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Abstract

We study the multistage K-facility reallocation problem on the real line, where we maintain K facility
locations over T stages, based on the stage-dependent locations of n agents. Each agent is connected to
the nearest facility at each stage, and the facilities may move from one stage to another, to accommodate
different agent locations. The objective is to minimize the connection cost of the agents plus the total
moving cost of the facilities, over all stages. K-facility reallocation was introduced by de Keijzer and
Wojtczak [10], where they mostly focused on the special case of a single facility. Using an LP-based
approach, we present a polynomial time algorithm that computes the optimal solution for any number
of facilities. We also consider online K-facility reallocation, where the algorithm becomes aware of agent
locations in a stage-by-stage fashion. By exploiting an interesting connection to the classical K-server

problem, we present a constant-competitive algorithm for K = 2 facilities.

1 Introduction

Facility Location is a classical problem that has been widely studied in both combinatorial optimization
and operations research, due to its many practical applications. It provides a simple and natural model
for industrial planning, network design, machine learning, data clustering and computer vision Drezner and
Hamacher [12], Lazic [19], Caragiannis et al. [7], Betzler et al. [5]. In its basic form, K-Facility Location
instances are defined by the locations of n agents in a metric space. The goal is to find K facility locations
so as to minimize the sum of distances of the agents to their nearest facility.

In many natural location and network design settings, agent locations are not known in advance. Moti-
vated by this fact, Meyerson [21] introduced online facility location problems, where agents arrive one-by-one
and must be irrevocably assigned to a facility upon arrival. Moreover, the fast increasing volume of available
data and the requirement for responsive services has led to new, online clustering algorithms Liberty et al.
[20], balancing the quality of the clusters with their rate of change over time. In practical settings related
to online data clustering, new data points arrive, and the decision of clustering some data points together
should not be regarded as irrevocable (see e.g., Fotakis [15] and the references therein).

More recently, understanding the dynamics of temporally evolving social or infrastructure networks has
been the central question in many applied areas such as viral marketing, urban planning etc. Dynamic facility
location proposed by Eisenstat et al. [13] has been a new tool to analyze temporal aspects of such networks.
In this time dependent variant of facility location, agents may change their location over time and we look for
the best tradeoff between the optimal connections of agents to facilities and the stability of solutions between
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Learning 2014- 2020”. Stratis Skoulakis is partially supported by a scholarship of Onnasis Foundation. Philip Lazos is supported
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consecutive timesteps. The stability of the solutions is modeled by introducing an additional moving cost
(or switching cost), which has a different definition depending on the particular setting.

Model and Motivation. In this work, we study the multistage K-facility reallocation problem on the real
line, introduced by de Keijzer and Wojtczak [10]. In K-facility reallocation, K facilities are initially located
at (x0

1, . . . , x0
K) on the real line. Facilities are meant to serve n agents for the next T days. At each day, each

agent connects to the facility closest to its location and incurs a connection cost equal to this distance. The
locations of the agents may change every day, thus we have to move facilities accordingly in order to reduce
the connection cost. Naturally, moving a facility is not for free, but comes with the price of the distance
that the facility was moved. Our goal is to specify the exact positions of the facilities at each day so that
the total connection cost plus the total moving cost is minimized over all T days. In the online version of
the problem, the positions of the agents at each stage t are revealed only after determining the locations of
the facilities at stage t− 1.

For a motivating example, consider a company willing to advertise its products. To this end, it organizes
K advertising campaigns at different locations of a large city for the next T days. Based on planned events,
weather forecasts, etc., the company estimates a population distribution over the locations of the city for
each day. Then, the company decides to compute the best possible campaign reallocation with K campaigns
over all days (see also [10] for more examples).

de Keijzer and Wojtczak [10] fully characterized the optimal offline and online algorithms for the special
case of a single facility and presented a dynamic programming algorithm for K ≥ 1 facilities with running
time exponential in K. Despite the practical significance and the interesting theoretical properties of K-
facility reallocation, its computational complexity and its competitive ratio (for the online variant) are hardly
understood.

Contribution. In this work, we resolve the computational complexity of K-facility reallocation on the real
line and take a first step towards a full understanding of the competitive ratio for the online variant. More
specifically, in Section 3, we present an optimal algorithm with running time polynomial in the combinatorial
parameters of K-facility reallocation (i.e., n, T and K). This substantially improves on the complexity of
the algorithm, presented in [10], that is exponential in K. Our algorithm solves a Linear Programming
relaxation and then rounds the fractional solution to determine the positions of the facilities. The main
technical contribution is showing that a simple rounding scheme yields an integral solution that has the
exact same cost as the fractional one.

Our second main result concerns the online version of the problem with K = 2 facilities. We start with
the observation that online K-facility reallocation problem with K ≥ 2 facilities is a natural and interesting
generalization of the classical K-server problem, which has been a driving force in the development of online
algorithms for decades. The key difference is that, in the K-server problem, there is a single agent that
changes her location at each stage and a single facility has to be relocated to this new location at each stage.
Therefore, the total connection cost is by definition 0, and we seek to minimize the total moving cost.

From a technical viewpoint, the K-facility reallocation problem poses a new challenge, since it is much
harder to track the movements of the optimal algorithm as the agents keep coming. It is not evident at
all whether techniques and ideas from the K-server problem can be applied to the K-facility reallocation
problem, especially for more general metric spaces. As a first step towards this direction, we design a
constant-competitive algorithm, when K = 2. Our algorithm appears in Section 4 and is inspired by the
double coverage algorithm proposed for the K-server problem Koutsoupias [18].

Related Work. We can cast the K-facility reallocation problem as a clustering problem on a temporally
evolving metric. From this point of view, K-facility reallocation problem is a dynamic K-median problem.
A closely related problem is the dynamic facility location problem, Eisenstat et al. [13], An et al. [1]. Other
examples in this setting are the dynamic sum radii clustering Blanchard and Schabanel [6] and multi-stage
optimization problems on matroids and graphs Gupta et al. [17].

In Friggstad and Salavatipour [16], a mobile facility location problem was introduced, which can be seen
as a one stage version of our problem. They showed that even this version of the problem is NP -hard in
general metric spaces using an approximation preserving reduction to K-median problem.

Online facility location problems and variants have been extensively studied in the literature, see Fotakis
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[15] for a survey. DivÃľki and Imreh [11] studied an online model, where facilities can be moved with
zero cost. As we have mentioned before, the online variant of the K-facility reallocation problem is a
generalization of the K-server problem, which is one of the most natural online problems. Koutsoupias [18]
showed a (2K − 1)-competitive algorithm for the K-server problem for every metric space, which is also
K-competitive, in case the metric is the real line Bartal and Koutsoupias [4]. Other variants of the K-server
problem include the (H, K)-server problem Bansal et al. [3, 2], the infinite server problem Coester et al. [8]
and the K-taxi problemFiat et al. [14], Coester and Koutsoupias [9].

(1) min
∑T

t=1

[

∑

i∈C

∑

j∈V

d(Loc(i, t), j)xt
ij +

∑

k∈F

St
k

]

∑

j∈V

xt
ij = 1 ∀i ∈ C, t ∈ {1, T }

xt
ij ≤ ct

j ∀i ∈ C, j ∈ V, t ∈ {1, T }

ct
j =

∑

k∈F

f t
kj ∀j ∈ V, t ∈ {1, T }

∑

j∈V

f t
kj = 1 ∀k ∈ F, t ∈ {1, T }

St
k =

∑

j,l∈V

d(j, l)St
kjl ∀k ∈ F, t ∈ {1, T }

∑

j∈V

St
kjl = f t

kl ∀k ∈ F, l ∈ V, t ∈ {1, T }

∑

l∈V

St
kjl = f t−1

kj ∀k ∈ F, j ∈ V, t ∈ {1, T }

xt
ij , f t

kj , St
klj ∈ {0, 1} ∀k ∈ F, j ∈ V, t ∈ {1, T }

Figure 1: Formulation of K-facility reallocation

2 Problem Definition and Preliminaries

Definition 1 (K-Facility Reallocation Problem) We are given a tuple (x0, C) as input. The K dimen-
sional vector x0 = (x0

1, . . . , x0
K) describes the initial positions of the facilities. The positions of the agents

over time are described by C = (C1, . . . , CT ). The position of agent i at stage t is αt
i and Ct = (αt

1, . . . , αt
n)

describes the positions of the agents at stage t.

