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On the parameterized complexity of 2-partitions∗
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Abstract

We give an FPT algorithm for deciding whether the vertex set a digraph D

can be partitioned into two disjoint sets V1, V2 such that the digraph D[V1] in-
duced by V1 has a vertex that can reach all other vertices by directed paths, the
digraph D[V2] has no vertex of in-degree zero and |Vi| ≥ ki, where k1, k2 are part
of the input. This settles an open problem from [1, 4].
Keywords: FPT algorithm, out-branching, 2-partition, directed graph, param-
eterized complexity.

1 Introduction

A 2-partition of a digraph D = (V,A) is a partition (V1, V2) of V into disjoint sets.
Let P1,P2 be two (di)graph properties. Then a (P1,P2)-partition of a digraph D is
a 2-partition (V1, V2) so that D[Vi] has property Pi for i = 1, 2, where D[Vi] is the
subdigraph induced by Vi. A (P1,P2)-[k1, k2]-partition of a digraph is as above, but
now we also require that |Vi| ≥ ki for i = 1, 2. For example if P is the property of being
acyclic, then the set of digraphs that allow a (P,P)-partition are exactly those digraphs
that have dichromatic number at most 2. Recognizing such digraphs is NP-complete
[6].

Problems concerning the existence of certain 2-partitions of a given input digraph
has received a lot of attention in the literature, see e.g. [1, 3, 4, 5, 7, 8, 9, 10, 12, 13, 14].
In the papers [1, 3] the authors gave, for fixed k1, k2 (not part of the input), a complete
complexity classification, in terms of being NP-complete or in XP, for the 120 (P1,P2)−
[k1, k2]-partition problems corresponding to properties P1,P2 both being one of the
following 15 properties: being strongly connected, being connected, minimum out-
degree at least 1, minimum in-degree at least 1, minimum in- and out-degree at least
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1, minimum degree at least 1, having an out-branching, having an in-branching, being
acyclic, being complete, being oriented, being independent, being semicomplete, being
a tournament and finally being symmetric. They left open to characterize which of
those problems that are polynomial actually admit an FPT algorithm. In [4] this was
settled for the 23 polynomially solvable problems coming from both P1 and P2 being one
of the following 8 properties: strongly connected, connected, having an out-branching,
having an in-branching, having minimum degree at least 1, having minimum in- and
out-degree at least 1, being acyclic, being complete. One problem that was left open
in [4] was to determine the parameterized complexity of deciding the existence of a
2-partition (V1, V2) with |Vi| ≥ ki for i = 1, 2 where the digraph D[V1] induced by V1

has an out-branching and the digraph D[V2] has no vertex of in-degree zero. We prove
in this paper that this problem is FPT.

2 Notation and preliminaries

The notation we use is consistent with that of [2]. For a digraph D = (V,A) we say
that two vertices u and v are adjacent if at least one of the arcs uv, vu is in A. For a
set of vertices U ⊆ V , the subdigraph induced by U , denoted D[U ], is the digraph
obtained from D by deleting all vertices V \ U and all arcs adjacent to those vertices.
For digraph D we denote by |D| = |V (D)| the number of vertices in the graph. We
use the same notation for paths and cycles, so |P | is the number of vertices in the path
P . Paths and cycles will always be directed. The girth of a digraph is the length of
a shortest directed cycle in D. A (u, v)-path is a directed path from u ∈ V to v ∈ V
and the digraph D is strongly connected if it contains a (u, v)-path for all ordered
pairs of vertices u, v ∈ V . A strong component of a digraph is a maximal induced
subdigraph which is strong. A strong component is initial if it has no entering arc in
D.

The underlying graph, U(D), of a digraph D is the graph obtained from D by
replacing every 2-cycle by one edge and then suppressing all the directions of the other
arcs. A digraph D is connected if U(D) is connected. For a vertex u ∈ V , we denote
by N(u) its neighbours, that is, the set of vertices that are adjacent to u. The out-

degree d+D(u) is the number of arcs going out of u in D. Similarly, the in-degree

d−D(u) is the number of arcs going into u. We denote by δ−(D) the minimum in-degree
of a vertex in D. For a subset X ⊂ V , N+(X) denotes the set of out-neighbours of
X in D.

