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Abstract

In this paper we consider Levin’s notion of mutual information in
infinite 0-1-sequences, as defined in [Leonid Levin. Laws of Information
Conservation (Nongrowth) and Aspects of the Foundation of Probability
Theory. Problems of information transmission, vol. 10 (1974), pp. 206—
211]. The respective information conservation inequalities were stated in
that paper without proofs. Later some proofs appeared in the literature,
however no proof of the probabilistic conservation inequality has been
published yet. In this paper we prove that inequality and for the sake of
completeness we present also short proofs of other properties of the said
notion.

1 Mutual information in finite strings

Definition 1. For binary strings z,y € = the notion of mutual information is
defined by the formula

Iz :y) = K(z) + K(y) — K(z,y).
We use the following notation:
e = denotes the set of all binary strings.

o K(z),K(z|y) denote Kolmogorov prefix and Kolmogorov prefix condi-
tional complexity (for the definition and more details see |7}, §]).

e K(x,y) denotes K((z,y)) where (z,y) — (z,y) stands for a fixed com-
putable injective mapping from = x = to =.

It is not hard to prove the following facts called Information Conservation
Inequalities:
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Theorem 1. ([6]]) Let A be an algorithm. Then for all z,y € = such that A(x)
is defined we have I(A(z) 1 y) < I(z :y)+ca.

Theorem 2. ([6]) Let P, : = — Q, xz € E, be a uniformly computable family of
probability measured] on = (there is an algorithm A that computes P.(z) from
x,z). Then for all x,y we have

EP (z)2l(<m,z>:y) < 2I(m:y)+04

where Ep, () denotes the average with respect to Py(z).

Actually, this theorem is stated in [6] in terms of tests.

Definition 2. A P-test, where P is a probability distribution on some space Z,
is a function from Z to N. A P-test t(z) is ezpectation bounded if EP(Z)2t(Z) <1.
A P-test is probability bounded if P-probability of the set of all outcomes z € Z
with t(z) > n is at most 27" for all n € N.

By Markov inequality, every expectation bounded P-test is probability bounded
as well. Using the notion of a test, the conclusion of Theorem [Z] can be restated
as follows:

For all x,y there is an expectation bounded P,-test t, , A such that

I(z,2) 1 y) < Iz :y) +tzy.a(2) + ca.

Proof. Indeed, in one direction (from Theorem [ to this statement) we let

tey.a(2) = I((x,2)  y) — Lz : y) —ca.
In the other direction we just note that

2I(m:y)+tm,y,4(z)+04 _ 2I(w:y)+cAEP 2tm,y,4(z) S 2I(m:y)+cA . 17

Ep, (2 (2)

where the inequality holds by the definition of an expectation bounded test. O

2 Mutual information in infinite binary sequences:
the definition

For infinite binary sequences «, 8 € Q, Levin defined in [6] the following notion
of mutual information I(« : §) in «, 8:

Definition 3.
I(a: ) =log Z 9l (w:y)—K(2) =K ()
T, ye=

Here we use the following notation:

1For technical simplicity, we assume that all measures in this paper take only rational
values.



e (2 denotes the set of all infinite binary sequences.
e K“(z) denotes the prefix complexity relativized by a € Q.
e log x denotes base 2 logarithm.

Remark. This definition can be motivated as follows. A natural attempt to define a
notion of mutual information of «, 8 would be to let I1(a : 8) = supI(ai:n @ Bin),
where a1., stands for the length-n prefix of a. This definition is bad, since 1., may
have more information than «, as it identifies n. By this reason I1(« : ) is always
infinite, even for all zero sequences.

To avoid this drawback, we could subtract K (n) or K?(n) (or both) from I(a1., :
B1:n), or to consider I(a1:n : Bin|n) insteacﬂ, but there is another criticism. Why we
compare only prefixes of the same length of o and 87 Assume, for example, that we
have stretched a by inserting zeros in all odd positions. Then the information in «
has not changed, but after this change a1., becomes a;:2,.

To avoid both problems, it is natural to let

Is(a: B) = sup{I(ain : Brm) — K*(n) — K”(m) | n,m € N}
=sup{I(z:y) — K“(z) — K’(y) | z is a prefix of o and y is a prefix of 3}.

This definition is already very similar to Definition [3} it is obtained from Definition [3]
by replacing summation by supremum and reducing the range of x,y to prefixes of
a, 3. Using summation instead of supremum is crucial for Theorem [6] below. (The
advantage of summation over maximization is that the former commutes with another
summation while the latter does not.) Keeping the full range of z,y is important for
Theorem [ below. (End of remark.)

