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Abstract

Mobile sensors are located on a barrier represented by a line segment. Each sensor has a
single energy source that can be used for both moving and sensing. A sensor consumes energy in
movement in proportion to distance traveled, and it expends energy per time unit for sensing in
direct proportion to its radius raised to a constant exponent. We address the problem of energy
efficient coverage. The input consists of the initial locations of the sensors and a coverage time
requirement t. A feasible solution consists of an assignment of destinations and coverage radii
to all sensors such that the barrier is covered. We consider two variants of the problem that are
distinguished by whether the radii are given as part of the input. In the fixed radii case, we are
also given a radii vector ρ, and the radii assignment r must satisfy ri ∈ {0, ρi}, for every i, while
in the variable radii case the radii assignment is unrestricted. The goal is to cover the barrier
for t time in an energy efficient manner. More specifically, we consider two objective functions.
In the first the goal is to minimize the sum of the energy spent by all sensors and in the second
the goal is to minimize the maximum energy used by any sensor.

We present fully polynomial time approximation schemes for the problem of minimizing the
energy sum with variable radii and for the problem of minimizing the maximum energy with
variable radii. We also show that the latter can be approximated within any additive constant
ε > 0. We present a 2-approximation algorithm for the problem of minimizing the maximum
energy with fixed radii which also is shown to be strongly NP-hard. We show that the problem
of minimizing the energy sum with fixed radii cannot be approximated within a factor of O(nc),
for any constant c, unless P=NP. Additional results are given for three special cases: (i) sensors
are stationary, (ii) free movement, and (iii) uniform fixed radii.
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1 Introduction

Battery lifetime is a significant bottleneck on wireless sensor network performance. Thus, one of
the fundamental problems in sensor networks is optimizing battery usage when accomplishing tasks
such as covering, monitoring, tracking and communicating. We study the problem of covering a
boundary or a barrier by mobile sensors, e.g., covering borders, coastlines, railroads, etc. Also,
often covering region boundaries is the cost efficient way of protecting the interior. The focus of
this paper is to determine what is the most energy efficient way of covering a straight-line barrier
for a predetermined amount of time with mobile sensors given some initial arrangement of these
sensors on the barrier. Prior work tried to optimize either covering costs or mobility costs but
not a combination of both costs. We consider a model where energy is consumed by sensing and
movement from a single battery source as is most commonly the architecture [2].

1.1 Model

We consider a setting where there are n mobile sensors initially located on a barrier represented
by the interval [0, 1]. (It is convenient, but not essential, to assume that the sensors are located on
the barrier.) Let x = (x1, . . . , xn) be the initial position vector, where xi is the initial position of
sensor i. We assume that the sensor positions are given in sorted order, i.e., x1 ≤ x2 ≤ · · · ≤ xn.
We consider the set-up and sense model [12, 11, 13, 23, 7], where sensors first move to their desired
destinations and then begin sensing. Let y = (y1, . . . , yn) be the deployment vector, where yi is the
destination position of sensor i. The system works in two phases. In the deployment phase, sensor
i moves from its initial position xi to its destination yi. Without loss of generality, this phase ends
at time 0. In the covering phase, sensor i is assigned a sensing radius ri and covers the interval
[yi − ri, yi + ri]; let r = (r1, . . . , rn) be the radii vector. We call this interval the covering interval
of sensor i. An example of movement and coverage by one sensor is given in Fig. 1. It is required
that the sensors collectively cover the unit interval, i.e., [0, 1] ⊆ ∪i[yi − ri, yi + ri]. A pair (y, r) is
called feasible if it covers [0, 1].