An out-tree rooted in s is a connected digraph T+
s such that d−

T+
s

(s) = 0 and

d−
T+
s

(u) = 1 for all u ∈ V (T+
s ) \ {s}. An out-branching, B+, of a digraph D is an

out-tree such that V (T+
s ) = V (D).

A digraph D is acyclic if it contains no induced directed cycles, and it is complete

if for every pair of vertices u, v ∈ V induce a 2-cycle uvu.
A parameterized problem with parameter k is in the complexity class XP if instances

of size n can be solved in time O(f(k)ng(k)) for some pair of computable functions f, g.
So if k is fixed the problem can be solved in polynomial time. A problem is Fixed
Parameter Tractable (FPT) if it can be solved in time O(f(k)nc) for some constant c
and computable function f .
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3 The (B+, δ− ≥ 1)-[k1, k2]-partition problem

The following is the problem whose complexity status we settle in this paper.

(B+, δ− ≥ 1)-[k1, k2]-partition
Input: A digraph D = (V,A) and natural numbers k1, k2
Question: Is there a 2-partition (V1, V2) of V such thatD[V1] has an out-branching
and δ−(D[V2]) ≥ 1, where |Vi| ≥ ki for i = 1, 2?

In [1] the problem was shown to be polynomially solvable for every fixed pair of
natural numbers k1, k2, but the algorithm has a running time O(nf(k1)) and hence is
not an FPT algorithm.

We begin with a few simple observations. The root of the out-branching is the only
vertex that can possibly have in-degree 0 in a yes-instance. Therefore, if there are two
or more vertices with in-degree 0 in D, it must be a no-instance. So in the following
we assume the input is a digraph with at most one vertex with in-degree 0. For future
reference, if there is such a vertex with in-degree 0 in the input D, we will refer to it
as r, and in that case r must be the root of the out-branching.

Throughout the solution to the (B+, δ− ≥ 1)-[k1, k2]-partition problem, we will say
that we grow some subset of the vertices inside the graph. What we mean by grow is
iteratively adding a vertex to the set that is an out-neighbour of a vertex in the set.
Sometimes we want to limit this process to only growing the set to a certain size. We
formalize the process in Algorithm 1.

Algorithm 1

procedure grow(D = (V,A), S, k)
while |S| < k and N+(S) 6= ∅ do

v ← any vertex in N+(S)
S ← S ∪ {v}

end while

return S
end procedure

Note that if we don’t want to limit the growth we can set k = |V |.

Lemma 1. Algorithm 1 runs in polynomial time.

Proof. Calculating the set of out-neighbours of a set can be done in polynomial time. A
vertex is added to S in each iteration of the while loop, so if none of the exit conditions
are met before the (n−1)st iteration, then after that iteration every vertex in the graph
has been added to S and thus its neighbourhood must be empty. So the algorithm
runs in polynomial time.

If min{k1, k2} = 0, then we can solve the (B+, δ− ≥ 1)-[k1, k2]-partition problem
in polynomial time. If k2 = 0 we can try all possible roots of the out-branching (there
is only one possible root if r exists), and grow it as large as possible by using Algorithm
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1, with S containing the single vertex s that we are trying as root and k = |V |. As
we start with a single vertex and each vertex that is added has at least one arc into it
from the previous set, it follows by induction that the subdigraph D〈S〉 induced by the
set S returned by Algorithm 1 will contain an out-branching T+

s . If one of the possible
roots grows to a set S with |S| ≥ k1, then because none of the vertices in S has arcs to
vertices in V \S, it follows from our assumption that every vertex of V (except possibly
r) has in-degree at least 1, that we have δ−(D− S) ≥ 1. Thus, (V1, V2) = (S, V \ S) is
a solution.

For the case k1 = 0, we will use the following algorithm which will prove useful
later as well.

Algorithm 2

procedure trim(D = (V,A))
D′ ← copy of D
V ′ ← V (D′)
Z ← { v ∈ V ′ | d−(v) = 0 }
while Z 6= ∅ do

D′ ← D′ − Z
V ′ ← V (D′)
Z ← { v ∈ V ′ | d−(v) = 0 }

end while

return D′

end procedure

Algorithm 2 simply iteratively removes vertices with in-degree 0 in the current
digraph and return the resulting digraph. Note that the resulting digraph D′ will have
δ−(D′) ≥ 1.

