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Abstract

The game of cops and robbers is a well-known game played on graphs. In this
paper we consider the straight-ahead orientations of 4-regular quadrangulations
of the torus and the Klein bottle and we prove that their cop number is bounded
by a constant. We also show that the cop number of every k-regularly oriented
toroidal grid is at most 13.
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1. Introduction

1.1. Basic definitions

The game of Cops and Robbers is a well-known game on graphs that was
introduced by Nowakowski and Winkler [3] and Quilliot [4]. There are two
players, one controls the cops and the other one controls the robber. The game
starts with the cops selecting some vertices as their initial positions (multiple
cops can select the same vertex). Then the robber chooses his initial position.
From now on, first the cops move and then the robber moves, where moving
means either staying at the same position or moving to a neighbouring vertex.
The game on digraphs is defined in the same way except that every move must
be made along a directed edge.
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The cops win the game if one of them can get to the same vertex as the
robber and the robber wins if he can avoid this indefinitely. The minimum
number of cops that can guarantee the robber’s capture in a graph or digraph
G is called the cop number of G and will be denoted by c(G).

Game of cops and robbers on graphs has received lots of attention but very
little is known about the game on digraphs. Basic results have been introduced
in [1]. The game of Cops and Robbers in digraphs can be as natural and as
inspiring as the game on undirected graphs.

Recall that a (di)graph Q̂ is a cover over a (di)graph Q if there is a (di)graph

homomorphism π : Q̂→ Q (called the covering projection) which maps the edges
incident with any vertex v bijectively onto the edges incident with π(v) in Q.
The following lemma from [2] can be used to analyze the cops and robber game

on Q where a good strategy of cops on Q̂ is known.

Lemma 1.1. [2] Suppose that a graph or digraph Q̂ is a cover over a (di)graph

Q. If k cops have winning strategy on Q̂, then they also win on Q, that is
c(Q) ≤ c(Q̂).

Throughout the paper we will stick with standard graph theory terminology
and notation. By Pn and Cn we define the path and the cycle of order n,
respectively. The k × ` grid is the Cartesian product of paths Pk�P` and the
k × ` toroidal grid is the Cartesian product of cycles Ck�C`. Every toroidal
grid has a natural embedding into the torus such that each face is bounded by
a 4-cycle of the grid.

1.2. 4-regular quadrangulations

A graph together with a 2-cell embedding in a surface with all faces bounded
by 4-cycles is called a quadrangulation of that surface. Our original motivation
is in discussing the game of cops and robbers on 4-regular quadrangulations but,
as shown in [2] and overviewed below, the discussion can be restricted to the
case of toroidal grids via surface coverings. We do not intend to go into details,
and refer to [5] concerning the notions about covering spaces of surfaces used
only in this short subsection.

Consider a 4-regular quadrangulation of a surface. It follows by Euler’s for-
mula that the surface is either the torus or the Klein bottle and it can be shown
by using the Gauss-Bonnet Theorem that the straight-ahead walks partition the
set of edges into cycles, all of which are noncontractible on the surface. These cy-
cles can be split into two classes, each class consisting of pairwise disjoint cycles
(we call them vertical cycles and horizontal cycles, respectively) such that each
vertical and each horizontal cycle intersect (possibly more than once). By giv-
ing each of these cycles an orientation, we obtain an Eulerian digraph in which,
at each vertex, the two incoming edges and two outgoing edges are consecu-
tive in the local rotation around the vertex. The universal cover of a 4-regular
quadrangulation is the 4-regular tessellation of the plane with square faces (the
integer grid), and every finite quotient of the integer grid is a 4-regular quad-
rangulation of the torus or the Klein bottle. Four-regular quadrangulations of
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the torus admit a simple description. Each such quadrangulation is of the form
Q(r, s, t), where r, s, t are arbitrary positive integers, 0 ≤ t < r, and Q(r, s, t) is
obtained from the (r + 1) × (s + 1) grid with underlying graph Pr+1�Ps+1 by
identifying the “leftmost” path of length s with the “rightmost” one (to obtain
a cylinder) and identifying the bottom r-cycle of this cylinder with the top one
after rotating the top clockwise for t edges. This classification can be derived
by considering appropriate fundamental polygon of the universal cover (which
is isomorphic to the tessellation of the plane with squares). Quadrangulations
of the Klein bottle are a bit more complicated. While all toroidal quadrangu-
lations Q(r, s, t) are vertex-transitive maps, this is no longer true for the Klein
bottle. For our purpose it will suffice to know that the orientable double cover
Q̃ of such a quadrangulation Q is a quadrangulation of the torus and is therefore
isomorphic to some Q(r, s, t). This implies that any cover Cn�Cn of Q(r, s, t)

is also a cover of Q̃.

1.3. Our main results

The main result of this paper is a constant upper bound on the cop number
of 4-regular quadrangulations with an arbitrary straight-ahead orientation.

Theorem 1.2. If G is any 4-regular quadrangulation of a surface endowed with
a straight-ahead orientation of its edges, then c(G) ≤ 319.

The above-mentioned results imply that every 4-regular quadrangulation of
the torus or the Klein bottle has toroidal grid Cn�Cn as its covering graph. By
Lemma 1.1, we will be able to restrict ourselves to deal with different orientations
of the toroidal grid Cn�Cn, which is given later in the paper as Theorem 4.6.
That result proves Theorem 1.2.

