
ar
X

iv
:1

80
1.

07
32

1v
2

 [
cs

.F
L

]
 2

4
A

pr
 2

01
9

EXPLORING THE TOPOLOGICAL ENTROPY OF FORMAL

LANGUAGES

FLORIAN STARKE

Abstract. We introduce the notions of topological entropy of a formal lan-
guage and of a topological automaton. We show that the entropy function is
surjective and bound the entropy of languages accepted by deterministic ε-free
push-down automata with an arbitrary amount of stacks.

1. Introduction

A well established notion to measure the complexity of a dynamical system is
topological entropy. It measures how chaotic or random a dynamical system is. A
topological automaton contains a dynamical system. Using this we can define the
complexity of a language to be the topological entropy of the minimal topological
automaton accepting it.

Steinberg introduced the notion of a topolocial automaton in 2013 [4]. Then in
2016, Schneider and Borchmann used this notion to define the topological entropy
of a formal language. They gave a characterization of the topological entropy of a
formal language in terms of Myhill-Nerode congruence classes and determined the
entropy of some example languages [3].

In this article we solve previously open problems in this field, and expand the
variety of example languages. In particular, we show that the entropy function is
surjective. We show that every language accepted by a deterministic ε-free counter
automaton with an arbitrary amount of counters has zero entropy, which generalizes
the fact that all regular languages have zero entropy. Furthermore, we give a
finite upper bound for the entropy of languages accepted by deterministic ε-free
push-down automata with an arbitrary amount of stacks, which shows that every
deterministic ε-free context-free language has finite entropy. We determine the
entropy of the Dyck languages, the deterministic palindrome language, and of some
other new example languages. Among them is also a deterministic context-free
language with infinite entropy.

This article is structured as follows. First we introduce the notion of a topological
automaton and its topological entropy. We will have a brief discussion on the effect
different encodings have on the entropy of a language in Section 3.1. This will
motivate Section 3.2, where we will show that for every possible entropy there is also
a language with that entropy. In Section 4 we will take a glimpse on the connection
between topological entropy and complexity theory by calculating the entropy of
SAT and looking at the effect padding has on the entropy. In Section 5 we will
bound the entropy of languages accepted by certain kinds of counter automata and
push-down automata. There we will also explore the connection between topological

2010 Mathematics Subject Classification. 68Q45.
Key words and phrases. Complexity of formal languages, Automata, Topological entropy.

1

http://arxiv.org/abs/1801.07321v2

2 FLORIAN STARKE

entropy and the Chomsky hierarchy. In the end we will give an outline for future
work.

2. Preliminaries

In this section we will give a brief introduction to the Myhill-Nerode congruence
relation, topological automata, and their topological entropy. We will use the results
from Schneider and Borchmann [3] to give a compact definition of the topological
entropy of a formal language.

2.1. Myhill-Nerode Congruence Relation. The Myhill-Nerode congruence re-
lation is a very basic concept of formal languages, but as it is essential to this article
we will give a short recapitulation. Let L be a formal language over some alphabet
Σ. The Myhill-Nerode right-congruence relation of L, denoted by Θ(L), is

Θ(L) = {(u, v) | ∀w ∈ Σ∗. uw ∈ L ⇐⇒ vw ∈ L}.

For two words u and v we say that w witnesses (u, v) /∈ Θ(L) if uw ∈ L 6⇐⇒
vw ∈ L. For a word u, we call all words w with uw ∈ L positive witnesses of u.
Denote the set of all positive witnesses of u by Pu. Note that [u] = [v] if and only
if Pu = Pv.

If a language L has only finitely many congruence classes, then the minimal finite
automaton accepting it can be constructed using Θ(L): take the set Σ∗/Θ(L) as
states, where the final states are the congruence classes contained in L, [ε] as initial
state, and ([w], a) 7→ [wa] as transition function.

2.2. Topological Automata and Topological Entropy. Every deterministic
finite automaton A contains a dynamical system, where the monoid Σ∗ acts on the
states of A. In the following definition we generalize this idea to automata with
infinitely many states.

Definition 2.1. A topological automaton is a 5 tuple A = (X,Σ, δ, x0, F) where

• X is a compact Hausdorff space (the states),
• Σ is an alphabet (the input alphabet),
• δ : X×Σ∗ → X is a continuous action of Σ∗ on X (the transition function),
• x0 is an element from X (the initial state), and
• F is a clopen, i.e., closed and open, subset of X (the final states).

The language accepted by A is

L(A) = {w ∈ Σ∗ | δ(x0, w) ∈ F}.

We can define the topological entropy of A as the entropy of the underlying
dynamical system but we do not want to introduce all the necessary notions and
therefore we will use an equivalent definition.

Let L = L(A), and E ⊆ Σ∗. We define the following two equivalence relations

ΘE(L) = {(u, v) | ∀w ∈ E. uw ∈ L ⇐⇒ vw ∈ L} and

ΛE(A) = {(x, y) | ∀w ∈ E. δ(x,w) ∈ F ⇐⇒ δ(y, w) ∈ F}.

The relation ΘE(L) is an approximation of the Myhill Nerode congruence relation
of L in the sense that it allows only words from E as witnesses. Hence if we choose
E = Σ∗, then ΘΣ∗(L) is the Myhill Nerode congruence relation of L. The second
relation ΛE(A) is the counterpart of ΘE(L) for the states of A.

EXPLORING THE TOPOLOGICAL ENTROPY OF FORMAL LANGUAGES 3

For n ∈ N we denote

ΘΣ(n)(L) by Θn(L) and ΛΣ(n)(A) by Λn(A).

We will write P
(n)
u (and Pn

u) for the positive witnesses of u with length at most n
(with length exactly n). Schneider and Borchmann showed (Lemma 3.6 from [3])
that if A is a topological automaton, where the reachable states are dense in the
set of all states. Then the topological entropy η(A) of A satisfies:

η(A) = lim sup
n→∞

log2(indΛn(A))

n
.

Note that since Σ(n) is finite the index of Λn(L) is also finite. Since from every
topological automaton we can obtain a topological automaton accepting the same
language, where the reachable states are dense in the set of all states, we will use
the above identity as a definition. Analogously, we define the topological entropy of
a language:

η(L) = lim sup
n→∞

log2(indΘn(L))

n
.

Furthermore, Schneider and Borchmann give us the following connection between
the entropy of an automaton and the entropy of its language.

Theorem 2.2 (Theorem 3.10 from [3]). Let L be a language. Then

η(L) = min{η(A) | A is a topological automaton with L(A) = L}.

In particular, for every language L there also exists a topological automaton A
such that η(L) = η(A).

3. Encodings and Surjectivity

In this section we will first discuss how encodings effect the entropy of a language.
In Section 3.2 we will solve the previously open problem of whether the entropy
function is surjective by constructing a language for every possible entropy. Finally,
we will discuss the entropy of languages over unary alphabets.

3.1. Encoding. We motivate this subsection with an example.

Example 3.1. An example considered in [3] is the Dyck language with k sorts
of parenthesis, which consists of all balanced strings over {(1,)1, . . . , (k,)k}. More
generally, let Γ be an alphabet and Γ = {a | a ∈ Γ}. Then : Γ → Γ is a bijection.
Now the Dyck language over Γ, denoted by DyckΓ, is the set of all words u such
that successively replacing aa in u by ε results in ε.

Later in Lemma 6.3 we will show that η(DyckΓ) = log2 |Γ|. This shows that
there are Dyck languages with arbitrarily high entropy. But what happens with
the entropy if we encode all Dyck languages over a two element alphabet? In this
section we will give upper and lower bounds for the entropy of an encoded language.
Then we will apply these results to the Dyck languages, to show that their entropy
is bounded if we encode them over a fixed alphabet.

Definition 3.2. An encoding of Σ over Γ is a mapping enc: Σ → Γ+ with the prefix
property, i.e., there is no word in the image of enc which is a prefix of another word
in the image.

