce an edge between vi,j and ut for each j ∈ [3n] and each
t ∈ Si.

Finally, we introduce a group of new 3(n+1)/2 vertices w1, w2, . . . , w3(n+1)/2

in G. Each of them we precolor with color m + 1. We also introduce an edge
(wi, uj) to G for every i ∈ [3(n + 1)/2] and every j ∈ [3n], except for the edge
(w1, u1). Hence, we introduce 3(n+ 1)/2 · 3n− 1 such edges.

We then set k = 9n2 + 3n − 1 and say that this number of happy edges in
G can be obtained by coloring every uncolored vertex with color m+ 1. Indeed,
say that uj is colored with color m + 1 for every j ∈ [3n]. These vertices form
clique in G, hence all

(

3n
2

)

edges of the clique are happy. Only edges left that are
happy are edges of type (wi, uj). Recall that we introduced 3(n + 1)/2 · 3n− 1
such edges, hence we get that
(

3n

2

)

+ 3(n+ 1)/2 · 3n− 1 = 3n · ((3n− 1)/2 + 3(n+ 1)/2)− 1 = 9n2 + 3n− 1

edges are happy in G with respect to such trivial extension of p.
We now argue that (n,S) is a yes-instance of X3C if and only if (G, p, k+1)

is a yes-instance of MHE. Note that we use m+ 1 colors, i.e. ℓ = m+ 1.
Let prove that if (n,S) is a yes-instance of X3C, then (G, p, k + 1) is a yes-

instance of MHE. Let i1, i2, . . . , in be an answer to (n,S). Then for each j ∈ [3n],
there is a unique t(j) ∈ [n], such that t(j) ∈ {i1, i2, . . . , in} and j ∈ St(j). Extend
p with a coloring c such that c(uj) = t(j) for each j ∈ [3n]. We claim that there
are exactly k + 1 happy edges in G with respect to c.

G consists of edges that have exactly one endpoint of type uj and edges
of type (uj1 , uj2) for j1 6= j2. Each uj is connected to exactly 3n vertices
vt(j),1, vt(j),2, . . . , vt(j),3n of color t(j), since uj ∈ St(j). Hence there are exactly
9n2 happy edges in G that have exactly one endpoint of type uj, with respect
to c. Observe that an edge (uj1 , uj2) is happy with respect to c if and only if
t(j1) = t(j2), i.e. j1 and j2 are covered by the same set St(j1). Since the size of
every set in S is exactly three, each uj is adjacent to exactly two vertices of type
uj′ of the same color. Thus, there are exactly 3n happy edges of type (uj1 , uj2)
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in total in G, with respect to c. Happy edges of both types sum up to a total of
9n2 + 3n happy edges.

Let now prove in the other direction. Let c be an optimal coloring of G
extending p such that at least k + 1 edges are happy in G with respect to c.

Claim 7. For any optimal coloring c of G and any j ∈ [3n], either c(uj) = m+1
or uj ∈ Sc(uj).

Proof of Claim 7. Suppose it’s not true, and c is an optimal coloring of G and
c(uj) 6= m + 1 and uj /∈ Sc(uj) for some j ∈ [3n]. Then only happy edges that
are incident to uj are edges of the clique, since any other edge incident to uj has
the other endpoint precolored with either color m + 1 or color i for any set Si

containing j. Hence, uj is incident to at most 3n− 1 happy edges with respect
to c.

Now change the color of uj to any color i such that j ∈ Si. Such color exists,
since we assumed that any element in [3n] is contained in at least one set. uj

is adjacent to 3n vertices of color i, hence uj now is incident to at least 3n
happy edges. Thus, such change in c(uj) allows to win at least one happy edge.
A contradiction with optimality of c. �

Let s be the number of vertices among u1, u2, . . . , u3n colored with color
m + 1 in c, i.e. s = |c−1(m + 1) ∩ {u1, u2, . . . , u3n}|. The only other vertices
colored with color m + 1 are vertices w1, w2, . . . , w3(n+1)/2, hence there are at

most
(

s
2

)

+ s · 3(n+ 1)/2 happy edges incident to vertices of color m+ 1.
By Claim 7, every other vertex of type uj (there are 3n − s of them) is

colored with a color corresponding to a set containing j. Thus, each such vertex
is adjacent to 3n precolored vertices of the same color and to at most two vertices
of the same color in the clique. Hence, there are at most (3n− s) · 3n+ (3n− s)
happy edges not incident to vertices of color m+ 1 in G with respect to c.