The paper [2] treats the cop number of orientations of Cn�Cn for which
the corresponding digraph is vertex-transitive. In this paper we consider more
general straight-ahead orientations, and show that their cop number is bounded
by 319. While this bound is not small, we also discuss another case in which the
the orientations are a bit more restricted, and we obtain a much better bound.
See Theorem 3.10.

2. Streams, confluxes, and traps

The grid we are working on is Cn�Cn. For a vertex v = (x, y) ∈ Cn�Cn,
the digraph induced by {(x, z) : z ∈ Cn} will be called the row of v, and the
subdigraph induced by {(z, y) : z ∈ Cn} will be called the column of v. A line
containing a vertex v is either a row or a column of v. We will assume that
the edges of Cn�Cn are oriented in such a way that every line is a directed n-
cycle in the grid. We refer to this as a straight-ahead orientation of the toroidal
grid. We say that two lines in Cn�Cn are consecutive if one of their coordinates
correspond to adjacent vertices in one of the factors of Cn�Cn. A set S of
consecutive lines oriented in the same direction will be called a stream and its
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width w(S) is the number of lines in the stream. If S and S′ are streams such
that S′ ⊆ S, we say that S′ is a substream of S.

If S1 and S2 are edge-disjoint streams and the set K = V (S1)∩V (S2) is not
empty, we will call K a conflux (see Figure 1). The vertices in a conflux K with
the minimum number of neighbours in K are called corners. Notice that the set
of corners of a conflux K = S1 ∩ S2 is never empty, and if V (K) 6= V (Cn�Cn),
then it can have four vertices (if w(S1), w(S2) ≥ 2), two vertices (w(Si) = 1 and
w(Sj) ≥ 2 with {i, j} = {1, 2}) or one vertex (w(S1) = w(S2) = 1).

If K has four corners, then a corner is main if it has an odd number of
outneighbours in K and secondary otherwise (see Figure 1). However, if K has
one or two corners, they will all be referred to as main.

c

a

d

b

Figure 1: The black vertices form a (maximal) conflux. Corners b and c of the conflux are its
main corners, while a and d are secondary corners.

We will always assume that the robber is forced to move from its current
position. We can make sure this happens by chasing him with a cop. For Lemma
2.1 and Lemma 2.2, we will assume that one cop is chasing the robber so the
robber is forced to move. We will use p(R) to denote the current position of the
robber, and p(Ci) for the position of the cop Ci.

Lemma 2.1. Let K be a conflux with one cop on each main corner. If p(R) ∈
V (K) and N−(p(R)) * V (K), then the robber will be captured or his movements
will be restricted to a stream containing K.

Proof. Without loss of generality we may assume the incoming edge to p(R)
comes from above due to the symmetry of the argument. Notice that when
N−(p(R)) * V (K), there is a main corner cop in the same row as p(R). Let
us call this cop C1 and the other one C2. In order to leave K, the robber must
step on the column where C1 is or leave through the bottom.
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The strategy for C1 and C2 will be the following: If the robber moves towards
C1’s column, then C1 stays where he is and C2 copies the robber’s move and
moves towards C1’s column.

If the robber moves down, then C1 moves down with the robber, and C2

• stays in the same place if it is in the same column but different row as the
robber,

• moves down with the robber if he is in the same row but different column,

• and moves towards the robber’s column otherwise.

By following this strategy, the robber and C1 are always on the same row, so
the robber cannot leaveK crossing C1’s column or he will be captured. Therefore
the only why for the robber to exit K is to move down and leave K crossing C2’s
row. Note that when the robber is in the same row as C2, then by the above
strategy, C1 is also in the same row. From now on, C1 and C2 will stay in the
same row as the robber. This means that the robber’s movements are restricted
to S, the stream formed by the columns containing vertices of K.

Notice that in the case where the streams that form K have the same width,
two cops guarantee the capture of the robber (or force the robber to stay still).
However, once the robber’s movements have been restricted to a stream, one
extra cop will guarantee the capture. Note that for Lemma 2.1 to work, we
need to set up the trap before the robber enters it. It is possible to set a slightly
different trap that works regardless of where the robber’s in-neighbors are, but
we need one more cop to do this.

Lemma 2.2. Let K be a conflux with one cop on each main corner and one cop
in the secondary corner of K without out-neighbors in K if such corner exists.
If the robber is in K, then he will be captured or his movements will be restricted
to a stream containing K.

Proof. Let S1 and S2 be the streams such that S1 ∩ S2 = K. If we have that
min{w(S1), w(S2)} = 1, then all the corners of K are main and by Lemma 2.1
we are done. If min{w(S1), w(S2)} > 1 and v is the secondary corner of K with a
cop, take the substreams S′1 and S′2 of S1 and S2, respectively, that contain just
the row (column) through the vertex v. After at most w(S1)+w(S2) moves, the
robber will be on a vertex of K1 = V (S1)∩V (S′2) or K2 = V (S′1)∩V (S2). Since
the main corners of both K1 and K2 are covered by cops, then an application
of Lemma 2.1 gives us the desired result.

Given a grid G (with vertex set V and arc set A), we can define the conflux
digraph of G, which we will denote by DG, as the digraph whose vertex set
V (DG) consists of all maximal confluxes of G, and where (K1,K2) is an edge
of DG whenever there exist vertices u ∈ K1 and v ∈ K2 such that (u, v) ∈ A.
Note that DG is isomorphic to Ck�Cl (with straight-ahead orientation) where
k is the number of maximal column streams and l is the number of maximal
row streams.
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There is a natural correspondence between Cn�Cn and the elements of Zn×
Zn. Select an arbitrary vertex v ∈ V (Cn�Cn) and associate it with the element
(0, 0) in Zn × Zn. If (x, y) corresponds to a vertex, set its right neighbour
to be (x + 1 mod n, y) and its top neighbour to be (x, y + 1 mod n). This
correspondence allows us to represent each move of the robber or a cop by
the addition of a vector in {(0, 0), (1, 0), (0, 1), (−1, 0), (0,−1)} to its current
position.