4 FLORIAN STARKE

The prefix property is necessary to ensure the invertability of the encoding.

Lemma 3.3. Let L be a language over Σ and enc: Σ → Γ+ an encoding of Σ

over Γ. Then η(L)
k1

≤ η(enc(L)) ≤ η(L)
k2

, where k1 = max{|u| | u ∈ im(enc)} and

k2 = min{|u| | u ∈ im(enc)}.

Proof. Note that ε is not in the image of enc, and as a consequence k2 is at least
1. We show the following two inequalities:

indΘn·k1(enc(L)) ≥ indΘn(L)(∗)

indΘn·k2(enc(L)) ≤ |Pre| · indΘn(L) + 1(∗∗)

where Pre contains all real prefixes of words in the image of enc.
For the first inequality consider the map

[u] 7→ {[enc(u′)] | u′ ∈ [u]}.

Note that injectivity of this map does not suffice to show (∗). We need to show
that the images of two different classes [u1] and [u2] are disjoint. Let [enc(u′

1)] and
[enc(u′

2)] be elements from sets corresponding to [u1] and [u2], respectively. Because
u′
1 ∈ [u1] and u′

2 ∈ [u2] there is a w that witnesses (u′
1, u

′
2) /∈ Θn(L) and | enc(w)| ≤

k1 · |w| ≤ k1 · n. Hence enc(w) is a witness for (enc(u′
1), enc(u

′
2)) /∈ Θn·k1(enc(L)).

For (∗∗) we will show that the following map is almost surjective

Σ∗/Θn(L)× Pre → Γ∗/Θn·k2(enc(L))

([u], v) 7→ [enc(u) · v].

Note that all words u ∈ Γ∗ with Pu = ∅ lie in the same class. Let [u] be a class
of Θn·k2(enc(L)) such that u has at least one positive witness w. Then uw is the
encoding of some word in Σ∗. Therefore there are u′ ∈ Σ∗ and v ∈ Pre such that
enc(u′)v = u. As a consequence, ([u′], v) lies in the preimage of [u]. From this (∗∗)
follows.

Using these inequalities we can now infer

k1 · η(enc(L)) = k1 · lim sup
n→∞

log2 indΘn·k1(enc(L))

n · k1

(∗)

≥ lim sup
n→∞

log2(indΘn(L))

n
= η(L).

The other direction follows similarly

k2 · η(enc(L))
(∗∗)

≤ lim sup
n→∞

log2(|Γ
(k2−1)| · indΘn(L) + 1)

n
= η(L).

This concludes the proof. �

Note that if a language has infinite entropy, then every encoding of this language
also has infinite entropy. On the other hand if η(L) is zero, then the entropy of
enc(L) will also be zero. If all encoded letters have the same length we obtain the
following corollary.

Corollary 3.4. Let L be a language over Σ, k ≥ 1, and enc: Σ → Γk an encoding

of Σ over Γ. Then η(enc(L)) = η(L)
k .

We can encode every language over Σ over a two element alphabet Γ with an
encoding enc: Σ → Γk for some k ∈ N. Note that the minimal possible value of k
for which we can define such an encoding is ⌈log2 |Σ|⌉. Hence we call the encoding
enc efficient if k = ⌈log2 |Σ|⌉.

EXPLORING THE TOPOLOGICAL ENTROPY OF FORMAL LANGUAGES 5

Corollary 3.5. If L is a language over Σ and enc: Σ → Γk efficiently encodes Σ

over a two letter alphabet Γ, then η(enc(L)) = η(L)
⌈log2 |Σ|⌉ .

Now we can answer our initial question: What happens if we encode the Dyck
languages over a two element alphabet?

Corollary 3.6. Let enc: Σ → ∆k be an efficient encoding of Σ = Γ∪Γ over a two
letter alphabet ∆. Then

η(enc(DyckΓ)) =
log2 |Γ|

⌈log2 |Γ|⌉+ 1
.

For example, if we encode Dyck{(1,(2} over {0, 1} with

(1 7→ 00)1 7→ 10

(2 7→ 01)2 7→ 11

then the encoded language has entropy 1
2 .

This corollary implies that any encoded Dyck language has entropy less than
one. As this argument also affects the other example presented in [3], namely
the palindrome languages, we now lack examples for languages over a two element
alphabet with an entropy in (2,∞). We will remedy this in the next section by
constructing a language for any given entropy.

3.2. Every Entropy has its Language. In this subsection we will show that the
entropy function η : P(Σ∗) → [0,∞] is surjective if Σ contains at least two elements.
For now we fix the alphabet Σ = {0, 1}.

Let us call a sequence (kn)n∈N of natural numbers suitable if it is monotone
increasing, k0 = 1, and kn ≤ 2 · kn−1. Note that in this case kn ≤ 2n. Our goal
is to construct a language L such that indΘn(L) is about 2kn . The construction
generalizes an idea from Schneider and Borchmann (Example 4.12 in [3]). We define
for all n ∈ N

ϕn : Σ
2n → P({1, . . . , kn})

a1 . . . a2n 7→ {i ∈ {1, . . . , kn} | ai = 1}.

Note that | imϕn| = 2kn . For n ∈ N we define a function fn : Σ
n → {1, . . . , kn}

recursively. Let us fix f0(ε) = 1. For n ∈ N define

fn+1(0u) = fn(u) fn+1(1u) =

{

fn(u) if fn(u) + kn > kn+1

fn(u) + kn if fn(u) + kn ≤ kn+1.

We construct a language L in the following way:

L =
{

uv
∣

∣

∣ |v| = 2|u|, f|u|(v) ∈ ϕ|u|(u)
}

.

The idea of fn is that if kn+1 < 2 · kn, then we do not need all possible new
words to distinguish all elements in imϕn+1. This is because the number of words
doubles since every word u is split into 0u and 1u. As a consequence, depending
on the way we look at it, fn fuses some of these words together, or only splits as
much words as needed.

Now it is time to take a closer look at the properties of ϕn and fn. Clearly, ϕn

and fn are surjective. More interesting are the following two properties:

(P1) the following are equivalent for all n ∈ N and all u, v ∈ Σn

6 FLORIAN STARKE

(a) fn(u) = fn(v)
(b) fn+1(au) = fn+1(av) for all a ∈ Σ
(c) fn+1(au) = fn+1(av) for some a ∈ Σ

(P2) the following are equivalent for all n, k ∈ N, u1, u2 ∈ Σk with k ≤ 2n:
(a) ϕn(u1v) = ϕn(u2v) for some v ∈ Σ2n−k

(b) ϕn(u1v) = ϕn(u2v) for all v ∈ Σ2n−k.

Let us check that these properties hold. For (P1) consider first (a) ⇒ (b). We
either have

fn+1(au) = fn(u) = fn(v) = fn+1(av), or

fn+1(au) = fn(u) + kn = fn(v) + kn = fn+1(av)

for all a ∈ Σ. The implication from (b) to (c) is trivial. For the last implica-
tion consider the case a = 0, then fn+1(0u) = fn+1(0v) implies fn(u) = fn(v)
by definition. If fn+1(1u) = fn+1(1v), then either fn+1(1u) + kn > kn+1 and
fn+1(1u) = fn(u) = fn(v) = fn+1(1v) or fn+1(1u) + kn ≤ kn+1, which again
implies fn(u) = fn(v).

The property (P2) is clear from the definition of ϕn. If we assume an additional
property on kn, then we are able to bound indΘn(L) for large n.

Lemma 3.7. If kn grows sufficiently fast, i.e., there is an N ∈ N such that n ·kn ≤
k2n for all n ≥ N , then

2kn ≤ indΘn(L) ≤ 3 · (n+ 1)2 · 2kn for all n ≥ 2N .