In total, we get that at most

(

s

2

)

+s·3(n+1)/2+(3n−s)·(3n+1) = 9n2+3n+

(

s

2

)

+s·3(n+1)/2−s·(3n+1)

edges are happy in G with respect to c. Recall that c is a coloring yielding at
least 9n2 + 3n happy edges in G, hence

(

s

2

)

+ s · 3(n+ 1)/2− s · (3n+ 1) ≥ 0,

s · ((s− 1)/2 + 3(n+ 1)/2− (3n+ 1)) ≥ 0,

s · ((s− 1) + 3(n+ 1)− (6n+ 2)) ≥ 0,

s · (s− 3n) ≥ 0.

The inequality above holds only when s ≤ 0 or s ≥ 3n, but since s ∈
{0, 1, . . . , 3n}, it is either s = 0 or s = 3n. From the construction of (G, p) we
already know that when s = 3n, only k = 9n2 + 3n − 1 edges are happy in G,
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hence the only option left is s = 0. Thus, each vertex of type uj is colored with
a color corresponding to a set containing j, but not with color m+ 1.

As we observed earlier, each uj is adjacent to 3n precolored vertices of the
same color and to at most two vertices of the same color among vertices of the
clique. Hence, the only way to obtain 9n2 + 3n happy edges is when each uj

has exactly two neighbours of the same color in the clique. Thus, for each color
presented among c(uj), there are exactly three vertices of such color in the clique.
This yields a solution of the initial instance of X3C: it is sufficient to take sets
with indices in the set {c(u1), c(u2), . . . , c(u3n)}. This finishes the proof of the
theorem. �

5 ETH and Set Cover Conjecture based lower bounds

In this section, we show lower bounds for exact algorithms for MHV and MHE,
based on the popular Exponential Time Hypothesis and the Set Cover Conjec-
ture. We start with the Set Cover Conjecture and the following problem.

Set Partitioning
Input: An integer n, a set family F = {S1, S2, . . . , Sm} over a universe

U with |U | = n.
Question: Is there a sequence of pairwise disjoint sets Si1 , Si2 , . . . , Sik in F ,

such that
k
⊔

j=1

Sij = U?

Theorem 8 ([8]). For any ǫ > 0, Set Partitioning cannot be solved in time
O∗((2− ǫ)n), unless the Set Cover Conjecture fails.

Theorem 9. For any ε > 0, Maximum Happy Vertices cannot be solved in
time O∗((2− ε)n

′

), where n′ is the number of uncolored vertices, unless the Set
Cover Conjecture fails.

Proof. The proof is by polynomial reduction preserving the size of the universe
of the input instance of Set Partitioning in the number of uncolored vertices
of the resulting instance of Maximum Happy Vertices.

Observe that Set Partitioning is a special case of the weighted version of
the Set Packing problem: for each j ∈ [m], assign weight |Sj | to the set Sj

and ask to find a sequence of disjoint sets of summary weight at least n. With
this observation, adjust the reduction in the proof of Theorem 2 for this special
weighted version of Set Packing by introducing |Sj | copies of vertex sj to G
instead of just one. This yields the required reduction from Set Partitioning
to MHV. �

Theorem 10. For any ε > 0, Maximum Happy Edges cannot be solved in
time O∗((2− ε)n

′

), where n′ is the number of uncolored vertices, unless the Set
Cover Conjecture fails.
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Proof. To prove this theorem we would also like to slightly adjust the reduction
used to prove the lack of polynomial kernels (Theorem 3), but there we exploit
the restricted version of the problem. The reduction appears possible though,
but it is quite more sophisticated than the reduction in the proof of Theorem
3. We now describe this reduction from Set Partitioning preserving the size
of the universe in the number of uncolored vertices in the resulting instance of
MHE. Throughout the proof, we refer to Theorem 3 by saying that we do as
usual.

Firstly, we need to get rid of sets consisting of exactly two elements in the
initial instance (U = [n],F = {S1, S2, . . . , Sm}) of Set Partitioning. We
assume that n > 2. Let F=2 be the subfamily of F of sets consisting of exactly
two elements, i.e. F=2 = {Si | Si ∈ F , |Si| = 2}. We want that F=2 = ∅.