Given a vertex v ∈ Zn × Zn with N+(v) = {u,w}, we can define the sets

SD(v) = {x ∈ Zn × Zn : x− v = r(u+ w − 2v), for some r ∈ Z},

MD(v) = {x ∈ Zn × Zn : x− v = r(u− w), for some r ∈ Z}.

Observation 2.3. For any vertex v and any line L in G, SD(v) ∩ L 6= ∅ and
MD(v) ∩ L 6= ∅.

The sets SD(v) andMD(v) will be called the secondary diagonal and main
diagonal of v, respectively. Geometrically speaking, if we think of the arcs of
the digraph as vectors, SD(v) is the set of all the vertices of G in the diagonal
line through v defined by the sum of the arcs leaving v, andMD(v) is the set of
vertices in the line orthogonal to that one. Notice that for every vertex v ∈ V
with N+(v) = {u,w}, we have that u+ w − 2v is an element of {1,−1}2. This
value will be called the type of the vertex, τ(v), and two vertices will be of
opposite types if their types are additive inverses in Z2. Elements of {1,−1}2
will be refered to as types. Notice that all the vertices in a conflux K have the
same type, so we can define τ(K) = τ(v) where v ∈ K.

As an example let us consider Figure 1 and assume that c corresponds to
(x, y). Now τ(c) = (x+ 1, y) + (x, y− 1)− 2(x, y) = (1,−1). This is the type of
all black vertices in Figure 1.

Let v be a vertex in G and K the maximal conflux containing v. We define
the horizontal escape distance of v, HE(v) as the length of the shortest directed
path starting at v and ending at a vertex outside of K using only horizontal arcs
(adding (±1, 0)). Analogously, we define the vertical escape distance of v and
denote it with VE(v). The escape distance of v is E(v) = min{HE(v),VE(v)}.

Lemma 2.4. Let K1,K2,K3 and K4 be confluxes of G such that N+(K1) ∪
N+(K3) ⊆ K2 ∪ K4. If there are cops in the main corners of K2 and K4, and
the robber is in K1 ∪ K3, then the robber will be captured or its movements will
be restricted to a stream.

Proof. It is easy to see that if the robber is in K1 ∪ K3 and is forced to move,
then he will enter K2 ∪ K4. Since the main corners of K2 and K4 are covered,
the result follows from Lemma 2.1.

3. The k-regularly oriented grid

We say that a grid G = Cn�Cn is k-regularly oriented if w(S) = k for
every maximal stream S in G. The cases where k ∈ {1, n} have been covered in
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[2], so in this section we will assume that G is a k-regularly oriented grid with
2 ≤ k < n. Let v and w be vertices in G. We say w is a main shadow of v if:

i) w ∈MD(v),

ii) τ(v) = τ(w), and

iii) VE(v) = HE(w).

We say that w is a secondary shadow of v if:

i) w ∈ SD(v),

ii) τ(v) = −τ(w), and

iii) VE(v) = HE(w).

Notice that we get equivalent definitions by changing condition iii) for

iii’) HE(v) = VE(w).

In the case when p(R) = v, we will call w a main (or secondary) shadow
of the robber. We say a vertex w is a diagonal shadow of a vertex v if w is
a secondary shadow of v or a main shadow of v. Again, if p(R) = v we will
use the term diagonal shadow of the robber. The following result states that if
a cop is in a diagonal shadow of the robber and the robber moves, there is a
move that the cop can make that keeps him in a diagonal shadow of the robber.
Notice that if the type of the vertex the robber is in changes when he moves,
the diagonal that the cop must be in will change from secondary to main, or
vice versa.

Lemma 3.1. Let v, u, w ∈ V (G) be vertices such that N+(v) = {u,w} and take
d = w − v.

• If x is a main shadow of v, then y = x+ d is a diagonal shadow of u and
y ∈ N+(x).

• If x is a secondary shadow of v, then y = x− d is a diagonal shadow of u
and y ∈ N+(x).

The proof is left to the reader. Figure 2 is added for the guidance.
The next lemma will give us another way of restricting the robber’s moves

in the case of a k-regularly oriented grid.

Lemma 3.2. Let u, v, s, t, x, y be vertices such that u 6= v, v is a diagonal
shadow of u, s ∈ N+(u), t ∈ N+(v) and is a diagonal shadow of s, x is the
intersection of the row of u and the column of v, and y is the intersection of the
row of s and the column of t. If d ∈ {1,−1}2 is orthogonal to v − u, then there
exists an integer r such that x = y + rd.
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v
w

u

x y

v
w

u

x y

Figure 2: Proof of Lemma 3.1. Note that in the left figure, x is a main shadow of v, and y is
a main shadow of u (they have the same type). In the right figure, x is a secondary shadow
of v, and y is a secondary shadow of u (they have opposite types).

v
t

u

s

x
y

(a) (b)

Figure 3: (a) The robber (white vertex u) is not able to cross the mirror line (dashed line) or
he will be caught by the cop (black vertex v). (b) One of the possible cases for Lemma 3.2.