Definition 2 A solution of K-Facility Reallocation Problem is a sequence x = (x1, . . . , xT ). Each xt =
(xt

1, . . . , xt
K) is a K dimensional vector that gives the positions of the facilities at stage t and xt

k is the
position of facility k at stage t. The cost of the solution x is

Cost(x) =
T

∑

t=1

[ K
∑

k=1

|xt
k − xt−1

k |+
n

∑

i=1

min
1≤k≤K

|αt
i − xt

k|

]

Given an instance (x0, C) of the problem, the goal is to find a solution x that minimizes the Cost(x). The
term

∑T
t=1

∑K
k=1 |x

t
k − xt−1

k | describes the cost for moving the facilities from place to place and we refer to
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it as moving cost, while the term
∑T

t=1

∑n
i=1 min1≤k≤K |αt

i − xt
k| describes the connection cost of the agents

and we refer to it as connection cost.
In the online setting, we study the special case of 2-facility reallocation problem. We evaluate the per-

formance of our algorithm using competitive analysis; an algorithm is c-competitive if for every request
sequence, its online performance is at most c times worse (up to a small additive constant) than the optimal
offline algorithm, which knows the entire sequence in advance.

3 Polynomial Time Algorithm

Our approach is a typical LP based algorithm that consists of two basic steps.

• Step 1: Expressing the K-Facility Reallocation Problem as an Integer Linear Program.

• Step 2: Solving fractionally the Integer Linear Program and rounding the fractional solution to an
integral one.

3.1 Formulating the Integer Linear Program

A first difficulty in expressing the K-Facility Reallocation Problem as an Integer Linear Program is that the
positions on the real line are infinite. We remove this obstacle with help of the following lemma proved in
[10].

Lemma 3.1 Let (x0, C) an instance of the K-facility reallocation problem. There exists an optimal solution
x∗ such that for all stages t ∈ {1, T } and k ∈ {1, K},

x∗t
k ∈ C1 ∪ . . . ∪ CT ∪ x0

According to Lemma 3.1, there exists an optimal solution that locates the facilities only at positions
where either an agent has appeared or a facility was initially lying. Lemma 3.1 provides an exhaustive
search algorithm for the problem and is also the basis for the Dynamic Programming approach in [10]. We
use Lemma 3.1 to formulate our Integer Linear Program.

The set of positions P os = C1 ∪ . . . ∪ CT ∪ x0 can be represented equivalently by a path P = (V, E).
In this path, the j-th node corresponds to the j-th leftmost position of P os and the distance between two
consecutive nodes on the path equals the distance of the respective positions on the real line. Now, the facility
reallocation problem takes the following discretized form: We have a path P = (V, E) that is constructed by
the specific instance (x0, C). Each facility k is initially located at a node j ∈ V and at each stage t, each
agent i is also located at a node of P . The goal is to move the facilities from node to node such that the
connection cost of the agents plus the moving cost of the facilities is minimized.

To formulate this discretized version as an Integer Linear Program, we introduce some additional notation.
Let d(j, l) be the distance of the nodes j, l ∈ V in P , F be the set of facilities and C be the set of agents.
For each i ∈ C, Loc(i, t) is the node where agent i is located at stage t. We also define the following {0, 1}-
indicator variables for all t ∈ {1, T }: xt

ij = 1 if, at stage t, agent i connects to a facility located at node j,
f t

kj = 1 if, at stage t, facility k is located at node j, St
kjl = 1 if facility k was at node j at stage t − 1 and

moved to node l at stage t. Now, the problem can be formulated as the Integer Linear Program depicted in
Figure1.

The first three constraints correspond to the fact that at every stage t, each agent i must be connected
to a node j where at least one facility k is located. The constraint

∑

j∈V f t
kj = 1 enforces each facility k

to be located at exactly one node j. The constraint St
k =

∑

j,l∈V d(j, l)St
kjl describes the cost for moving

facility k from node j to node l. The final two constraints ensure that facility k moved from node j to node
l at stage t if and only if facility k was at node j at stage t − 1 and was at node l at stage t (St

kjl = 1 iff
f t

kl = 1 and f t−1
kj = 1).
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Algorithm 1: Algorithm for the offline case

Data: Given the initial positions x0 = {x0
1, . . . , x0

K} of the facilities and the positions of the agents
C = {C1, . . . , CT }.

• Construct the path P and the Integer Linear Program (1).

• Solve the relaxation of the Integer Linear Program (1).

• Rounding 1: For each stage t ≥ 1:

– For m = 1, . . . , K, find the node jt
m such that

jt
m−1
∑

ℓ=1

ct
ℓ ≤ m− 1 ≤

jt
m

∑

ℓ=1

ct
ℓ.

– Locate facility m at the respective position of node jt
m on the line

xt
m ← d(j, 1) + min

p∈C1∪...∪CT ∪x0
p.

We remark that the values of f0
kj are determined by the initial positions of the facilities, which are given

by the instance of the problem. The notation xt
ij should not be confused with xt

k, which is the position of
facility k at stage t on the real line .

3.2 Rounding the Fractional Solution

Our algorithm, described in Algorithm 1, is a simple rounding scheme of the optimal fractional solution of
the Integer Linear Program of Figure 1. This simple scheme produces an integral solution that has the exact
same cost with an optimal fractional solution.

Theorem 3.1 Let x denote the solution produced by Algorithm 1. Then

Cost(x) =
T

∑

t=1

[

∑

i∈C

∑

j∈V

d(Loc(i, t), j)xt
ij +

∑

k∈F

St
k

]

where xt
ij , St

k denote the values of these variables in the optimal fractional solution of the Integer Linear
Program (1).

Theorem 3.1 is the main result of this section and it implies the optimality of our algorithm. We remind
that by Lemma 3.1, there is an optimal solution that locates facilities only in positions C1 ∪ . . . ∪ CT ∪ x0.
This solution corresponds to an integral solution of our Integer Linear Program, meaning that Cost(x∗) is
greater than or equal to the cost of the optimal fractional solution, which by Lemma 3.1 equals Cost(x). We
dedicate the rest of the section to prove Theorem 3.1. The proof is conducted in two steps and each step is
exhibited in sections 3.3 and 3.4 respectively.

In section 3.3, we present a very simple rounding scheme in the case, where the values of the variables of
the optimal fractional solution satisfy the following assumption.

Assumption 1 Let f t
jk and ct

j be either 1/N or 0, for some positive integer N .

1the nodes jt
m can be equivalent calculated with the simpler criterion, jt

m is the most left node with f t
kj

> 0. See also

Section 3.4.
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Although Assumption 1 is very restrictive and its not generally satisfied, it is the key step for proving the
optimality guarantee of the rounding scheme presented in Algorithm 1. Then, in section 3.4 we use the
rounding scheme of section 3.3 to prove Theorem 3.1. In the upcoming sections, ct

j , xt
ij , f t

kj , St
kjl, St

k will
denote the values of these variables in the optimal fractional solution of the ILP (1).

3.3 Rounding Semi-Integral solutions

Throughout this section, we suppose that Assumption 1 is satisfied; f t
kj and ct

j are either 1/N or 0 , for some
positive integer N . If the optimal fractional solution meets these requirements, then the integral solution
presented in Lemma 3.2 has the same overall cost. The goal of the section is to prove Lemma 3.2.

Definition 3 V +
t denotes the set of nodes of P with a positive amount of facility (ct

j) at stage t,

j ∈ V +
t if and only if ct

j > 0

We remind that since ct
j = 1/N or 0, |V +

t | = K ·N . We also consider the nodes in V +
t = {Y t

1 , . . . , YK·N} to
be ordered from left to right.

Lemma 3.2 Let Sol be the integral solution that at each stage t places the m-th facility at the (m− 1)N + 1
node of V +

t i.e. Y t
(m−1)N+1. Then, Sol has the same cost as the optimal fractional solution.

The term m-th facility refers to the ordering of the facilities on the real line according to their initial
positions {x0

1, . . . , x0
K}. The proof of Lemma 3.2 is quite technically complicated, however it is based on two

intuitive observations about the optimal fractional solution.

Observation 1 The set of nodes at each agent i connects at stage t are consecutive nodes of V +
t . More

precisely, there exists a set {Y t
ℓ , . . . , Y t

ℓ+N−1} ⊆ V +
t such that

∑

j∈V

d(Loc(i, t), j)xt
ij =

1
N

ℓ+N−1
∑

h=ℓ

d(Loc(i, t), Y t
h)

Proof: Let an agent i that at some stage t has xt
iY t

j

> 0, xt
iY t

ℓ

< 1/N and xt
iY t

h

> 0 for some j < ℓ < h.