Let it be the other case, F=2 6= ∅. Obtain an equivalent instance (U,F ′) with
F ′

=2 = ∅ as follows. Start with removing all sets in F=2 from F . Then, for every
pair of sets Si ∈ F and Sj ∈ F=2, such that Si ∩ Sj = ∅, add Si ⊔ Sj back in F .
That is, return each set of F=2 back in F , but as a union with some disjoint set
in F , for each such possible set. Also, for each triple of pairwise disjoint sets in
F=2, add their union in F . Formally,

F ′ = F \ F=2 ∪ {Si ⊔ Sj | Si ∈ F , Sj ∈ F=2, Si ∩ Sj = ∅}
∪{Si ⊔ Sj ⊔ Sk | Si, Sj , Sk ∈ F=2}.

(2)

Note that F ′ does not contain any set of size two and is constructed in polynomial
time.

Claim 8. (U,F) and (U,F ′) are equivalent instances of Set Partitioning.

Proof of Claim 8. Let Si1 , Si2 , . . . , Sik be the answer to (U,F). If the sequence
does not contain sets of size two, then all these sets are contained in F ′, hence
it is also an answer to (U,F ′). Otherwise, there is at least one set of size two
in the sequence. Let Si1 , . . . , Sik′

be all sets of size two in the sequence, and
Sik′+1

, . . . , Sik be all other sets in the sequence, k′ ≥ 1. If k′ is even, then
Si1 ⊔ Si2 , . . . , Sik′

−1
⊔ Sik′

, Sik′+1
, . . . , Sik is an answer to (U,F ′). If k′ = 1, then

k ≥ 2, and Si1 ⊔ Si2 , Si3 , . . . , Sik is the answer. Otherwise, k′ is odd and k′ ≥ 3,
and Si1 ⊔ Si2 ⊔ Si3 , Si4 ⊔ Si5 , . . . , Sik′

−1
⊔ Sik′

, Sik′+1
, . . . , Sik is an answer to

(U,F ′). That is, if (U,F) is a yes-instance, then (U,F ′) is a yes-instance.
Proof in the other direction is trivial, since each set of F ′ is a disjoint union

of a number of sets in F . Thus, the instances are equivalent. �

We now assume that F no longer contains any set of size two. We show how
to reduce the instance (U,F) of Set Partitioning to an equivalent instance
(G, p, k′) of MHE. As usual, introduce a clique on n vertices u1, u2, . . . , un in
G, which vertices correspond to the elements of U . For each set Sj ∈ F , do the
following. Let d = |Sj |. Introduce n2 − ⌊d−1

2 ⌋ copies of a vertex sj to G. If d

is odd, for each i ∈ Sj , add edges between ui and all n2 − d−1
2 copies of sj . If

d is even, then divide Sj into two equal parts arbitrarily, say, Sj = S1
j ⊔ S2

j ,

|S1
j | = |S2

j | = d
2 . For each i ∈ S1

j , add edges between ui and all n2 − d
2 +1 copies
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of sj . But for each i ∈ S2
j , add edges between ui and all except one copy of sj ,

that is, connect ui to only n2 − d
2 copies of sj.

As usual, precolor all copies of sj with color j for each j ∈ [m], and leave
every vertex ui uncolored. Finally, set k′ = n3. We argue that the constructed
instance (G, p, k′) is a yes-instance if and only if (U,F) is a yes-instance.

To prove in one direction, let (U,F) be a yes-instance and Si1 , Si2 , . . . , Sik be
the answer sequence. Construct coloring c extending p as usual, by setting c(ui)
equal to the index of the unique set of the answer that contains i, i.e. i ∈ Sc(ui),
for each i ∈ [n]. Observe that c yields exactly n3 happy edges in G. c splits
the clique of G into k groups Vi1 , Vi2 , . . . , Vik , and each group contains vertices
corresponding to the elements of the respective set, i.e. Vit = {ui | i ∈ Sit} for
each t ∈ [k]. Take any group Vit , and let d = |Vit | = |Sit |. If d is odd, then exactly
d · (n2+ d−1

2 ) = dn2+
(

d
2

)

edges that have exactly one endpoint in Vit are happy.