Proof. Let A = {(1, 0), (−1, 0)} and B = {(0, 1), (0,−1)}. If u − s ∈ A, then
v − t ∈ B, and therefore x = y and r = 0. If u− s ∈ B, then v − t ∈ A. In this
case, we can see that y = x+(u−s)+ (v− t). Since (u−s)+ (v− t) ∈ {1,−1}2,
we get that there is an integer r ∈ {−1, 0, 1} such that x = y + rd.

The geometric interpretation of Lemma 3.2 is key (see Figure 3b): If a cop
moves in such a way that he remains in a diagonal shadow of the robber, then
there exists a set of vertices that touches every line in G (Observation 2.3)
that the robber cannot step on (and therefore cannot cross it) without being
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captured. This set corresponds to the vertices in the orthogonal bisector of
the “line segment” from u to v and is shown in the figure as the black dotted
diagonal line through x and y. We will refer to this line as the mirror of the
corresponding shadow of the robber. Two mirrors ` and `′ are parallel if the
two types of their vertices are the same.

Recall that we are working on a k-regularly oriented grid. Given two parallel
mirror lines ` and `′, and d a type orthogonal to the type of a vertex in `, the
distance between ` and `′ , denoted by A(`, `′), is the minimum positive integer
m such that ` = `′ +mkd or ` = `′ −mkd. Notice that A(`, `′) ≥ 2 for any two
different parallel mirrors, ` and `′.

Let v be a vertex of G, s ∈ N and d a type orthogonal to τ(v). We define

MDs(v, d) = {x ∈ V (G) : x− s(τ(v) + d)

2
∈MD(v)}.

Because of Observation 2.3, we know that every vertex u ∈ G is in MDs(v, d)
for some s ∈ N and some type d. Given two vertices of opposite types, u and
v, the diagonal distance, which we will denote by d(u, v), between u and v is
the minimum t ∈ N such that v ∈ MDt(u, d) ∪MDt(u,−d) (or equivalently,
u ∈ MDt(v, d) ∪ MDt(v,−d)). Notice that v ∈ MDt(u, d) if and only if
u ∈MDt(v,−d). With t = d(u, v), we define

B(u, v) =

t⋃
i=0

MDi(u, d),

where d has been chosen so that v ∈ MDt(u, d). Notice that if K and K′ are
confluxes of G such that τ(K) = −τ(K′), then B(K,K′) and d(K,K′) are defined
in DG.

Observation 3.3. If K and K′ are maximal confluxes of a k-regularly oriented
grid G, and τ(K) = −τ(K′), then we have d(K,K′) < n

k and d(K,K′) ∈ 2Z.

For the rest of the section, all the confluxes will be assumed to be maximal.
For the lemmas 3.4, 3.5, 3.6 and 3.7, K1 and K2 will denote confluxes, whose
main corners are covered by cops.

Lemma 3.4. Suppose τ(K1) = −τ(K2) and that the robber is in a conflux in
V (DG) − B(K1,K2) whose type is orthogonal to τ(K1). If the robber enters
B(K1,K2), then the cops can capture a main shadow of the robber.

Proof. If the robber is in V (DG) − B(K1,K2), in order to enter B(K1,K2) the
robber must enter a conflux K ∈ MD(K1) ∪MD(K2). In either case, a main
shadow of the robber will enter K1∪K2. Since the main corners of both K1 and
K2 are covered by cops, we capture a main shadow of the robber by applying
Lemma 2.1 to the corresponding shadow.

Lemma 3.5. Let d be a type orthogonal to τ(K1), and suppose that K2 satisfies
τ(K1) = −τ(K2) and d(K1,K2) = 2. If the robber is in B(K1,K2), then we
can force him to move (using an extra cop, a total of 5) to a conflux outside of
B(K1,K2).
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Proof. If the robber is at a vertex of type d or −d and is in B(K1,K2), then by
forcing him to move he must enter a conflux K whose type is parallel to τ(K1).
If τ(K) = τ(K1), then K ∈ MD(K2), and so by forcing him to move he will
exit B(K1,K2). If τ(K) = −τ(K1), then we have K ∈ MD(K1), so he will exit
B(K1,K2) when we force him to move.

Lemma 3.6. Let K1,K2 and d be the same as in the hypothesis of Lemma 3.5
and take K3 such that τ(K3) = τ(K1) and K3 = K2 + τ(K1) + r′d in DG for
some r′ ∈ Z. If the robber is in B(K1,K3) \ B(K1,K2), then we can force him
to move to a vertex out of B(K1,K3) or we capture his main shadow.

K2

K1

K3

Figure 4: Illustration of the situation treated in Lemma 3.6. The robber (black circle) is in
B(K1,K3) \B(K1,K2). The dark squares form B(K1,K2), all shaded squares form B(K1,K3).

Proof. The situation in this lemma is shown in Figure 4, in which the robber
is represented by the black circle. (Note that K1 and K2 must “point towards
each other” since otherwise B(K1,K3) \ B(K1,K2) would be empty.) We may
assume that the robber is at a vertex of type d or −d. Note that d is orthogonal
to τ(K1). Thus, by forcing the robber to move, he will eventually enter a
neighboring conflux K, whose type is parallel to τ(K1). If K ∈ MD(K3), the
robber is forced to move out of B(K1,K3) after exiting the conflux. Otherwise,
K is in B(K1,K2). In this case, Lemma 3.4 guarantees the capture of a main
shadow of the robber.

Lemma 3.7. Let K1,K2 be such that d(K1,K2) = n
k − 2. If the robber is not in

B(K1,K2), then we can capture his main shadow.
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Proof. This follows directly from the fact that by forcing the robber to move, he
must enter a conflux whose type is parallel to τ(K1), all of which are contained
in B(K1,K2).