Lemma 2. Algorithm 2 finds the largest possible subdigraph with δ− ≥ 1 in polynomial
time.

Proof. It is clear that the algorithm runs in polynomial time and the other part of the
claim follows from the fact that a vertex is only removed if it cannot be part of any
subdigraph of minimum in-degree at least 1.

To handle the case k1 = 0 we simply apply Algorithm 2 to the input D. Note that
the removed vertices (if any) induce a subdigraph with an out-branching rooted at r,
because a vertex only has in-degree 0 if it is r or if its in-neighbours were removed,
implying that an arc into it existed in D. Hence if the output D′ = (V ′, A′) of has
|V ′| ≥ k2 then (V \ V ′, V ′) is a solution.

From now on we assume that k1, k2 ≥ 1. Let us call a 2-partition (V1, V2) of V
good if D[V1] has an out-branching and δ−(D[V2]) ≥ 1. As we have assumed that
we have at most one vertex with in-degree 0, the following lemma, which is the basis
of the polynomial algorithm of Theorem 3.9 in [1], shows that in order to verify that
(D, k1, k2) is a ’yes’-instance we only need to find an induced subdigraph D′ of D such
that (D′, k1, k2) is a ’yes’-instance.
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Lemma 3. Let I = (D = (V,A), k1, k2) be an instance of the (B+, δ− ≥ 1)-[k1, k2]-
partition problem with at most 1 vertex with in-degree 0. Then any 2-partition (V ′

1 , V
′
2)

(with r ∈ V ′
1 if r exists) of a subset of V , where

• D[V ′
1 ] has an out-branching

• δ−(D[V ′
2 ]) ≥ 1

• |V ′
i | ≥ ki, i = 1, 2

can be extended to a good partition of V in polynomial time.

Proof. Call a 2-partition (V ′
1 , V

′
2) that satisfies the conditions of the lemma a subso-

lution.
Fix any subsolution. Use Algorithm 1 on the graphD−V ′

2 , starting with S = V ′
1 and

k = |D−V ′
2 |, and denote the result by VT+ . In other words we grow the out-branching

as large as possible, while not using any vertex in V ′
2 . We claim that (VT+, V \VT+) is a

solution. Clearly |VT+| ≥ |V ′
1 | ≥ k1. Since D[V ′

1 ] has an out-branching and Algorithm
1 only adds a vertex v if it has an in-neighbour in the current set S, VT+ must contain
an out-branching. Secondly, because r ∈ V ′

1 ⊆ VT+ if it exists, we know that all vertices
in V2 = V \VT+ had in-degree at least 1 in D. It was also the case that δ−(D[V ′

2 ]) ≥ 1.
Now because VT+ was grown as large as possible in D − V ′

2 , the vertices in V2 \ V
′
2

(if any) were not reachable from VT+ and thus must still have in-degree at least 1 in
D[V2]. Moreover, V ′

2 ⊆ V2 meaning |V2| ≥ |V
′
2 | ≥ k2, and thus (VT+, V2) is a solution.

As this is a simple application of Algorithm 1 a subsolution can be extended to a
solution in polynomial time.

So from here on, finding a subsolution is sufficient to solve the problem.

The following result, due to Shen, will be used in the proof of our main result.

Theorem 4. [11] Suppose G is a digraph of order n and girth g with δ+(G) ≥ 1. Let
t = |{ u ∈ G | d+(u) = 1 }|. Then

g ≤

{

⌈n/2⌉ if t = 0,

⌈(n + t− 1)/2⌉ if t ≥ 1

The result also holds if we let t be the number of vertices with in-degree 1 (in
a digraph with δ−(G) ≥ 1), instead of out-degree 1 (just reverse all arcs and apply
Theorem 4). We are now ready to prove our main result.

Theorem 5. The (B+, δ− ≥ 1)-[k1, k2]-partition problem is FPT.

Proof. We will describe an FPT algorithm which correctly decides whether the input
(D, k1, k2) is a yes-instance of the (B+, δ− ≥ 1)-[k1, k2]-partition problem.

From the previous observations, we can assume that the input (D, k1, k2) satis-
fies that min{k1, k2} ≥ 1 and D has at most one vertex with in-degree 0. Let
k = max(k1, k2) and define the functions f, h by setting f(k) = 32k3 + 4k and
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h(k) = 2k · f(k).