If d is even, the number of such happy edges equals d
2 ·(n2− d

2+1)+ d
2 ·(n2− d

2 ) =

dn2 −
(

d
2

)

as well. The only other edges are
(

d
2

)

edges inside Vit . All vertices in

Vit are of color it, hence all these
(

d
2

)

edges are happy. Thus, vertices in Vit are
incident to exactly |Vit |·n2 happy edges. Since no two groups can share endpoints
of the same happy edge, we get a total of

∑ |Vit | · n2 = n3 = k′ happy edges in
G with respect to c. Hence, (G, p, k′) is a yes-instance of MHE.

We start the proof in the other direction with a claim identical to Claim 1.

Claim 9. In any optimal coloring c of G extending p, i ∈ Sc(ui) for each i ∈ [n].

Proof of Claim 9. Note that n2 − ⌊n−1
2 ⌋ > n− 1 for n > 2, then as usual. �

The following claim bounds the number of happy edges incident to vertices
in each color group of the clique in G.

Claim 10. Take any optimal coloring c of (G, p). Let Vt = c−1(t)∩ {u1, u2, . . . ,
un} be the set of vertices of the universe clique of G that are colored with color
t. Let d = |Vt|. Then vertices in Vt correspond to elements in St, are incident to
at most dn2 happy edges, and the bound of dn2 is reached if and only if d = |St|
or d = 0.

Proof of Claim 10. Take any optimal coloring c of (G, p) and t ∈ [ℓ]. Let d = |Vt|.
If d = 0, then the claim statement holds true. Assume now that d > 0 and |Vt|
is not empty.

By Claim 9, all vertices in Vt correspond to elements in St. Let D = |St|.
Suppose D is odd. Then each vertex in Vt is connected to n2− D−1

2 copies of st.
Hence, exactly dn2−d·(D−1)/2 edges going outside of Vt are happy with respect
to c. All edges inside Vt are happy, so Vt is incident to dn2 − d · (D− 1)/2+

(

d
2

)

happy edges. Since d ≤ D, this number is not greater than dn2 and equals dn2

if and only if d = D = |St|. Thus, the claim statement is true for odd D.
Otherwise, D is even and D ≥ 4, since we removed all sets of size two from

the initial instance. Recall that for sets of even size, we split them into two
halves and connected them to a different number of copies of st. Let d = d1+ d2
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(d1, d2 ≤ D
2 ), so d1 vertices in Vt are connected to n2− D

2 +1 copies of st, and the

other d2 vertices in Vt are connected to n2 − D
2 copies of st. Then, Vt is incident

to exactly n2 − d ·D/2 + d1 happy edges going outside of Vt. Only happy edges
left are the

(

d
2

)

edges inside Vt.
Suppose that vertices in Vt are incident to at least dn2 happy edges in total,

so d ·D/2−d1 ≤
(

d
2

)

. Equivalently, d · (D− (d−1)) ≤ 2d1. Since 2d1 ≤ D, we get
that d · (D − d+ 1) ≤ D, or d2 −Dd+ (D − d) ≥ 0. The quadratic polynomial
has roots in d = 1 and d = D, and the inequality holds when d ≤ 1 or d ≥ D.
If d ≤ 1, then d = 1. But then d · D/2 − d1 = D/2 − d1 ≥ 1 >

(

d
2

)

= 0. Thus,
d = D = |St|.

The proof is finished. Note that if we would have D = 2, Vt could consist of
one vertex connected to n2 − D

2 + 1 = n2 copies of st, and the claim statement
would fail. �

Let now (G, p, k′) be a yes-instance, and c be an optimal coloring of (G, p).
At least n3 edges are happy with respect to c in G. By Claim 10, it follows
that exactly n3 edges are happy in G with respect to c, and each color group
Vt provides exactly |Vt| · n2 happy edges. Hence, |Vt| = |St| for each non-empty
group Vt. Thus, the color partition of the vertices of the universe clique of G
corresponds to a partition of the universe U into sets in F . So (U,F) is a yes-
instance of Set Partitioning. We obtained the desired reduction from Set
Partitioning to MHE. This finishes the whole proof. �

We now turn onto ETH-based lower bounds.

Theorem 11. Maximum Happy Vertices with ℓ = 3 cannot be solved in time
2o(n+m), unless ETH fails.