All the previous results in this section either assume that we already captured
a diagonal shadow of the robber or include some assumption about the current
position of the robber in their statements. The following is the first result that
makes no such assumptions.

Lemma 3.8. Seven cops can capture a diagonal shadow of the robber in G.

Proof. First, one of the cops will be chasing the robber in order to force him
to move, so we only need to show that six cops can capture the robber if he is
forced to move. Let K1 and K2 be confluxes such that τ(K2) = −τ(K1) and
d(K1,K2) = 2. We move 4 cops to their main corners. By Lemma 3.5 we can
make sure that the robber is in B(K1,K2)c (i.e. out of B(K1,K2)). By applying
Lemma 3.4 we can see that, once the robber is in B(K1,K2)c, he cannot enter
B(K1,K2) without having his shadow captured. We will show that we can either
capture a diagonal shadow of the robber or force the conditions of Lemma 3.7.

Let K3 be a conflux such that d(K1,K3) = d(K1,K2) + 2 and cover its
main corners with two cops. Notice that Lemma 3.6 guarantees that either we
capture a diagonal shadow of the robber (in which case we are done) or that the
robber is in B(K1,K3)c. In the latter case, the cops in K2 can be released and
we can rename K3 as K2. This can be done until the diagonal shadow of the
robber is caught or d(K1,K2) = n

k − 2. In the later situation, since the robber
is B(K1,K2)c, by applying Lemma 3.7 we can capture the robber’s diagonal
shadow.

The basic idea of the proof of Theorem 3.10 is to successively capture diag-
onal shadows of the robber such that their mirrors get closer until the distance
between them is two, and then use the remaining cops to capture the robber
between those mirrors. However, it is clear that in order to effectively restrict
the robber’s movements we need two different mirrors. However, there is no
way to guarantee that if we have a cop in a diagonal shadow of the robber and
we use Lemma 3.8 again we won’t capture the shadow where we already have a
cop. A simple way around this problem is to use Lemma 3.8 twice at the same
time. This is what the following result deals with.

Lemma 3.9. Thirteen cops can capture two main diagonal shadows of the robber
simultaneously. Moreover, we can actually guarantee that the distance between
the mirrors of the diagonal shadows is two.

Proof. Like in the proof of Lemma 3.8, a cop will force the robber to move,
so we only need to show that twelve cops can achieve the desired result if the
robber is forced to move at such step. For each cop C used in the strategy of
Lemma 3.8, we will use one more cop C ′ in the following way: If p(C) = v,
we will choose p(C ′) = v′, where v′ ∈ (SD(v) ∩ MD(v)) \ {v}. Notice that
τ(v) = τ(v′), so we can move C ′ in such a way that he stays in the shadow of
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C. In this way, by using the strategy of Lemma 3.8 with the first set of six cops
and maintaining the copies of the cops in their shadows, we will capture two
main shadows of the robber simultaneously. Let ` and `′ be the mirrors of these
shadows, and C and C ′ the cops moving in these shadows.

If A(`, `′) ≤ 2 we are done, so we can assume it is greater than two. Suppose
the type of the confluxes that we used in the application of Lemma 3.8 is d.
Notice that whenever A(`, `′) ≥ 4, there exist maximal confluxes K1,K2 and K3

whose types are parallel to ` such that MD(K1),MD(K2) and MD(K3) are
mutually disjoint.

Since we are using one cop to guard each mirror, we have ten free cops. By
using six of those ten cops to repeat the strategy moving positioning the cops
in confluxes inMD(K1)∪MD(K2)∪MD(K3) of type d we will capture a new
diagonal shadow. If `′′ is the mirror corresponding to this new shadow and
C ′′ is the cop guarding it, notice that max{A(`, `′′),A(`′, `′′)} < A(`, `′) and
the robber is either between `′′ and ` or between `′′ and `′, so we can release
either C or C ′. Since the robber’s movements are restricted to a strictly smaller
set, induction over the distance between the mirrors gives us that the distance
between mirrors is two.

With this we are ready to prove the main theorem of this section:

Theorem 3.10. For every k ≥ 2, if G is a k-regularly oriented grid, then
c(G) ≤ 13.

Proof. Since we have 13 cops, we can use one to chase the robber and force him
to move. That means we have twelve free cops. By Lemma 3.9, we can assume
10 of those cops are free and that the robber is restricted to the vertices between
two mirrors at distance two. If we manage to capture a main diagonal shadow
of the robber between the mirrors whose type is parallel to the mirrors, then we
capture the robber.

Let K1,K2,K3 and K4 be confluxes such that d(K1,K2) = 2, d = τ(K1) −
τ(K2), and K3 = K1+2d and K4 = K2+2d and guard the main diagonals of each
of these four confluxes with two cops. We can assume the robber is in a vertex
of type orthogonal to τ(K1). Notice that d(K2,K3) = n

k − 2. An application
of Lemma 3.7 to K2 and K3 guarantees that the robber is in B(K2,K3). By
Lemma 3.5 applied to K1 and K2, and to K3 and K4, we can guarantee that the
robber is in (B(K1,K2) ∪ B(K2,K3)c ∪ B(K3,K4))

c
= B(K1,K4)c.