Proof. Let n ∈ N with n ≥ 2N . First we will determine the number of classes of
Θn(L) generated by words of length 2n. For u, v ∈ Σ2n , if ϕn(u) 6= ϕn(v), then fix
some element k ∈ ϕn(u)△ϕn(v). Since fn is surjective there is a w ∈ Σn such that
fn(w) = k, and the word w witnesses the fact that u and v are not in the same
class. Vice versa, if ϕn(u) = ϕn(v), then (u, v) ∈ Θn(L). Now the lower bound
immediately follows from

indΘn(L) ≥
∣

∣

∣{[u] | u ∈ Σ2n}
∣

∣

∣ = | imϕn| = 2kn .

For the upper bound there is much more work to do. We will look at the different
types of words and bound the number of equivalence classes generated by words of
each type separately.

0 n
2l + l − n 2l 2l + l 2n 2n + n 2k 2k + k − n 2k + k

I II III IV

Figure 1. The four different types of words

• Words of type I are of the form uv where u ∈ Σ2k and v ∈ Σ(k) for some
k ≥ log2 n. All words v′ ∈ Σ(n) for which uvv′ ∈ L have to be of length
k − |v|. Recall uvv′ ∈ L iff fk(vv

′) ∈ ϕk(u). Hence the witnesses can only
be used to determine ϕk(u). Note that the decomposition into u and v is
unique.

EXPLORING THE TOPOLOGICAL ENTROPY OF FORMAL LANGUAGES 7

• Every word u of type II is in Σ2l−k for some l and k with log2 n ≤ l ≤ n
and k + l ≤ n. All words w ∈ Σ(n) with uw ∈ L are of the form u′v with
u′ ∈ Σk and v ∈ Σl. The difference to words of type I is that now ϕk(uu

′)
depends on the choice of the witness. Note that this could potentially lead
to a lot of new equivalence classes.

• The words of type III are all words with length at most n − 1. Some of
these words u are short enough such that there can be positive witnesses
of u in Σ(n) with different lengths.

• Finally, for all words u of type IV we have uw /∈ L for all w ∈ Σ(n). Hence
these words are all in the same equivalence class.

We denote number of equivalence classes the words of type I generate, i.e., |{[u] |
u is of type I}|, by BI. Analogously we define BII, BIII, and BIV. Since any word
in Σ∗ is of one of the four types we have that

indΘn(L) ≤ BI +BII +BIII +BIV.

We have already noted that BIV = 1. Before we determine an upper bound for BI,
BII, and BIII we will look at sets of the form Σ2n · {0}k and determine an upper
bound for the size of {[u] | u ∈ Σ2n · 0k} for k ∈ {0, . . . , n}.

Let u1, u2 ∈ Σ2n · 0k. Then u1 = u′
1v, u2 = u′

2v for some u′
1, u

′
2 ∈ Σ2n and

v = 0k. If (u1, u2) /∈ Θn(L), then there is some w ∈ Σn−k which bares witness to
this fact. Now vw witnesses (u′

1, u
′
2) /∈ Θn(L). Hence the words in Σ2n ·0k give rise

to at most as many classes as the words in Σ2n , which, as we have already shown,
decompose into 2kn classes. Therefore we conclude

∣

∣

∣{[u] | u ∈ Σ2n · 0k}
∣

∣

∣ ≤ 2kn for all n ∈ N, k ∈ {0, . . . , n}.(∗)

To find an upper bound for BI we will show that every word of type I is already
in the same class as some word in Σ2n · {0}(n). Let uv be a word of type I with

u ∈ Σ2k and v ∈ Σ(k). We have already noticed that then P
(n)
uv ⊆ Σk−|v|. Define

v′ = 0n−k+|v|. Since n − k + |v| + k − |v| = n and ϕn is surjective there is an u′

such that ϕn(u
′) = fn(v

′P
(n)
uv). Note that u′v′ ∈ Σ2n · {0}(n). Our next goal is to

show that uv and u′v′ are in the same equivalence class, i.e.,

w ∈ P (n)
uv ⇐⇒ fn(v

′w) ∈ ϕn(u
′)

Def.
⇐⇒ w ∈ P

(n)
u′v′ .

The ⇒ direction is straightforward. If w ∈ P
(n)
uv , then v′w ∈ v′P

(n)
uv and therefore

fn(v
′w) ∈ fn(v

′P
(n)
uv) = ϕn(u

′). For the ⇐ direction take some word w with

fn(v
′w) ∈ ϕn(u

′). By choice of u′ there is a w′ ∈ P
(n)
uv such that fn(v

′w) = fn(v
′w′).

Then

fn(v
′w) = fn(v

′w′) ⇐⇒ fk−|v|(w) = fk−|v|(w
′)(|v′| times (P1))

⇐⇒ fk(vw) = fk(vw
′).(|v| times (P1))

Because w′ ∈ P
(n)
uv implies fk(vw) = fk(vw

′) ∈ ϕk(u) we conclude w ∈ P
(n)
uv . Thus

uv is in the same class as u′v′.
Consequently, we can finally give an upper bound for BI:

BI ≤
∣

∣

∣
{[w] | w ∈ Σ2n · {0}(n)}

∣

∣

∣
≤

n
∑

k=0

∣

∣

∣
{[w] | w ∈ Σ2n · 0k}

∣

∣

∣

(∗)

≤ (n+ 1) · 2kn .

8 FLORIAN STARKE

For BII we will consider all words of type II with the same length 2l−k for some

l, k ∈ N with l+k ≤ n. For fixed l and k we will bound the size of {P
(n)
u | u ∈ Σ2l−k}

by 2kl . To do this let u′ ∈ Σk. We show that

{P (n)
u | u ∈ Σ2l−k} → imϕl

P (n)
u 7→ ϕl(uu

′)

is a well defined injective map. Firstly, we tackle the problem of well definedness.

Let u1, u2 ∈ Σ2l−k such that P
(n)
u1 = P

(n)
u2 . Then

fl(v) ∈ ϕl(u1u
′) ⇐⇒ u′v ∈ P (n)

u1
⇐⇒ u′v ∈ P (n)

u2
⇐⇒ fl(v) ∈ ϕl(u2u

′)

and ϕl(u1u
′) = ϕl(u2u

′). For injectivity take two words u1, u2 ∈ Σ2l−k with

ϕl(u1u
′) = ϕl(u2u

′). Let w ∈ P
(n)
u1 . Then decompose w into u′′v′ with u′′ ∈ Σk

and v′ ∈ Σl. Now, by definition, v′ ∈ ϕl(u1u
′′). Furthermore, from (P2) we can

deduce ϕl(u1u
′′) = ϕl(u2u

′′), and thus v′ ∈ ϕl(u2u
′′). Because of this w ∈ P

(n)
u2

and P
(n)
u1 ⊆ P

(n)
u2 . By exchanging the roles of u1 and u2 equality of P

(n)
u1 and P

(n)
u2

follows. Therefore
∣

∣

∣
{[u] | u ∈ Σ2l−k}

∣

∣

∣
=

∣

∣

∣
{P (n)

u | u ∈ Σ2l−k}
∣

∣

∣
≤ | imϕl| = 2kl ≤ 2kn .

Recall that l + k ≤ n. Consequently,

BII ≤ (n+ 1)2 · 2kn .

To bound BIII we use the same method we used for BII. Fix a k < n and consider
all classes generated by words in Σk. Firstly, note that for an u ∈ Σk there can

be words of different lengths in P
(n)
u , but we still know that P

(n)
u ⊆

⋃

l≤m Σ2l+l−k

where m = max{l ∈ N | 2l + l − k ≤ n} and Σ−i = ∅. Furthermore, m ≤ ⌈log2 n⌉,
because

2⌈log2 n⌉+1 + ⌈log2 n⌉+ 1− k ≥ 2 · n+ 1− (n− 1) > n.