Sensor i expends energy both in moving and sensing. Given a deployment point yi, the energy
sensor i spends in movement is proportional to the distance i has traveled, and given by a|xi− yi|,
where a is the constant of proportionality, also referred to as the cost of friction. The energy
consumption per time unit of sensor i with a covering radius of ri is rαi , where α ≥ 1 is the path-
loss exponent [16]. Given radii assignment r, a sensor i is called active if ri > 0, and otherwise it
is called inactive. Given a deployment y, a radii assignment r, and a time t, sensor i needs at least

Eti (y, r)
def
= a|yi − xi|+ trαi

energy in order to maintain coverage of the interval [yi − ri, yi + ri] for t time. (We usually omit t
and write Ei(y, r), when t is clear from the context.)

0 1xi

riri

yi

Figure 1: Sensor i moves from xi to yi and covers the interval [yi − ri, yi + ri].
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1.2 The Problems

Given an instance (x, t), we seek a feasible pair (y, r) that is “green” with energy expenditure or
energy-efficient. We consider two objective functions: (i) minimizing the sum of the energy used,
namely minimizing

∑
iEi(y, r); and, (ii) minimizing the maximum amount of energy expended,

i.e., minimizing maxiEi(y, r). We also consider two variants of the problem that are distinguished
by whether the radii are given as part of the input. In the variable radii case the goal is to find a
radii assignment r such that ri ≥ 0, for every i, while in the fixed radii case the input contains a
radii vector ρ, and the goal is to find a radii assignment r, such that ri ∈ {0, ρi}, for every i. Thus,
we get four variants:

1. Minimum Sum Energy with Variable Radii (SumVar)
2. Minimum Sum Energy with Fixed Radii (SumFix)
3. Minimum Max Energy with Variable Radii (MaxVar)
4. Minimum Max Energy with Fixed Radii (MaxFix)

Sometimes when we consider a specific friction parameter a we add a subscript a to the problem
name. For example, SumVar0 stands for the problem of finding a pair (y, r), where r is variable,
that minimizes

∑
iEi(y, r) for a = 0.

Given a SumFix or a MaxFix instance (x, ρ, t), we say that the radii vector ρ is uniform
if ρi = ρj , for every pair of sensors i and j. Also, we assume that

∑
i 2ρi ≥ 1 throughout the

paper, since otherwise there is no feasible solution. A solution (y, r) (or a deployment y) is called
non-swapping if xi < xj implies yi ≤ yj .

1.3 Related Work

Most previous research has implicitly assumed a two battery model, in which there is a separate
battery for movement and a separate battery for sensing. These works attempt to optimize on only
one of the parameters.

When only moving is optimized (covering energy is ignored) the problem is equivalent to having
an infinite covering battery. In our model such problems can be described by setting t = 0.
Czyzowicz et al. [12] addressed the problem of deploying sensors on a line barrier while minimizing
the maximum distance traveled by any sensor, where radii are uniform. This is MaxFix1 with
uniform radii and t = 0 in our model. (In this case we may assume without loss of generality that
a = 1.) They provided a polynomial time algorithm for this problem. It follows that there is a
polynomial time algorithm for MaxFix with t = 0 and uniform radii, for any a ∈ (0,∞). They
also gave an NP-hardness result for a variant of this problem with non-uniform radii in which one
sensor is assigned a predetermined position. Chen et al. [11] gave a polynomial time algorithm for
the more general case in which the sensing radii are non-uniform, namely for MaxFix1 with t = 0,
and improved upon the running time for MaxFix1 with uniform radii and t = 0.

Czyzowicz et al. [13] studied the problem of covering a barrier with mobile sensors with the
goal of minimizing the sum of distances traveled by all sensors. This problem is a special case of
SumFix1 in which t = 0 (without loss of generality a = 1). They presented a polynomial time
algorithm for SumFix1 with uniform radii and t = 0 and they also showed that the non-uniform
problem cannot be approximated within a factor of c, for any constant c.

