
Computing the multi-string BWT and LCP
array in external memory

Paola Bonizzoni∗ Gianluca Della Vedova Yuri Pirola
Marco Previtali Raffaella Rizzi

DISCo, Università degli Studi di Milano–Bicocca, Milan, Italy
∗Corresponding author paola.bonizzoni@unimib.it

Indexing very large collections of strings, such as those produced by the
widespread next generation sequencing technologies, heavily relies on multi-
string generalization of the Burrows-Wheeler Transform (BWT): large re-
quirements of in-memory approaches have stimulated recent developments on
external memory algorithms. The related problem of computing the Longest
Common Prefix (LCP) array of a set of strings is instrumental to compute
the suffix-prefix overlaps among strings, which is an essential step for many
genome assembly algorithms. In a previous paper, we presented an in-memory
divide-and-conquer method for building the BWT and LCP where we merge
partial BWTs with a forward approach to sort suffixes.

In this paper, we propose an alternative backward strategy to develop an
external memory method to simultaneously build the BWT and the LCP
array on a collection of m strings of different lengths. The algorithm over
a set of strings having constant length k has O(mkl) time and I/O volume,
using O(k + m) main memory, where l is the maximum value in the LCP
array.

1 Introduction

In this paper we address the problem of constructing, simultaneously and in external
memory, the Burrows-Wheeler Transform (BWT) and the Longest Common Prefix (LCP)
array for a large collection of strings. The widespread use of Next-Generation Sequencing
(NGS) technologies, that are producing everyday several terabytes of data that has to
be analyzed, requires efficient strategies to index very large collections of strings. For
example, common applications in metagenomics require indexing of collections of strings
(reads) that are sampled from several genomes: those strings can easily contain more
than 108 characters. In fact, to start a catalogue of the human gut microbiome, more
than 500GB of data have been used [1].

1

ar
X

iv
:1

70
5.

07
75

6v
2

 [
cs

.D
S]

 4
 D

ec
 2

02
0

mailto:paola.bonizzoni@unimib.it

The Burrows-Wheeler Transform (BWT) [2] is a reversible transformation of a text
that was originally designed for text compression; it is used for example in the bzip2

program. The BWT of a text T is a permutation of its symbols and is strictly related
to the Suffix Array of T . In fact, the i-th symbol of the BWT is the symbol preceding
the i-th smallest suffix of T according to the lexicographical sorting of the suffixes of T .
The BWT has gained importance beyond its initial purpose, and has become the basis
for self-indexing structures such as the FM-index [3], which allows to efficiently perform
important tasks such as searching a pattern in a text [3, 4, 5]. The generalization of the
BWT (and the FM-index) to a collection of strings was introduced in [6, 7].

An entire generation of recent Bioinformatics tools heavily rely on the notion of BWT.
Representing the reference genome with its FM-index is the basis of the most widely
used aligners, such as Bowtie [8], BWA [9, 10] and SOAP2 [11]. Still, to attack some
other fundamental Bioinformatics problems, such as genome assembly, an all-against-all
comparison among the input strings is needed, especially to find all prefix-suffix matches
(or overlaps) between reads in the context of the Overlap-Layout-Consensus (OLC)
approach based on string graph [12]. This fact justifies the search for extremely efficient
algorithms to compute the BWT on a collection of strings [13, 14, 15, 16]. For example,
SGA (String Graph Assembler) [17] is a de novo genome assembler that builds a string
graph from the FM-index of the collection of input reads. In a preliminary version of
SGA [18], the authors estimated, for human sequencing data at a 20x coverage, the need
of 700Gbytes of RAM in order to build the suffix array, using the construction algorithm
in [19], and the FM-index. Another technical device that is used to tackle the genome
assembly in the OLC approach is the Longest Common Prefix (LCP) array of a collection
of strings, which is instrumental to compute the prefix-suffix matches in the collection.

The construction of the BWT and LCP array of a huge collection of strings is a
challenging task. A simple approach is constructing the BWT from the Suffix Array,
but it is prohibitive for massive datasets mostly due to the main memory requirements.
A first attempt to solve this problem [20] partitions the input collection into batches,
computes the BWT for each batch and then merges the results.

The huge amount of available biological data has stimulated the development of efficient
external memory algorithms (called, BCR and BCRext) to construct the BWT of a
collection of strings [21]. Similarly, a lightweight approach to the construction of the
LCP array (called extLCP) was investigated in [22]. With the ultimate goal of obtaining
an external memory genome assembler, LSG [23, 24] is based on BCRext and contains
an external memory approach to compute the string graph of a set of reads. In that
approach, external memory algorithms to compute the BWT and the LCP array [16, 25]
are fundamental.

In this context, we are considering a model of computation where memory is split
into two parts: a finite random access memory, and an unlimited sequential access disk.
Essentially, this model is an extension of the standard RAM model where we also have a
sequential access disk.

In this paper we present a new lightweight (external memory) approach to compute
the BWT and the LCP array of a collection of strings of different lengths, which is
alternative to extLCP [22] and other approaches [26, 27, 28, 29, 30]. The literature is

2

rich of in-memory methods [31, 32], as well as some external-memory algorithm on a
single text [31]. From a theoretical point of view, we can transform a set of strings into
an instance consisting of a single text by concatenating the input strings after adding a
distinct sentinel for each string. Anyway this would increase the alphabet size from σ to
m+ σ, and this effect must be taken into account.

The algorithm BCRext is proposed together with BCR and both are designed to work
on huge collections of strings (the experimental analysis is on hundreds of millions of
100-long strings). Especially extLCP is lightweight because, on a collection of m strings
of length k, it uses only O(m+ σ2) RAM space and essentially O(mk2) CPU time, with
matching I/O volume, under the usual assumption that the word size is sufficiently large
to store all addresses.

An important question is how to achieve the optimal O(km) I/O volume. BCRext [21]
incrementally computes the BWT of the collection S via k+1 iterations. At each iteration
l (0 ≤ l ≤ k) the algorithm computes a partial BWT bwtl(S) that is the BWT for the
ordered collection of suffixes with length at most l. This approach requires that, at each
iteration l, the symbols preceding the suffixes of S with length l − 1 must be inserted
at their correct positions into bwtl−1(S), that is each l iteration simulates the insertion
of the suffixes with length l in the ordered collection of the suffixes with length at most
l − 1. Updating the partial BWT bwtl(S) in external memory, the process requires a
sequential scan of the file containing the information of the partial bwtl−1(S). Thus the
I/O volume at each iteration l is at least m(l− 1) lg σ (since there are m suffixes for each
length l between 1 to l − 1). Consequently the total I/O volume for computing bwtk(S)
is at least O(mk2). More precisely, the BCRext algorithm in [21] that uses less RAM,
requires at each l iteration an additional I/O volume given by m lg(km), due to a process
of ordering special arrays used to save RAM space. Our algorithm for building the BWT
and the LCP, differently from [21], consists of two distinct phases: the first phase that
has O(mk) I/O volume and time complexity produces k + 1 arrays B0, . . . , Bk, each
array Bl lists the symbols preceding the suffixes with length exactly l according to the
lexicographical ordering of such suffixes. The second phase computes the interleave of
vectors B0, · · · , Bk that is equal to the BWT B of S. Indeed, the BWT B is an interleave
of the arrays B0, . . . , Bk, since the ordering of symbols in Bl is preserved in the final
BWT B, i.e., B is stable w.r.t. each array B0, . . . , Bk. Inspired by [27], we perform this
step by a number of L iterations, where L the length of the longest substring that has
at least two occurrences in S. Thus the merging operation takes fewer iterations than
BCRext (the latter requires k iterations). Observe that at each iteration of the merging
procedure of the arrays B0, . . . Bk, a partial LCP array is computed to get the final LCP
array at the last iteration.

Our algorithm has O(mklσ) time complexity, uses O(mklmax{lgm, lg l}) I/O volume,
and O(σw+ kw+m lg σ+ lg l) main memory, where l is the maximum value in the LCP
array and w is the space required to store a memory address. Moreover, our approach is
entirely based on linear scans (i.e., it does not contain a sorting step) which makes it
more amenable to actual disk-based implementations. We point out that l ≤ k, therefore
our time and I/O complexities are at least as good as those of extLCP [22] when building
the data structures for massive sets of short sequences over a constant alphabet and if

3

lgm and lg l are smaller than the word size (which is usually the case). The RAM usage
of our approach and that of extLCP are not easily comparable, since they are respectively
O(σw + kw +m lg σ + lg l) and O(m+ σ2). If we suppose that we can store a memory
address in a memory word, our RAM usage is O(σ + k +m lg σ + lg l). This means that,
in theory, when building the BWT and the LCP of few large strings extLCP will use less
RAM than the method presented in this paper. We point out that our algorithm works
also on a set of reads having different lengths, and the following sections describe the
algorithm referring to that case.

While writing our paper, two similar approaches have appeared in the literature [28, 30].
The method proposed in [28] starts from the BWT merging phase of [27] to also build the
LCP array using a small amount of memory. We point out that our paper and [28] are
two independent works. Moreover, our focus is on an external-memory approach, which
is not explicitly pursued in [28]. An extension to fully external memory computation of
BWT and LCP of [28] is egap [33]. This method computes the data structures in three
separate steps, (1) splitting the input sequences in subcollections such that the BWT
can be computed in-memory, and (2-3) then merging them building the LCP along the
way. The I/O and time complexities of egap are both O(mkl), matching the ones of our
algorithm when the alphabet is constant.

The method proposed in [30] (egsa) is a two-phase algorithm for the construction of the
Generalized Enhanced Suffix Array, the LCP, and, optionally, the BWT. In the first step
the required data structures are build for each sequence in input, whereas in the second
step the output is produced by merging the data structures built previously. Although
egap can be seen as an evolution of egsa, we included both tools in our experimental
evaluation to highlight that building the Generalized Enhanced Suffix Array requires way
more resources than directly building the BWT and the LCP.

The paper is laid out as follows. In Section 2 we provide the basic definitions we will use
in the following. In Section 3 we give a high level description of the method proposed in
this paper and illustrate the backward and forward strategies to merge partial arrays. In
Section 4 and Section 5 we dive into the details of our algorithm. In Section 6 we analyze
the time and I/O complexities of our method. In Section 7 we provide an experimental
analysis of our tool and a comparison with other tools available in the literature. Finally,
in Section 8 we recap the contributions of this paper.