But P 2l+l−k
u contains by definition only witnesses of the same length, hence we

can apply the same argument as before to obtain |{P 2l+l−k
u | u ∈ Σk}| ≤ | imϕl| ≤

2kl . Since k0 = 1 we deduce

∣

∣

∣{P (n)
u | u ∈ Σk}

∣

∣

∣ ≤
∏

l≤m

∣

∣

∣{P 2l+l−k
u | u ∈ Σk}

∣

∣

∣ ≤
∏

l≤m

2kl ≤ 2 ·
m
∏

l=1

2kl ≤ 2 · 2m·km .

We know that m ≤ log2 n, also n ≥ 2N implies log2 n ≥ N . Furthermore, if
we assume for the sake of readability that log2 n is a natural number, then by
assumtion that kn grows sufficiently fast we have

m · km ≤ log2 n · klog2 n ≤ kn.

As there are n possible values for k we obtain BIII ≤ 2 · n · 2kn .
Now we can finally give an upper bound for indΘn(L):

indΘn(L) ≤ BI +BII +BIII +BIV

≤ (n+ 1) · 2kn + (n+ 1)2 · 2kn + 2 · n · 2kn + 1

≤ 3 · (n+ 1)2 · 2kn .

This finishes the proof. �

EXPLORING THE TOPOLOGICAL ENTROPY OF FORMAL LANGUAGES 9

Note that this lemma can be applied to any surjective functions ϕn and fn
fulfilling the properties (P1) and (P2), not just the ϕn and fn we defined. Now we
can, using this lemma, show the main result from this section.

Theorem 3.8. For any alphabet Σ with at least two letters the entropy function

η : P(Σ∗) → [0,∞]

L 7→ η(L)

is surjective.

Proof. For 0 and∞ we have already seen that there are languages with that entropy.
Thus let x be a positive real number. We would like to use the sequence kn = ⌈n·x⌉,
but it is not suitable, because k0 = 0. Furthermore, k1 could be larger than 2.
Because of this we define kn = max{min{⌈n ·x⌉, 2n}, 1}. Now the sequence (kn)n∈N

is suitable. Since Σ has at least two letters we can define fn, ϕn, and L as above.
Clearly, there is an N1 ∈ N such that kn = ⌈n · x⌉ for all n ≥ N1. Furthermore,
there is an N2 ∈ N such that for all n ≥ max{N1, N2}

n · kn = n · ⌈n · x⌉ ≤ n · (n · x+ 1) = n · (n+
1

x
) · x ≤ 2n · x ≤ k2n .

Hence we apply Lemma 3.7 with N = max{N1, N2} to obtain

2kn ≤ indΘn(L) ≤ 3 · (n+ 1)2 · 2kn

for all n ≥ 2N . Now we easily compute

η(L) ≥ lim sup
n→∞

log2(2
kn)

n
= lim sup

n→∞

⌈n · x⌉

n
= x

and

η(L) ≤ lim sup
n→∞

log2(3 · (n+ 1)2 · 2kn)

n
= x.

Therefore, η(L) = x, and we conclude that η is surjective. �

Naturally the question arises whether same holds for unary alphabets. In the
next subsection we will address this question.

3.3. Unary Languages. For the remainder of this section let Σ = {a} be a unary
alphabet. We shall write n instead of an. Then we can view Σ∗ as N and a unary
language L is just a subset of N. We will show that the entropy of a language over
a unary alphabet can be bounded by one and we will show that this upper bound is
tight. Note that there are undeciable unary languages, for example we can encoded
the halting problem using an enumeration M1,M2, . . . of all Turing machines and
define L = {i ∈ N | Mi halts on input ε}. This makes the following result a bit
surprising.

Theorem 3.9. Let L be a unary language. Then η(L) ≤ 1.

Proof. Let L ⊆ N be a unary language. Clearly, indΘn(L) ≤ 2n+1 and therefore

η(L) = lim sup
n→∞

log2(indΘn(L))

n
≤ lim sup

n→∞

log2(2
n+1)

n
= 1.

This finishes the proof. �

10 FLORIAN STARKE

Using a construction similar to the one in the previous subsection we can show
that this bound is tight.

Example 3.10. For any n ∈ N let ϕn : {0, . . . , 2n+1 − 1} → P({0, . . . , n}) be a
bijection. Note that if we know that a number is of the form 2n + k and k < 2n,
then we can uniquely determine k and n from that number. With this in mind we
define:

UInf = {2n+2n+m

+ k | n ∈ N,m ≤ 2n+1 − 1, k ∈ ϕn(m)}.

Observe that from any number of the form 2n+2n+m

+ k uniquely determines
the numbers n, m, and k. To compute the entropy of UInf let n ∈ N. Firstly,

we denote 2n+2n+m

by wn,m. Now let us consider the set {wn,m | m ≤ 2n+1 − 1}.
If wn,m 6= wn,m′ , then m 6= m′ and since ϕn is injective we have that there is a
k ∈ ϕn(m)△ϕn(m

′). This k witnesses that (wn,m, wn,m′) /∈ Θn(UInf). Hence

indΘn(UInf) ≥ |{wn,m | m ≤ 2n+1 − 1}| = 2n+1.

Together with Theorem 3.9 we can conclude that η(UInf) = 1.

We have just seen that the entropy function is surjective over every alphabet
with at least two elements. Hence we conjecture that the following holds.

Conjecture 3.11. For any unary alphabet Σ we have that the entropy function

η : P(Σ∗) → [0, 1]

L 7→ η(L)

is surjective.

Unfortunately, we were not able to prove this conjecture. In the next section
we will look at the entropy of decision problems and use an observation there to
strengthen the surjectivity result for at least two element alphabets.

4. Entropy of Decision Problems

In this chapter we will connect topological entropy with decision problems. First
we will compute the entropy of the NP-complete problem SAT. Then we will use
padding to show that the entropy of any language can be reduced to zero. In
particular this shows that there are undecidable languages with zero entropy.

To be able to compute the entropy of SAT, we need to define a suitable encoding.
We use the alphabet {(,),∧,∨,¬, 0, 1}. To encode a formula ϕ we replace every
variable xn by bin(n), the binary representation of n. We denote the encoded
formula by 〈ϕ〉. For example 〈x1 ∧ x2〉 = 1 ∧ 10. Now we can define

SAT = {〈ϕ〉 | ϕ is satisfiable}.

Lemma 4.1. The language SAT has infinite entropy.

Proof. Consider the set

{〈L1 ∧ · · · ∧ L2n〉 | L1 ∈ {x1,¬x1}, . . . , L2n ∈ {x2n ,¬x2n}}.

Take two words w1 = 〈ϕ1〉 and w2 = 〈ϕ2〉 from this set. If w1 6= w2, then there is
some k ∈ {1, . . . , 2n} such that the kth literal of ϕ1 and ϕ2 differ. Without loss of
generality assume that the kth literal of ϕ1 is xk and the kth literal of ϕ2 is ¬xk.
Then ϕ1 ∧ xk is satisfiable and ϕ2 ∧ xk is not. Note that | ∧ bin(k)| ≤ 1+ log2 2

n =

EXPLORING THE TOPOLOGICAL ENTROPY OF FORMAL LANGUAGES 11

1 + n. Therefore ∧bin(k) witnesses (w1, w2) /∈ Θn+1(SAT). Since the set contains
22

n

words we can now show that infinity is a lower bound for the entropy of SAT

η(SAT) ≥ lim sup
n→∞

log2(2
2n)

n+ 1
= ∞.

This concludes the proof. �

Next we will discuss the effect padding has on the complexity of a language. In
complexity theory padding can be used to decrease the complexity of a language.
What happens for topological entropy? For a language L over Σ define

PAD(L) = {uv | u ∈ L, v ∈ Σ2|u|

}.

Note that if L is in EXPTIME, then PAD(L) is in P. So PAD(L) is much easier
than L, and this decrease in complexity is also reflected in the topological entropy
of PAD(L).