There are other problems in which movement is optimized. We list several examples. Mehran-
dish et al. [20] considered the same model with the objective of minimizing the number of sensors
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which must move to cover the barrier. Dobrev et al. [15] studied the problem of covering a set of
barriers attempting to optimize movement costs. Tan and Wu [22] presented improved algorithms
for minimizing the max distance traveled and minimizing the sum of distances traveled when sen-
sors must be positioned on a circle in regular n-gon position. The problems were initially considered
by Bhattacharya et al. [8]. Demaine et al. [14] studied minimizing movement of pebbles in a graph
in order to obtain a property (such as connectivity, independence, and perfect matchability), and
the goal is to minimize maximum movement, total movement, or number of movements.

In many papers it is assumed that sensors are static, and the goal is to minimize sensing energy.
Li et al. [16] presented a polynomial time algorithm for SumFix∞ and an FPTAS for SumVar∞
with α = 1. They also showed that SumVar∞ with α = 1 is NP-hard. Agnetis et al. [1] considered
an extension of SumVar∞ with α = 2. They gave a closed form solution for this problem if the
coverage set is given, and developed a branch-and-bound algorithm and heuristics. Some papers
explored discrete coverage of points on the barrier by static sensors (see, e.g., [19, 6]).

Another common research direction is to consider the dual problem which is to maximize the
lifetime of the network where the battery sizes are given. See, e.g., [9, 17, 3, 4, 5, 23, 7].

Chambers et al. [10] looked at the problem of finding, for given points in the plane, an assign-
ment of radii which forms a connected set and for which the sum of the radii to a given power is
minimized. The problem of maximizing the lifetime of a network of static sensors was also consid-
ered. Buchsbaum et al. [9] and Gibson and Varadarajan [17] considered the Restricted Strip
Cover problem in which sensors are static and radii are fixed, and sensors may start covering at
any time. Bar-Noy et al. [3, 4, 5] and Poss and Rawitz [21] studied stationary sensors with variable
radii that may start covering at any time.

To the best of our knowledge our earlier papers [23, 7] and this work are the first to consider
energy consumption from moving and sensing from a single battery source. In [23] we attempted to
maximize the transmission lifetime of mobile battery-powered relays on a direct line from source to
sink, and in [7] we considered maximizing barrier coverage lifetime of a network of mobile battery-
powered sensors.

1.4 Our Results

SumVar is studied in Section 2, where we present an O(n) time algorithm for SumVar0 and an
FPTAS for SumVar, for any a. The latter is based on the FPTAS for SumVar∞ with α = 1 by
Li et al. [16]. However, we introduce several new ideas in order to cope with sensor mobility and
with α > 1. In particular we show that there exists a non-swapping optimal solution and use the
optimal value for a = 0 as a lower bound for the case where a > 0.

Section 3 deals with MaxVar. We present an FPTAS for MaxVar that is similar to the
SumVar FPTAS. However, while the SumVar non-swapping property is reminiscent of previous
non-swapping results for uniform radii (see, e.g., [12, 13]), proving MaxVar non-swapping is more
challenging and requires a rigorous case analysis. We present O(n) time algorithms for MaxVar0

and for MaxVar∞, and we also show that MaxVar can be approximated to within an additive
approximation ε > 0, for any constant ε > 0, assuming efficient infinite precision computations.
This result is based on the non-swapping property and on [7].

The results for variable radii are given in Table 1.
In Section 4 we study MaxFix. We provide an O(n log n) time algorithm for MaxFix0. We

show that MaxFix is strongly NP-hard for every a ∈ (0,∞) and α ≥ 1. We also show that
MaxFix is NP-hard, for every a ∈ (0,∞) and α ≥ 1, even if x = (1

2 ,
1
2 , . . . ,

1
2), and this result
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Problem a = 0 a =∞ a ∈ (0,∞)

SumVar α = 1: NP-hard, FPTAS [16]
OPT FPTAS FPTAS

MaxVar OPT OPT FPTAS, OPT+ε

Table 1: Summary of results for variable radii.