2 Preliminaries

Let Σ = {c0, c1, . . . , cσ} be a finite alphabet where c0 = $ (called sentinel), and c0 <
c1 < · · · < cσ where < specifies the lexicographic ordering over alphabet Σ. We consider
a collection S = {s1, s2, . . . , sm} of m strings (reads), where each string sj consists of
kj symbols over the alphabet Σ \ {$} and is terminated by the symbol $, such that
kj + 1 is the total length of sj . The set S is intended as a sequence of strings, where sj
is the j-th string in the set. The i-th symbol of string sj is denoted by sj [i], and the
substring sj [i]sj [i+ 1] · · · sj [t] of sj is denoted by sj [i : t]. We will refer to sj [kj] as the
last character of the string sj and is the character immediately before the sentinel. The

4

suffix and prefix of sj with length l are the substrings sj [kj − l + 1 : kj + 1] (denoted by
sj [kj− l+ 1 :]) and sj [1 : l] (denoted by sj [: l]) respectively. Observe that l counts, for the
suffix, only the characters which are in Σ \ {$} (excluding $). Then, the suffix and prefix
with length l of a string sj will be called the l-suffix and l-prefix of sj , respectively. In
particular, the 0-suffix is the suffix uniquely composed of the sentinel $. In the following
we will denote with K the total length of the input reads (including the sentinel $).

Given the lexicographic ordering X of the suffixes of S, the Suffix Array is the K-long
array SA where the element SA[i] is equal to (p, j) if and only if the i-th element of X
is the p-suffix of string sj . We make the assumption that a suffix s$ from string si is
lexicographically smaller than the identical suffix s$ from a different string sj if i < j.
In other words, the two identical suffixes are ordered accordingly to the order of their
origin strings in S. This assumption guarantees the uniqueness of the Suffix Array for
the collection S.

The definition of suffix array we provide is slightly different than the one conventionally
used, where SA[i] = (p, j) refers to the suffix of the string sj starting at position p. We
have decided to abide by this definition to ease the presentation of the method in the
following sections.

The Burrows-Wheeler Transform (BWT) of S is the K-long array B where if SA[i] =
(p, j), then B[i] is the first symbol of the (p+ 1)-suffix of sj if p < kj , otherwise B[i] = $.
In other words B consists of the symbols preceding the ordered suffixes of X, where the
preceding symbol is the sentinel $ when the suffix is the complete string sj (i.e., the
kj-suffix).

The Longest Common Prefix (LCP) array of S is the K-long array LCP such that
LCP [i] is the length of the longest prefix shared by suffixes X[i− 1] and X[i]. Conven-
tionally, LCP [1] = −1.

Now, we can give the definition of Interleave of a generic set of arrays, that will be
used extensively in the following.

Definition 1. Given n+ 1 arrays V0, V1, . . . , Vn, then an array W is an interleave of
V0, V1, . . . , Vn if W is the result of merging the arrays such that: (i) there is a 1-to-1
function ψW from the set ∪ni=0{(i, j) : 1 ≤ j ≤ |Vi|} to the set {q : 1 ≤ q ≤ |W | =

∑
i |Vi|},

(ii) Vi[j] = W [ψW (i, j)] for each i, j, and (iii) ψW (i, j1) < ψW (i, j2) for each j1 < j2.

The interleave W is an array giving a fusion of V0, V1 . . . , Vn which preserves the
relative order of the elements in each one of the arrays. As a consequence, for each i with
0 ≤ i ≤ n, the j-th element of Vi corresponds to the j-th occurrence in W of an element
of Vi. This fact allows to encode the function ψW as an array IW such that IW [q] = i if
and only if W [q] is an element of Vi. By observing that W [q] is equal to VIW [q][r] where r
is the number of integers equal to IW [q] in IW [: q], it is easy to show how to reconstruct
W from IW (see Algorithm 1 where the array pos keeps, for each index i from 0 to n,
such number r while scanning array IW).

In the following, we will refer to array IW as interleave-encoding (or simply encoding).
Figure 1 shows an example of an interleave of four arrays and its encoding.

5

V0 V1 V2 V3

T C A A

T G C A

A C T

G T

C

W IW

T 0

A 2

A 3

A 3

C 1

C 2

C 2

G 1

T 0

A 0

T 3

G 0

T 3

C 0

Figure 1: Example of an interleave W of four arrays V0, V1, V2, V3.

Algorithm 1: Reconstruct the interleave W from the encoding IW

1 for i← 0 to n do
2 pos[i]← 0;
3 for q ← 1 to |IW | do
4 i← IW [q];
5 pos[i]← pos[i] + 1;
6 W [q]← Vi[pos[i]];

3 The algorithm

In this section we will provide a sketch of our algorithm. Let k be the maximum length
of a string in S (excluding $) and let Xl and Bl (0 ≤ l ≤ k) be arrays of length at most
m such that Xl[i] is the i-th smallest l-suffix among all the l-suffixes of the strings of S
and Bl[i] is the symbol preceding Xl[i]. In particular, X0 and B0 list respectively the
0-suffixes and the last characters of the input strings in their order in the set S. Observe
that Bl is a subsequence of the BWT B of S, and it is easy to see that B is an interleave
of the k + 1 arrays B0, B1, . . . , Bk, since the ordering of symbols in Bl (0 ≤ l ≤ k) is
preserved in B.

Similarly, the lexicographic ordering X of all suffixes of S is an interleave of the arrays
X0, X1, . . . , Xk. Let IB be the encoding of the interleave of arrays B0, B1, . . . , Bk giving
the BWT B, and let IX be the encoding of the interleave of arrays X0, X1, . . . , Xk giving
X. Then it is possible to show that IB = IX . Now, given IB it is immediate to reconstruct

6

s1: TCGT$ s2: CT$ s3: ACA$

B0 X0

T $
T $
A $

B1 X1

C A$
G T$
C T$

B2 X2

A CA$
$ CT$
C GT$

B3 X3

$ ACA$
T CGT$

B4 X4

$ TCGT$

Figure 2: An example of m = 3 reads s1, s2, s3 with maximum length k = 4, to-

gether with the partial BWTs B0, B1, B2, B3, B4 and the partial Suffix Arrays

X0, X1, X2, X3, X4.

B by using Algorithm 1.
In the following, we will call B0, B1, . . . , Bk and X0, X1, . . . , Xk as partial BWTs and

partial Suffix Arrays, respectively. Figure 2 shows an example of partial BWTs and
partial Suffix Arrays for a set of m = 3 reads on alphabet {A,C,G, T}, whose interleaves
B and X (BWT and sorted suffixes, respectively) and the encoding IB = IX are reported
in the first, second and third columns of Figure 3.

Our algorithm for building the BWT B and the LCP array consists of two distinct
phases: in the first phase it computes each partial BWT Bl (0 ≤ l ≤ k) by implicitly
sorting the l-suffixes of S (see Section 4), while in the second phase it determines IX = IB
(see Section 5) by a merging algorithm inspired by [27] (for merging two BWTs), thus
allowing to reconstruct B as an interleave of B0, . . . , Bk. We slightly modified the
approach in [27] in order to merge the arrays B0, . . . , Bk into the BWT B by implicitly
merging the array X0, . . . , Xk into the array X (giving the lexicographic ordering of all
suffixes of S). The second phase computes, together with the BWT B, also the LCP
array of the input set S.

We note that the definition of partial BWTs and the method sketched here hint to
some relation between the partial BWTs and the positional BWT (pBWT) presented
in [34], although the latter is presented for an alphabet of size 2. Indeed, given a set of
sequences, both reorder the characters at a given distance from one end of each sequence
in input. More precisely, each partial BWT is an ordering of all the elements of the
sequences at a given distance from the end of them, whereas each column of the pBWT
is an ordering of all the elements at a given distance from the start of the sequences.
In light of this fact, we can describe the two steps sketched in this section as follows:
(i) build the pBWT of the input sequences reversed, and (ii) build the BWT and the
LCP array by merging the columns of the pBWT. Although we will not describe our
method in terms of pBWT in the following sections, we think that the connection we just
highlighted further confirms strong relations between multiple BWT-like data structures
presented thorough the years to index different structures (e.g., trees [35], de Bruijn
graphs [36, 37, 38], and circular patterns [39]), as recently shown in [40].

Both phases of our method apply a Radix Sort strategy to reorder the suffixes (i.e., the
l-suffixes of S in order to compute the partial BWT Bl in the first phase, and the overall

7

B X IB = IX LCP

T $ 0 -1 B0[1] X0[1]

T $ 0 0 B0[2] X0[2]

A $ 0 0 B0[3] X0[3]

C A$ 1 0 B1[1] X1[1]

$ ACA$ 3 1 B3[1] X3[1]

A CA$ 2 0 B2[1] X2[1]

T CGT$ 3 1 B3[2] X3[2]

$ CT$ 2 1 B2[2] X2[2]

C GT$ 2 0 B2[3] X2[3]

G T$ 1 0 B1[2] X1[2]

C T$ 1 1 B1[3] X1[3]

$ TCGT$ 4 1 B4[1] X4[1]

Figure 3: BWT B, sorted suffixes X, encoding IB = IX and LCP array for the set of

reads presented in Figure 2. The last two columns report, for each element of

B and X, its origin in arrays Bl and Xl (respectively).

set of suffixes of S in the second phase in order to compute IB). The first phase iteratively
computes the partial BWTs B0, B1, . . . , Bk. Each iteration l (0 ≤ l ≤ k) computes Bl
from the order of the l-suffixes (array Xl) implicitly computed by the previous iteration
l − 1 (array Xl−1). We point out that this algorithm adopts a LSD Radix Sort strategy
that can be interpreted as “global”, since suffixes are sorted from the rightmost to the
leftmost character (that is, it adopts a LSD strategy), and the order of Xl is implicitly
obtained from the order of Xl−1 without applying the radix sort to each one of the sets
of l-suffixes.

The second phase applies a MSD Radix Sort strategy since it reorders the suffixes from
the leftmost to the rightmost characters, and can be performed in two different ways as
described in the following section.