Assume that Loc(i, t) ≤ Y t
ℓ and to simplify notation consider xℓ = xt

iY t
ℓ

, xh = xt
iY t

h

. Now, increase xℓ

by ǫ and decrease xh by ǫ, where ǫ = min(1/N − xℓ, xh). Then, the cost of the solution is decreased by
(d(Loc(i, t), h)− d(Loc(i, t), ℓ))ǫ > 0, thus contradicting the optimality of the solution. The same argument
holds if Loc(i, t) ≥ Y t

ℓ . The proof follows since
∑

j∈V xt
ij = 1. �

Observation 2 Under Assumption 1, the m-th facility places amount of facility f t
mj = 1/N from the (m−

1)N + 1 to the mN node of V +
t i.e. to nodes {Y t

(m−1)N+1, . . . , Y t
mN}.

Observation 2 serves in understanding the structure of the optimal fractional solution under Assumption 1.
However, it will be not used in this form in the rest of the section. We use Lemma 3.3 instead, which is
roughly a different wording of Observation 2 and its proof can be found in subsection A.1 of the Appendix.

Lemma 3.3 Let St
k the fractional moving cost of facility k at stage t. Then

T
∑

t=1

∑

k∈F

St
k =

1
N

T
∑

t=1

K·N
∑

j=1

d(Y t−1
j , Y t

j )

Observations 1, and Lemma 3.3 (Observation 2) are the key points in proving Lemma 3.2.

Definition 4 Let Solp the integral solution that places at stage t the m-th facility at the (m− 1)N + p node
of V +

t i.e. Y t
(m−1)N+p.
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Notice that the integral solution Sol referred in Lemma 3.2 corresponds to Sol1. The proof of Lemma 3.2
follows directly by Lemma 3.4 and Lemma 3.5 that conclude this section.

Lemma 3.4 Let St
k be the moving cost of facility k at stage t in the optimal fractional solution and

MovingCost(Solp) the total moving cost of the facilities in the integral solution Solp. Then,

1
N

N
∑

p=1

MovingCost(Solp) =
T

∑

t=1

∑

k∈F

St
k

Proof: By the definition of the solutions Solp we have that:

1
N

N
∑

p=1

MovingCost(Solp) =
1
N

N
∑

p=1

T
∑

t=1

K
∑

m=1

d(Y t−1
(m−1)N+p, Y t

(m−1)N+p)

=
1
N

T
∑

t=1

K
∑

m=1

N
∑

p=1

d(Y t−1
(m−1)N+p, Y t

(m−1)N+p)

=
1
N

T
∑

t=1

K·N
∑

j=1

d(Y t−1
j , Y t

j )

=
T

∑

t=1

∑

k∈F

St
k

The last equality comes from Lemma 3.3. �

Lemma 3.4 states that if we pick uniformly at random one of the N integral solutions {Solp}N
p=1, then the

expected moving cost that we will pay is equal to the moving cost paid by the optimal fractional solution.
Interestingly, the same holds for the expected connection cost. This is formally stated in Lemma 3.5 and it
is where Observation 1 comes into play.

Lemma 3.5 Let ConCostt
i(Solp) denote the connection cost of agent i at stage t in Solp. Then,

1
N

N
∑

p=1

ConCostt
i(Solp) =

∑

j∈V

d(Loc(i, t), j)xt
ij

As already mentioned, the proof of Lemma 3.5 crucially makes use of Observation 1 and is presented in the
subsection A.1 of the Appendix. Combining Lemma 3.4 and 3.5 we get that if we pick an integral solution
Solp uniformly at random, the average total cost that we pay is Z∗

LP , where Z∗
LP is the optimal fractional

cost. More precisely,

1
N

N
∑

p=1

Cost(Solp) =
1
N

N
∑

p=1

[MovingCost(Solp) +
T

∑

t=1

∑

i∈C

ConCostt
i(Solp)]

=
T

∑

t=1

[
K

∑

k=1

St
k +

∑

i∈C

∑

j∈V

d(Loc(i, t), j)xt
ij ]

= Z∗
LP

Since Solp ≥ Z∗
LP , we have that Sol1 = · · · = SolN = Z∗

LP and this proves Lemma 3.2.
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3.4 Rounding the General Case

In this section, we use Lemma 3.2 to prove Theorem 3.1. As already discussed, Assumption 1 is not
satisfied in general by the fractional solution of the linear program (1). Each St

kjℓ will be either 0 or
At

kjℓ/N t
kjℓ, for positive some integers At

kjℓ, N t
kjℓ. However, each positive f t

kj will have the form Bt
kj/N ,

where N = ΠSt
kjℓ

>0N t
kjℓ. This is due to the constraint f t

kj =
∑

j∈V St
kjℓ.

Consider the path P ′ = (V ′, E′) constructed from path P = (V, E) as follows: Each node j ∈ V is
split into KN copies {j1, . . . , jKN} with zero distance between them. Consider also the LP (1), when the
underlying path is P ′ = (V ′, E′) and at each stage t, each agent i is located to a node of V ′ that is a copy of
i’s original location, Loc′(i, t) = ℓ ∈ V ′, where ℓ ∈ Copies(Loc(i, t)). Although these are two different LP’s,
they are closely related since a solution for the one can be converted to a solution for the other with the
exact same cost. This is due to the fact that for all j, h ∈ V , d(j, h) = d(j′, h′), where j′ ∈ Copies(j) and
h′ ∈ Copies(h).

The reason that we defined P ′ and the second LP is the following: Given an optimal fractional solution
of the LP defined for P , we will construct a fractional solution for the LP defined for P ′ with the exact same
cost, which additionally satisfies Assumption 1. Then, using Lemma 3.2 we can obtain an integral solution
for P ′ with the same cost. This integral solution for P ′ can be easily converted to an integral solution for
P . We finally show that these steps are done all at once by the rounding scheme of Algorithm 1 and this
concludes the proof of Theorem 3.1.

Given the fractional positions {f t
kj}t≥1 of the optimal solution of the LP formulated for P = (V, E), we

construct the fractional positions of the facilities in P ′ = (V ′, E′) as follows: If f t
kj = Bt

kj/N , then facility
k puts a 1/N amount of facility in Bt

kj nodes of the set Copies(j) = {j1, . . . , jKN} that have a 0 amount
of facility. The latter is possible since there are exactly KN copies of each j ∈ V and ct

j ≤ K (that is
the reason we required KN copies of each node). The values of the rest of the variables are defined in the
proof of Lemma 3.7 that is presented in the end of the section. The key point is that the produced solution
{f

′t
kℓ, c

′t
j , S

′t
kjℓ, x

′t
ij , S

′t
k } will satisfy the following properties (see Lemma 3.7):

• its cost equals Z∗
LP

• f
′t
kℓ = 1/N or 0, for each ℓ ∈ V ′

• c
′t
ℓ = 1/N or 0, for each ℓ ∈ V ′

• ct
j =

∑

ℓ∈Copies(j)

c
′t
ℓ , for each j ∈ V

Clearly, this solution satisfies Assumption 1 and thus Lemma 3.2 can be applied. This implies that the
integral solution for P ′ that places the m-th facility to the (m − 1)N + 1 node of V

′+
t (Y

′t
(m−1)N+1 ∈ V ′)

has cost Z∗
LP . So the integral solution for P that places the m-th facility to the node jt

m ∈ V , such that
Y

′t
(m−1)N+1 ∈ Copies(jt

m), has again cost Z∗
LP .

A naive way to determine the nodes jt
m is to calculate N , construct P ′ and its fractional solution, find the

nodes Y
′t

(m−1)N+1 and determine the nodes jt
m of P . Obviously, this rounding scheme requires exponential

time. Fortunately, Lemma 3.6 provides a linear time rounding scheme to determine the node jt
m given the

optimal fractional solution of P = (V, E). This concludes the proof of Theorem 3.1.