Problem a = 0 a =∞ a ∈ (0,∞)
uniform radii general radii

MaxFix t = 0: OPT [12, 11] t = 0: OPT [11]
OPT OPT 2-approximation

strongly NP-hard

SumFix OPT [16] t = 0: OPT [13] ω(1) [13]
FPTAS OPT+ε Ω(nc), for any c

α = 1: NP-hard a = 0: OPT

Table 2: Summary of results fixed radii.

implies that it is NP-hard to find an optimal ordering. On the other hand, we provide a polynomial
time 2-approximation algorithm for MaxFix.

We study SumFix in Section 5. We show that SumFix cannot be approximated within a factor
of O(nc), for any constant c, unless P=NP. We show that SumFix0 is NP-hard for α = 1, and
provide an FPTAS for SumFix0 for any α. We also prove that SumFix with uniform radii can be
approximated to within an additive approximation ε > 0, for any constant ε > 0.

The results for fixed radii are given in Table 2.

2 Minimum Sum Energy with Variable Radii

In this section we consider SumVar. We show that SumVar0 can be solved in linear time, and
the main result of the section is an FPTAS for the case where a > 0. Our FPTAS is based on the
approach of Li et al. [16] who gave an FPTAS for SumVar∞ with α = 1. We note that several
new and non-trivial ideas were introduced in order to cope with mobility and with α > 1.

2.1 Zero Friction

We start with the case where a = 0.

Theorem 1. SumVar0 can be solved in O(n) time with optimum nt
(

1
2n

)α
.

Proof. Given a SumVar0 instance (x, t), let ri = 1
2n , for all i, and let yi = 2i−1

2n , for every i. We
show that (y, r) is an optimal solution. This solution assignment clearly covers [0, 1]. Consider any
radii assignment r′ 6= r that covers the line. It follows that

∑
i r
′
i ≥ 1

2 =
∑

i ri. Since sensors are
free to move without energy consumption, by Jensen’s Inequality we have that∑

i

Ei(y, r) = nt

(
1

2n

)α
≤
∑
i

t(r′i)
α =

∑
i

Ei(y
′, r′) .
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xi yi

yjxj

(a) xi < xj ≤ yj < yi.

xi yi

yj xj

(b) xi ≤ yj ≤ xj ≤ yi.

xi yi

yj xj

(c) yj ≤ xi < xj ≤ yi.

xi yi

xjyj

(d) xi ≤ yj < yi ≤ xj .

xiyi

xjyj

(e) yj < yi ≤ xi < xj .

xi yi

yj xj

(f) yj ≤ xi ≤ yi ≤ xj .

Figure 2: Six configurations of a swapping pair.

xi yi
xj yj

(i) Original deployment.

xi y′i
xj y′j

(ii) New deployment.

Figure 3: Case (a): Swapping where xi ≤ xj ≤ yj ≤ yi.

Thus, (y, r) is optimal as well. Finally, notice that (y, r) can be computed in linear time.

Observe that the cost of the optimal solution may only increase as a increases. Hence, nt
(

1
2n

)α
may serve as a lower bound for the case where a > 0. We use this lower bound in the sequel.

2.2 Non-Zero Friction

Our FPTAS for the non-zero friction case is obtained by the following approach. We first show
that any SumVar instance has a non-swapping optimal solution. Then, we show that we pay an
approximation factor of (1+ε) for only considering a certain family of solutions. Finally, we design
a dynamic programming algorithm that computes an optimal solution within this family.

Lemma 1. Any SumVar instance has a non-swapping optimal solution.

Proof. Let (x, t) be a SumVar instance, and let (y, r) be an optimal solution for (x, t) that mini-
mizes the number of swaps. If there are no swaps, then we are done. Otherwise, we show that the
number of swaps may be decreased. If there are swaps, then there must exist at least one swap due
to a pair of adjacent sensors. Let i and j be such sensors. There are six possible configurations for
such a pair of sensors as shown in Figure 2.