3.1 Backward and forward strategies for merging the partial BWTs

The encoding IX is basically computed by an iterative procedure starting by the trivial
sorting given by taking first the suffixes of X0, followed by the suffixes of X1, followed
by the suffixes of X2, etc., followed by the suffixes of Xk (trivial interleave). Note that
the encoding of the trivial interleave is given by k runs of the integers from 0 to k: that
is, |X0| integers equal to 0, followed by |X1| integers equal to 1, etc., followed by |Xk|
integers equal to k. Starting from that sorting, the procedure applies a MSD Radix Sort
strategy to sort the suffixes of S, by the first (leftmost) characters at the first iteration,
then by the first two characters at the second iteration, etc., and finally by the first
k characters (k is the maximum length of the strings in the input set S) at the k-th

8

iteration. More precisely, at the p-th iteration, it computes the encoding of the interleave,
giving the sorting by the first p characters, from the interleave giving the sorting by the
first p − 1 characters (computed at the previous iteration). At the k-th iteration the
computed encoding is clearly IX .

In the following, the interleave of arrays X0, X1, . . . , Xk, giving the sorting of the
suffixes by the first p characters will be called p-interleave and denoted as Xp, and its
encoding will be denoted as IXp . The encoding IX is clearly equal to IXk (and X is
equal to Xk). We point out that Xp is the list of all the suffixes in the input collection S
sorted by their prefixes of length p. In other words, Xp includes also suffixes shorter than
p. In this ordering, a suffix s$ shorter than p will come before any suffix having string s
as a prefix, and moreover such suffix will have the same position in all the orderings Xq

such that q > p.
Iteration p computes the encoding IXp from the encoding IXp−1 obtained at the

iteration p − 1. The first iteration p = 1 computes IX1 from IX0 which is the trivial
encoding composed of k runs of the integers from 0 to k (IX0 is the encoding of the
0-interleave giving trivially the suffixes sorted by the first 0 characters).

Two different strategies can be used for computing IXp from IXp−1 , which are based
on the two following observations.

Observation 1. If Xp−1[i] with length l = IXp−1 [i] is the r-th suffix preceded by a symbol
c, then the suffix cXp−1[i] with length l + 1 will be the r-th suffix in Xp starting with
c. Therefore, IXp [j] will be equal to l + 1, such that j = s+ r, and s is the number of
symbols preceding suffixes of Xp−1 which are smaller than c. Observe that, when c = $,
then cXp−1[i] is actually the empty suffix having length 0, and s is equal to 0.

Observation 2. Let [b, e] be the interval of positions related to the suffixes of Xp−1

sharing the first p− 1 characters, and (among them) let us consider the r-th suffix having
a given c at position p. Then, such suffix will be at position j = b+s+r, of Xp (j ∈ [b, e]),
where s is the number of suffixes in the interval [b, e] having a symbol smaller than c at
position p. Therefore, IXp [j] will be equal to l.

The first strategy (backward) is based on Observation 1 and consists in scanning the
encoding IXp−1 . |Σ| empty buckets are initialized (one for each alphabet symbol), and
for each length l = IXp−1 [i], the symbol c preceding the related suffix is obtained from
the partial BWTs (c is indeed the i-th symbol of the interleave of the partial BWTs
encoded by IXp−1 , and will be the t-th of vector Bl if suffix Xp−1[i] is the t-th suffix in
Xp−1 having length l). At this point, the length l + 1 is added to the bucket related to
symbol c, if c is not the sentinel $, otherwise the value 0 is added (to the $ bucket). At
the end of the iterations, the concatenation of the buckets following the lexicographical
order of the symbols, provides the encoding IXp .

The second strategy (forward) is based on Observation 2 and maintains a partitioning
of the generic encoding IXp into contiguous segments, which are called p-segments. A
p-segment is an interval of positions which are related to suffixes sharing the first p
characters. The forward strategy consists in scanning the p− 1-segments of the encoding
IXp−1 one after the other and uses |Σ| initially empty buckets. For each p− 1-segment

9

[b, e], its (e− b+ 1) suffixes are considered, and each suffix length l is added to a bucket
depending on the symbol at position p in the suffix. At the end of the iterations over the
p− 1-segment, the concatenation of the buckets following the lexicographical order of
the symbols, provides the encoding IXp between positions b and e.

Both algorithms compute the interleave IX giving the Suffix Array as defined in Section
2 whose uniqueness is guaranteed by the radix sort strategy.

Figure 4 shows an example for the two strategies applied to a set of three reads.
In Section 5 the backward strategy will be detailed alongside the computation of the

LCP array. We refer to [41, 42] for the details about the forward strategy.

4 Computing the partial BWTs

The first phase of the method computes the partial BWTsB0, . . . , Bk by first preprocessing
the input strings s1, . . . , sm in order to obtain k + 1 arrays T0, . . . , Tk with length m,
where Tl lists the characters such that Tl[i] = si[|si| − l] when 0 ≤ l ≤ |si| − 1, Tl[i] = $
when l = |si|, and Tl[i] = # when l > |si| (where # is a padding symbol not belonging
to the alphabet of the input strings). Section (a) of Figure 5 reports an example of
arrays Tl for the three strings of Figure 2. Observe that T0 lists the last characters
〈s1[k1], s2[k2], . . . , sm[km]〉 of the input strings in the same order the strings have in the
set S, and T0 is clearly equal to B0. Observe that Tl[i] (when different from #) is the
symbol preceding the l-suffix of string si.

The preprocessing step is a trivial task that iterates over the input strings and outputs
the k + 1 arrays T0, . . . , Tk. We can summarize this procedure as a loop that iterates
over the input strings and performs the following steps. Let si be the input string and
suppose that we already preprocessed the previous i− 1 sequences. We first reverse si
and produce the string ri. Then, for each position l of ri, we write the l-th character
of ri at position i of array Tl, padding this array with # if it includes less than i − 1
elements. Finally, we write $ at position i of array T|si| (padding it with # if required)
and move to the next sequence.

The partial BWTs B0, . . . , Bk are computed by Algorithm 2 which receives in input
the arrays T0, . . . , Tk, and performs k + 1 iterations. Iteration l (0 ≤ l ≤ k) computes
Bl from Xl which is implicitly known and implicitly determines Xl+1 to be used in the
next iteration. More in detail, the ordering of array Xl is known by means of a array Nl,
with length at most m, such that Nl[i] = q if and only if the i-th element of Xl is the
l-suffix from the input string sq. In other words, position i of array Nl gives the index
q of the string whose l-suffix is the i-th in Xl. The partial BWT Bl can be computed
(see cycle at line 7) by scanning Nl, since Bl[i] is (by definition) the symbol preceding
the l-suffix of the string sq, where the index q is equal to Nl[i], and can be obtained by
accessing array Tl. Indeed, Bl[i] = Tl[q]. Observe that Bl is treated by Algorithm 2 as
a list initially empty, and the symbol c is appended to Bl only if it is not the padding
symbol # (signaling that the originating string is shorter than k). Note that, at the first
iteration l = 0, N0 (which is set in cycle at line 1) is the sequence of indices 〈1, 2, . . . ,m〉,
and B0 is correctly computed as the sequence of the last characters 〈s1[k1], . . . , sm[km]〉

10

$" C" G" T"

0" 3" 1" 1"

0" 1" 2"

0" 2" 3"

3" 2"

0" $"

0" $"

0" $"

3" CGT$"

1" G$"

1" G$"

2" GG$"

3" GTT$"

1" T$"

2" TG$"

2" TT$"

3" TGG$"

0" $"

0" $"

0" $"

3" CGT$"

1" G$"

1" G$"

2" GG$"

3" GTT$"

1" T$"

2" TG$"

2" TT$"

3" TGG$"

0" $"

0" $"

0" $"

3" CGT$"

1" G$"

1" G$"

2" GG$"

3" GTT$"

1" T$"

2" TG$"

3" TGG$"

2" TT$"

0" $"

0" $"

0" $"

3" CGT$"

1" G$"

1" G$"

2" GG$"

3" GTT$"

1" T$"

2" TG$"

3" TGG$"

2" TT$"

X1" X2" X1" X2"

(a)" (b)"

T"

G"

G"

$"

T"

G"

T"

$"

T"

C"

G"

$"

$" C" G" T"

1" 2" 2"

3"

IX1" IX1" IX2"B1" IX2"

Figure 4: Example of backward and forward strategy. An example of application of
backward (a) and forward (b) strategy for a set of three reads s1 = GTT ,
s2 = CTG and s3 = TGG. The encoding IX2 of the ordering by the first 2
characters of the suffixes is obtained from the encoding IX1 of the ordering by
the first character. Buckets $,C,G,T are depicted at the top of the figure. For
(a) the interleave (tagged as B1) of the partial BWTs encoded by IX1 is also
shown (that is, the interleave of the preceding symbols of the suffixes), whereas
for (b) the segments (on IX1 and IX2) are separated by horizontal bars; (b)
shows how to obtain the portion of IX2 corresponding to the last 1-segment
of IX1 (this procedure must be obviously repeated for the previous segments),
which is highlighted in grey and covers the last four positions of IX1 , and refer
to the suffixes sharing the first symbol T . Encoding values and symbols are
colored in order to highlight the two strategies.

(i.e., T0).
At the same time, the iteration l computes the array Nl+1 to be used in the next

iteration l + 1 in order to compute the partial BWT Bl+1. Observe in fact that the i-th
l-suffix of Xl is preceded by the symbol c = Tl[q], where q = Nl[i], and belongs to string
sq. Assuming that the i-th suffix of Xl is the h-th suffix of Xl which is preceded by that
symbol c, then the l+1-suffix of sq is the h-th suffix of Xl+1 starting with c. Furthermore,
let us assume that there are r l-suffixes of Xl starting with a symbol smaller c. Then the

11

l + 1-suffix of sq is the (r+h)-th suffix of Xl+1. By definition, it holds Nl+1[r + h] = q.
The algorithm uses σ + 1 lists P(·), a list for each symbol in Σ, which are created at the
beginning of iteration l. During the scanning of Nl the index q is added to the list P(c).