Lemma 3.6 The (m− 1)N + 1 node of V ′+
t is a copy of the node jt

m ∈ V if and only if

jt
m−1
∑

ℓ=1

ct
ℓ ≤ m− 1 <

jt
m

∑

ℓ=1

ct
ℓ

.
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Proof: Let (m− 1)N + 1 node of V ′+
t be a copy of the node jt

m ∈ V +
t . Then

jt
m−1
∑

ℓ=1

ct
ℓ =

jt
m−1
∑

ℓ=1

∑

ℓ′∈Copies(ℓ)

c
′ t
ℓ′ ≤ (m− 1)N

1
N

= m− 1

jt
m

∑

ℓ=1

ct
ℓ =

jt
m

∑

ℓ=1

∑

ℓ′∈Copies(ℓ)

c
′ t
ℓ′ = ((m− 1)N + 1)

1
N

> m− 1

The above equations hold because of the property ct
ℓ =

∑

ℓ′∈Copies(ℓ) c
′t
ℓ′ and that c

′t
ℓ′ is either 0 or 1/N .

Now, let
∑jt

m−1
ℓ=1 ct

ℓ ≤ m− 1 <
∑jt

m

ℓ=1 ct
ℓ and assume that (m− 1)N + 1-th node of V +

t is a copy of j ∈ V . If

j < jt
m, then

∑j
ℓ=1 ct

ℓ > m− 1 and if j > jt
m, then

∑jt
m

ℓ=1 < m− 1. As a result, j = jt
m. �

Remark 1 We remark that the nodes jt
m can be determined with an even simpler way than that presented

in Algorithm 1. That is jt
m is the most left node such that f t

mj > 0. However, this rounding strategy requires
some additional analysis.

Lemma 3.7 Let {f t
kj , ct

j , St
kjl, xt

ij}t≥1 the optimal fractional solution for the LP (1) with underlying path P .

Then, there exists a solution {f
′t
kj , c

′t
j , S

′t
kjl, x

′t
ij , S

′t
k }t≥1 of the LP (1) with underlying path P ′ such that

1. Its cost is Z∗
LP .

2. f
′t
kℓ = 1/N or 0, for each ℓ ∈ V ′

3. c
′t
ℓ = 1/N or 0, for each ℓ ∈ V ′

4. ct
j =

∑

ℓ∈Copies(j)

c
′t
ℓ , for each j ∈ V

Proof: First, we set values to the variables f
′t
kj . Initially, all f

′t
kj = 0. We know that if f t

kj > 0, then
it equals Bt

kj/N , for some positive integer Bt
kj . For each such f t

kj , we find u1, . . . , uBt
kj
∈ Copies(j) with

f
′t
kuh

= 0. Then, we set f
′t
kuh

= 1/N for h = {1, Bt
kj}. Since there are KN copies of each node j ∈ V and

∑

j∈V f t
kj ≤ K, we can always find sufficient copies of j with f

′t
ku = 0. When this step is terminated, we are

sure that conditions 2, 3, 4 are satisfied.
We continue with the variables S

′t
kjℓ. Initially, all S

′t
kjℓ = 0. Then, each positive St

kjℓ has the form Bt
kjℓ/N .

Let B = Bt
kjℓ to simplify notation. We now find B copies of u1, . . . , uB of j and v1, . . . , vB of ℓ so that

• f
′t
ku1

= · · · = f
′t
kuB

= f
′t
kv1

= · · · = f
′t
kvB

= 1/N

• S
′t
ku1h = · · · = S

′t
kuBh = S

′t
khv1

= · · · = S
′t
khvB

= 0 for all h ∈ V ′

We then set S
′t
ku1v1

= · · · = S
′t
kuBvB

= 1/N . Again, since
∑

ℓ∈V St
kjℓ = f t

kj and
∑

j∈V St
kjℓ = f t

kℓ we can
always find Bt

kjℓ pairs of copies of j and ℓ that satisfy the above requirements. We can now prove that the
movement cost of each facility k is the same in both solutions.

∑

j∈V

∑

ℓ∈V

d(j, ℓ)St
kjℓ =

∑

j∈V

∑

ℓ∈V

d(j, ℓ)Bt
kjℓ/N

=
∑

j∈V

∑

ℓ∈V

∑

h∈Copies(j)

∑

h′∈Copies(ℓ)

S
′t
khh′d(h, h′)

=
∑

j′∈V ′

∑

ℓ′∈V ′

S
′t
kj′ℓ′d(j′, ℓ′)

9



The second equality follows from the fact that h, h′ are copies of j, ℓ respectively and thus d(h, h′) = d(j, ℓ).
Finally, set values to the variables x

′t
ij for each j ∈ V ′. Again, each positive xt

ij equals Bt
ij/N , for some

positive integer. We take Bt
ij copies of j, u1, . . . , uBt

ij
and set x

′t
iu1

= · · · = x
′t
iu

Bt
ij

= 1/N . The connection

cost of each agent i remains the same since

∑

j∈V

d(Loc(i, t), j)xt
ij =

∑

j∈V

d(Loc(i, t), j)Bt
ij/N

=
∑

j∈V

d(Loc(i, t), j)
∑

j′∈Copies(j)

x
′t
ij′

=
∑

j∈V

∑

j′∈Copies(j)

d(Loc′(i, t), j′)x
′t
ij′

=
∑

h∈V ′

d(Loc′(i, t), h)x
′t
ih

The third equality holds since Loc′(i, t) ∈ Copies(Loc(i, t)). �

4 A Constant-Competitive Algorithm for the Online 2-Facility

Reallocation Problem

In this section, we present an algorithm for the online 2-facility reallocation problem and we discuss the core
ideas that prove its performance guarantee. The online algorithm, denoted as Algorithm 2, consists of two
major steps.

In Step 1, facilities are initially moved towards the positions of the agents. We remark that in Step 1,
the final positions of the facilities at stage t are not yet determined. The purpose of this step is to bring at
least one facility close to the agents. This initial moving consists of three cases (see Figure 2), depending
only on the relative positions of the facilities at stage t− 1 and the agents at stage t.

In Step 2, our algorithm determines the final positions of the facilities xt
1, xt

2. Notice that after Step 1,
at least one of the facilities is inside the interval [αt

1, αt
n], meaning that at least one of the facilities is close

to the agents. As a result, our algorithm may need to decide between moving the second facility close to the
agents or just letting the agents connect to the facility that is already close to them. Obviously, the first
choice may lead to small connection cost, but large moving cost, while the second has the exact opposite
effect. Roughly speaking, Algorithm 2 does the following: If the connection cost of the agents, when placing
just one facility optimally, is not much greater than the cost for moving the second facility inside [αt

1, αt
n],

then Algorithm 2 puts the first facility to the position that minimizes the connection cost, if one facility is
used. Otherwise, it puts the facilities to the positions that minimize the connection cost, if two facilities
are used. The above cases are depicted in Figure 3. We formalize how this choice is performed, introducing
some additional notation.

Definition 5

• Ct = {αt
1, . . . , αt

n} denotes the positions of the agents at stage t ordered from left to right.

• If C is a set of positions with |C| = 2k, k ∈ N>0, then MC denotes the median interval of the set, which
is the interval [αn/2, αn/2+1]. If |C| = 2k + 1, k ∈ N0, then MC is a single point.

• H(C) denotes the optimal connection cost for the set C when all agents of C connect to just one
facility. That is H(C) =

∑

α∈C |α−MC |. We also define H(∅) = 0.

10



• C∗
1t (resp. C∗

2t) denotes the positions of the agents that connect to facility 1 (resp. 2) at stage t in the
optimal solution x∗. C1t (resp. C2t) denotes the positions of the agents that connect to facility 1 (resp.
2) at stage t in the solution produced by Algorithm 2.

Algorithm 2: Selecting xt
1 and xt

2

Data: At stage t ≥ 1 the new positions of the agents Ct = {αt
1, . . . , αt

n}, ordered from left to right,
arrive

Step 1: Moving the facilities towards the agents
z1 ← xt−1

1 , z2 ← xt−1
2

if z1 > αt
n then

move facility 1 to the left until it hits αt
n

z1 ← αt
n

end
if z2 < αt

1 then
move facility 2 to the right until it hits αt

1

z2 ← αt
1

end
if z1 < αt

1 and z2 > αt
n then

move facility 1 to the right and facility 2 to the left until a facility hits [αt
1, αt

n]
z1 ← z1 + min(|xt−1

1 − αt
1|, |x

t−1
2 − αt

n|)
z2 ← z2 −min(|xt−1

1 − αt
1|, |x

t−1
2 − αt

n|)
end

Step 2: Selecting the final position of the facilities
if αt

1 ≤ z1 ≤ αt
n and z2 − αt

n ≥ 3H(Ct) then
put facility 1 to the median of Ct and move facility 2 to the left by 3H(Ct)
xt

1 ←MCt
, xt

2 ← z2 − 3H(Ct)
end
if αt

1 ≤ z2 ≤ αt
n and αt

1 − z1 ≥ 3H(Ct) then
put facility 2 to the median of Ct and move facility 1 to the right by 3H(Ct)
xt

1 ← z1 + 3H(Ct), xt
2 ←MCt

end
else
Compute the optimal partition (O1, O2) of Ct that minimizes the connection cost at stage t.
Put facility 1 to the median of O1 and facility 2 to the median of O2.
xt

1 ←MO1 , xt
2 ←MO2

end

We first mention that Algorithm 2 seems much more complicated than it really is (the first two cases are
symmetric both in Step 1 and Step 2). In fact, only the last two cases are difficult to handle and we explain
them subsequently. The performance guarantee of Algorithm 2 is formally stated in Theorem 4.1.