Consider a solution (y′, r′) swapping locations and radii of sensors i and j in (y, r), i.e., with
y′i = yj and r′i = rj , y

′
j = yi and r′j = ri, and y′k = yk and r′k = rk, for every k 6= i, j. Clearly,

the barrier [0, 1] remains covered. We show that the energy sum does not increase, since the total
distance traveled by the sensors does not increase.

Case (a): xi < xj ≤ yj < yi. In this case both sensors redeploy to the right, as shown in Figure 3.
Hence, (y′i − xi) + (y′j − xj) = (yi − xi) + (yj − xj).

Case (e): yj < yi ≤ xi < xj . Symmetric to Case (a).
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xi yi
xjyj

(i) Original deployment.

xi y′i
xj y′j

(ii) New deployment.

Figure 4: Case (b): Swapping where xi ≤ yj ≤ xj ≤ yi.

xi yi
xjyj

(i) Original deployment.

xiy′i
xj y′j

(ii) New deployment.

Figure 5: Case (c): Swapping where xi ≤ yj < yi ≤ xj .

Case (b): xi ≤ yj ≤ xj ≤ yi. In this case, the sensors pass each other, and j’s path is contained in
i’s, as shown in Figure 4. Hence, (yi−xi)+(xj−yj) ≥ yj−xi+yi−xj = (y′i−xi)+(y′j−xj).

Case (f): yj ≤ xi ≤ yi ≤ xj . Symmetric to Case (b).

Case (c): yj ≤ xi < xj ≤ yi. In this case the sensors pass the original locations of each other, as
shown in Figure 5. Hence (yi − xi) + (xj − yj) ≥ yi − xj + xi − yj = (y′j − xj) + (xi − y′i).

Case (d): xi ≤ yj < yi ≤ xj . In this case the sensors do not pass the original locations of each
other, as shown in Figure 6. Hence, (yi−xi)+(xj−yj) ≥ yj−xi+xj−yi = (y′i−xi)+(xj−y′j).

It follows that (y′, r′) is an optimal solution with less swaps than (y, r). A contradiction.

Let m be a large integer to be determined later. We consider solutions in which the sensors
must be located on certain points. More specifically, we define

G = {xi : i ∈ {1, . . . , n}} ∪
{
j

m
: j ∈ {0, . . . ,m}

}
.

The points in G are called grid points. Let g0, . . . , gn+m be an ordering of grid points such that
gi ≤ gi+1. Given a point p ∈ [0, 1], let p+ be the left-most grid point to the right of p, namely
p+ = min {g ∈ G : g ≥ p}. Similarly, p− = max {g ∈ G : g ≤ p} is the right-most grid point to the
left of p. A solution (y, r) is called discrete if (i) yi ∈ G, for every sensor i, and (ii) for every
j ∈ {1, . . . , n+m} there exists a sensor i such that [gj−1, gj ] ⊆ [yi − ri, yi + ri]. That is, in a
discrete solution sensors must be deployed at grid points, and a segment between grid points is
contained in the covering interval of some sensor.

We show that we lose a factor of (1 + ε) by focusing on discrete solutions.

Lemma 2. Let ε ∈ (0, 1), and let m = 8 dαµ/εe, where µ = 2n/ε1/α. Then, for any non-swapping
solution (y, r) there exists a non-swapping discrete solution (y′, r′) such that∑

i

Ei(y
′, r′) ≤ (1 + 2ε)

∑
i

Ei(y, r) .
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xi yi
xjyj

(i) Original deployment.

xi y′i
xjy′j

(ii) New deployment.

Figure 6: Case (d): Swapping where xi ≤ yj < yi ≤ xj .

Proof. Given a SumVar instance (x, t) and a solution (y, r) we construct a discrete solution (y′, r′)
as follows. First, each sensor i is taken back from yi to the direction of xi, until it hits a grid point:

y′i =

{
y+
i yi ≤ xi,
y−i yi > xi.