We start by determining some arcs that cannot be part of the out-branching in any
solution. We say that an arc uv ∈ A is non-branchable if D−{u, v} does not have a
subdigraph D′′ of size at least k2 with δ−(D′′) ≥ 1. Thus if an arc uv is non-branchable,
then at least one of the vertices u, v must belong to V2 in any good partition (V1, V2).
Using Algorithm 2 we can identify the set B† ⊂ A of non-branchable arcs in polynomial
time. Let B = A \ B† be the potential branching arcs and let DB = (V,B) be the
subdigraph of D containing exactly the arcs in B. For each vertex u ∈ V we now define
N+

B (u) as the out-neighbours of u in DB.

N+
B (u) = N+

DB
(u) = { v | uv ∈ B }

Clearly, N+
B (u) can be calculated for each u ∈ V in polynomial time. We now distin-

guish several cases which cover all the possibilities.

Case 1. ∀u ∈ V : |N+
B (u)| ≤ h(k):

In this case we can check all possible out-trees of size exactly k1 in DB. We do this
by trying each possible root, of which there are at most n = |V | (there is only 1 if r
exists), and for each root the out-tree will have height at most k1.

For each vertex, already included in the out-tree, we can use between 0 and k1 of
at most h(k) different arcs leaving that vertex. There are at most

k1
∑

i=0

(

h(k)

i

)

ways to do so.
So a very rough upper bound on the total number of out-trees that must be checked

is

n ·

(

k1
∑

i=0

(

h(k)

i

)

)k1

which means if each check can be done in polynomial time, we can solve this case in
FPT time.

For each possible out-tree T+ with k1 vertices we run Algorithm 2 on D − V (T+).
If the resulting graph D′ has at least k2 vertices, then (V ′

1 , V
′
2) = (V (T+), V (D′)) is a

subsolution. As Algorithm 2 is indeed a polynomial time algorithm, we conclude that
Case 1 can be solved in FPT-time.

For the case where maxu∈V {|N
+
B (u)|} > h(k), we first split the case into whether

or not the vertex r exists, and begin with the case where r does not exist.

Case 2. δ−(D) ≥ 1 and ∃s ∈ V : |N+
B (s)| > h(k):

We will show that, if we are in this case then (D, k1, k2) is a yes-instance and, in
fact, any vertex s with |N+

B (s)| > h(k), can be the root of the out-branching in a
solution.

Fix any s with |N+
B (s)| > h(k).
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We will say that we contract v into u, if the arc uv exists. Contracting v into u
means removing the vertex v and adding arcs from u to every out-neighbour w of v
(if uw is not already an arc). As it turns out, we will only contract vertices into our
choice for the root of the out-branching s, and unless otherwise stated, we do not rely
on the vertices that are contracted into s for our solution.

Let C be the set of strong components of D − s and for each strong component
C ∈ C let N+

B,C(s) denote the set of out-neighbours of s inside C using arcs in B, that
is,

N+
B,C(s) = N+

B (s) ∩ V (C)

Note that C and N+
B,C(s) can easily be computed in polynomial time.

Case 2.1. ∃C ∈ C : |N+
B,C(s)| ≥ f(k):

Fix C ∈ C such that |N+
B,C(s)| ≥ f(k). First, we look for a subsolution (V ′

1 , V
′
2),

where C is contained completely in one of the sets V ′
i .

Let D′ be the output from Algorithm 2 on input D−C − s (i.e. D′ is a maximum
subdigraph in D−C − s with δ−(D′) ≥ 1). If |D′| ≥ k2, then ({s}∪V (C), V (D′)) is a
subsolution, as s has at least f(k) ≥ k1 out-neighbours in C and δ−(D′) ≥ 1. Similarly,
we can try Algorithm 1 on DB−C with S = {s} and k = k1. If the returned vertex set
V ′
1 has size |V ′

1 | ≥ k1, then, because C is a strong component with at least f(k) ≥ k2
vertices, (V ′

1 , V (C)) is a subsolution. Both cases can clearly be handled in polynomial
time so we may assume that neither of these cases occur, implying that we must split
C in some way to obtain a (sub)solution.