It turns out that this definition generalizes Definition lof mutual information
for finite strings:

Theorem 3 ([0]). Let @ stand for the infinite sequence that starts with a the
prefix code of uld and then all zeros. Then I(t:0) = I(u:v)+ O(1).

The notation f(z) < g(z)+O(1) means that there is a constant ¢ (depending
on the choice of universal machines in the definition of the prefix complexity and
conditional prefix complexity) such that f(z) < g(z) + ¢ for all z. The notation
f(z) = g(z) + O(1) means that f(z) < g(z) + O(1) and g(z) < f(z) + O(1)
simultaneously.

There is no proof of this theorem in [6]. However, several its proofs appeared
in other papers (e.g. [5[2]). For the sake of completeness we present here yet
another proof. In the proof we use the following notions, notations and results:

1. A function f : 2 — Ry is called lower semicomputable if there is an enu-
merable set S of pairs of the form (a positive rational number r, a binary
word z) such that f(z) = sup{r | (r,z) € S} (where supremum of the
empty set is defined as 0). The notion of a lower semicomputable function
f 1 EXE — Ry is defined in a similar way: this time S consists of triples

2[(x : y|2) is defined as K(x|z) + K(y|z) — K((z,y)|2)
3say, 0" 1u, where n denotes the length of u



and not pairs. Similarly, we define the notion of a lower semicomputable
function f: 2 x Q@ — Rx>q: there is a family of sets S, a € Q, such that
there is an oracle Turing machine that enumerates S with oracle « (the
same machine for all oracles a) and f(z,a) = sup{r | (r,x) € S“}.

. A function f : 2 — Ryg is called a semimeasure if )7 = f(z) < 1. A
function f : EX E — Rxo [f : E x Q — Ryl is called a family of
semimeasures if ) o f(x,y) < 1 for all y [} .= f(z,w) < 1 for all
weqQ.

. Let m(x) and m(z]y) denote 25 (*) and 2-K®Iv) respectively. By Gécs—
Levin theorem m(z) [m(x|y)| is a largest up to a constant factor lower
semicomputable semimeasure [family of semimeasures]: for every lower
semicomputable semimeasure f(z) [family of semimeasures f(z,y)] there
is ¢y such that f(z) < ¢ym(z) for all z [f(z,y) < ¢ym(z|y) for all z,y].
The functions m(x) and m(z|y) are called the a priori probability and the
conditional a prior:i probability on =.

. Let m®(x) denote 2~ 5"(®), Likewise m®(x) is a largest up to a constant
factor lower semicomputable family of semimeasures: for every lower semi-
computable family of semimeasures f : Z x {2 = R>( there is ¢y such that
flz, ) < cpm®(z) for all z, .

. f(2) % g(2) means that there is a constant ¢ (depending on the choice of
universal machines in the definition of the prefix complexity and condi-
tional prefix complexity) such that f(z) < ¢- g(z) for all z.

. f(2) < g(z) means that f(z) < g(2) and g(z) < f(2).
- > wezm(z,y) < m(y) [8 Problem 101 on p. 97]) .

. m(z,z2)m(y, z) < m(z)m(x,y,z), the “basic inequality” (for the proof
see [8, Theorem 70 on p. 110]).

Proof. (a) Using a priori probability, the definition of mutual information can
be rewritten as follows:

m®(x)m? (y)m(z
I(a: B) =log Z (n)l(x)(y) ( ,y)'

T, ye= m(y>

We have m%(z) =< m(z|u). Thus in one direction we have to show that

3 m(z|u)m(ylv)m(z,y)  m(u,v)

m(z)m(y) - m(u)m(v)’

T,yeEE

After moving m(u)m(v) from the right hand side to the left hand side this
inequality becomes

T m(z|u)m(u)m(ylv)m(v)m(z,y)

m(@)m(y) < m{u,v)

z,Yye=



First notice that m(x|u)m(u) < m(z,u) (in the logarithmic form: K(z,u) <
K(u)+ K (z|u)+0(1), see, e.g., [7,[8]). Then use the basic inequality m(z, u)m(x,y) <
m(z)m(z,y,u). Thus the left hand side of the sought inequality is at most

3 m(z,y, wym(ylv)m(v)

et m(y)

Now the only term that includes z is m(z,y,u) and
S (e, g,u) < miy, v)

IS

by item [7 above. Thus we get

z; m(y, wym(ylv)m(v)