Proof. We reuse reductions discussed above in the proofs in Section 4. In the
proofs of Lemma 2 and Lemma 3, we obtained a chain of linear reductions from
3-SAT to Independent Set Above Coloring. Then, in the proof of Theorem
6 we showed that Independent Set Above Coloring can be reduced linearly
to Above Guarantee Happy Vertices. Since this problem is a special case
of MHV, it follows that MHV cannot be solved in 2o(n+m) time under ETH.�

We now prove another computational lower bound for MHV that is based on
the reduction from Independent Set to MHV discussed above in the proofs
of Theorem 5 and Theorem 6. This reduction also implies some approximation
lower bounds.

Theorem 12. Maximum Happy Vertices cannot be solved in O(no(k)) time,
unless ETH fails. Also, for any ǫ > 0, Maximum Happy Vertices cannot
be approximated within O(n

1
2−ǫ), O(m

1
2−ǫ), O(h1−ǫ) or O(ℓ1−ǫ) in polynomial

time, unless P = NP.

Proof. It is a well-known result that, assuming ETH, both Clique and Inde-
pendent Set cannot be solved in no(k) time [4, 5, 22]. As discussed in the proofs
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of Theorem 5 and Theorem 6, there is a polynomial reduction from Indepen-
dent Set to MHV.

Given an instance (G, k) of Independent Set, it is enough to precolor
each vertex of G with an unique color and to subdivide each edge of G, thus
obtaining an equivalent instance (G′, p, k) of MHV. G′ is a subdivision of G,
so |V (G′)| = O(n2), where n = |V (G)|. Thus, an algorithm with running time
no(k) for MHV would imply an algorithm with running time n2o(k) = no(k) for
Independent Set. This proves that MHV cannot be solved in no(k) time under
ETH.

The approximation guarantee lower bounds for MHV follow from the in-
approximability of Clique and Independent Set, as both of these problems
cannot be approximated within O(n1−ǫ), unless P 6= NP [29]. We use the same
reduction from Independent Set to MHV, and note that |E(G′)| = O(n2)
and h = ℓ = |V (G)| = n. This finishes the proof. �

Theorem 13. Maximum Happy Edges with ℓ = 3 cannot be solved in time
2o(n+m), unless ETH fails.

Proof. In their work on multiterminal cuts [11], Dahlhahus et al. showed NP-
completeness of 3-Terminal Cut (equivalently,Maximum Happy Edges with
ℓ = 3) by a linear reduction from theMax Cut problem. TheMax Cut problem
definition is given below.

Max Cut
Input: A graph G and an integer k.
Question: Can vertices of G be partitioned into two sets V (G) = V1 ⊔ V2, so

that the number of edges between V1 and V2 in G is at least k, i.e.
|E(V1, V2)| ≥ k?

The reduction they give is linear, so it is sufficient to prove that Max Cut
cannot be solved in 2o(n+m) time, unless ETH fails. Although this result may
be well-known, we have not found any explicit statement about that Max Cut
cannot be solved in subexponential time. For completeness, we state it here.

Lemma 4. Max Cut cannot be solved in time 2o(n+m), unless ETH fails.

Proof. This result can be obtained by following the series of classical reductions
by Papadimitriou and Yannakakis in [24]. They reduce an instance of Max 3-
SAT to an instance of Max 3-SAT that contains at most three occurences of
each variable, then to Independent Set, Max 2-SAT, then to Max Not-
All-Equal 3-SAT and finally to Max Cut. All reductions they provide are
linear, so no problem in this chain can be solved in subexponential time. �

We finish the proof by combining Lemma 4 and the linear reduction in [11]
from Max Cut to 3-Terminal Cut. �

6 Algorithms

In this section, we present two algorithms solving MHV or MHE. We start with
a randomized algorithm for MHV that runs in O∗(ℓk) time and recognizes a
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yes-instance and finds the required coloring with a constant probability. The
algorithm is based on the following lemma.

Lemma 5. Let (G, p) be a graph with precoloring, and P =
ℓ
⋃

i=1

Hi(G, p). Let

c be a coloring that yields the maximum possible number of happy vertices in
(G, p), and let H = H(G, c) be the set of these vertices. Then |H ∩P | ≥ 1

ℓ · |P |.