Iteratively contract all trivial initial strong components into s (iteratively these are
the vertices with in-degree 0 in the current digraph, D − s.) and call the resulting di-
graph D for simplicity. If C is not an initial strong component of D after this process,
then there is a non-trivial strong component C ′ with a path into C. Using Algorithm
1 on D − s with S = V (C ′) and k = k2, we obtain a set V ′

2 , where δ−(D[V ′
2 ]) ≥ 1

because we started with a non-trivial strong component. We also have |V ′
2 | ≥ k2 and

|V ′
2∩V (C)| < k2 thus V

′
1 = N+

B,C(s)\V
′
2 has size |V ′

1 | ≥ f(k)−k2 ≥ k1, so (V ′
1∪{s}, V

′
2)

is a subsolution which can be found in polynomial time. Hence we can assume that C
is an initial strong component after the contraction step.

Now, observe that any cycle in D[V (C)], small or large, that avoids at least k1
vertices of N+

B,C(s), gives rise to a subsolution. Clearly, if such a cycle O contains at
least k2 vertices, we immediately have a subsolution by taking an out-star consisting
of s and k1 − 1 vertices from N+

B,C(s) − O for V ′
1 and the vertices of O for V ′

2 . If O
contains less than k2 vertices, then we can grow it until it has k2 vertices, which again
leaves at least f(k) − k2 ≥ k1 vertices for an out-branching from s (we can just take
an out-star from s with k1 − 1 leaves). Hence it suffices to show that such a cycle O
indeed exists.

We first check whether D[V (C)−N+
B,C(s)] is acyclic. If this is not the case, then by

the previous observation we have a subsolution and we are done. The same conclusion
holds if there is a cycle in C which contains only one vertex of N+

B,C(s) (and the
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existence of such a cycle can easily be checked in polynomial time). Hence we may
assume that every cycle in C contains at least two vertices of N+

B,C(s).
To summarize the situation, these are some facts about the situation we are in:

1. C is an initial strong component of D − s.

2. s has at least f(k) out-neighbours inside C. We will denote this set of out-
neighbours by S = N+

B,C(s) for brevity.

3. Every cycle in C contains at least two vertices of S.

4. By definition of the arc set B, for each vertex u ∈ S there exists a subdigraph
D′ of D − {s, u} with δ−(D′) ≥ 1 and |V (D′)| ≥ k2.

5. D−C−s does not have a subdigraph with δ− ≥ 1 and size at least k2, so some of
the vertices of the subdigraph D′ from fact 4 belong to C. Additionally, we had
from fact 1 that C is initial, so some cycle in C must be part of the subdigraph
of minimum in-degree at least one that we are looking for.

6. The objective is to show that there exists a cycle in C that avoids at least k1
vertices in S

s1 s2 s3 s4

S

a

b

s1 s2 s3 s4

Figure 1: An example of the construction of DS. Left: the strong component C with
S = N+

B,C(s) and D〈S〉 shown inside the rectangle. Right: the final digraph DS with
the red arc representing the path s3→a→b→s1. The other new arcs are shown in blue.

Let the digraph DS be obtained as follows, starting from a copy of D[S]: For each
ordered pair a, b ∈ S, such that there is a path a → v1 → v2 → . . . → vl → b in C
where all vi /∈ S for i ∈ [l], we add the arc ab to DS, if it does not already exist. Note
that, DS does not have parallel arcs. We use d+S (u) (d

−
S (u)) to denote the out-degree

(in-degree) of vertex u in DS.
Let a, b ∈ S and note that since C is strong it contains an (a, b)-path P . Let

〈u1, . . . , um〉 be those vertices on P that are in S, listed in the order in which they are
visited by P . By the construction of DS it contains the path a→ u1 → . . .→ um → b

8



in DS. Since a, b were arbitrary vertices, it follows that DS is strong. With a similar
argument and the fact that every cycle in C contains at least two vertices of S, we
can conclude that every cycle in C corresponds to a cycle in DS. We also have that
a cycle in DS corresponds to a closed walk in C, so a cycle in DS that avoids at least
k1 vertices in S is verification that there exists a cycle in C which avoids at least k1
vertices in S.