Theorem 4.1 Let x = {xt
1, xt

2}t≥1 the solution produced by Algorithm 2 and x∗ the optimal solution. Then,

Cost(x) ≤ 63 · Cost(x∗) + |x0
1 − x0

2|

where x0
1, x0

2 are the initial positions of the facilities.

The rest of the section is dedicated to provide a proof sketch (some proofs are included in subsection A.2
of the Appendix) of Theorem 4.1. Although it is possible to improve the competitive ratio of Algorithm 2
by a much more technically involved analysis, we stress here that it is not possible to turn the result into
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any constant factor. The reason is that the 2-facility reallocation problem on the line is a generalization of
2-server problem on the line, which has a lower bound of 2 on the competitive ratio of any online algorithm.
Before proceeding, we present Lemma 4.1 that is a key component in the subsequent analysis and that
reveals the real difficulty of the online 2-facility reallocation problem.

Lemma 4.1 Let the optimal solution x∗ and C∗
1t, C∗

2t the set of agents that connect respectively to facility 1
and 2 at stage t. Let the solution yt = (yt

1, yt
2) defined as follows:

yt
k =

{

MC∗

kt
if C∗

kt 6= ∅
x∗t

k if C∗
kt = ∅

Then, the following inequality holds.

T
∑

t=1

[ 2
∑

k=1

[H(C∗
kt) + |yt

k − yt−1
k |]

]

≤ 3 · Cost(x∗)

Proof: Since
∑T

t=1

∑2
k=1 H(C∗

kt) =
∑T

t=1

∑2
k=1

∑

a∈C∗

kt
|x∗t

k − a|, we only have to prove that

T
∑

t=1

2
∑

k=1

|yt
k − yt−1

k | ≤ 2
T

∑

t=1

2
∑

k=1

[

H(C∗
kt) + |x∗t

k − x∗t−1
k |

]

From the triangle inequality, we have that

T
∑

t=1

2
∑

k=1

|yt
k − yt−1

k | ≤
T

∑

t=1

2
∑

k=1

[|yt
k − x∗t

k |+ |y
t−1
k − x∗t−1

k |+ |x∗t
k − x∗t−1

k |]

The right hand side of the inequality is maximized, when yt
k 6= x∗t

k and yt−1
k 6= x∗t−1

k for k = 1, 2, namely
when C∗

kt, C∗
k(t−1) 6= ∅. Since yt

k (resp. yt−1
k ) is the median agent (lies in the median interval of C∗

kt in the

case |C∗
kt| = 2k) of C∗

kt (resp.C∗
k(t−1)) in this case, x∗t

k (resp. x∗t−1
k ) has to connect yt

k (resp. yt−1
k ). Thus,

∑T
t=1

∑2
k=1 |y

t
k − x∗t

k |+ |y
t−1
k − x∗t−1

k | can be upper bounded by the optimal connection cost, which is

T
∑

t=1

2
∑

k=1

∑

a∈C∗

kt

|x∗t
k − a|+

T
∑

t=1

2
∑

k=1

∑

a∈C∗

k(t−1)

|x∗t−1
k − a| ≤ 2

T
∑

t=1

2
∑

k=1

H(C∗
kt)

�

Lemma 4.1 indicates that the real difficulty of the problem is not determining the exact positions of
the facilities in the optimal solution, but to determine the service clusters that the optimal solution forms.
In fact, if we knew the clusters C∗

1t, C∗
2t, then Lemma 4.1 provides us with a 3-approximation algorithm.

Obviously, this information cannot be acquired in the online setting, since C∗
1t, C∗

2t depend on the future
positions of the agents that we do not know. We prove that Algorithm 2 has an approximation guarantee of
21 with respect to the solution y, that directly translates to an approximation guarantee of 63 with respect
to Cost(x∗). The latter is formally stated in Lemma 4.2 and is the main result of this section.

Lemma 4.2 Let x = {xt
1, xt

2}t≥1 be the solution produced by Algorithm 2. Then, the cost paid by solution x

at stage t,
∑2

k=1 |x
t
k − xt−1

k |+
∑n

i=1 mink=1,2 |xt
k − αt

i|, is at most

21
2

∑

k=1

[H(C∗
kt) + |yt

k − yt−1
k |] + Φt(xt)− Φt−1(xt−1)

where Φt(x1, x2) = 2(|x1 − yt
1|+ |x2 − yt

2|) + |x1 − x2|.
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xt−1
1 xt−1

2

αt
1 αt

n

If both facilities 1 and 2 are on the left of the agents,

then facility 2 is moved to the right until hitting the

position of the leftmost agent (the case with facilities 1

and 2 on the right of agents is symmetric).

xt−1
1 xt−1

2

αt
1 αt

n

If facility 1 is on the left of the agents and facility

2 is on the right of the agents, then both facilities

are moved with the same speed towards the interval

[αt
1, αt

n] until one of them hits the interval.

Figure 2: Step 1 of Algorithm 2 is depicted. After this step, the positions of the facilities are denoted by z1, z2 in
Algorithm 2.

Lemma 4.2 directly implies Theorem 4.1 by applying a telescopic sum over all t and then applying
Lemma 4.1. Notice that the additive term |x0

1 − x0
2| in Theorem 4.1 depends only on the initial positions

of the facilities and follows from the fact that Φ0(x0) = |x0
1 − x0

2|. Since the additive term is a constant
independent from the request sequence (the client positions Ct), it is common to define the competitive ratio
of an online algorithm as in Section 2. In the rest of the section, we present the proof ideas of Lemma 4.2,
which come together with explaining Steps 1 and 2 of our algorithm. Let us start with explaining Step 1.
First, note that since x0

1 ≤ x0
2, then xt

1 ≤ xt
2 by our algorithm construction. Now, assume that xt−1

2 ≤ αt
1

(second case). Before deciding the exact positions of the facilities, we can safely move facility 2 to the right
until reaching αt

1. The term safely means that this moving cost is roughly upper bounded by the moving
cost

∑2
k=1 |y

t
k − yt−1

k |. This safe moving applies to all three cases of Step 1 in Algorithm 2 and is formally
stated in Lemma 4.3.

Lemma 4.3 Let z = (z1, z2) denote the values of the variables z1, z2 after Step 1 of Algorithm 2. Then,

2
∑

k=1

|zk − xt−1
k | ≤ 2

2
∑

k=1

|yt
k − yt−1

k | − Φt(z) + Φt−1(xt−1)

The proof of Lemma 4.3 can be found in subsection A.2 of the Appendix. Lemma 4.3 reveals the basic
idea of Step 1 performed by the online algorithm. We remind that Step 1 is performed by Algorithm 2 if
both facilities are outside the interval Ct at the beginning of stage t. Therefore, it distinguishes between
the three cases depicted in Figure 2 (We show 2 cases since the case with both facilities on the right of the
agents is symmetric to the first). Moving with the same speed towards the interval [at

1, at
n] results to the

same moving cost for both facilities; both facilities will move the distance of the facility which is closest to
its closest agent.

According to the geometry of the agents’ positions, we can identify a safe move whose cost is also paid by
solution y for moving the facilities. Moreover, the proof of Lemma 4.3 reveals why we compare our algorithm
with the solution y and not directly with x∗. All these safe moves are based on the fact that either yt

1 or yt
2

lies in the Ct = [αt
1, αt

n] (the latter does not necessarily hold for x∗). Finally, the potential function Φt(x1, x2)
is crucial, since it permits safe moves, when all agents are on the right/left of the facilities (first/second case)
as well as when they are contained in the interval [xt−1

1 , xt−1
2 ] (third case). This idea was first developed for

the K-server problem Koutsoupias [18].
Up next, we analyze the ideas of Step 2. We now need to bound the connection cost plus some additional

moving cost from the point where the safe move stopped. The following lemma formalizes the guarantees
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provided by Algorithm 2 after the execution of Step 2. The full proof of Lemma 4.4 can be found in
subsection A.2 of the Appendix.