Let t = n
k −

1
2d(K1,K4). The proof will be by induction on t. If t = 1,

Lemma 3.7 guarantees the capture of the robber, so we can assume t ≥ 2.
Suppose t = m. Since the robber is in B(K1,K4)c, we can release the cops in
K2 and K3 and move them to the main corners of the confluxes K5 = K1 + 4d
and K6 = K4 + 4d. Again, an application of Lemma 3.5 with K5 and K6

guarantees that the robber is in B(K5,K6)c, and using Lemma 3.7 with K4 and
K5 gives that the robber is in B(K4,K5). This now gives us that the robber is
in B(K1,K6)c, so if we rename K6 as K4 we get that t = m − 1, so the result
follows by induction.
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It is important to mention that the only part of the proof where we use
13 cops is during the application of Lemma 3.9. The rest of the proof only
uses 11 cops, so finding a more efficient way of capturing two diagonal shadows
simultaneously would improve the bound for the cop number of G.

4. Paddles

Now we return to the general case of straight-ahead oriented toridal grid
Cn �Cn. We begin by establishing more general conditions which guarantee
that the robber is confined to a stream, i.e., the robber will be forced to stay in
the subgraph of the stream as he will be caught if trying to leave it. As before,
we assume that the robber is forced to move.

Lemma 4.1. Let S be a stream and let `1 and `2 be the lines which form the
boundary of S. Suppose that the robber is in S, at distance d1 from `1 and at
distance d2 from `2. Let v1, v2 be the closest vertices (using distances in the
undirected grid) of `1, `2 to p(R), respectively. Suppose further that there are
distinct cops C1 and C2, such that C1 can move to v1 in m1 ≤ d1 moves and
C2 can move to v2 in m2 ≤ d2 moves. Then by using C1 and C2 we can ensure
that the robber will be caught or confined to S.

Proof. If d1 = 0 or d2 = 0 then the robber is already caught. Otherwise,
whatever the robber’s move, we update v1, v2, d1 and d2 accordingly. Now for
each i ∈ {1, 2}, if Ci is at vi then he remains in place; otherwise, he moves
towards vi. We will show that the conditions of the lemma are maintained. If
the robber moved in the direction of the stream, then v1 and v2 each move in the
direction of the stream and d1 and d2 are unchanged. In this case the robber’s
move increases m1 and m2 by at most 1, and the cops’ moves immediately
decrease m1 and m2 by 1, to a minimum of 0; thus m1 ≤ d1 and m2 ≤ d2.
If the robber moved towards `1, then d1 decreases by 1 and d2 increases by 1.
The cops’ moves now decrease m1 and m2 by 1, to a minimum of 0, and again
m1 ≤ d1 and m2 ≤ d2. The case in which the robber moved towards `2 is
similar.

Given a conflux K, we refer to the secondary corner with no outneighbours
in K as the terminal corner of K. Let v be the main corner of K with a
vertical (respectively, horizontal) edge leaving K (but no other edge leaving
K, unless K has only one vertex); then we refer to the vertical (respectively,
horizontal) outneighbour of v as the vertical guard post (respectively, horizontal
guard post) of K. If K is maximal, then we refer to the vertex outside K with
the same outneighbours as the terminal corner as the terminal guard post of K.
See Figure 5.

Lemma 4.2. Let S1 be a vertical stream, S2 be a horizontal stream and let K
be the conflux S1 ∩ S2. Suppose that the robber is in K, for each i ∈ {1, 2},
let di and d′i be the distance from p(R) to the boundary of K in the direction
of Si and in the opposite direction, respectively. Suppose that there are distinct
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Figure 5: A maximal conflux K, its corners and its guard posts.

cops CV , CH and CT such that CV can reach the vertical guard post of K in
mV ≤ d1 + d′2 + 1 moves, CH can reach the horizontal guard post of K in at
most mH ≤ d2 + d′1 + 1 moves, and CT can reach either the terminal corner or,
if K is maximal, the terminal guard post of K in mT ≤ d1 + d2 moves. Then
by committing CV , CH and CT we can ensure that the robber will be caught or
confined to either S1 or S2.

Proof. If the robber does not leave K on his move, then with the cops’ moves
we will decrease mV , mH and mT by 1, to a minimum of zero; then it is clear
that the conditions of the lemma still hold. Since the robber can make only
finitely many such moves, we may assume that the robber leaves K on his move.
Suppose without loss of generality that he leaves S2 and remains in S1. In this
case, before the robber’s move we must have had d1 = 0, and hence mV ≤ d′2+1
and mT ≤ d2. Let `1 and `2 be the boundary lines of S1, such that there is
a directed path in K from `2 to `1. Let v1 and v2 be the closest vertices of `1
and `2, respectively, to p(R). Now observe that CT can move to v1 in at most
d2 + 1 moves (by first moving to the terminal corner or terminal guard post of
K), while CV can move to v2 in at most d′2 + 1 moves (since v2 is the vertical
guard post of K). We move each cop one step along the appropriate directed
path; now Lemma 4.1 implies that we can ensure the robber will be caught or
confined to S1.

Our strategy to catch the robber will be based on blocking streams of max-
imum width and thus confining the robber to be between two vertical or hori-
zontal streams. The basic tool is the following. Let us denote by w the largest
width of a stream in G. To avoid technicalities in the forthcoming proofs, we
will assume that n� w. The use of this assumption is justified by the covering
Lemma 1.1.