It is easy to prove that, at the end of iteration l, the concatenation of lists P(·)
(according to the order of the symbols in Σ) correctly gives Nl+1. Note that Nl+1 is
computed also by the last iteration k, even though it is actually not used. Figure 5
exemplifies the iteration l = 1 of Algorithm 2 which computes, for the set of reads of
Figure 2, the partial BWT B1 (see cycle for at line 7) and the array N2 (line 13), from
the array N1 (computed by the previous iteration l = 0). Array N2 will be used by the
next iteration l = 2 for computing the partial BWT B2.

Observe that arrays Ti must be kept in main memory, since they are not accessed
sequentially (see Algorithm 2), and for this reason they cannot be stored in external
memory.

Algorithm 2: Compute the partial BWTs B0, B1, . . . , Bk
Input : The arrays T0, . . . , Tk

1 for i← 1 to m do
2 N0[i]← i;

3 for l← 0 to k do
4 for t← 0 to σ do
5 P(ct)← empty list;
6 Bl ← empty list;
7 for i← 1 to |Nl| do
8 q ← Nl[i];
9 c← Tl[q];

10 if c 6= # then
11 Append c to Bl;
12 Append q to P(c);

13 Nl+1 ← P(c0)P(c1) · · · P(cσ);

5 Backward strategy for computing the encoding IB and the
LCP array

This section is devoted to describe the second step of our algorithm which computes the
BWT B and the LCP array according to the backward strategy described in Section 3.

First of all, we describe in detail how the single iteration works (see Algorithm 3).
Then, we show how to enrich Algorithm 3 in order to compute also the LCP array
together with the encoding IX (see Algorithm 4). Finally, the complete procedure for
computing IX = IB, from the partial BWTs Bl, is presented (see Algorithm 5) and is
explained how to use the LCP array values in order to limit the iterations to the number
strictly necessary to obtain IX .

12

(a) Input arrays Tl (0 ≤ l ≤ 4) and array N1

T4 T3 T2 T1 T0

$ T C G T

$ C T

$ A C A

N1 = 〈3, 1, 2〉

(b) Computing B1 and N2 (lines 7-13)

i = 1

Read 3 from N1[1]

Read C from T1[3]

Append C to B1

Append 3 to P(C)

P($) = 〈〉 P(A) = 〈〉
P(C) = 〈3〉 P(G) = 〈〉
P(T) = 〈〉
B1 = 〈C〉

i = 2

Read 1 from N1[2]

Read G from T1[1]

Append G to B1

Append 1 to P(G)

P($) = 〈〉 P(A) = 〈〉
P(C) = 〈3〉 P(G) = 〈1〉
P(T) = 〈〉
B1 = 〈C,G〉

i = 3

Read 2 from N1[3]

Read C from T1[2]

Append C to B1

Append 2 to P(C)

P($) = 〈〉 P(A) = 〈〉
P(C) = 〈3, 2〉 P(G) = 〈1〉
P(T) = 〈〉
B1 = 〈C,G,C〉

N2 ← P(C)P(G) (line 13) N2 = 〈3, 2, 1〉

Figure 5: Example of iteration l = 1 (computing B1 and N2 from N1) of Algorithm 2

for the set of strings presented in Figure 2. In (a) the three strings (excluding

the $) are depicted right-aligned inside a matrix. The sentinel $ is placed

immediately to the left of each string and the symbol # pads the left empty

space. Each Tl is a column of the matrix. Array N1 = 〈3, 1, 2〉 gives the sorting

of the 1-suffixes of the input reads, that is, suffix A$ of the read number 3,

followed by suffix T$ of the read number 1 and finally suffix T$ of the read

number 2. Array N2 = 〈3, 2, 1〉 gives the sorting of the 2-suffixes: CA$ of the

read number 3, CT$ of the read number 2, and GT$ of the read number 1.

Observe that lists P($),P(A),P(T) are empty during (and at the end of) the

iterations of lines 7. Angle brackets are used for denoting both lists P(·) and

arrays B1, N1 and N2. Indeed the latter three can be treated as lists since they

are accessed sequentially.

13

At this point, let us assume to have (iteration p) the encoding IXp−1 of the p − 1-
interleave Xp−1. We want to compute the encoding IXp of the p-interleave Xp, by sorting
the suffixes of Xp−1 by the first p characters. The algorithm implicitly obtains Xp

(suffixes sorted by the first p characters) by implicitly reordering the characters preceding
each one of the suffixes of Xp−1 (suffixes sorted by the first p− 1 characters). We note
that (by definition) for any p from 0 to k the first m entries of IXp are all equal to 0.
Indeed, the m 0-suffixes (of the set S) occupy always the first m positions for any value
of p.

Before entering the details of iteration p (see Algorithm 3), we give the idea of the
algorithm. Let us consider the suffix Xp−1[q] whose length is l = IXp−1 [q]. Let c be the
symbol preceding such suffix. Let X p−1s be the subset of suffixes of Xp−1 preceded by
a symbol smaller than c, and let X p−1e be the subset of suffixes at a position q′ < q of
Xp−1 preceded by the symbol c. It is easy to show that the suffix cXp−1[q] (with length
l + 1) is greater (by the first p characters) than all and only those suffixes cpx, such that

x ∈ X p−1s ∪ X p−1e and cp is the symbol preceding x. Therefore, the suffix cXp−1[q] (with

length l + 1) will occupy in Xp the position q′ = |X p−1s ∪ X p−1e |+ 1, and IXp [q′] will be
equal to l + 1. In other words, position q′ of suffix cXp−1[q] on Xp is given by the sum
hs +he + 1 where hs is the number of suffixes of Xp−1 preceded by a symbol smaller than
c and he is the number of suffixes, which are before Xp−1[q] and preceded by symbol c.

Algorithm 3 creates a set of σ + 1 lists I(c0), I(c1), . . . , I(cσ) containing at the end of
iteration p the partitioning of the encoding of IXp by the first character ci of the suffixes of
Xp. Since the list I(c0) (we recall that c0 = $) is related to the 0-suffixes, then it is fixed
over the iterations p and is always composed of m 0s (and it is initialized at the beginning
of the procedure). Therefore, at the end, the algorithm produces IXp (see line 10) as the
concatenation I(c0)I(c1) · · · I(cσ). In order to fill the lists I(·), Algorithm 3 performs a
scan of IXp−1 . For each position q, it obtains l = IXp−1 [q], that is the length of the q-th
suffix of Xp−1, and the symbol c preceding such suffix (see line 6). Vector pos allows
to read c from the correct position of array Bl. If c 6= $, then l is not greater than the
length of the input string originating the suffix Xp−1[q], and the integer l+ 1 is appended
to the list I(c). Otherwise, if c = c0 = $, it moves to the next position q + 1. Indeed
in this case, the value l is greater than the length of the input string originating the
suffix Xp−1[q], thus the cXp−1[q] obtained is a 0-suffix whose related integer 0 should be
appended to the list I(c0), which is fixed (by definition) over the iterations.

This approach is alternative to the one presented in [26] first and then implemented in
[41]. In fact, the iteration p is a backward extension of the suffixes sorted by the first
p− 1 characters in order to obtain the suffixes sorted by the first p characters. Instead
the strategy presented in [26] is based on a forward extension of the (p− 1)-prefixes of
the suffixes in order to obtain the ordering given by the encoding IXp .

The following theorem proves the correctness of Algorithm 3.

Theorem 1. If Algorithm 3 receives in input the encoding IXp−1 of the p− 1-interleave
Xp−1, then it computes the encoding IXp of the p-interleave Xp.

Proof. Observe that the (p− 1)-prefix (prefix with length p− 1) of the i-th suffix of Xl is
the suffix of the p-prefix of a suffix of Xl+1, starting with the symbol c = Bl[i]. Then,

14

(a) Input interleave IX0

IX0 = 〈0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 4〉

(b) Initialization of lists I(·)

I($) = 〈0, 0, 0〉 I(A) = 〈〉
I(C) = 〈〉 I(G) = 〈〉
I(T) = 〈〉

(c) Scan of the interleave IX0 (lines 4-9)

i = 1

Read 0 from IX0

Read T from B0

Append 1 to I(T)

i = 2

Read 0 from IX0

Read T from B0

Append 1 to I(T)

i = 3

Read 0 from IX0

Read A from B0

Append 1 to I(A)

i = 4

Read 1 from IX0

Read C from B1

Append 2 to I(C)

i = 5

Read 1 from IX0

Read G from B1

Append 2 to I(G)

i = 6

Read 1 from IX0

Read C from B1

Append 2 to I(C)

i = 7

Read 2 from IX0

Read A from B2

Append 3 to I(A)

i = 8

Read 2 from IX0

Read $ from B2

i = 9

Read 2 from IX0

Read C from B2

Append 3 to I(C)

i = 10

Read 3 from IX0

Read $ from B3

i = 11

Read 3 from IX0

Read T from B3

Append 4 to I(T)

i = 12

Read 4 from IX0

Read $ from B4

I($) = 〈0, 0, 0〉 I(A) = 〈1, 3〉
I(C) = 〈2, 2, 3〉 I(G) = 〈2〉
I(T) = 〈1, 1, 4〉

(d) Computing the interleave IX1 (line 10)

IX1 ← I($)I(A)I(C)I(G)I(T) IX1 = 〈0, 0, 0, 1, 3, 2, 2, 3, 2, 1, 1, 4〉

Figure 6: Example of computing IX1 from IX0 (see Algorithm 3) for the set of reads

presented in Figure 2. Angle brackets are used for denoting both lists I(·) and

arrays IX0 , IX1 . Indeed the latter two can be treated as lists since they are

accessed sequentially. The two encodings IX1 and IX0 are those ones reported

in Figure 7.

15

Algorithm 3: Compute IXp from IXp−1

1 I(c0)← 0, 0, . . . , 0;
// array of m 0s

2 I(c1), . . . , I(cσ)← empty lists;
3 pos← integer array with k + 1 0s;
4 for q ← 1 to |IXp−1 | do
5 l← IXp−1 [q];
6 c← Bl[pos[l]];
7 pos[l]← pos[l] + 1;
8 if c 6= $ then
9 Append l + 1 to I(c);

10 IXp ← I(c0)I(c1) · · · I(cσ);

line 7 of Algorithm 3 appends length l + 1 to the list I(c). Observe that line 9 implicitly
computes a partitioning of the suffixes in Xp, according to their starting symbol, into
lists I(c0), I(c1), . . . , I(cσ), where I(ci) gives the ordering, by the first p characters, of
the suffixes starting with symbol ci. Each list I(ci) contains (at line 10) the lengths of
such suffixes.