In a similar way we can show that

m(y, wm(ylv)m(v)  m(y,u)m(y,v)
m(y)

And again by item [l we have

Z m(y,u,v) < m(u,v).

yeE

(b) The other direction is trivial, since for & = @ and S = ¢ the sum in
Definition B has the term

2I(u:v)—K(u\u)—K(v\v)—i—O(l) — 2I(u:v)+0(1)' |

An interesting case is when one sequence is infinite and the other one is
finite. In this case it is usual to define the notion of mutual information by the
formula I(u : 8) = K(u) — K°(u), where u € = and 8 € Q. It turns out that
this definition differs from Levin’s one:

Theorem 4. Assume that u € = and f € Q. Then the following are true:
(a) I(i : B) > K(u) — K%(u) — O(1). (b) The converse inequality is false
in general case. (c¢) The converse inequality holds, if 0’ (the Halting problem)
Turing reduces to B: I(@ : B) < K(u) — K?(u) + O(1). (d) In any case I1(@ :
B) < K(u)+ 0O(1).

Proof. (a) In Definition Bl let @ = @ and consider the term in the sum where
T =y =u.

(b) Let 8 = ¢ and u = K (v), where v € E. Then the left hand side of the
inequality evaluates to

I(K(v):v)+0(1)=K(K@W))+ K@) - K(v,K())+0(1) = K(K(v))+O(1)



(the last equality holds by Gacs theorem [3]). And its right hand side equals
K(K(v)) — K(K(v)|v) + O(1). And by [3, 1] we know that K (K (v)|v) can be
Q(logn) for strings v of length n.

(¢) As in Theorem [Ba), we can show that

1(E8) K (w < 3 m(y, w)m”(y)

= my)

The function f(u) =3, = %Z;ﬁ(y) from the right hand side of this inequal-

m
ity is lower semicomputable relative to 0’ and hence relative to 8. And f(u) is

a semimeasure (up to a constant factor) since

SOy mlrni) 5y ml ) 5 m ) <

uEE ye=E YyEZ uE= yeE

(in the equality we have changed the order of summation). Hence for some ¢
depending on S we have

ye&

Moreover, in a standard way we can construct a lower semicomputable family
of semimeasures g(u,7) such that g(u, 5) = f(8). Since g(u,7y) < ¢-m7(u) for

a constant ¢ that does not depend on f3, we have 2/(@8)—K(u) < 9-K”() and
we are done.
(d) In item (c) we have seen that
1(59)~K(w) 4 m{y, w)m”(y)
yeE

Since m(y,u) < m(y) the right hand side of this inequality is bounded by a
constant. O

An interesting problem is to find a simpler expression for I(a : 8) ( where
u € Z and 8 € Q) than the expression in Definition [3

3 Information Conservation Inequalities for infi-
nite sequences

The quantity I(« : ) satisfies Information Conservation Inequalities, Theo-
rems [B] and [@] below, which are similar to Theorems [Il and 2l Theorems [Bl and
were published in [6] without proofs.

Theorem 5 ([6]). Assume that A is an algorithmic operator. Then
I(A(a) : B) < I(e: B) + K(A) + O(1)
for all «, B such that A(a) is infinite.



By algorithmic operator here we mean an oracle Turing machine that has a
write-only one-way output tape with binary tape alphabet. By K(A) we denote
the prefix complexity of the program of that machine. Such a machine with an
oracle « prints a finite or infinite binary sequence on its output tape. We denote
that sequence by A(«). If A(«) is finite, then A(«) may have more information
than o and A together and the statement of the theorem may be false in that
case. For example, let o consist of a prefix code of (the binary expansion of)
a natural number n followed by zeroes and let A extract n from «, print the
prefix code of n and then run all programs of length at most n dovetail style and
append to the output the prefix code of x whenever one of those programs halts
with a result . Then A(«) contains n and a list of all strings of complexity at
most n. Hence K(A(a)) > n — O(1), while K(A) = O(1) and a has O(logn)
bits of information about any sequence (see Theorem [f[a) below).