Lemma 4.4 Let xt = (xt
1, xt

2) denote the locations of facilities at stage t after the execution of Step 2.
Then,

2
∑

k=1

[H(Ckt) + |xt
k − zk|] ≤ 21

2
∑

k=1

H(C∗
kt)− Φt(xt) + Φt(z)

When Algorithm 2 performs Step 2, we know that at least one facility lies inside the interval Ct. This
facility will definitely connect some agents of Ct, since we can charge it a small moving cost even if it connects
all agents. Thus, the algorithm needs only to decide whether it will connect agents by using only one facility
or by using both facilities. The decision depends on the distance between the facility, which is outside of Ct

(in case there is one), and the closest agent to this facility. If this distance is ”small” (resp. if the facility
is already inside the interval), Algorithm 2 will connect agents to both facilities minimizing the connection
cost using two facilities. This will guarantee that the moving cost and connection cost incurred are relatively
small compared to the cost of solution y.

Now, if the facility, which is outside the interval Ct, is ”far” from its closest agent, Algorithm 2 moves
this facility towards Ct by a distance, depending on the optimal connection cost using one facility, and serves
all agents using the facility, which is inside Ct. Then, we can prove that this move is sufficient to bound the
total cost of the algorithm compared to the cost of solution y, even if y has arbitrarily smaller connection
cost (if it uses both facilities to serve the agents). The choices of Algorithm 2 are depicted in Figure 3. We
provide more detailed Figures based on the analysis of Algorithm 2 in subsection A.2 of the Appendix.

xt
1

z1 z2

αt
1 αt

n

The first choice of Step 2 is depicted. In this case, the

facility initially lying inside the interval [αt
1, αt

n] moves

to the median of agents. In this position, the connec-

tion cost is minimized using one facility.

z1 xt
1 xt−1

2

αt
1 αt

n

xt
2

The second choice of Step 2 is depicted. Facilities are

placed to the positions, where the connection cost of

the agents is minimized using two facilities.

Figure 3: Step 2 of Algorithm 2 is depicted.

5 Open Problems

Regarding the offline variant of the K-facility reallocation problem, it would be interesting to consider the
problem in general metric spaces. Since K-facility reallocation is essentially a dynamic K-median problem,
a main open problem is to design approximation algorithms for this problem as well as to find lower bounds
on the approximation ratio of any offline algorithm in general metric spaces. Turning to the online variant,
the main question arising is to design an online algorithm for online K-facility reallocation problem on the
line. This variant with any number of facilities seems much more intriguing. It would also be interesting to
consider randomized algorithms for both the online and the offline variant.
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in conference programs. In Proceedings of the Twenty-Fifth International Joint Conference on Ar-
tificial Intelligence, IJCAI 2016, New York, NY, USA, 9-15 July 2016, pages 144–150, 2016. URL
http://www.ijcai.org/Abstract/16/028.

[8] C. Coester, E. Koutsoupias, and P. Lazos. The infinite server problem. In 44th International Colloquium
on Automata, Languages, and Programming, ICALP 2017, page 14:1âĂŞ14:14, 2017.

[9] Christian Coester and Elias Koutsoupias. The online k-taxi problem. To appear in STOC 2019, 2019.
URL http://arxiv.org/abs/1807.06645.

[10] Bart de Keijzer and D. Wojtczak. Facility reallocation on the line. In Proceedings of the Twenty-Seventh
International Joint Conference on Artificial Intelligence, IJCAI 2018, July 13-19, 2018, Stockholm,
Sweden., pages 188–194, 2018.

[11] G. DivÃľki and C. Imreh. Online facility location with facility movements. Central European Journal
of Operations Research, 19(2):191–200, 2011.

[12] Zvi Drezner and Horst W. Hamacher. Facility location - applications and theory. Springer, 2002. ISBN
978-3-540-42172-6. URL http://www.springer.com/computer/swe/book/978-3-540-42172-6.

[13] D. Eisenstat, C. Mathieu, and N. Schabanel. Facility location in evolving metrics. In Proceedings of
ICALPâĂŹ14, pages 459–470. Springer, 2014.

[14] A. Fiat, Y. Rabani, and Y. Ravid. Competitive k-server algorithms (extended abstract). In 31st Annual
Symposium on Foundations of Computer Science, pages 454–463, 1990.

[15] Dimitris Fotakis. Online and incremental algorithms for facility location. SIGACT News, 42(1):97–131,
2011.

[16] Z. Friggstad and M.R. Salavatipour. Minimizing movement in mobile facility location problem. ACM
Transactions on Algorithms (TALG), 7(3):28, 2011.

15

http://www.ijcai.org/Abstract/16/028
http://arxiv.org/abs/1807.06645
http://www.springer.com/computer/swe/book/978-3-540-42172-6


[17] Anupam Gupta, Kunal Talwar, and Udi Wieder. Changing bases: Multistage optimization for matroids
and matchings. In Automata, Languages, and Programming - 41st International Colloquium, ICALP
2014, Copenhagen, Denmark, July 8-11, 2014, Proceedings, Part I, pages 563–575, 2014.

[18] Elias Koutsoupias. The k-server problem. Computer Science Review, 3(2):105âĂŞ118, 2009.

[19] N. Lazic. Message Passing Algorithms for Facility Location Problems. PhD thesis, University of Toronto,
2011.

[20] Edo Liberty, Ram Sriharsha, and Maxim Sviridenko. An algorithm for online k-means clustering. In
Proceedings of the Eighteenth Workshop on Algorithm Engineering and Experiments, ALENEX 2016,
Arlington, Virginia, USA, January 10, 2016, pages 81–89, 2016.

[21] Adam Meyerson. Online facility location. In 42nd Annual Symposium on Foundations of Computer
Science, FOCS 2001, 14-17 October 2001, Las Vegas, Nevada, USA, pages 426–431, 2001.

A Appendix

A.1 Omitted proofs of Section 3.4

Lemma 3.3 Let St
k the fractional switching cost of facility k at stage t. Then,

T
∑

t=1

∑

k∈F

St
k =

1
N

T
∑

t=1

K·N
∑

j=1

d(Y t−1
j , Y t

j )

Proof: By Assumption 1, ct
j = 1/N if j ∈ V +

t = {Y t
1 , . . . , Y t

KN} and 0 otherwise. Notice that the
connection cost of the optimal fractional solution only depends on the variables ct

j . As a result, f t
kj , St

k, St
kjl

must be the optimal solution of the following linear program.

minimize
T
∑

t=1

K
∑

k=1

St
k

s.t.
∑

k∈F

f t
kj = 1

N ∀j ∈ V +
t , t ∈ {1, T }

∑

j∈V +
t

f t
kj = 1 ∀k ∈ F, t ∈ {1, T }

St
k =

∑

j,l∈V

d(j, l)St
kjl∀k ∈ F, t ∈ {1, T }

∑

j∈V +
t−1

St
kjl = f t

kl ∀k ∈ F, l ∈ V +
t , t ∈ {1, T }

∑

l∈V +
t

St
kjl = f t−1

kj ∀k ∈ F, j ∈ V +
t−1, t ∈ {1, T }

Instead of proving that the minimum cost of the above linear program is 1
N

T
∑

t=1

K·N
∑

j=1

d(Y t−1
j , Y t

j ), we prove

this for the following more convenient relaxation of the above LP.

minimize
T
∑

t=1

∑

j∈V +
t−1

,l∈V +
t

d(j, l)F t
jl

s.t.
∑

l∈V +
t

F t
jl = 1

N ∀j ∈ V +
t−1, t ∈ {1, T }

∑

j∈V +
t−1

F t
jl = 1

N ∀l ∈ V +
t , t ∈ {1, T }

(1)
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It is easy to prove that the LP (1) is a relaxation of the first by setting F t
jl =

∑

k∈F St
kjl. Moreover, the

above LP describes a flow problem between the nodes V +
t , where F t

jl is the amount of flow going from node
j ∈ V +

t−1 to node l ∈ V +
t (see Figure 4).