Also, the radii are increased to compensate for the new deployment, and in order to obtain a
discrete solution: r′i = max {y′i − (yi − ri)−, (yi + ri)

+ − y′i}. The pair (y′, r′) is feasible, since
[yi−ri, yi+ri] ⊆ [y′i−r′i, y′i+r′i] by construction. Moreover, notice that if (gj , gj+1)∩[yi−ri, yi+ri] 6=
∅, then [gj , gj+1] ⊆ [y′i − r′i, y′i + r′i]. Hence, (y′, r′) is discrete. We also note that (y′, r′) is non-
swapping.

It remains to show that ∑
i

Ei(y
′, r′) ≤ (1 + 2ε)

∑
i

Ei(y, r) .

Since y′i can only be closer than yi to xi, we have that |y′i − xi| ≤ |yi − xi|. In addition, the radius
of sensor i may increase due to its movement from yi to y′i and due to covering up to grid points.
Hence, r′i ≤ ri + 2

m .
If ri ≥ 1

2µ , then

r′i ≤ ri +
2

m
≤ ri +

ε

4αµ
≤ ri

(
1 +

ε

2α

)
.

Hence,

Ei(y
′, r′) = a|y′i − xi|+ t(r′i)

α

≤ a|yi − xi|+ trαi

(
1 +

ε

2α

)α
≤
(

1 +
ε

2α

)α
Ei(y, r)

≤ eε/2Ei(y, r) .

Otherwise, if ri <
1

2µ , then

r′i ≤ ri +
2

m
≤ 1

2µ
+

ε

4αµ
≤ 1

µ
.

Hence,

Ei(y
′, r′) = a|y′i − xi|+ t(r′i)

α ≤ a|yi − xi|+ t · 1

µα
= a|yi − xi|+ t · ε

2αnα
.

Putting it all together we get∑
i

Ei(y
′, r′) ≤ eε/2

∑
i

Ei(y, r) + nt
ε

2αnα
≤ (1 + ε)

∑
i

Ei(y, r) + ε · opt (1)
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where the second inequality follows from (i) eε/2 ≤ 1 + ε, for any ε ∈ (0, 1), and (ii) opt ≥ nt 1
(2n)α ,

as observed after Theorem 1.

Lemma 2 implies that there is a discrete non-swapping solution which is (1 + ε)-approximate.
We now present a dynamic programming algorithm for finding the optimal discrete non-swapping
solution.

Lemma 3. There exists an O(nm4) time algorithm that finds the optimal discrete non-swapping
solution.

Proof. The dynamic programming table is denoted by Π, and it is constructed as follows. The
entry Π(i, `, k), where i is a sensor number, ` ∈ {0, . . . , n+m}, and k ∈ {0, . . . , n+m}, stands for
the minimum energy sum needed by a non-swapping discrete solution that uses the first i sensors,
such that the ith sensor is located anywhere in [0, g`], to cover the interval [0, gk]. Observe that the
size of the table is O(nm2). Also, the optimum is given by Π(n, n+m,n+m).

In the base case Π(0, `, 0) = 0, for all `. Otherwise, we have

Π(i, `, k) = min
`′≤`

{
a|g`′ − xi|+ min

{
Π(i− 1, `′, k),min

k′<k

{
Π(i− 1, `′, k′) + trαi

}}}
(2)

where ri = max {g`′ − gk′ , gk − g`′}. Notice that g`′ − gk′ or gk− g`′ may be negative, but not both.
The first term in (2) is the energy required by sensor i to arrive at g`′ . Then, we have two options,
either i participates in the cover or it does not. In the first case, sensors 1 to i − 1 need to cover
[0, gk], and i− 1 may stand anywhere in [0, g`′ ]. Otherwise, ri is determined such that i can cover
[gk′ , gk] while standing at g`′ . The rest of the barrier, i.e., [0, gk′ ] is covered by sensors 1 to i − 1,
and i− 1 may stand anywhere in [0, g`′ ].