Lemma 4.3. Let S be a stream of maximum width, and let m = bw(S)/3c+ 1.
Let S′ ⊆ S be formed by the lines of S that are at distance at least m− 1 from
the boundary lines of S. Then by committing 60 cops, and temporarily using
additional 60 cops, we can ensure that after a finite number of steps, if the robber
enters S′ then he will be caught or confined to a stream.
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Proof. Without loss of generality we may assume that S is a vertical stream,
and that the edges of its lines are all directed upwards. Let `1 and `2 be the
boundary lines of S, and let `′1 and `′2 be the lines outside S adjacent to `1
and `2, respectively. We use two formations of cops, which we call paddles: an
inner paddle (respectively, outer paddle) is a formation of 32 cops evenly spaced
at distance m along each of `1 and `2 (respectively, `′1 and `′2), where each
horizontal line has either two or zero cops in each paddle. By our assumption
that n� w, every paddle has a row containing two cops such that w rows below
it contain no cops of the paddle. Let us consider the union of this row together
with 12m rows above it that contain 26 cops of our paddle. The union of these
rows is the domain of the paddle.

Claim 4.4. If the robber enters the intersection of the domain of a paddle with
S′ along a horizontal edge, then he will be caught or confined to a stream.

To prove the claim, we first observe that there is a pair of cops at the same
row or below p(R) at a vertical distance of at most m − 1. If the paddle is
an inner paddle, Lemma 4.1 implies that the robber will be caught or confined
to S. Hence we may assume that the paddle is an outer paddle. If m = 1,
then w(S) ≤ 2 and S′ = S. Then the robber must have been at the same
vertex as a cop on the previous move, which is a contradiction; hence, m ≥ 2.
Let K be the maximal conflux containing the robber; then K has height at
most w(S). Suppose without loss of generality that the horizontal edges in
K are directed from `2 to `1. Then the robber is at distance m − 1 from `2
and at distance w(S) − m from `1. There is a cop CT on `′1 above the top
row of K, at a distance of at most m; this cop can reach the terminal guard
post of K in at most m − 1 moves. Further, there is a pair of cops above or
level with p(R) at a vertical distance at most m − 1. Let CV be the cop in
this pair which is on `′2, and let C be the cop in this pair which is on `′1. We
let CH = C if CT 6= C; otherwise, we let CH be the closest cop above C on
`′1. Let d1 and d′1 be the distances from p(R) to the top and bottom rows of
K, respectively. Then CV can reach the vertical guard post of K in at most
(m−1)+1+d1 +1 = (m−1)+d1 +2 moves, while CH can reach the horizontal
guard post of K in at most (2m− 1) + d′1 ≤ (w(S)−m) + d′1 + 2 moves, where
the inequality follows from the definition of m. Now CV , CH and CT each
make their first moves along their respective paths, and the claim follows by
Lemma 4.2. Note that CT , CV and CH are cops in the paddle that might be
above the domain of the paddle. This is the reason that we use 30 instead of 26
cops in the paddles.

Claim 4.5. The cops forming an inner paddle can reform to form an outer
paddle with the same domain in at most 2w(S) + 1 moves, and vice versa.

To prove the claim, we observe that for any vertex of `1 there is a directed
path of length at most 2w(S)+1 to the horizontally adjacent vertex of `′1: move
up d ≤ w(S) times until there is an edge to `′1, move to `′1, and then move
down d times. Similarly there is a directed path of length at most 2w(S) + 1
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from any vertex of `′1, `2 or `′2 to the horizontally adjacent vertex of `1, `′2 or `2
respectively; the claim now follows immediately.

When we will use Claim 4.5 and have a paddle change from inner to outer,
or vice versa, we will term this as reforming of the paddle. Note that the domain
of the paddle does not change during the reforming process. Now suppose we
have formed the cops into two paddles, each consisting of 30 cops. Observe that
the domains P1 and P2 of these paddles each contain 12m + 1 ≥ 4w(S) + 2
rows. Since having a larger domain only helps us, we may assume that P1 and
P2 contain 4w(S) + 2 rows each.

We first show that once we have set up the appropriate circumstances, we
can make sure that the robber remains within either P1 or P2 indefinitely. To
achieve this we define five states, and show that regardless of the robber’s move
we can either stay in the same state or go to the next state (where State 5 is
followed by State 1). We say that a domain is moving up (respectively moving
down) if the corresponding paddle is an inner (respectively outer) paddle. We
say that a domain has t steps to start moving up or down if it is in the process
of reforming and will complete this process in t moves, and that it is active
otherwise. We say that we switch the domain when we reform the corresponding
paddle to move in the opposite direction. Note that the States 1-5 assume that
our domain is moving up. The classification of states will be equally true if we
reverse the vertical directions or relabel the paddles, so that we may do that at
any time.

State 1: P1 is moving up, P2 is moving down, P1 and P2 occupy the same rows
and the robber is on one of these rows.

In this state the robber can only force us out of State 1 by leaving the
occupied rows. If he does so and moves above the top row of P1, then we move
P1 up, switch P2 and enter State 2. If he leaves the rows of P1 and P2 below,
then we move P2 down, switch P1 and enter State 2 (with the role of P1 and P2

exchanged). Otherwise we remain in State 1.
State 2: P1 is moving up, P2 is reforming and has t steps to start moving up,
P1 is d1 rows above P2 and the robber is d2 rows below the top row of P1, where
d1 + d2 + t ≤ 2w(S) + 1.

When we come from State 1 to State 2 we have d1 = 1, d2 = 0 and t ≤ 2w(S).
Later in this state if the robber moves above the top row of P1 then we move P1

up; then d1 increases by 1 and d2 = 0. Otherwise we keep P1 stationary; then
d2 increases by at most 1 and d1 remains the same. Hence d1 + d2 increases by
at most 1; since t decreases by 1, the inequality still holds and we stay in State
2 until t = 0, when we enter State 3.
State 3: P1 and P2 are both moving up, P1 is d1 ≥ 1 rows above P2 and the
robber is d2 rows below the top row of P1, where d1 + d2 ≤ 2w(S) + 1.