Let g = g(DS) denote the girth of DS and let t = min{t+, t−}, where t+ = |{ u ∈
DS | d

+
S (u) = 1 }|, t− = |{ u ∈ DS | d

−
S (u) = 1 }|. Now we apply Theorem 4 to DS

(recall that this holds for both t+ and t−). If t = 0, then because |S| ≥ f(k) > 2k1 we
have g ≤ ⌈|S|/2⌉ ≤ |S| − k1. Otherwise, by Theorem 4, we have g ≤ ⌈(|S|+ t− 1)/2⌉.
If t ≤ |S| − 2k1 we make the following calculation.

t ≤ |S| − 2k1
⇓

|S|+ t ≤ 2|S| − 2k1
⇓

g ≤ ⌈(|S|+ t− 1)/2⌉ ≤ |S| − k1,

implying that every shortest cycle in Ds avoids at least k1 out-neighbours of s in
DS. Clearly we can find a shortest cycle in polynomial time. Hence we may assume
that t > |S| − 2k1. This implies that at least |S| − 4k1 vertices have d+S = d−S = 1.
Denote by T the set of these vertices and let T̄ = S \T . Consider DS[T ], it will consist
of some vertex-disjoint induced paths (as T̄ 6= ∅, by the definition of B). Let P denote
the set of these paths. Clearly P can be computed in polynomial time. Note that for
each path P = v1 → . . .→ vl ∈ P, there is exactly one pair a, b ∈ T̄ such that a→ v1

and vl → b are arcs in DS. Use a
P
−→ b to denote a path from a to b using the path

P ∈ P.
Suppose first that there is a path P ∈ P with at least k1 vertices. We claim that

there must be a cycle W in DS avoiding P . Assume for the sake of contradiction that
there is no such cycle. Then, because every vertex u on P has d+S (u) = d−S (u) = 1,
every cycle in DS must contain the entire path P . Thus removing any vertex v of P
would destroy all cycles in DS and hence also in C. But because C was initial, this
means no vertices in C − v could be part of a subdigraph with δ− ≥ 1, and as we are
in a case where D −C − s does not have subdigraph with δ− ≥ 1 and size at least k2,
we get a contradiction to the definition of N+

B (since the arc sv is in B).
Suppose now that every path P ∈ P has less than k1 vertices. Recall that we have

at most 4k1 vertices in T̄ . We can represent DS by a directed multigraph DT̄ with

vertex set T̄ and with the arcs AT̄ ∪ AP where AT̄ = A(DS[T̄ ]) and AP = { a
P
−→ b |

a, b ∈ T̄ , P ∈ P }. See Figure 2.

9
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z

w

T T DT

P

P ′

P

P ′

Figure 2: The left part of the figure shows an example of the sets T, T , illustrating that
D〈T 〉 is a collection of vertex disjoint paths. The right part shows the extra (coloured
arcs that are added when we create the digraph DT .

For two distinct vertices a, b of DT̄ , let

wab =
∑

a
P−→b∈AP

|P | (1)

be the number of vertices in T which lie on paths from a to b in DS. Note that
∑

a,b∈T̄

wab = |T | (2)

As there are at most 4k1 vertices in DT̄ , there are less than (4k1)
2 = 16k2

1 ≤ 16k2

pairs. We also have that

|T | ≥ |S| − 4k1

≥ f(k)− 4k1

≥ 32k3 + 4k − 4k1

≥ 32k3

So it follows from (2) that there must be a pair a, b that has

wab ≥
32k3

16k2

= 2k

≥ 2k1

Let Pab ⊆ P denote the set of those paths that contribute to wab. Since each P ∈ P
has |P | < k1, we have |Pab| ≥ 2 so if we choose P ′ ∈ Pab as one of these that uses
the fewest vertices, then we always avoid at least k1 vertices in the union of the other
paths in Pab. Because DT̄ is strong, there is also a path P ′′ from b to a in DT̄ and P ′′

does not intersect any path in Pab. Hence P ′ ∪ P ′′ is a cycle that avoids at least k1
vertices of S.