Theorem 4.2. Let L be a language over Σ with |Σ| ≥ 2. Then

η(PAD(L)) = 0.

Proof. Note that every word in PAD(L) has a length of the form 2k + k. Consider

the set {P
(n)
u | |u| ≥ log2 n}. We will show that every P

(n)
u is either the empty set

or Σk for some k ∈ {0, 1 . . . , n}. Let u ∈ Σ∗ with |u| ≥ log2 n. For every k ≥ log2 n
we have:

(2k+1 + (k + 1))− (2k + k) = 2 · 2k − 2k + 1 = 2k + 1 ≥ n+ 1.

Hence the lengths of words in PAD(L) are so far apart that P
(n)
u ⊆ Σk for some k ∈

{0, 1 . . . , n}. If P
(n)
u is not empty, then there is some w ∈ P

(n)
u and uw ∈ PAD(L).

We know that uw is of the form u′v′ for some u′ ∈ L and v′ ∈ Σ∗ with |v′| = 2|u
′|.

Since 2|u| ≥ n ≥ |w| we have that w is a postfix of v′.

By definition u′v′′ ∈ PAD(L) for all v′′ with |v′′| = 2|u
′|. As a consequence,

uv′′ ∈ PAD(L) for all v′′ ∈ Σk and therefore P
(n)
u = Σk. Hence we can bound the

number of classes in Θn(PAD(L)) by

indΘn(PAD(L)) ≤
∣

∣

∣{P (n)
u | |u| < log2 n}

∣

∣

∣+
∣

∣

∣{P (n)
u | |u| ≥ log2 n}

∣

∣

∣

≤
∣

∣

∣
Σ(log2 n)

∣

∣

∣
+ n+ 2.

Now we can determine the entropy

η(PAD(L)) ≤ lim sup
n→∞

log2(|Σ
log2 n|+ n+ 2)

n
= 0.

This finishes the proof. �

Note that this works for any language L, even if it is undecidable, and since L
can be reconstructed from PAD(L) we know that PAD(L) is also undecidable.

Corollary 4.3. There are undecidable languages with zero entropy.

This is a rather strange result, because the barrier of undecidability cannot be
breached in classical complexity theory. Undecidable languages are always compli-
cated.

We will use this result to show that not only is the entropy function surjective,
there are even uncountably many languages for every entropy.

12 FLORIAN STARKE

Corollary 4.4. Over an at least two element alphabet Σ there are uncountably
many languages with zero entropy.

Proof. There are uncountably many languages over Σ and as mentioned before
PAD is injective and every language in its image has zero entropy. �

The following lemma will help us to construct uncountably many languages for
every entropy, not just for zero.

Lemma 4.5. Let L1, L2 ⊆ Σ∗ be nonempty languages and # a new symbol not in
Σ. Then

η(L1#L2) = max{η(L1), η(L2)}.

Proof. Let v′ ∈ L2 with |v′| minimal. We show that for n ≥ |v′|

indΘn(L1#L2) = indΘn−|v′|−1(L1) + indΘn(L2) + k,

for k either 1 or 0. Consider the map

(Σ∗
#Σ∗)/Θn(L1#L2) → Σ∗/Θn−|v′|−1(L1) ⊔Σ∗/Θn(L2)

[u]n 7→ [u]
n−|v′|−1
1

[u#v]n 7→ [v]n2 ,

where the sets in the image are potentially renamed to make the classes for L1

and L2 disjoint. It is left as an exercise to the reader to show that this map is well
defined. It is clearly surjective and since v′ is of minimal length and [u#v]n = [u′

#v]n

also injective. Note that any word in (Σ∪{#})∗ \ (Σ∗
#Σ∗) has no positive witnesses

and is in the same class as ##. This shows the above equality. Therefore

η(L1#L2) = lim sup
n→∞

indΘn−|v′|−1(L1) + indΘn(L2)

n

= max

(

lim sup
n→∞

indΘn(L1)

n
, lim sup

n→∞

indΘn(L2)

n

)

= max{η(L1), η(L2)}

as desired.
�

We can use this to strengthen Theorem 3.8.

Corollary 4.6. For any alphabet Σ with at least two letters and any x ∈ [0,∞] the
set

{L ⊆ Σ∗ | η(L) = x}

is uncountable.

Proof. Assume that Σ has just two elements. By Corollary 4.4 the claim holds for
x = 0. Let x ∈ (0,∞]. By Theorem 3.8 there exists a language L with entropy 2x.
Now, by Lemma 4.5, every language in the uncountable set {L0#L | η(L0) = 0} has
entropy 2x. Note that we have introduced a new symbol, hence we encode every
language from the set over Σ and obtain by 3.5 an uncountable set of languages
with entropy x.

�

EXPLORING THE TOPOLOGICAL ENTROPY OF FORMAL LANGUAGES 13

5. Topological Entropy and Automata

Now we come to the second part of this article. Here we introduce k-stack push-
down automaton (k-stack PDA) and k-counter automata. We show that the entropy
of a language that is accepted by a k-stack PDA can be bounded in terms of the
number of stack symbols. As a corollary we obtain that all languages recognized by
k-counter automata have zero entropy, proving an open conjecture from Schneider
and Borchmann [3].

Before we start with the formal definition of k-stack PDAs, we fix some functions
and conventions. We will write v for the tuple (v1, . . . , vk) from the set Γ∗

1×· · ·×Γ∗
k

and ε for the tuple containing only ε in each entry. For a word u = a1 . . . an ∈ Σn

and I ⊆ N let πI(u) be the projection of u onto I:

πI(u) = ai1 . . . aik where i1 < · · · < ik and {i1, . . . , ik} = I ∩ {1, . . . , n}.

Let πn = π{1,...,n}, head = π{1}, and tail = π{2,3,... }. Dually we define the
functions bottom(u) = π{|u|}(u) and front(u) = π|u|−1(u). For two words u, v ∈ Σ∗

where v is a postfix of u define u − v as u1, where u = u1v. For tuples v the
functions πI , head, tail, and − are applied componentwise.

Definition 5.1. A k-stack PDA is a tuple A = (Q,Σ,Γ1, . . . ,Γk, δ, q0, F) where

• Q is a finite set (of states),
• Σ is an alphabet (the input alphabet),
• Γ1, . . . ,Γk are alphabets (the stack alphabets),

• δ ⊆ Γ
(1)
1 × · · · × Γ

(1)
k × Q × (Σ ∪ {ε}) × Q × Γ∗

1 × · · · × Γ∗
k (the transition

relation),
• q0 is from Q (the initial state), and
• F is a subset of Q (the set of final states).

A configuration of A is a tuple (q,v, w) with the current state q, the values
stored in the stacks v, and the remaining input w. For a ∈ Σ(1) we can make the
transition

(q,v, aw) ⊢ (p,u, w) if (head(v), q, a, p,u− tail(v)) ∈ δ.

Beware that a transition of the form (ε, p, a, q,u) can only be used if all stacks are
empty. Also the symbol on top of a stack represented by v is the leftmost symbol
of v. Hence the stacks grow to the left. The language accepted by A is defined as

L(A) = {w ∈ Σ∗ | ∃p ∈ F. (q0, ε, w) ⊢
∗ (p,v, ε)}.

We call A deterministic if for every configuration K there is at most one configu-
ration K ′ such that K ⊢ K ′, total if for every configuration K there is at least one
configuration K ′ such that K ⊢ K ′, and ε-free if there is no transition of the form
(v, q, ε, p,u) in δ.

In the following we will always assume that our automata are total. It is clear
that a 0-stack PDA is just an ordinary finite automaton. We define a k-counter
automaton to be a k-stack PDA where all stack alphabets are unary. The height of
a stack can be seen as the value of a counter. Note that a counter automaton can
only test whether a counter is zero or not. While counter automata do not seem to
be that powerful, we have the following surprising result.