In this state if the robber moves above the top row of P1 then we move both
P1 and P2 up; then d1 remains the same and d2 = 0. Otherwise we move only
P2 up; then d1 decreases by 1 while d2 increases by at most 1. So the inequality
still holds and we stay in State 3 unless d1 = 0, when we enter State 4.
State 4: P1 and P2 are both moving up and occupy the same rows, and the
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robber is d ≤ 2w(S) + 1 rows below the top row of P1.
If d = 2w(S) + 1 and the robber moves down then we switch P2 and enter

State 5. Otherwise we move P1 and P2 only if the robber goes above their top
row, and remain in State 4.
State 5: P1 is moving up, P2 is reforming and has t steps to start moving down,
P1 and P2 occupy the same rows and the robber is d rows below the top row of
P1, where d+ t ≤ 4w(S) + 2 and d− t ≥ 0.

In this case we keep both P1 and P2 stationary and stay in State 5 until
t = 0, when we enter State 1.

We next show that we can reach one of these states. We form our cops into
four paddles of 30 cops each, with domains P1, P2, P ′1 and P ′2. Initially all of
these domains occupy the same rows. Then we begin with P1 and P2 moving
up and P ′1 and P ′2 moving down. At some step, the robber will occupy either
the top row of P1 and P2 or the bottom row of P ′1 and P ′2. Without loss of
generality he occupies the top row of P1 and P2. At this point we enter State
3, and release the cops from P ′1 and P ′2.

Now if at any point the robber is outside S′, Claim 4.4 implies that he cannot
re-enter S′ without being caught or confined to a stream. To force the robber
to leave S′, we choose an arbitrary row and place two cops at either end of the
intersection of this row with S. One cop on each end remains stationary, while
the remaining two cops move in the direction of S. If the robber does not leave
S′, then after some finite time he will be on the same row as one of the pairs of
cops, at which point he is confined to a stream.

In the sequel we will use Lemma 4.3 on streams that may not be maximum
width. The only feature where we needed to use that S has large width was
that any crossing stream in the domain of the paddle is not wider than w(S).
In order to have this property, some confluxes of the considered stream will be
guarded (by involving 3 cops for each such conflux by using Lemma 4.2).

Theorem 4.6. If G is any straight-ahead orientation of a toroidal grid, then
c(G) ≤ 319.

Proof. For each stream S mentioned below, S′ is formed by the lines of S at
distance at least m − 1 from the boundary lines of S (or all the lines of S, if
m ≤ 1), where m = bw(S)/3c + 1. For any subgraph H of G, we define S(H)
to be a stream of maximum width intersecting H.

Throughout the proof, let T be the territory of the robber, i.e., vertices of the
graph that the robber can reach without getting caught. Also let H be G− U
where U is the union of guarded streams.

Let S1, S2 and S3 be three widest streams in G. We will have two cases.
Case 1. S1, S2 and S3 are (without loss of generality) vertical streams.

Then Lemma 4.3 shows that we can commit 3×60 cops (and temporarily using
another 60 cops) to guard S1, S2 and S3. The robber is confined between two
of these streams, say S1 and S2. Now we can release the cops used to guard S3.
Now, redefine S3 to be equal to S(T ∩H) (i.e., the widest stream intersecting the
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territory of the robber). We can continue this approach to shrink the territory
of the robber until S3 is a horizontal stream, which brings us to Case 2.

Case 2. S1 and S2 are vertical streams but S3 is a horizontal one. Then we
can commit 2× 60 cops to guard S1 and S2. Let K1 and K2 be the intersection
of S1 and S2 with S3, respectively. Using Lemma 4.2, we can commit 2×3 cops
to guard K1 and K2 and then using 60 cops we can guard S3. Note that there
is no stream wider than S3 that intersects S3 in T ∩ H. Also note that since
the horizontal movement of the robber is bounded between S1 and S2, we do
not need (even temporarily) an extra 60 cops to guard S3. Now, let S4 be the
next widest stream intersecting T ∩H.

Subcase 2a. If S4 is a vertical stream, then use another 3 cops to guard
K3 := S3 ∩ S4 and use 60 cops to guard S4. Now, based on the position of the
robber, redefine S1 and S2, release the third set of 60 cops, shrink the territory
of the robber and repeat Subcase 2a.

Subcase 2b. If S4 is a horizontal stream, then commit 2×3 cops to protect
K3 := S1 ∩ S4 and K4 := S2 ∩ S4 and use 60 cops to guard S4. Now the robber
is confined between S1, S2, S3 and S4.

Let S5 be the next widest stream intersecting T ∩H. Without loss of gen-
erality we can assume that it is a vertical one. Commit 2 × 3 cops to protect
K5 := S5 ∩ S3 and K6 := S5 ∩ S4 and use 60 cops to guard S5. Now, based on
the position of the robber, redefine S1, S2, S3 and S4, release the fifth set of 60
cops, shrink the territory of the robber and repeat Subcase 2b until we catch
the robber.

Note that we have used at most 5 sets of 60 cops to guard Si (i = 1, . . . , 5)
and at most 6 × 3 cops to guard the intersections of these streams. Also, to
avoid complication, we use one cop to force the robber to move. Therefore by
using at most 319 cops we can capture the robber.
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