In conclusion we have shown that if we are in Case (2.1), then in polynomial time
we can find a cycle which avoids at least k1 vertices of S.
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Case 2.2. ∀C ∈ C : |N+
B,C(s)| < f(k):

As there are h(k) out-neighbours of s there must be at least h(k)
f(k)−1

= 2k·f(k)
f(k)−1

≥ 2k

strong components containing a neighbour of s. From the definition of N+
B , we know

that D − s has a subdigraph D′ with δ−(D′) ≥ 1 and at least k2 vertices. We can
build such a subdigraph that also leaves at least k1 out-neighbours of s for the out-
branching as follows: Starting from an empty set V ′

2 = ∅, iteratively add the vertices of
a non-trivial strong component of D− s−V ′

2 to V ′
2 and use Algorithm 1 on D− s with

S = V ′
2 and k = k2 to grow it. We repeat until |V ′

2 | ≥ k2 (when adding a non-trivial
strong component we may exceed k2).

As s has an out-neighbour in at least 2k strong components and at most k2 ≤ k
strong components are added to D′

2 during this construction, there are still at least
2k− k2 ≥ k ≥ k1 strong components, containing a neighbour of s, that can be used to
form an out-tree from s of size at least k1. So we can obtain a subsolution in polynomial
time.

Case 3. ∃u ∈ V : |N+
B (u)| > h(k) and ∃!r ∈ V : d−(r) = 0:

As we saw in Case 2, if a vertex s has |N+
B (s)| > h(k) and every other vertex has in-

degree at least 1, then we have a yes-instance. So the idea in this case is to start with r
and while |N+

B (r)| ≤ h(k) contract a neighbour u ∈ N+
B (r) into r and recompute B and

N+
B (r). If we reach N+

B (r) = ∅ before contracting k1 − 1 times, then we backtrack and
try contracting another neighbour in N+

B (r), until we have tried all possible out-trees
with k1 vertices from r, similar to case 1. If we instead reach |N+

B (r)| > h(k) then the
problem is reduced to case 2, and we have a yes-instance.

Because we reduce to Case 1 and 2 in polynomial time, this case is also solvable in
FPT time.

So we have shown how to find the correct answer in all cases. We also argued that
it was possible in FPT time in every case. This concludes the proof.

From the proof in Case 2 we obtain the following.

Corollary 6. Let (D = (V,A), k1, k2) be an instance of the (B+, δ− ≥ 1)-[k1, k2]-
partition-problem, with δ−(D) ≥ 1. Let B,N+

B be defined as in the beginning of
the proof of Theorem 5 and let k = max{k1, k2}. If there is a vertex s ∈ V with
|N+

B (s)| ≥ 64k4 + 8k2, then we can find a good 2-partition in polynomial time.

The (B−, δ+ ≥ 1)-[k1, k2]-partition-problem is the analogoue of the (B+, δ− ≥ 1)-
[k1, k2]-partition-problem where we want an in-branching in one set of the partition
while the other induces a digraph of minimum out-degree at least 1. By considering
the digraph that we obtain by reversing all arcs we see that the following holds.

Corollary 7. The (B−, δ+ ≥ 1)-[k1, k2]-partition-problem is FPT.

4 Remarks and open problems

If we relax the condition of having an out-branching to that of just being connected,
we obtain the following problem.
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(connected, δ− ≥ 1)-[k1, k2]-partition
Input: A digraph D = (V,A) and natural numbers k1, k2
Question: Is there a 2-partition (V1, V2) of V such that D[V1] is connected,
δ−(D[V2]) ≥ 1 and |Vi| ≥ ki for i = 1, 2?

Theorem 8. [1] The (connected, δ− ≥ 1)-[k1, k2]-partition-problem (for fixed k1, k2)
is NP-complete for general digraphs and polynomially solvable for strong digraphs.

Theorem 9. The (connected, δ− ≥ 1)-[k1, k2]-partition-problem is FPT for digraphs
with minimum in-degree at least 1.

Proof. First observe that if D = (V,A) has minimum indegree at least 1 and V ′
1 , V

′
2 are

disjoint sets such that |V ′
i | ≥ ki, D[V ′

1 ] is connected and δ−(D[V ′
2 ]) ≥ 1, then we can

easily extend this to a 2-partition (V1, V2) of V with V ′
i ⊆ Vi, i = 1, 2 where D[V1] is

connected and δ−(D[V2]) ≥ 1. Hence it suffices to show that we can find a subsolution,
if one exists, in FPT time. The proof of this is an easy modification of the proof of
Theorem 5. We leave the details to the interested reader.

The theorem also holds for the analogous (connected, δ+ ≥ 1)-[k1, k2]-partition-
problem, for digraphs with minimum out-degree at least 1.
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