Theorem 5.2 (Theorem 7.9 from [1]). A deterministic 2-counter automaton can
simulate an arbitrary Turing machine.

14 FLORIAN STARKE

Because of this and since topological automata are inherently deterministic we
will restrict ourselfs to deterministic ε-free k-stack PDAs for now.

Our next goal is to obtain an upper bound on the entropy of such an automaton.
The idea is the following: First, translate the PDA A into a topological automaton
TA. Second, we observe that witnesses of length n can only see the leftmost n
symbols on each stack. Third, we use this observation to find an upper bound for
indΛn(TA) and therefore also for η(L(A)).

Fix a deterministic ε-free k-stack PDA A = (Q,Σ,Γ1, . . . ,Γk, δ, q0, F). A naive
choice for the states of TA would be Q × Γ∗

1 × · · · × Γ∗
k. But recall that the states

of a topological automaton are a compact Hausdorff space. Therefore, we adjust
this idea a little bit and define for an alphabet Γ the set Γ∞ = Γ∗ ∪ ΓN, where ΓN

denotes the set of all (right) infinite words over Γ. We equip Γ∞ with the topology
defined by the following basis of open sets

{{u} | u ∈ Γ∗} ∪ {uΓ∞ | u ∈ Γ∗},

i.e., the open sets are exactly the sets that can be expressed as unions of sets from
the basis. The space Γ∞ is compact.

Definition 5.3. The topological automaton TA is defined as

(Q× Γ∞
1 × · · · × Γ∞

k ,Σ, α, (q0, ε), F × Γ∞
1 × · · · × Γ∞

k),

where α((q,v), w) = (p,u) if (q,v, w) ⊢∗ (p,u, ε). Here ⊢∗ is extended to infinite
words in the obvious way. We equip Q×Γ∞

1 × · · ·×Γ∞
k with the product topology,

where the topology on Γ∞
i is the one defined above and the topology on Q is the

discrete topology.

Clearly, we have that

L(TA) = L(A).

Now comes the second step of the proof.

Lemma 5.4. For two states (q,u) and (p,v) of TA. If q = p and πn(u) = πn(v),
then ((q,u), (p,v)) ∈ Λn(TA).

Proof. Let F ′ = F ×Γ∞
1 × · · ·×Γ∞

k . Note that the lemma is equivalent to showing

that for any w ∈ Σ(n) we have that α((q,u), w) ∈ F ′ iff α((p,v), w) ∈ F ′.
The proof is by induction on n.
If n = 0. Then w = ε and the statement is trivially true.
If n > 0. Then either w = ε and the statement is again trivial or w = aw′

for some a ∈ Σ and w′ ∈ Σ(n−1). Consider (q′,u′) = α((q,u), a) and (p′,v′) =
α((p,v), a). Since n > 0 we have that head(u) = head(v). Furthermore, p = q
and therefore both states have to use the same transition. Hence q′ = p′ and
πn−1(u

′) = πn−1(v
′). Applying the induction hypothesis yields

α((q,u), w) = α((q′,u′), w′) ∈ F ′ iff α((p,v), w) = α((p′,v′), w′) ∈ F ′,

as desired. �

Theorem 5.5. Let A = (Q,Σ,Γ1, . . . ,Γk, δ, q0, F) be a deterministic ε-free k-stack
PDA. Then

η(L(A)) ≤ log2 |Γ1|+ · · ·+ log2 |Γk|.

EXPLORING THE TOPOLOGICAL ENTROPY OF FORMAL LANGUAGES 15

Proof. From Lemma 5.4 we know that every equivalence class in Λn(TA) can be

represented by a state of the form (q,u), where q ∈ Q and u ∈ Γ
(n)
1 × · · · × Γ

(n)
k .

Therefore indΛn(TA) ≤ |Q| · |Γ
(n)
1 | · . . . · |Γ

(n)
k |. Consequently,

η(L(A)) ≤ η(TA) = lim sup
n→∞

log2(indΛn(TA))

n
≤ log2 |Γ1|+ · · ·+ log2 |Γk|.

This concludes the proof. �

We will see in Example 6.6 that this upper bound can be reached using deter-
ministic palindrome languages. From this theorem the following conjecture from
Schneider and Borchmann follows.

Corollary 5.6. Let L be a language accepted by a deterministic ε-free k-counter
automaton. Then

η(L) = 0.

Furthermore, we are now able to obtain a lower bound on the number of symbols
in the stack alphabet.

Corollary 5.7. Let A = (Q,Σ,Γ, δ, q0, F) be a deterministic ε-free 1-stack PDA
accepting the language L. Then |Γ| ≥ 2η(L).

Now we discuss what happens if we drop some of the restrictions of determinisity
and ε-freeness. In the following example we see that in most cases the entropy can
no longer be bounded.

Example 5.8. Define the language

T∞ = {an1
. . .#ankblam | m, k, l, n1, . . . , nk ∈ N, l ≤ k, nl = m}.

To determine the entropy of T∞ consider the set {an1# . . . #ank | k, n1, . . . , nk ≤ n}.
If two words u and u′ from this set differ in the ith block, i.e., ni 6= n′

i. Then
biani is a word of length at most 2n that witnesses (u, u′) /∈ Θ2n(T∞). Therefore
indΘ2n(T∞) ≥ nn and

η(T∞) ≥ lim sup
n→∞

log2(n
n)

2n
= ∞.

Clearly, there is a nondeterministic ε-free 1-stack PDA, a deterministic 1-stack
PDA, and a nondeterministic ε-free 2-counter automaton accepting T∞.

Corollary 5.9. All deterministic ε-free context-free languages have finite entropy.
But deterministic context-free languages can have infinity entropy.

The only thing left to study are 1-counter automata. The language T∞ does
not seem to be recognized by a 1-counter automaton. But the following modified
version can be recognized by a nondeterministic one.

T’k =

{

a
n1
1

1 # . . . #a
n1
l1

1 . . . a
nk
1

k # . . .#a
nk
lk

k bamj

∣

∣

∣

∣

∃l. nj
l = m

}

Consider the set
{

a
n1
1

1 # . . .#a
n1
l1

1 . . . a
nk
1

k # . . . #a
nk
lk

k

∣

∣

∣

∣

ni
1 < ni

2 < · · · < ni
li ≤ n for all 1 ≤ i ≤ k

}

.

16 FLORIAN STARKE

Any two words in this set can be separated by a witness of length at most n.
Consequently, indΘn(T’k) ≥ 2nk and

η(T’k) ≥ k.

Although the entropy of T’k is unfortunately not infinite we have at least found
a family of languages with unbounded entropy. But beware we have increased the
alphabet to obtain a higher entropy. The alphabet of T’k contains k + 2 symbols.
But if we encode T’k over a two element alphabet we obtain, by Corollary 3.4,

η(enc(T’k)) ≥
k

⌈log2(k + 2)⌉
.

This gives us a family with unbounded entropy over a fixed alphabet.

Corollary 5.10. Let Σ be an at least two element alphabet. The entropy of lan-
guages over Σ accepted by nondeterministic 1-counter automata can not be uni-
formly bounded.

For deterministic counter automata that have at least two counters allowing ε-
transitions makes the automata model Turing complete. We will show that if there
is only one counter than ε-transitions might increase the computational express-
ibility but not the entropy.

For the computational expressibility consider the language

L = {an1i1a
m1

. . . #ankika
mk | k ≥ 1, n1, . . . , nk,m1, . . . ,mk ∈ N, i1, . . . , ik ∈ {0, 1},

il = 1 implies nl = ml for all l ≤ k}.

There is a deterministic 1-counter automaton accepting L but the ε-transitions
seem to be absolutely necessary.