Furthermore, given two distinct suffixes c1x1 and c2x2 such that c1x1 is smaller (by the
first p− 1 characters) than c2x2, either they begin with two different symbols c1 < c2, or
they both start with the same symbol, i.e., c1 = c2. Let L(c1) and L(c2) be the partitions
of Xp−1 containing the suffixes starting with c1 and c2 (respectively). Then, in Xp all
suffixes in L(c1) precede those in L(c2). Inside the list L(c1), the ordering of two suffixes
c1xi and c1xj by the first p characters is the same as in Xp−1. Indeed, cxi[: p − 1] is
lexicographically smaller than cxj [: p − 1] if and only if xi[: p − 1] is lexicographically
smaller than xj [: p−1]. It follows that Xp consists of the concatenation of L(ci) according
to the lexicographic ordering of symbols of alphabet Σ, and thus line 10 of Algorithm 3
computes the encoding IXp of Xp.

In the following we will describe how to compute the LCP array of the input dataset.
Similarly to the computation of the BWT B, the LCP array will be constructed iteratively.
More precisely, the LCP array will be constructed by considering prefixes of the suffixes
by increasing length. At this point, we can describe how to update Algorithm 3 (iteration
p) in order to compute (at the end of the iterations) also the LCP array.

To this aim we must introduce the following definition.

Definition 2. Given the LCP array, LCPp is defined such that LCPp[i] = min{LCP [i], p}.

Observe that LCPp[i] is the length of the longest prefix shared by the p-prefix of Xp[i]
and the p-prefix of Xp[i− 1]. We note that, when a suffix in Xp is shorter than p, then
its p-prefix (considered for LCPp) is the whole suffix itself ($ excluded).

The array LCPk is equal to the LCP array of the input set S, and LCP0 contains all
0s, except for LCP0[1] that is equal to −1. In Figure 7 LCP0 and LCP1 are reported for
the input set of Figure 2.

16

The LCP array is computed iteratively by starting from LCP0. Now we describe the
single iteration p for computing LCPp from LCPp−1. Algorithm 4 extends Algorithm 3
in order to compute IXp and LCPp from IXp−1 and LCPp−1.

Algorithm 4 builds a set of σ+1 lists L(c0),L(c1), . . . ,L(cσ) containing the partitioning
of the elements of LCPp by the first character ci (0 ≤ i ≤ σ) of the related suffix. Since the
list L(c0 = $) is related to the 0-suffixes, it is fixed for any iteration and is composed of −1
followed by m−1 0s. Moreover, observe that the first element of each list L(ci) (1 ≤ i ≤ σ)
is always 0. Finally, Algorithm 4 concatenates all the lists L(c0),L(c1), . . . ,L(cσ), thus
producing LCPp (see line 22).

Before giving the detail of computing the single lists L(·), we need to introduce the
following function. Given a position q and a symbol c 6= $, the function αp(q, c) is the
length of the longest prefix shared by the p-prefixes of suffixes Xp[q] and Xp[h] where h
is the biggest position before q related to a suffix Xp[h] preceded by symbol c. If such h
does not exist, then αp(q, c) = −1.

In the following, given two strings x1, x2, we denote (respectively) by lcpp(x1, x2)
and lcp(x1, x2) the length of the longest common prefix between the p-prefixes of x1
and x2, and the length of the longest common prefix between x1 and x2 (that is,
lcp(x1, x2) = lcpk(x1, x2)). The following proposition relates the values of αp−1(q, c) and
LCPp and it is a direct consequence of their definitions.

Proposition 1. Let cx1 and cx2 be two consecutive suffixes of Xp, and let x2 be the
q-th suffix of Xp−1. Then min{p, lcp(cx1, cx2)} = 1 + αp−1(q, c).

During the scan of the encoding IXp−1 , the value LCPp−1[i] is obtained (see line 13 of
Algorithm 4). The function αp−1(q, c) is maintained in the array α of size σ − 1 initially
set to σ − 1 values −1s, and updated in the cycle at line 16. The main invariant of
Algorithm 4 is that, at line 18, the variable α[c] is equal to αp−1(q, c)—this invariant is
a consequence of the following Lemma 1 and can be proved by a direct inspection of
Algorithm 4. The value α[c] incremented by 1 is appended to the list L(c).

Lemma 1. Let x1 and x2 be respectively the j-th and the q-th suffixes of Xp−1, such
that j < q, and let c be the symbol preceding suffix x1. If every suffix at a position
t between j and q (j < t < q), is not preceded by the symbol c, then it holds that
αp−1(q, c) = minj<h≤q{LCPp−1[h]}.

Proof. Since c is not the symbol that precedes the suffix at position t with j < t < q,
then by definition of αp−1(q, c), it must be that αp−1(q, c) = lcpp−1(Xp−1[j], Xp[q]), since
the j is the largest integer less than q for which the j-th suffix is preceded by symbol c.
Since it is immediate to verify that lcpp−1(X

p[j], Xp[q]) = minj<h≤q{LCPp−1[h]}, the
lemma easily follows.

The previous argument allows us to prove the following theorem which, combined with
Theorem 1 completes the correctness of Algorithm 4.

Theorem 2. Given as input LCPp−1 and the partial BWTs B0, B1, . . . , Bk, Algorithm 4
computes LCPp.

17

Algorithm 4: Compute IXp and LCPp from IXp−1 and LCPp−1

1 I(c0)← 0, 0, . . . , 0;
// vector of m 0s

2 I(c1), . . . , I(cσ)← empty lists;
// array of m− 1 0s preceded by −1

3 L(c0)← −1, 0, . . . , 0;
4 L(c1), . . . ,L(cσ)← empty lists;
5 pos← integer array with k + 1 0s;
6 foreach c ∈ {c1, . . . , cσ} do
7 Append 0 to L(c);
8 α[c]← −1;

9 for q ← 1 to |IXp−1 | do
10 l← IXp−1 [q];
11 c← Bl[pos[l]];
12 pos[l]← pos[l] + 1;
13 if c 6= $ then
14 Append (l + 1) to I(c);
15 lcp← LCPp−1[i];
16 foreach d ∈ {c1 . . . , cσ} do
17 α[d]← min{α[d], lcp};
18 if c 6= $ and α[c] ≥ 0 then
19 Append α[c] + 1 to L(c);
20 α[c] =∞;

21 IXp ← I(c0)I(c1) · · · I(cσ);
22 LCPp ← L(c0)L(c1) · · · L(cσ);

Proof. Observe that α[c] ≥ 0 at line 18 iff the current suffix at position q is not the first
to be preceded by the character c, hence we must append the value 1 +αp−1(q, c) to L(c).
Since α[c] = αp−1(q, c), the theorem is proved.

In Figure 6 the computation of IX1 from IX0 (by Algorithm 3 for p = 1) is shown for
the set S of reads presented in Figure 2. The encodings IX1 and IX0 are reported in
Figure 7 together with LCP1 and LCP0 whose computation (by Algorithm 4) has been
omitted for simplicity.

The procedure BWT+LCP (see Algorithm 5) computes IXk and LCPk, which are
the encoding of the BWT and the LCP array of the input set S of strings, by iterating
Algorithm 4. Iterations stop when the maximum value maxq{LCPp[q]} in the array
LCPp is less than p. In fact, it means that for an iteration t > p, the values IXt and LCP t

do not change since the suffixes have been fully sorted and thus IXt and LCP t remain
equal to IXk and LCPk, respectively. The correctness of the procedure BWT+LCP
is a consequence of Theorem 2 and Definition 2. Observe that if the maximum value
in the LCP array is equal to z, then at each iteration p of Algorithm 5 with p ≤ z, the

18

maximum value in LCPp is p, in virtue of Theorem 2 and Definition 2. When p = z + 1,
then by Definition 2, the iteration p gives value z, that is maxq{LCPp[q]} < p. Then the
suffixes have been fully sorted and the LCP array has been computed at the previous
step p = z.

Algorithm 5: BWT+LCP

Input : The strings s1, . . . , sm, and their maximum length k
Output : The BWT B and the LCP array of the input strings

1 Compute T0, . . . , Tk from s1, . . . , sm;
2 Apply Algorithm 2 to compute B0, . . . Bk;

3 for 1 ≤ i ≤
∑k

j=0 |Bj | do

4 h← the smallest integer such that
∑h

j=0 |Bj | ≥ i;
5 IX0 [i]← h;

/* Informally, IX0 is the array made of |B0| 0s, |B1| 1s, . . ., |Bk|
ks */

6 LCP0 ← −1, 0, 0, . . . , 0;
7 p← 1;
8 while TRUE do
9 Apply Algorithm 4 to compute IXp and LCPp from IXp−1 , LCPp−1;

10 if maxq{LCPp[q]} 6= p then
11 break;
12 p← p+ 1;

13 Reconstruct B from IXp−1 and B0, . . . , Bk;
Output : (B, LCPp−1)

Observe that, in virtue of the radix sort strategy, the two steps of our method
(computing the partial BWTs and computing the interleave IX) do not depend on the
particular order of the strings in the input set S. For this reason, there is no particular
order of the input strings which may improve the computation.

5.1 Comparison with other strategies

While a common element of our method with egap and BEETL is the use of a radix sort
strategy, a main difference is represented by the collection of objects to which it is applied.
BEETL’s algorithm works by a unique step and is based on the following invariant: at the
iteration p, it computes the partial BWT for the collection of suffixes of length at most p.
Differently, our algorithm works by two steps: first it computes the partial BWTs Bl (as
previously defined) and then the interleave IX . In the second step the following invariant
is maintained: at the iteration p, it computes the list of the symbols preceding all the
suffixes in the input collection S sorted by the p-long prefixes. As a consequence, at the
iteration p, it computes a permutation of the BWT for S tending to the solution over
the iterations, while BEETL computes a subsequence of the BWT for S and maintains
over the iterations the reciprocal order between the symbols.