Proof. The inequality follows immediately from the inequality
K*(z) < KA (2) + K (4) +O(1),

which holds for all a,z, A such that A(a) is infinite (otherwise K4(®)(z) is
undefined). To prove this inequality, note that, relative to «, the string x can
be identified by the shortest program for A followed by the shortest program p
of x relative to A(a). Given such description, we first find the program of A
and then we run the (fixed) oracle Turing machine that, given A(«) as oracle
and p as input prints . When that machine queries ith bit of its oracle, we
run the oracle Turing machine A that prints A(«) until its ith bit appears. We
then use that bit as the oracle’s answer to the query. If the length of A(a) is
less than i, then we wait forever and do not print any result. O

By this theorem, Definition Bl is encoding invariant. This means that for
any sequences «, 3 € {2 that can be obtained from each other by algorithmic
operators we have I(a : ) — I(8: ) = O(1) for every v € Q. More specifically,

[(a:v) = 1(B : )| < max{K(A), K(B)} + O(1),

if A(e) = B and B(B) = «. In particular, in the next theorem we will need
to encode pairs of sequences p,w € Q by one sequence denoted by (p,w). By
the encoding invariance, the value I({p,w) : «) changes by at most O(1), if
we switch to another encoding. For instance, we can let (p,w) be equal to the
sequence whose odd bits are those of p and even bits are those of w.

The second “probabilistic” Information Conservation inequality is the follow-
ing):

Theorem 6 (we cite [6]). Let P be an arbitrary probability distribution on
Q, and let p € Q be a sequence with respect to which P is computable (such a
sequence always exists). Then for all « € Q there is a probability bounded P-test
to such that

I({p,w) 1) < I(p: @) +ta(w) +O(1)

for all w € Q.



This statement needs a clarification what the constant O(1) depends on,
because it must depend on P. Here is such a clarification:

Theorem 6 (a clarification). Assume that a family P,, p € Q, of probability
distributions on S is fized. Assume that there is a Turing machine T that for
all p computes P, having oracle access to p B. Then for all a,p € Q there is a
probability (and even expectation) bounded P,-test to , v such that

I({(p,w) 1) < I(p: ) +tapr(w)+cr
for all w € Q, where cp does not depend on p, o, w.

Proof. Here again the definition of mutual information in terms of a priori prob-
ability is useful:
ol(a:f) _ Z m®(z)m” (y)m(z, y) .
m(x)m(y)

T, ye€E

Basically the statement of the theorem means that
Ep) > mP (z)m® (y)m(z, y)

o) m(z)m(y)

is not larger than the sum

T m’ (x)m* (y)m(z,y)

m(z)m(y)

T, Yye=

up to a multiplicative constant dr depending on T' (and then we let ¢ = log dr).
These sums differ only in the first term in the numerators. Hence it suffices to
show that the P,-expectation of m”“(x) is at most dr - m”(z):

/mp’“’ () dP,(w) < dp - mP(x).

Recall that m?(z) is a largest (up to a multiplicative constant) lower semicom-
putable family of semimeasures. Hence it suffices to show that

f@m=/mW@M&M

is a lower semicomputable family of semimeasures. Since P, can be computed by
a Turing machine with oracle p, the function f(z,p) is lower semicomputable.
Thus to finish the proof, it suffices to show that this function is a family of

semimeasures:
Z /mp’“’(ac) dP,(w) < 1.

TES
We can swap summation and integration. Notice that ) m?”“(z) <1 for all
p,w € Q and hence

/(;mp’“(fﬂ)) de(w)§/1~ dP,(w)=1. O

4This means that the machine computes the probability of the cylinder Q; = {a € Q |
z is a prefix of a} for any given z € E.




4 Mutual information and computability

There is another good property of Definition Bt if a is computable, then I(« :
B) = O(1) for all 8. However, the converse is false: there are non-computable
sequences o with I(a : 5) = O(1) for all 5.

Theorem 7. (a) If « € Q is computed by a program p, then I(a : 8) <
K(p) + O(1) for all B. (b) There is a non-computable o € Q such that I(« :
B) < cq < 00 for all B.

Proof. (a) The statement follows from the inequalities
K(z) < K(zlp) + K(p) + O(1) < K%(x) + K(p) + O(1).
These inequalities imply that the sum in Definition [ is at most

Z ol (x:y) — K (2)+ K (p) =K (y) _ ZQK(y)*K(IyyHK(P)*KB(y)

T, Yye= x,Y
-y (2K<y>+K<p>fK5<y> 3 m(a, y)).
Yy x

Since S, m(z,y) < m(y) = 27 KW, this is at most

Z oK (p)—K"(y) _ 9K(p) Z 9K () < 9K(®) .1,

yeE ye=

(b) There are non-computable sequences o with K*(x) > K (x) — ¢ for some
¢ that does not depend on x (see e.g. [4]). For such sequences we can repeat
the arguments from item (a). O
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