To determine the entropy let us fix a deterministic 1-counter automaton A =
(Q,Σ, δ, q0, F). And define TA as ((Q ∪ {p∞})× N

∞,Σ, α, (q0, 0), F × N
∞), where

N
∞ = N ∪ {∞}, p∞ is a new state, and α is defined in the following way:

α((q, c), w) =

{

(p, d) if (q, c, w) ⊢∗ (p, d, ε) and not (p, d, ε) ⊢ (p′, d′, ε)

(p∞,∞) otherwise

Note that if A has no ε-transitions then TA is the topological automation we
constructed before. To compute the entropy of TA we first need to understand
what transitions we added. Fix q ∈ Q and a ∈ Σ. For every c ∈ N consider the
unique maximal sequence

(q, c, a) ⊢ (q1, c1, w1) ⊢ (q2, c2, w2) ⊢ . . .

and define the function c 7→ (pc,mc), where α((q, c), a) = (pc,mc).
Now there are two cases to consider. If there is a C such that for all i we have

ci > 0. Then for all c ≥ C we have m := mC − C = mc − c and pc = pC and α
fulfils the following equation

α((q, c), a) =

{

(pc,mc) if c < C

(pC , c+m) if c ≥ C

Note that m can be negative.
In the other case we have for all c that there is an i with ci = 0. For larger c

the sequences become arbitrarily long and since there are only finitely many states

EXPLORING THE TOPOLOGICAL ENTROPY OF FORMAL LANGUAGES 17

there must be j > i such that qi = qj , wi = wj , and cj < ci. Define k = ci − cj .
Observe that the value of α((q, c), a) depends only on c mod k and therefore

α((q, c), a) = (pc mod k,mc mod k).

Let C be the maximum of all C, M ≥ 1 minimal such that no m is smaller than
−M , and K the set containing all k’s. Now we can deduce the analogue of Lemma
5.4.

Lemma 5.11. If c, c′ > M · n ≥ C, and c ≡ c′ (mod k) for all k ∈ K. Then
((q, c), (q, c′)) ∈ Λn(TA) for all q ∈ Q ∪ {p∞}.

Proof. We will proof the lemma by induction on n.
If n = 0. Then the only witness to consider is ε and the claim is trivial.
If n > 0. Then consider a witness aw of length at most n. If (q, a) gives a

transition as in the first case, then let C and m be the parameters as above. Since
c, c′ ≥ C ≥ C we have

α((q, c), a) = (pC , c+m) and α((q, c′), a) = (pC , c
′ +m).

By assumption m ≥ −M , hence c+m, c′ +m ≥ M · (n− 1). Also c+m ≡ c′ +m
(mod k) for all k ∈ K. Therefore the claim holds by induction hypotheses.

If the transition is as in the second case with parameter k. Then, by assumption,

α((q, c), a) = (pc mod k,mc mod k) = (pc′ mod k,mc′ mod k) = α((q, c′), a)

and the claim holds trivially. �

Using this lemma we can deduce the desired theorem.

Theorem 5.12. Let A = (Q,Σ, δ, q0, F) be a deterministic 1-counter automaton
with ε-transitions. Then

η(L(A)) = 0.

Proof. Note that for every c there is a c′ ≤
∏

k∈K k such that c ≡ c′ (mod k) for
all k ∈ K. Therefore Lemma 5.11 implies that every class in Λn(TA) contains a
state where the counter value is at most max{M · n,

∏

k∈K k}. Hence for large n

indΛn(TA) ≤ (|Q|+ 1) ·M · n

and η(L(A)) = 0. �

In Table 1 we summarize the results from this section.

ε-transitions ε-free
nondet. deterministic nondet. deterministic

1-counter automaton ∞ (↑ T’n) 0 ∞ (↑ T’n) 0
1-stack PDA ∞ (T∞) ∞ (T∞) ∞ (T∞) log2 |Γ|

k-counter automaton ∞ ∞ ∞ (T∞) 0

k-stack PDA ∞ ∞ ∞ (T∞)
∑k

i=1 log2 |Γi|

Table 1. Upper bounds for the entropy of languages accepted by
certain kinds of automata. Here k is at least 2. The ∞ indicates
that the model is Turing complete.

We have shown that most of the upper bounds presented in this table can be
reached. But we suspect that this is not the case for all bounds.

18 FLORIAN STARKE

Conjecture 5.13. All languages accepted by 1-counter automata have finite en-
tropy.

This concludes our investigation of push-down automata.

6. Entropy of Example Languages

The purpose of this section is to give entropies of selected example languages.
Some of these examples were already discussed in [3], the results from Examples
6.2, 6.4, and 6.7 are new and have to our knowledge not been discussed before.

Example 6.1. Let L be a regular language. Then Θ(L) is finite. Hence

η(L) = lim sup
n→∞

log2 indΘn(L)

n
≤ lim sup

n→∞

log2 indΘ(L)

n
= 0.

All regular languages have zero entropy, which goes with the intuition that regular
languages are simple.

Example 6.2. An example considered in [3] is the Dyck language with k sorts
of parenthesis, which consists of all balanced strings over {(1,)1, . . . , (k,)k}. More
generally, let Γ be an alphabet and Γ = {a | a ∈ Γ}. Then : Γ → Γ is a bijection.
Now the Dyck language over Γ, denoted by DyckΓ, is the set of all words u such
that successively replacing aa in u by ε results in ε.

Lemma 6.3. For all alphabets Γ we have η(DyckΓ) = log2 |Γ|.

Proof. Let a ∈ Γ. Observe that the set Γ(n)∪{a} contains exactly one representative
of each class of Θn(DyckΓ). Therefore indΘn(DyckΓ) = |Γ(n)| + 1 and we can
compute

η(DyckΓ) = lim sup
n→∞

log2(|Γ
(n)|+ 1)

n
= log2 |Γ|.

This finishes the proof. �

Another example discussed in [3] is the palindrome language. For an alphabet
Σ define the palindrome language over Σ to be

PaliΣ = {uuR | u ∈ Σ∗}.

Schneider and Borchmann showed that log2 |Σ| ≤ η(PaliΣ) ≤ log2 |Σ|+ 1.

Example 6.4. We will consider here the deterministic palindrome language. As-
sume that # is not in Σ and define

DPaliΣ = {u#uR | u ∈ Σ∗}.

The entropy can be computed similar to that of the Dyck languages. Consider
a class in Θn(DPaliΣ) with at least one positive witness. Let w be the positive
witness of minimal length. Then either w = #w′ or w ∈ Σ∗. In the first case
the class is represented by w′R and in the second case it is represented by wR

#.
Therefore

η(DPaliΣ) = lim sup
n→∞

log2 2 · |Σ
(n)|

n
= log2 |Σ|.

Both DyckΓ or DPaliΓ are typical examples for languages recognized by PDAs.
We can apply Corollary 5.7 to obtain the following result.

EXPLORING THE TOPOLOGICAL ENTROPY OF FORMAL LANGUAGES 19

Corollary 6.5. Every deterministic ε-free 1-stack PDA recognizing DyckΓ or
DPaliΓ has at least |Γ| many stack symbols.

Example 6.6. We construct a product palindrome language. Let Γ1, . . . ,Γk be
alphabets and consider the language DPaliΓ1×···×Γk

. As we have just seen the
entropy of this language is

η(DPaliΓ1×···×Γk
) = log2 |Γ1|+ · · ·+ log2 |Γk|.

Obviously, there is a deterministic ε-free k-stack PDA with stack alphabets
Γ1, . . . ,Γk accepting DPaliΓ1×···×Γk

. Therefore the upper bound given in The-
orem 5.5 can be reached.

Finally, we will discuss the mathematically very interesting language of all prime
numbers.