19

IX0 LCP0 X0 IX1 LCP1 X1

0 -1 $ 0 -1 $
0 0 $ 0 0 $
0 0 $ 0 0 $
1 0 A$ 1 0 A$
1 0 T$ 3 1 ACA$
1 0 T$ 2 0 CA$
2 0 CA$ 2 1 CT$
2 0 CT$ 3 1 CGT$
2 0 GT$ 2 0 GT$
3 0 ACA$ 1 0 T$
3 0 CGT$ 1 1 T$
4 0 TCGT$ 4 1 TCGT$

Figure 7: Encodings IX0 and IX1 , and arrays LCP0 and LCP1 for the set of reads

presented in Figure 2, together with their related interleaves X0 and X1. This

figure depicts the encoding IX1 and the array LCP1 (on the right) which

are computed from IX0 and LCP0 (on the left) by the iteration p = 1 of

Algorithm 4.

Arrays Nl used by the first step of our algorithm (computing the partial BWTs Bl) are
the same as arrays Nl used in [16]. Indeed, Nl[i] in our case is the position in S of the
string which is the origin of the i-th l-suffix Xl[i] whose preceding symbol is Bl[i]. Arrays
Nl(h) in [16] are defined such that Nl(h)[i] is the position in S, of the string which is the
origin of the i-th l-suffix (in the partial BWT) starting with the h-th symbol ch of the
alphabet. We note that the concatenation Nl(0)Nl(1)...Nl(σ) gives the array Nl of our
algorithm.

Observe that both our algorithm and egap use the notion of an interleave in order to
compute the BWT and the LCP array. More precisely, egap splits the input collection S
into subcollections sufficiently small, then it computes the BWT (partial BWTs) for each
subcollection and finally it merges the BWTs similarly to the approach in [27]. On the
other hand, our algorithm first computes the partial BWTs Bl from the whole collection
S, that are then merged maintaining the invariant property described above.

6 Complexity

In this section we will analyze the computational and I/O volume of our algorithm.
First we will analyze Algorithm 2. This procedure mainly consists of two nested loops

in which each operation requires constant time. If the input is a set of m strings of length
k, the time complexity of it is O(mk). Note that each of the k + 1 lists Bl and Nl have

20

m elements which are read or written sequentially and, moreover, each list is read only
once per execution. Hence, the I/O volume of Algorithm 2 is O(mk lgm) since, for each
element in T0, . . . , Tk, Algorithm 2 appends an integer less than m to the correct list P(·)
that we can store on disk, since we access them sequentially.

Besides some O(1)-space data structures, the algorithm uses σ + 1 lists P(·) to store
pointers to the open files and k + 1 arrays T0, T1, . . . , Tk to store the characters of the
sequences. Note that, at each iteration of the loop at line 3, only one array Tl must be
kept in main memory, since we need to perform non-sequential accesses, and requires
m lg σ bits—notice that for one million DNA reads, that translates to 256 Mbytes of
memory, which is well below the RAM amount found in standard PCs. Therefore, if
we can address each file using w bits, the main memory requirement of Algorithm 2 is
O(σw + kw +m lg σ) bits.

Furthermore, arrays Tl (0 ≤ l ≤ k) can be computed in O(km) time and O(km lg σ)
I/O volume by reading sequentially B input strings at a time and producing B positions
of arrays Tl, where B is the disk block size, that is the number of characters that are
read or written in a single disk operation (see [43]). Notice that this step requires to keep
l × B characters in main memory: this is not a problem for Bioinformatics applications,
since short reads are at most a few hundreds of characters long, and even longer reads are
at most 20000 characters long. Anyway, it is possible to adapt the algorithm of [44, 45]
to compute the arrays Tl arrays with O(B2) main memory.

We will now analyze Algorithm 4. The time complexity of this procedure is O(mkσ)
since such procedure is composed of a for loop that iterates over the encoding IXp−1—
whose length is mk—performing constant time operations per element except for the
loop at lines 16–17 that requires O(σ) time.

The I/O volume is O(mkmax{lgm, lg l}) bits, since each iteration of the loop at
lines 16–17 requires to read and write a constant number of elements of some lists whose
values are bounded by m or l, and since α is kept in main memory. The main memory
usage is O(σ lg l + kw) bits, since we store σ integers smaller than l in α and k pointers
to the lists Bi.

We can now analyze Algorithm 5, which is composed of two main steps: in the first
one it prepares the input data structures (line 1), invokes Algorithm 2, and initializes
some data structures. In the second part (lines 8–12) it computes the final encoding
IXp and the LCP array from the structures computed at the previous step by iteratively
applying Algorithm 4.

The complexity of the first part is essentially that of Algorithm 2, since computing the
lists T0, . . . , Tk (line 1) requires O(mk) with a single scan of the input data (whose size
is mk), while outputting the lists requires constant time per element.

The second step is mainly composed of a while loop that iteratively applies Algorithm 4
(that requires O(mkσ)) to compute the final interleave and the final LCP array. Moreover,
the proof of correctness of Algorithm 5 also shows that Algorithm 4 is applied l+ 1 times,
where l is the largest value in the LCP array.

Finally, Algorithm 5 builds the final BWT from IXP and the lists B0, . . . , Bk by a single
scan of those m-long lists, which requires O(mk) time overall. Therefore, Algorithm 5
requires an overall O(mklσ) time.

21

The I/O complexity of the first step is O(max{mk lgm,mk lg σ}) bits whereas the main
memory requirement is O(σw+ kw+m lg σ) bits. Indeed, computing the lists T0, . . . , Tk
at line 1 requires us to store only one character per time of each sequence si and to
append it to the correct list: therefore it has O(mk lg σ) bits I/O volume and O(kw+lg σ)
bits main memory requirement. We have to include the requirements of Algorithm 2,
which changes the main memory needed for the first step to O(σw + kw +m lg σ) bits.

The I/O volume of the second step is O(mkl lg l) bits since it consists essentially of l
applications of Algorithm 4. Finally, while building the final BWT from IXP , Algorithm 5
reads O(mk lgm) bits due to the interleave and O(mk lg σ) bits due to the partial BWTs,
writes O(mk lg σ) bits for the final BWT and requires O(max{lg l, lg σ}) bits of main
memory since at most it stores in main memory one element of IXP and one element of
a partial BWT.

Therefore, overall Algorithm 5 reads and writes O(mklmax{lgm, lg l}) bits from and
to the disk and requires O(σw + kw + m lg σ + lg l) bits of main memory. We can
summarize our results as follows.

Proposition 2. Given as input a set composed of m strings of length k over and alphabet
of size σ, the procedure BWT+LCP computes the BWT and the LCP array of it in
O(mklσ) time, where l is the maximal value of the LCP array. This procedure requires
to store in main memory O(σw + kw +m lg σ + lg l) bits and reads and writes from and
to the disk O(mklmax{lgm, lg l}) bits.

Note that, if σ is constant then the time complexity of the method presented in this
paper becomes O(mkl). Moreover, if the word size is max{w, lgm, lg l} then its I/O
volume and main memory requirement become O(mkl) and O(k +m) respectively.

7 Results

We implemented the method proposed in this article in a prototype in C, named
bwt-lcp-em (we will refer to it as ble in the following) that is freely available at
https://github.com/AlgoLab/bwt-lcp-em. We compared our method with other tools
specifically designed to index datasets composed by a huge number of short sequences
such as Next-Generation Sequencing read sets.

We have compared ble with the original implementation of extLCP [22] (BEETL), as well
as a more recent version (BEETL2) that implements a fully external memory approach1,
the in-memory method gsa-is [46], and two recent external memory tools (egsa [30]
and egap [33]). Notice that gsa-is and egsa have been designed to compute the suffix
array of a set of strings, so the computation of the BWT and of the LCP array is likely
not optimized.

We used some non-default values for some of the parameters in order to minimize main
memory usage: egap has been run with --lbytes 1, BEETL with --memory-limit=900,
and egsa by compiling with MEMLIMIT=900. We allowed egap to use 95% of the available
RAM, as suggested in its website.

1The second version is available at https://github.com/giovannarosone/BCR LCP GSA.

22

https://github.com/AlgoLab/bwt-lcp-em
https://github.com/giovannarosone/BCR_LCP_GSA

We compared the considered tools in the scenario of 1GB of main memory available,
by considering instances with 1, 2, 4, 8, 16, and 32 million sequences, taken from two
different data sources: (a) 148bp Illumina reads from the Genome In A Bottle (GIAB) [47]
consortium, more precisely from the NA24385 individual; (b) random sequences of length
151 generated by a Python script that builds uniformly distributed fixed-length sequences
over the DNA alphabet (for the extended and detailed experimentation results we refer
the read to the GitHub repository of the implementation). The goal of using these two
datasets is to experimentally assess the theoretical time complexity of our approach that
shows a dependency on l, i.e., the maximum value of the LCP array (see Section 6).
We expect that l in the random datasets will be considerably less than the length k of
input strings. On the other hand, the Illumina datasets represent the worst case of our
approach as they have a 300× mean coverage. Hence they will surely contain duplicate
reads and l will be equal to the length k of the input strings.

We ran all the experiments on the same workstation running Ubuntu Linux 18.04
equipped with an Intel Core i7-4770 CPU running at 3.40GHz and a 256GB solid state
disk. The machine is equipped with 8GB of RAM, and we limited the amount of RAM
at boot time to 1GB to avoid the effects of OS caching.

Table 1 reports the time (in minutes) required to compute the BWT and the LCP
array. The first column indicates the number of sequences in the dataset, whereas column
l indicates the maximum value of the LCP array on that dataset. Symbol ? means that
the tool could not complete the execution in our environment because it needed more
than 1GB of RAM, while symbol � means that the tool could not complete the execution
since it required more disk space than that available. Notice that BEETL and gsa-is

did not complete some executions because of the RAM limit, while egsa required more
disk space than that available. To better highlight the trends, Figure 8 visually depicts
the same results presented in the table. We expect that this experiment will show the
advantages of memory-conscious approaches.

The results point out that only ble, BEETL, BEETL2, and egap were able to deal with
such a limited amount of main memory. Moreover, ble, BEETL2, and egap were able to
compute the BWT and LCP array for all the datasets, while gsa-is and egsa could
only cope with smaller datasets. Since gsa-is is an in-memory approach, its memory
requirements made impossible to process even moderately large instances.