Proof. Let k be the maximum possible number of vertices that can be happy
simultaneously in (G, p), so (G, p, k) is a yes-instance of MHV, and (G, p, k +
1) is not. Let i be such that |Ht(G, p)| is maximum possible. In particular,
|Ht(G, p)| ≥ 1

ℓ · |P |. Construct a coloring c′ of (G, p) by trivially extending p
with the color t. Note that all vertices that are not happy in G with respect to
c′ are contained in

⋃

i∈[ℓ]\{t}
Hi(G, p) = P \ Ht(G, p).

Let U = H(G, p) \P . All vertices in U and all vertices in Ht(G, p) are happy
in G with respect to c′. Let H ′ = H(G, c′) be the set of all vertices that are happy
in G with respect to c′. Then U∩Ht(G, p) ⊆ H ′, and |H ′| = |H ′∩U |+ |H ′∩P | ≥
|U |+ 1

ℓ · |P |.
Take now a coloring c that yields the maximum possible number of happy

vertices in (G, p), and let H = H(G, c) be the set of these vertices. In particular,
|H | ≥ |H ′|. Suppose |H∩P | < 1

ℓ ·|P |. But |H | = |H∩U |+|H∩P | < |U |+ 1
ℓ ·|P | ≤

|H ′|. This contradiction finishes the proof. �

Theorem 14. There is a O∗(ℓk) running time randomized algorithm for Max-
imum Happy Vertices.

Proof. Firstly, we provide a procedure that finds an answer for a given instance
(G, p, k) of ℓ-MHV with a probability of at least ℓ−k, if (G, p, k) is a yes-instance.
The procedure is given in Fig. 1.

Claim 11. guess answer(G, p, k) always outputs a set of vertices that can be
happy simultaneously in (G, p).

Proof of Claim 11. We prove that by induction on k. For k = 0, the procedure
returns U in line 4, and all vertices in this set can be happy simultaneously in
(G, p) (for example, with any trivial extension of p). Let now k > 0 and the
claim statement hold for k− 1. Consider in which line the procedure returns for
(G, p, k). If it is line 4 or line 6, then the claim statement holds. Consider the
only case left, when procedure returns in line 12.

Let H ′ be the set returned by guess answer(G\{v}, p′, k−1). By induction,
all vertices in H ′ can be happy simultaneously in (G \ {v}, p′). Note that all
vertices in H ′ ∪ {v} can be happy simultaneously in (G, p) as well, since p′ is
just a restriction of p that ensures that all neighbours of v are colored with the
same color as v itself. The claim statement follows immediately. �

Claim 12. For any yes-instance (G, p, k) of ℓ-MHV, the guess answer proce-
dure outputs a set H with |H | ≥ k with a probability of at least ℓ−k.
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Algorithm: guess answer(G, p, k)

Input: An instance (G, p, k) of ℓ-MHV.
Output: A set H ⊆ H(G, p) such that all vertices in H can be happy in (G, p)

simultaneously.

1 P ←−
ℓ⋃

i=1

Hi(G, p)

2 U ←− H(G, p) \ P
3 if k ≤ |U | then
4 return U

5 if P = ∅ then
6 return ∅

7 v ←− random vertex in P , each with equal probability
8 p′ ←− p|

V (G)\{v}

9 i←− the color such that v ∈ Hi(G, p)
10 foreach u ∈ N(v) do
11 p′(u)←− i

12 return guess answer(G \ {v}, p′, k − 1) ∪ {v}

Fig. 1. A randomized procedure finding a set of vertices that can be happy simultane-
ously.

Proof of Claim 12. The proof is by induction on k. For k = 0, the claim state-
ment holds, since any output suffices. Let now k > 0 and let the claim statement
hold true for k−1. Finally, let (G, p, k) be a yes-instance of MHV. Consider how
the procedure processes the instance. If it returns in line 4, having that |U | ≥ k,
it outputs a required set with the probability of 1. Note that the procedure can’t
return in line 6, since (G, p, k) is a yes-instance. Hence, the only case left is that
the procedure returns in line 12. We now consider this case.