Example 6.7. Let Prime = {p | p is prime} be the unary encoding of all prime
numbers. For m > 2 there cannot be two consecutive numbers in Pm since the
only k for which k and k + 1 is prime is 2. Because of this, Pm contains only
even numbers or only odd numbers if m is odd or even, respectively. Consequently,
indΘn(Prime) ≤ 2·2⌈n/2⌉+3 and η(Prime) ≤ 1

2 . We can make a similar argument
for the prime 3. Form > 3 there cannot be a k such that k, k+2, k+4 ∈ Pm because

one of these numbers is divisible by 3. Thus indΘn(Prime) ≤ 2 · 3 · 2⌈
n
2 · 23 ⌉+4 and

η(Prime) ≤ 1
3 . These observations lead to the following definition:

Definition 6.8. A set A ⊆ {0, . . . , n− 1} represents a plausible sequence of primes
of length n if for all primes p ≤ n

A mod p 6= {0, . . . , p− 1}.

The set A represents an occurring sequence of primes of length n if there is a k ∈ N

such that for all l ∈ {0, . . . , n− 1}

k + l is prime ⇐⇒ l ∈ A.

We denote the number of plausible sequences of length n by sn.

Note that for example the set {0, 1} occurs for k = 2, but is not plausible since
{0, 1} mod 2 = {0, 1}. This can happen because the idea behind the plausible
sequences is that every number in the sequence dividable by p is not a prime, which
holds for all numbers except for p itself. But if we say that the starting point k of
the sequence is greater than the length n of the sequence, than p cannot occur in
k + {0, . . . , n− 1}. Hence if A represents an occurring sequence of length n, which
occurs for some k > n, then A also represents a plausible sequence.

With this observation we can bound indΘn(Prime) by

|{[k] | k ≤ n+ 1}|+ |{[k] | k > n+ 1}| ≤ n+ 2 + sn+1.

Lemma 6.9. Let p1, . . . , pk be the first k primes and n = n′ ·
∏

i≤k pi. We have
that

sn ≤

∏

i≤k

pi

 · 2n·
∏

i≤k

pi−1

pi .

20 FLORIAN STARKE

Proof. For every i ≤ k fix an ℓi ∈ {0, . . . , pi − 1}. Now we bound the number of
plausible sequences A of length n with ℓi /∈ (A mod pi) for all i. Clearly,

A ⊆
⋂

i≤k

(

{0, . . . , n− 1} \ {m · pi + ℓi | m <
n

pi
}

)

.

Furthermore,
∣

∣

∣

∣

{0, . . . , n− 1} \ {m · pi + ℓi | m <
n

pi
}

∣

∣

∣

∣

= n−
n

pi

and
∣

∣

∣

∣

∣

∣

⋂

i≤k

(

{0, . . . , n− 1} \ {m · pi + ℓi | m <
n

pi
}

)

∣

∣

∣

∣

∣

∣

=
∑

m,j1,...,jm≤k

(−1)m
n

pj1 · . . . · pjm

= n ·
∏

i≤k

pi − 1

pi
.

Together with the fact that there are
∏

i≤k pi possible choices for ℓ1, . . . , ℓk this
proves the claim. �

Using this lemma we can compute the entropy.

Theorem 6.10. The entropy η(Prime) is zero.

Proof. From the previous observation and Lemma 6.9 we can deduce that

η(Prime) ≤
∏

i≤k

pi − 1

pi

for all k. An old result from Mertens [2] states

∏

i≤k

pi − 1

pi
∈ O

(

1

log2(k)

)

. Therefore lim
k→∞

∏

i≤k

pi − 1

pi
= 0

and we conclude that η(Prime) = 0. �

Even though not relevant for the entropy of Prime, the following observations
are simply too beautiful not to be mentioned. We conjecture the following.

Conjecture 6.11. Every plausible sequence of primes occurs at least once.

We have computationally verified this conjecture for sequences of length up to
29. What makes this conjecture interesting is the following lemma.

Lemma 6.12. The following statements are equivalent:

(1) Every plausible sequence of primes occurs at least once.
(2) Every plausible sequence of primes occurs infinitely often.

Proof. Assume the sequence represented by A ⊆ {0, . . . , n} occurs only k times.
Then let N ∈ N such that there are more than k plausible sequences represented
by A1, . . . , Al of length N with the initial sequence as prefix, i.e., Ai ∩{0, . . . , n} =
A. Hence at least one of these Ai does not represent an occurring sequence, a
contradiction. �

Note that the twin prime conjecture can be formulated as: the sequence {0, 2}
occurs infinitely often. As a consequence, Conjecture 6.11 is a generalization of the
twin prime conjecture and the Green-Tao Theorem.

EXPLORING THE TOPOLOGICAL ENTROPY OF FORMAL LANGUAGES 21

7. Conclusion

In this article we introduced the notion of a topological automaton from Stein-
berg [4]. We defined the topological entropy of a topological automata and of a
formal language.

We further investigated the notion of topological entropy of formal languages
and its suitability as a measure of the complexity of formal languages. We were
able to calculate the entropy of the Dyck languages, an previously open problem,
and provided many other new examples.

We modified an example from [3] to show that the entropy function is surjective
for every Σ with |Σ| ≥ 2. Whether this is also the case for unary alphabets remains
an open problem (Conjecture 3.11).

Our second main result concerns a conjecture from Schneider and Borchmann [3].
They suspected that all languages accepted by a one-way finite automaton equipped
with a fixed number of counters and an acceptance condition that does only require
to check local conditions have zero entropy. We showed that this conjecture holds
if we assume the automaton to be deterministic and ε-free and we were even able
to generalize this result to deterministic ε-free push-down automata. We showed
that the entropy of a language accepted by such an automaton is bounded in terms
of the sizes of the stack alphabets of the automaton. This result proves that all
deterministic ε-free context-free languages have finite entropy. An open problem
from this section is whether all languages accepted by nondeterministic 1-counter
automata with ε-transitions have finite entropy (Conjecture 5.13).

On the other hand, we also saw that the definition of entropy is not very ro-
bust, since we can use padding to decrease the entropy of any language to zero.
Consequently, there are also undecidable languages with zero entropy. It is also
counterintuitive that the entropy of a language is not the same as the entropy of
the reversed language. Hence we suggest to define something like the entropy of
the core of a language with the following properties:

• the entropy of the core of a language is at least as large as the entropy of
the language,

• padding a language does not influence the entropy of the core of this lan-
guage,

• reversing a language does not influence the entropy of the core of the lan-
guage,

• the entropy of the core of the languages we used to show surjectivity should
be infinite, and

• encoding the language should not change the entropy of the core of the
language.

We propose to define the entropy of the core of a language L in the following
way:

ηcore(L) = sup{η(L′) | L′ ∈ core(L)},

where core(L) should contain at least L, LR = {wR | w ∈ L}, and every L′ such
that there is an encoding enc with enc(L′) = L. But a suitable definition of core(L)
remains to be found.

22 FLORIAN STARKE

References

[1] John E. Hopcroft, Jeffrey D. Ullman. “Introduction to Automata Theory, Languages, and
Computation”. Addison-Wesley Publishing Company, Inc, 1979, pp. 171–172.

[2] Franz Mertens. “Ein Beitrag zur analytischen Zahlentheorie”. In: Journal für die reine und

angewandte Mathematik, 1874, pp. 46-62.
[3] Friedrich M. Schneider, Daniel Borchmann. “Topological Entropy of Formal Languages”. In:

Semigroup Forum (2017), pp. 556–581.
[4] Benjamin Steinberg. “Topological Dynamics and Reconstruction of Languages”. In: CoRP

abs/1306.1468 (2013).

	1. Introduction
	2. Preliminaries
	2.1. Myhill-Nerode Congruence Relation
	2.2. Topological Automata and Topological Entropy

	3. Encodings and Surjectivity
	3.1. Encoding
	3.2. Every Entropy has its Language
	3.3. Unary Languages

	4. Entropy of Decision Problems
	5. Topological Entropy and Automata
	6. Entropy of Example Languages
	7. Conclusion
	References