On the NA24385 dataset, egap is the fastest tool on the instances up to 8M reads,
while BEETL2 is the fastest on larger instances. Still, the trend in the running time hints
that ble will likely become the fastest tool on instances larger than those considered
here.

On the random dataset, ble is the fastest tool on all instances with at least 2 million
reads—egap is the fastest on 1 million reads. egap and ble are always the two fastest
tools.

The comparison of the running times on the two datasets empirically confirms that
ble has a time complexity that depends linearly on the maximum value of the LCP array,
while BEETL and BEETL2 depend only on the maximum length of the input strings. As
expected, also egsa and egap show a dependency on the maximum value of the LCP
array, as both are definitely faster on the random dataset than on the NA24385 dataset

23

No. of

strings

Dataset: NA24385

l ble BEETL2 BEETL gsa-is egsa egap

1M 148 26 12 11 28 60 1

2M 148 53 25 23 ? 239 18

4M 148 105 51 52 ? 693 44

8M 148 213 122 124 ? 2370 184

16M 148 414 241 227 ? � 448

32M 148 855 633 ? ? � 915

No. of

strings

Dataset: random

l ble BEETL2 BEETL gsa-is egsa egap

1M 25 5 13 12 29 10 1

2M 28 11 27 25 ? 25 11

4M 27 21 50 54 ? 49 24

8M 28 43 104 119 ? 138 92

16M 30 108 249 263 ? � 227

32M 32 238 813 ? ? � 434

Table 1: Time required to compute the BWT and the LCP array (in minutes) on the

NA24385 and random datasets using a PC with 1GB RAM. The first column

indicates the number of sequences in the dataset. Column l indicates the

maximum value of the LCP array on that dataset. ? means that the tool

required more than 1GB of RAM. � means that the tool crashed because of disk

space exhaustion.

(for egap roughly 2×, for egsa from 6× to 15×).
Table 2, reports the RAM usage (in Megabytes) required to compute the BWT and

the LCP array. Just as for Table 1, the first column indicates the number of sequences in
the datasets, whereas column l indicates the maximum value of the LCP array on that
dataset. As before, symbols ? and � mean that the tool could not complete the execution
in our environment since it exhausted the RAM or the available disk space, respectively.
Notice that ble is always the tool requiring the smallest amount of memory, by a factor
at least 6.

8 Conclusions

We have presented a new lightweight algorithm to compute the BWT and the LCP array
of a set of m strings, each k characters long, based on applying a backward strategy
for merging partial BWTs. More precisely, our algorithm has an O(mkl) time and I/O
volume, and uses O(k +m) main memory to compute the BWT and LCP array, where l

24

Dataset: NA24385 Dataset: random

1 2 4 8 16 32 1 2 4 8 16 32

4

32

256

2048

No. of strings (millions)

T
im

e
(m

in
u

te
s)

Tool

ble

BEETL2

BEETL

egsa

egap

Figure 8: Time required to compute the BWT and the LCP array (in minutes) on the
NA24385 and random datasets using a PC with 1GB RAM.

is the maximum value in the LCP array. Our time complexity and I/O volume are in
the worst case as those of the best previously available algorithms. The experimental
analysis shows that our approach is competitive with the best available external-memory
methods and that its advantage is noticeable on large inputs when the available RAM is
limited.

The approach presented here may be further investigated in other research directions,
as for example in the case of arbitrary alphabets and for collection of strings in other
contexts, such as in dealing with dictionaries where the parameter l may be smaller than
the size of the input strings. Theoretically, it is of interest to investigate the open question
whether the optimal time O(mk) time can be achieved for computing the BWT. Some
recent results (see, for example, [48]) may also suggest that running times of BWT-related
algorithms could be improved on compressible inputs. Investigating if these results have
an implication to our algorithm is an interesting research direction.

On the other end, the prototype called ble implementing our approach is still a proof
of concept, although carefully developed, and future releases of the tool could improve
its performance by, for example, a better buffering strategy of the input and output files,
asynchronous I/O, or better representation (i.e., fast compression) of the intermediate
files.

Acknowledgements

We would like to thank Giovanni Manzini for the discussion on the implementation and
on the comparison with the software egap. This project has received funding from the

25

No. of

strings

Dataset: NA24385

l ble BEETL2 BEETL gsa-is egsa egap

1M 148 6 35 255 747 764 728

2M 148 10 67 453 ? 770 760

4M 148 18 131 722 ? 775 774

8M 148 34 255 710 ? 773 772

16M 148 65 483 732 ? � 768

32M 148 127 781 ? ? � 763

No. of

strings

Dataset: random

l ble BEETL2 BEETL gsa-is egsa egap

1M 25 6 35 214 761 761 724

2M 28 10 67 392 ? 767 766

4M 27 18 131 734 ? 775 781

8M 28 33 255 726 ? 771 772

16M 30 65 483 729 ? � 762

32M 32 128 777 ? ? � 760

Table 2: Peak RAM usage on the NA24385 and random datasets using a PC with 1GB

RAM. The first column indicates the number of sequences in the dataset. Column

l indicates the maximum value of the LCP array on that dataset. ? means

that the tool required more than 1GB of RAM. � means that the tool crashed

because of disk space exhaustion.

European Union’s Horizon 2020 research and innovation programme under the Marie
Sk lodowska-Curie grant agreement No 872539.

References

[1] J. Qin, et al., A human gut microbial gene catalogue established by metagenomic
sequencing, Nature 464 (7285) (2010) 59–65. doi:10.1038/nature08821.

[2] M. Burrows, D. J. Wheeler, A block-sorting lossless data compression algorithm,
Tech. rep., Digital Systems Research Center (1994).

[3] P. Ferragina, G. Manzini, Indexing compressed text, J. ACM 52 (4) (2005) 552–581.
doi:10.1145/1082036.1082039.

[4] H. Li, Fast construction of FM-index for long sequence reads, Bioinformatics 30 (22)
(2014) 3274–3275. doi:10.1093/bioinformatics/btu541.

[5] G. Rosone, M. Sciortino, The Burrows–Wheeler transform between data compression

26

https://doi.org/10.1038/nature08821
https://doi.org/10.1145/1082036.1082039
https://doi.org/10.1093/bioinformatics/btu541

and combinatorics on words, in: CiE, Vol. 7921 of LNCS, 2013, pp. 353–364.
doi:10.1007/978-3-642-39053-1_42.

[6] S. Mantaci, A. Restivo, G. Rosone, M. Sciortino, An extension of the Burrows–
Wheeler Transform and applications to sequence comparison and data compression,
in: CPM, Vol. 3537 of LNCS, 2005, pp. 178–189. doi:10.1007/11496656_16.

[7] S. Mantaci, A. Restivo, G. Rosone, M. Sciortino, An extension of the Burrows–
Wheeler Transform, Theoretical Computer Science 387 (3) (2007) 298–312. doi:

10.1016/j.tcs.2007.07.014.

[8] B. Langmead, C. Trapnell, M. Pop, S. Salzberg, Ultrafast and memory-efficient
alignment of short DNA sequences to the human genome, Genome Biology 10 (3)
(2009) R25. doi:10.1186/gb-2009-10-3-r25.

[9] H. Li, R. Durbin, Fast and accurate short read alignment with Burrows-
–Wheeler transform, Bioinformatics 25 (14) (2009) 1754–1760. doi:10.1093/

bioinformatics/btp324.

[10] H. Li, R. Durbin, Fast and accurate long-read alignment with Burrows—Wheeler
transform, Bioinformatics 26 (5) (2010) 589–595. doi:10.1093/bioinformatics/
btp698.

[11] R. Li, C. Yu, Y. Li, T.-W. Lam, S.-M. Yiu, K. Kristiansen, J. Wang, SOAP2: an
improved ultrafast tool for short read alignment, Bioinformatics 25 (15) (2009)
1966–1967. doi:10.1093/bioinformatics/btp336.

[12] E. Myers, The fragment assembly string graph, Bioinformatics 21 (suppl. 2) (2005)
ii79–ii85. doi:10.1093/bioinformatics/bti1114.

[13] H. Li, Exploring single-sample SNP and INDEL calling with whole-genome de novo
assembly, Bioinformatics 28 (14) (2012) 1838–1844. doi:10.1093/bioinformatics/
bts280.

[14] N. Välimäki, S. Ladra, V. Mäkinen, Approximate all-pairs suffix/prefix overlaps, in:
CPM, Vol. 6129 of LNCS, 2010, pp. 76–87. doi:10.1007/978-3-642-13509-5_8.

[15] P. Ferragina, T. Gagie, G. Manzini, Lightweight data indexing and compres-
sion in external memory, Algorithmica 63 (3) (2012) 707–730. doi:10.1007/

s00453-011-9535-0.

[16] M. Bauer, A. Cox, G. Rosone, Lightweight algorithms for constructing and inverting
the BWT of string collections, Theoretical Computer Science 483 (2013) 134–148.
doi:10.1016/j.tcs.2012.02.002.

[17] J. Simpson, R. Durbin, Efficient de novo assembly of large genomes using compressed
data structures, Genome Research 22 (2012) 549–556. doi:10.1101/gr.126953.

111.

27

https://doi.org/10.1007/978-3-642-39053-1_42
https://doi.org/10.1007/11496656_16
https://doi.org/10.1016/j.tcs.2007.07.014
https://doi.org/10.1016/j.tcs.2007.07.014
https://doi.org/10.1186/gb-2009-10-3-r25
https://doi.org/10.1093/bioinformatics/btp324
https://doi.org/10.1093/bioinformatics/btp324
https://doi.org/10.1093/bioinformatics/btp698
https://doi.org/10.1093/bioinformatics/btp698
https://doi.org/10.1093/bioinformatics/btp336
https://doi.org/10.1093/bioinformatics/bti1114
https://doi.org/10.1093/bioinformatics/bts280
https://doi.org/10.1093/bioinformatics/bts280
https://doi.org/10.1007/978-3-642-13509-5_8
https://doi.org/10.1007/s00453-011-9535-0
https://doi.org/10.1007/s00453-011-9535-0
https://doi.org/10.1016/j.tcs.2012.02.002
https://doi.org/10.1101/gr.126953.111
https://doi.org/10.1101/gr.126953.111

[18] J. Simpson, R. Durbin, Efficient construction of an assembly string graph using the
FM-index, Bioinformatics 26 (12) (2010) i367–i373. doi:10.1093/bioinformatics/
btq217.