We are ready for the final step of our proof. First, observe that F t
Y t−1

j
Y t

j

is feasible solution for the

above LP since |V +
t−1| = |V +

t | = K · N . If we prove that this assignment minimizes the objective, then
we are done. Assume that in the optimal solution, F t

Y t−1
1 Y t

1

< 1/N . Since
∑

l∈V +
t

F t
Y t−1

1 l
= 1

N , there exists

Y t
j such that F t

Y t−1
1 Y t

j

> 0. Similarly, by using the second constraint we obtain that F t
Y t−1

j′
Y t

1

> 0. Let

ǫ = min(F t
Y t−1

1 Y t
j

, F t
Y t−1

j′
Y t

1

). Observe that if we increase F t
Y t−1

1 Y t
1

, F t
Y t−1

j′
Y t

j

by ǫ and decrease F t
Y t−1

1 Y t
j

, F t
Y t−1

j′
Y t

1

by ǫ, we obtain another feasible solution. The cost difference of the two solutions is D = ǫ(d(Y t−1
1 , Y t

j ) +
d(Y t−1

j′ , Y t
1 ) − d(Y t−1

1 , Y t
1 ) − d(Y t−1

j′ , Y t
j )). If we prove that D is no negative, we are done. We show the

latter using the fact that Y t−1
1 ≤ Y t−1

j′ and Y t
1 ≤ Y t

j . More precisely,

• If Y t−1
1 ≤ Y t

1 then D ≥ 0 since Y t
1 ≤ Y t

j .

• If Y t−1
1 ≥ Y t

1 then D ≥ 0 since Y t−1
1 ≤ Y t−1

j′ .

Until now, we have shown that in the optimal solution, the node Y t−1
1 sends all of her flow to the node

Y t
1 . Meaning that Y t

1 does not receive flow by any other node apart from Y t−1
1 . By repeating the same

argument, it follows that in the optimal solution each node Y t−1
j sends all of her flow to Y t

j . �

Y 0
1

Y 0
2

Y 0
K·N

...

Y 1
1

Y 1
2

Y 1
K·N

...

Y t−1
1

Y t−1
j′

Y t−1
K·N

...

Y t
1

Y t
j

Y t
K·N

...

. . .

. . .

F t

Y
t−1

1
Y t

1

F t

Y
t−1

1
Y t

j

F t

Y
t−1

j′
Y t

1

F t

Y
t−1

j′
Y t

j

F 1

11

F 1

21

Y T −1
1

Y T −1
2

Y T −1
K·N

...

Y T
1

Y T
2

Y T
K·N

...

. . .

. . .

F T
11

F T
21

... ...

Figure 4: The flow described by LP (1).

Lemma 3.5 Let ConCostt
i(Solp) denote the connection cost of agent i at stage t in Solp of Definition 4.

Then

1
N

N
∑

p=1

ConCostt
i(Solp) =

∑

i∈C

∑

j∈V

d(Loc(i, t), j)xt
ij

Proof: We will prove that 1
N

∑N
p=1 ConCostt

i(Solp) equals
∑

j∈V d(Loc(i, t), j)xt
ij . We remind that by

Assumption 1, cj is 1/N if j ∈ V +
t and 0 otherwise. As a result, in the optimal fractional solution, each

agent i finds the N closest to Loc(i, t) nodes of V +
t and receives a 1/N amount of service from each one

of them. Let us call this set N t
i . By Observation 1, the nodes in N t

i must be consecutive nodes of V +
t i.e.

N t
i = {Y t

l , . . . , Y t
l+N−1} and

17



∑

j∈V

d(Loc(i, t), j)xt
ij =

l+N−1
∑

j=l

d(Loc(i, t), Y t
j )/N

Since Solp puts facilities in the positions {Y t
(m−1)·N+p}

K
m=1, there exists a unique node Y t

l(p) ∈ N t
i in which

Solp puts a facility. Y t
l(p) is the closest node to Loc(i, t) from all the nodes in which Solp puts a facility. As

a result, ConCostt
i(Solp) = d(Loc(i), Y t

l(p)). Now, summing over p we get,

1
N

N
∑

p=1

ConCostt
i(Solp) =

1
N

N
∑

p=1

d(Loc(i), Y t
l(p))

=
l+N−1

∑

j=l

d(Loc(i), Y t
j )/N

=
∑

j∈V

d(Loc(i, t), j)xt
ij

�

A.2 Omitted proofs of Section 4

Lemma 4.3 Let z = (z1, z2) denote the values of the variables z1, z2 after Step 1 of Algorithm 2. Then,

2
∑

k=1

|zk − xt−1
k | ≤ 2

2
∑

k=1

|yt
k − yt−1

k | − Φt(z) + Φt−1(xt−1)

Proof: Assume that xt−1
2 ≤ αt

1, then Algorithm 2 will first move facility 2 to αt
1 (z1 = xt−1

1 , z2 = αt
1),

paying moving cost equal to |αt
1 − xt−1

2 |. This moving cost can be bounded with the use of the potential
function Φ. More specifically, we have that Φt(z)− Φt(xt−1) + Φt(xt−1)− Φt−1(xt−1)

= Φt(z)− Φt(xt−1) + 2
2

∑

k=1

(|yt
k − xt−1

k | − |yt−1
k − xt−1

k |)

≤ Φt(z)− Φt(xt−1) + 2
2

∑

k=1

|yt
k − yt−1

k | (2)

In the considered case z1 = xt−1
1 , z2 = αt

1, the difference Φt(z)−Φt(xt−1) in the potential function equals the
quantity 2(|yt

2−αt
1|− |y

t
2−xt−1

2 |) + |xt−1
1 −αt

1|− |x
t−1
1 −xt−1

2 |. By the definition of solution y in Lemma 4.2,
either yt

1 or yt
2 lies in the interval [αt

1, αt
n]. Since either yt

1 or yt
2 lies in the interval [at

1, at
2] and yt

1 ≤ yt
2, we have

that at
1 ≤ yt

2. Meaning that z2 is closer to yt
2 than xt−1

2 and consequently 2(|yt
2−at

1|−|y
t
2−xt−1

2 |) = −2|xt−1
2 −

at
1|. Therefore, Φt(z)−Φt(xt−1) = −2|xt−1

2 −at
1|+ |x

t−1
1 −αt

1|− |x
t−1
1 −xt−1

2 | = −|at
1−xt−1

2 | = −|z2−xt−1
2 |,

which completes the proof of Lemma 4.3 for this case of Step 1.
Notice that inequality (2) holds for all three cases of Step 1. Thus, one just need to prove that Φt(z)−

Φt(xt−1) ≤ −
∑2

k=1 |zk − xt−1
k | for the other two cases. We prove it for the third case of Step 1, since the

second case (xt−1
1 ≥ αt

n) is just symmetric to the first case.
In the third case of Step 1, we have that xt−1

1 < at
1, xt−1

2 > at
n, z1 = xt−1

1 + min(|xt−1
1 − at

1|, |x
t−1
2 − at

n|)
and z2 = xt−1

2 − min(|xt−1
1 − at

1|, |x
t−1
2 − at

n|). The difference Φt(z) − Φt(xt−1) in the potential function
equals the quantity 2(|z1 − yt

1| − |x
t−1
1 − yt

1| + |z2 − yt
2| − |x

t−1
2 − yt

2|) + |z1 − z2| − |x
t−1
1 − xt−1

2 |. Now,
|z1− z2| - |xt−1

1 − xt−1
2 | = −2 min(|xt−1

1 −αt
1|, |x

t−1
2 −αt

n|) = −
∑2

k=1 |zk − xt−1
k |. Assume that yt

1 ∈ [at
1, at

n],
then

∑2
k=1(|zk − yt

k| − |x
t−1
k − yt

k|) ≤ 0 since |z1 − yt
1| − |x

t−1
1 − yt

1| = −min(|xt−1
1 − αt

1|, |x
t−1
2 − αt

n|) and

18



|z2 − yt
2| − |x

t−1
2 − yt

2| ≤ min(|xt−1
1 − αt

1|, |x
t−1
2 − αt

n|). As a result, inequality (2) holds. Using the same
argument in case yt

2 ∈ [at
1, at

n] completes the proof. �

Lemma 4.4 Let xt = (xt
1, xt

2) denote the locations of facilities at stage t after the execution of Step 2. Then,

2
∑

k=1

[H(Ckt) + |xt
k − zk|] ≤ 21

2
∑

k=1

H(C∗
kt)− Φt(xt) + Φt(z)

Proof: Observe that by Algorithm 2, either at
1 ≤ z1 ≤ at

n or at
1 ≤ z2 ≤ at

n. As a result, we need to prove
the claim for the following 4 cases:

• a1 ≤ z1 ≤ an and z2 − an ≥ 3H(Ct)

• a1 ≤ z1 ≤ an and z2 − an < 3H(Ct)

• a1 ≤ z2 ≤ an and a1 − z1 ≥ 3H(Ct)

• a1 ≤ z2 ≤ an and a1 − z1 < 3H(Ct)

We will prove just the first and the second case since the third is symmetric to the first and the forth is
symmetric to the second.