Fix any optimal coloring c of (G, p). In particular, c yields at least k happy
vertices in (G, p), so |H(G, c)| ≥ k. By Lemma 5, |H(G, c)∩P | ≥ 1

ℓ · |P |. Hence,
in line 7, the procedure chooses v such that v ∈ H(G, c), with a probability of
at least ℓ−1. Consider the case that the procedure indeed chooses such v, so v ∈
H(G, c). Since v is precolored and is happy with respect to c, for any neighbour
u of v holds c(u) = c(v) = p(v). Thus, c|V (G)\{v} is a coloring extending p′ in G\
{v}. Moreover,H(G\{v}, c|V (G)\{v}) = H(G, c)\{v}. Therefore, (G\{v}, p′, k−
1) is a yes-instance. By induction, guess answer(G \ {v}, p′, k− 1) returns a set
H ′ with |H ′| ≥ k − 1 and all vertices in H ′ can be happy simultaneously in
(G \ {v}, p′), with a probability of at least ℓ−k+1. By Claim 11, all vertices in
H ′ ∪ {v} can be happy in (G, p) simultaneously. Recall that v ∈ H(G, c) with a
probability of at least ℓ−1, and obtain the total probability of at least ℓ−k. �

From the claims above immediately follows that a single launch of the pro-
cedure finds that the given instance is a yes-instance with a probability of at
least ℓ−k, and never finds that if the given instance is a no-instance. We finish
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the construction of the randomized algorithm by saying that it repeats the pro-
cedure for ℓk times for the given instance, so it recognizes a yes-instance with
a constant probability of at least e−1, and never recognizes a no-instance as a
yes-instance. �

Note that by Theorem 12, no algorithm with running time O(ℓo(k)) exists
for MHV, unless ETH fails. Similarly, no O(ℓo(k)) running time randomized
algorithm exists for MHV under the randomized ETH [12]. The algorithm given
above is optimal in that sence.

We now turn onto MHE and give an exact algorithm with O∗(2k) running
time for this problem. In its turn, this algorithm optimal in a sence that no 2o(k)

running time algorithm exists for MHE under ETH (see Theorem 13). The algo-
rithm relies on the following kernelization result. We note that this kernelization
result and an algorithm with the running time of O∗(2k) was already presented
by Aravind et al. in [3]. We believe that our kernelization algorithm is short and
somewhat simpler, since it relies on a single reduction rule.

Theorem 15 ([3]). Maximum Happy Edges admits a kernel with at most k
uncolored vertices.

Proof. Let (G, p, k) be an instance of MHE. We show how to obtain an equiv-
alent instance (G′, p′, k′) of MHE, where the number of uncolored vertices in
(G′, p′) is at most k′ and k′ ≤ k.

The kernelization algorithm consists just of applying the following reduction
rule exhaustively to (G, p, k).

Reduction rule 1 If there is a connected component C consisting only of un-
colored vertices in (G, p), remove it from G and reduce k by the number of edges
in C. That is, replace instance (G, p, k) with an instance (G \ C, p|V (G)\C , k −
|E(G[C])|).

The correctness of the reduction rule follows from the fact that one can color
a connected component of uncolored vertices with the same single color and
make all edges in the component happy.

Claim 13. After the exhaustive application of Reduction rule 1, if G′ contains
at least k′ uncolored vertices, then (G′, p′, k′) is a yes-instance.

Proof of Claim 13. If k′ ≤ 0, (G′, p′, k′) is trivially a yes-instance. Suppose now
k′ ≥ 1 and G′ contains at least k′ uncolored vertices. We construct a coloring of
(G′, p′) that yields at least k′ happy edges.

Take any uncolored vertex in (G′, p′), say v, such that v has at least one pre-
colored neighbour in (G′, p′). Note that such choice of v always exists, otherwise
Reduction rule 1 would be applied.

Let u be a precolored neighbour of v. Then, set the color of v to p(u). Edge
uv becomes happy, and still no connected component in G′ consists only of
uncolored vertices. Thus, we can take an uncolored vertex with a precolored
neighbour again. Repeat this procedure until no uncolored vertex remains in
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G′. The procedure is repeated at least k′ times, and each time a happy edge is
obtained, so (G′, p′, k′) is a yes-instance. �

The statement of the theorem follows directly from the claim. �

Theorem 16 ([3]). There is a O∗(2k) running time algorithm for Maximum
Happy Edges.

Proof. As shown by Aravind et al. in [3], MHE can be solved in time O∗(2n
′

),
where n′ is the number of uncolored vertices. By Theorem 15, we can assume
that n′ ≤ k, and the statement follows. �
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