[19] G. Nong, S. Zhang, W. H. Chan, Linear suffix array construction by almost pure
induced-sorting, in: DCC, IEEE, 2009, pp. 193–202. doi:10.1109/DCC.2009.42.

[20] J. Sirén, Compressed suffix arrays for massive data, in: SPIRE, Vol. 5721 of LNCS,
2009, pp. 63–74. doi:10.1007/978-3-642-03784-9_7.

[21] M. Bauer, A. Cox, G. Rosone, Lightweight BWT construction for very large
string collections, in: CPM, Vol. 6661 of LNCS, 2011, pp. 219–231. doi:

10.1007/978-3-642-21458-5_20.

[22] A. Cox, F. Garofalo, G. Rosone, M. Sciortino, Lightweight LCP construction
for very large collections of strings, J. Discrete Algorithms 37 (C) (2016) 17–33.
doi:10.1016/j.jda.2016.03.003.

[23] P. Bonizzoni, G. Della Vedova, Y. Pirola, M. Previtali, R. Rizzi, LSG: an external-
memory tool to compute string graphs for next-generation sequencing data assembly,
J. Computational Biology 23 (3) (2016) 137–149. doi:10.1089/cmb.2015.0172.

[24] P. Bonizzoni, G. Della Vedova, Y. Pirola, M. Previtali, R. Rizzi, An external-
memory algorithm for string graph construction, Algorithmica 78 (2) (2017) 394–424.
doi:10.1007/s00453-016-0165-4.

[25] M. Bauer, A. Cox, G. Rosone, M. Sciortino, Lightweight LCP construction for next-
generation sequencing datasets, in: WABI, Vol. 7534 of LNCS, 2012, pp. 326–337.
doi:10.1007/978-3-642-33122-0_26.

[26] P. Bonizzoni, G. Della Vedova, S. Nicosia, M. Previtali, R. Rizzi, A new lightweight
algorithm to compute the BWT and the LCP array of a set of strings, CoRR
abs/1607.08342 (2016). arXiv:1607.08342.

[27] J. Holt, L. McMillan, Merging of multi-string BWTs with applications, Bioinformatics
30 (24) (2014) 3524–3531. doi:10.1093/bioinformatics/btu584.

[28] L. Egidi, G. Manzini, Lightweight BWT and LCP merging via the gap algorithm, in:
SPIRE, Vol. 10508 of LNCS, 2017, pp. 176–190. doi:10.1007/978-3-319-67428-5_
15.

[29] G. Manzini, From H&M to gap for lightweight BWT merging, CoRR abs/1609.04618
(2016). arXiv:1609.04618.

[30] F. A. Louza, G. P. Telles, S. Hoffmann, C. D. A. Ciferri, Generalized enhanced suffix
array construction in external memory, Algorithms for Molecular Biology (2017)
26:1–26:16doi:10.1186/s13015-017-0117-9.

28

https://doi.org/10.1093/bioinformatics/btq217
https://doi.org/10.1093/bioinformatics/btq217
https://doi.org/10.1109/DCC.2009.42
https://doi.org/10.1007/978-3-642-03784-9_7
https://doi.org/10.1007/978-3-642-21458-5_20
https://doi.org/10.1007/978-3-642-21458-5_20
https://doi.org/10.1016/j.jda.2016.03.003
https://doi.org/10.1089/cmb.2015.0172
https://doi.org/10.1007/s00453-016-0165-4
https://doi.org/10.1007/978-3-642-33122-0_26
http://arxiv.org/abs/1607.08342
https://doi.org/10.1093/bioinformatics/btu584
https://doi.org/10.1007/978-3-319-67428-5_15
https://doi.org/10.1007/978-3-319-67428-5_15
http://arxiv.org/abs/1609.04618
https://doi.org/10.1186/s13015-017-0117-9

[31] J. Kärkkäinen, D. Kempa, Faster External Memory LCP Array Construction, in:
ESA, Vol. 57 of LIPIcs, 2016, pp. 61:1–61:16. doi:10.4230/LIPIcs.ESA.2016.61.

[32] T. Kasai, G. Lee, H. Arimura, S. Arikawa, K. Park, Linear-time longest-common-
prefix computation in suffix arrays and its applications, in: CPM, Vol. 2089 of LNCS,
2001, pp. 181–192. doi:10.1007/3-540-48194-X_17.

[33] L. Egidi, F. A. Louza, G. Manzini, G. P. Telles, External memory BWT and LCP
computation for sequence collections with applications, Algorithms for Molecular
Biology 14 (1) (2019) 6:1–6:15. doi:10.1186/s13015-019-0140-0.

[34] R. Durbin, Efficient haplotype matching and storage using the positional Burrows–
Wheeler transform (PBWT), Bioinformatics 30 (9) (2014) 1266–1272. doi:10.1093/
bioinformatics/btu014.

[35] P. Ferragina, F. Luccio, G. Manzini, S. Muthukrishnan, Compressing and indexing
labeled trees, with applications, J. ACM 57 (1) (2009) 4. doi:10.1145/1613676.

1613680.

[36] A. Bowe, T. Onodera, K. Sadakane, T. Shibuya, Succinct de Bruijn graphs, in: WABI,
Vol. 7534 of LNCS, 2012, pp. 225–235. doi:10.1007/978-3-642-33122-0_18.

[37] C. Boucher, A. Bowe, T. Gagie, S. J. Puglisi, K. Sadakane, Variable-order de Bruijn
graphs, in: DCC, IEEE, 2015, pp. 383–392. doi:10.1109/DCC.2015.70.

[38] D. Belazzougui, T. Gagie, V. Mäkinen, M. Previtali, S. J. Puglisi, Bidirectional
variable-order de Bruijn graphs, in: LATIN, Vol. 9644 of LNCS, 2016, pp. 164–178.
doi:10.1007/978-3-662-49529-2_13.

[39] W.-K. Hon, C.-H. Lu, R. Shah, S. V. Thankachan, Succinct indexes for circu-
lar patterns, in: ISAAC, Vol. 7074 of LNCS, 2011, pp. 673–682. doi:10.1007/

978-3-642-25591-5_69.

[40] T. Gagie, G. Manzini, J. Sirén, Wheeler graphs: A framework for BWT-based data
structures, Theoretical computer science 698 (2017) 67–78. doi:10.1016/j.tcs.

2017.06.016.

[41] P. Bonizzoni, G. Della Vedova, Y. Pirola, M. Previtali, R. Rizzi, Multithread
multistring Burrows–Wheeler transform and longest common prefix array, J. Com-
putational Biology 26 (9) (2019) 948–961. doi:10.1089/cmb.2018.0230.

[42] P. Bonizzoni, G. Della Vedova, S. Nicosia, Y. Pirola, M. Previtali, R. Rizzi, Divide
and conquer computation of the multi-string BWT and LCP array, in: CiE, Vol.
10936 of LNCS, 2018, pp. 107–117. doi:10.1007/978-3-319-94418-0_11.

[43] J. S. Vitter, External memory algorithms and data structures: Dealing with massive
data, ACM Computing Surveys 33 (2) (2001) 209–271. doi:10.1145/384192.

384193.

29

https://doi.org/10.4230/LIPIcs.ESA.2016.61
https://doi.org/10.1007/3-540-48194-X_17
https://doi.org/10.1186/s13015-019-0140-0
https://doi.org/10.1093/bioinformatics/btu014
https://doi.org/10.1093/bioinformatics/btu014
https://doi.org/10.1145/1613676.1613680
https://doi.org/10.1145/1613676.1613680
https://doi.org/10.1007/978-3-642-33122-0_18
https://doi.org/10.1109/DCC.2015.70
https://doi.org/10.1007/978-3-662-49529-2_13
https://doi.org/10.1007/978-3-642-25591-5_69
https://doi.org/10.1007/978-3-642-25591-5_69
https://doi.org/10.1016/j.tcs.2017.06.016
https://doi.org/10.1016/j.tcs.2017.06.016
https://doi.org/10.1089/cmb.2018.0230
https://doi.org/10.1007/978-3-319-94418-0_11
https://doi.org/10.1145/384192.384193
https://doi.org/10.1145/384192.384193

[44] A. Aggarwal, J. S. Vitter, The Input/Output complexity of sorting and related
problems, Communications of ACM 31 (9) (1988) 1116–1127. doi:10.1145/48529.
48535.

[45] J. S. Vitter, External memory algorithms and data structures, in: External Memory
Algorithms, Vol. 50 of DIMACS Series in Discrete Mathematics and Theoretical
Computer Science, DIMACS/AMS, 1999, pp. 1–38. doi:10.1090/dimacs/050/01.

[46] F. A. da Louza, S. Gog, G. P. Telles, Inducing enhanced suffix arrays for string
collections, Theoretical Computer Science 678 (2017) 22–39. doi:10.1016/j.tcs.
2017.03.039.

[47] J. M. Zook, et al., Integrating human sequence data sets provides a resource of
benchmark SNP and indel genotype calls, Nature Biotechnology 32 (2014) 246–251.
doi:10.1038/nbt.2835.

[48] D. Kempa, T. Kociumaka, Resolution of the Burrows-Wheeler Transform conjecture,
accepted at FOCS 2020 (2020). arXiv:1910.10631.

30

https://doi.org/10.1145/48529.48535
https://doi.org/10.1145/48529.48535
https://doi.org/10.1090/dimacs/050/01
https://doi.org/10.1016/j.tcs.2017.03.039
https://doi.org/10.1016/j.tcs.2017.03.039
https://doi.org/10.1038/nbt.2835
http://arxiv.org/abs/1910.10631

	1 Introduction
	2 Preliminaries
	3 The algorithm
	3.1 Backward and forward strategies for merging the partial BWTs

	4 Computing the partial BWTs
	5 Backward strategy for computing the encoding IB and the LCP array
	5.1 Comparison with other strategies

	6 Complexity
	7 Results
	8 Conclusions