In case a1 ≤ z1 ≤ an and z2 − an ≥ 3H(Ct), Algorithm 2 puts facility 1 in the median of Ct, namely
xt

1 = MCt
(or xt

1 ∈MCt
in case the number of agents is even), and moves facility 2 to the left by a distance

of 3H(Ct).

z1 xt
1 z2

at
1 at

n

xt
2

≥ 3H(Ct)

3H(Ct)

First note that
∑2

k=1 H(Ckt) ≤ H(Ct) since xt
1 ∈ MCt

. Then |xt
1 − z1| ≤ |a

t
1 − at

n| ≤ H(Ct) because
both xt

1 and z1 lie in the interval [at
1, at

n] and |xt
2 − z2| = 3H(Ct) by Algorithm 2. Therefore, we have that

∑2
k=1 H(Ckt) + |xt

k − zk| ≤ 5H(Ct).
By the geometry of this case and the aforementioned bounds,

Φt(xt)− Φt(z) = 2
2

∑

k=1

(

|xt
k − yt

k| − |zk − yt
k|

)

+ |xt
1 − xt

2| − |z1 − z2|

≤ 2
2

∑

k=1

(

|xt
k − yt

k| − |zk − yt
k|

)

− 2H(Ct)

Since
∑2

k=1 [H(Ckt) + |xt
k − zk|] ≤ 5H(Ct), the challenge is bounding

∑2
k=1 (|xt

k − yt
k| − |zk − yt

k|) by the
connection cost

∑2
k=1 H(C∗

kt). In case
∑2

k=1 H(C∗
kt) = H(Ct) meaning that yt connects all agents to just

one facility things are quite easy, at least intuitively. The real difficulty arises when C1t 6= ∅ and C2t 6= ∅,
where

∑2
k=1 H(C∗

kt) can be arbitrarily smaller than H(Ct). As we will see in this case xt gets closer to yt

and the term
∑2

k=1 (|xt
k − yt

k| − |zk − yt
k|) becomes negative.

We start with the most challenging case, where C∗
1t 6= ∅ and C∗

2t 6= ∅. We remind that our goal is
showing that xt gets closer to yt. Since C∗

2t 6= ∅ and yt
2 ∈ MC∗

2t
we get that yt

2 ≤ at
n and as a result

|xt
2 − yt

2| − |z2 − yt
2| = |x

t
2 − z2| − 3H(Ct).
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z1 xt
1 z2yt

1 yt
2

at
1 at

n

xt
2

≥ 3H(Ct)

3H(Ct)

Φt(xt)− Φt(z) ≤ 2
2

∑

k=1

(

|xt
k − yt

k| − |zk − yt
k|

)

− 2H(Ct)

= 2
(

|xt
1 − yt

1| − |z1 − yt
1|

)

+ 2
(

|xt
2 − z2| − |z2 − yt

2|
)

− 2H(Ct)

≤ 2|xt
1 − z1| − 8H(Ct)

≤ 2H(Ct)− 8H(Ct)

≤ −6H(Ct)

≤
2

∑

k=1

H(C∗
kt)−

2
∑

k=1

[H(Ckt) + |xt
k − zk|]

Now, assume that C∗
1t = ∅ or C∗

2t = ∅ meaning that
∑2

k=1 H(C∗
kt) = H(Ct). As a result, bounding everything

by H(Ct) serves our purpose. More formally,

Φt(xt)− Φt(z) ≤ 2
2

∑

k=1

(

|xt
k − yt

k| − |zk − yt
k|

)

− 2H(Ct)

≤ 2
2

∑

k=1

|xt
k − zk| − 2H(Ct)

≤ 6H(Ct)

≤ 11H(Ct)−
2

∑

k=1

[

H(Ckt) + |xt
k − zk|

]

= 11
2

∑

k=1

H(C∗
kt)−

2
∑

k=1

[

H(Ckt) + |xt
k − zk|

]

The forth inequality follows from the fact that
∑2

k=1 H(Ckt) + |xt
k − zk| ≤ 5H(Ct).

We now need to treat the second case where a1 ≤ z1 ≤ an and z2 − an < 3H(Ct). Since Algorithm 2
computes the optimal clustering (C1t, C2t) and puts xt

1 in the interval MC1t
and xt

2 in the interval MC2t
, we

are ensured that the connection cost of our solution is less than the connection cost of yt,
∑2

k=1 H(Ckt) ≤
∑2

k=1 H(C∗
kt), so we are mostly concerned in bounding

∑2
k=1 |x

t
k − zk|.

z1 xt
1

z2

at
1 at

n

xt
2

≤ 3H(Ct)

The easy case is when
∑2

k=1 H(C∗
kt) = H(Ct). A small difference with the previous case is that we don’t

know how |xt
2 − z2| is. However, z1, xt

1, xt
2 ∈ [at

1, . . . at
n] and |xt

2 − z2| = |xt
2 − at

n| + |at
n − z2|. Thus,

|xt
1 − z1|+ |xt

2 − at
n| ≤ H(Ct), |at

n − z2| ≤ 3H(Ct) and therefore
∑2

k=1[H(Ckt) + |xt
k − zk|] ≤ 5H(Ct). So we

can again bound everything by H(Ct).
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Φt(xt)− Φt(z) = 2
2

∑

k=1

(

|xt
k − yt

k| − |zk − yt
k|

)

+ |xt
1 − xt

2| − |z1 − z2|

≤ 3
2

∑

k=1

|xt
k − zk|

≤ 4
2

∑

k=1

|xt
k − zk| −

2
∑

k=1

|xt
k − zk|

≤ 20H(Ct)−
2

∑

k=1

[

|xt
k − zk|

]

≤ 21
2

∑

k=1

H(C∗
kt)−

2
∑

k=1

[

H(Ckt) + |xt
k − zk|

]

Things become more complicated, when the connection cost
∑2

k=1 H(C∗
kt) is relatively small (C∗

1t 6= ∅ and
C∗

2t 6= ∅), where bounding everything by H(Ct) does not work. However, the solutions xt and yt will be
relatively close in this case. More formally,

Φt(xt)− Φt(z) = 2
2

∑

k=1

(

|xt
k − yt

k| − |zk − yt
k|

)

+ |xt
1 − xt

2| − |z1 − z2|

= 2
2

∑

k=1

|xt
k − yt

k| − 2
2

∑

k=1

|zk − yt
k|+

2
∑

k=1

|xt
k − zk|

= 2
2

∑

k=1

|xt
k − yt

k|+ 2
2

∑

k=1

(

|xt
k − zk| − |zk − yt

k|
)

−
2

∑

k=1

|xt
k − zk|

≤ 4
2

∑

k=1

|xt
k − yt

k| −
2

∑

k=1

|xt
k − zk|

We need to upper bound the distance
∑2

k=1 |x
t
k − yt

k|. Observe that in the solution xt, the agent at position
at

1 connects to the left facility (facility 1) and the agent at position at
n connects to the right facility (facility

2), |xt
1 − at

1|+ |x
t
2 − at

n| ≤
∑2

k=1 H(Ckt). Since C∗
1t 6= ∅ and C∗

2t 6= ∅, the same holds for the solution yt. As
a result,

Φt(xt)− Φt(z) ≤ 4
2

∑

k=1

|xt
k − yt

k| −
2

∑

k=1

|xt
k − zk|

≤ 4
(

|xt
1 − at

1|+ |y
t
1 − at

1|+ |x
t
2 − at

n|+ |y
t
2 − at

n|
)

−
2

∑

k=1

|xt
k − zk|

≤ 4
2

∑

k=1

[H(Ckt) + H(C∗
kt)]−

2
∑

k=1

|xt
k − zk|

≤ 9
2

∑

k=1

H(C∗
kt)−

2
∑

k=1

[

H(Ckt) + |xt
k − zk|

]

�
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