Computing each entry takes O(m2) time. Hence, the total running time is O(nm4). We note
that the above algorithm computes the minimum energy sum, but may also be used to compute
the solution that achieves this value using standard techniques.

Lemma 2 and the above algorithm lead to an FPTAS for SumVar.

Corollary 1. There is an O(n5/ε4(1+1/α)) time FPTAS for SumVar.

In the case of static sensors (i.e., a = ∞) the dynamic programming can be simplified, since
there is no reason to deal with the location of the sensors. In this case we have only O(nm) entries,
where Π(i, k) stands for the minimum energy sum needed by a discrete solution that uses the first
i sensors to cover the interval [0, gk]. Also, (2) is changed to

Π(i, k) = min
{

Π(i− 1, k),min
k′<k

{
Π(i− 1, k′) + trαi

}}
, (3)

where ri = max {xi − gk′ , gk − xi}. An entry can be computed in O(m), and the total running time
is O(nm2). We get the following result.

Corollary 2. There is an O(n3/ε2(1+1/α)) time FPTAS for SumVar∞.

3 Minimum Max Energy with Variable Radii

In this section we consider MaxVar. We present a linear time algorithm for MaxVar0 and an
FPTAS for the case where a > 0. We also show a linear time algorithm for the case where a =∞.
For the non-zero finite friction case, along with providing an FPTAS, we also provide an algorithm
that computes solutions within additive factor ε, for any constant ε > 0.
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3.1 Zero Friction

Theorem 2. MaxVar0 can be solved in O(n) time.

Proof. We show that the optimal radii assignment for MaxVar is ri = 1
2n , for all i. This radii

assignment clearly covers [0, 1].
Consider any radii assignment r′ 6= r that covers the line. Since r′ 6= r, it follows that there

exists a sensor j for which r′j > rj . Thus, we have

max
i
Ei(y

′, r′) ≥ Ej(y′, r′) > Ej(y, r) = max
i
Ei(y, r) ,

where y and y′ are the deployments that correspond to r and r′. Hence, r is optimal for MaxVar.

As in SumVar, the optimal value t
(

1
2n

)α
for a = 0 may serve as a lower bound for the case

where a > 0.

3.2 Infinite Friction

Let ∆ = max
{
x1, 1− xn, 1

2 maxni=2 {xi − xi−1}
}

.

Lemma 4. Let (x, T ) be a MaxVar∞ instance, and let (x, r) be a feasible solution. Then,
maxiEi(x, r) ≥ t∆α.

Proof. Let E = maxiEi(x, r), and let R = α
√
E/t. The solution (x, (R,R, . . . , R)) is feasible, since

R ≥ ri, for every i. Also, maxiEi(x, (R,R, . . . , R)) = maxiEi(x, r). We prove the lemma by
showing that maxiEi(x, (R,R, . . . , R)) ≥ t∆α.

Consider the segment (xi, xi+1), for some sensor i. Since all radii are the same, it follows that
this segment is covered by sensors i and i+1. The best way to cover the segment with these sensors
is to let each one cover exactly half the segment. Hence, R ≥ 1

2(xi+1 − xi). A similar one sided
argument applies for the segments (0, x1) and (xn, 1).

We now show a solution that matches the above lower bound.

Theorem 3. MaxVar∞ can be solved in O(n) time.

Proof. It is not hard to verify that the pair (x, (∆,∆, . . . ,∆)) covers [0, 1]. Furthermore,
maxiEi(x, (∆,∆, . . . ,∆)) = t∆α, which means that it is optimal due to Lemma 4. Finally, ∆
can be computed in O(n) time.

3.3 Non-zero Finite Friction: FPTAS

In this section we provide an FPTAS for MaxVar with non-zero finite friction that is based on
the same approach that was used for SumVar. We first show that any MaxVar instance has a
non-swapping optimal solution. Then, we show that we pay an approximation factor of (1 + ε) for
considering non-swapping discrete solutions. Finally, we design a dynamic programming algorithm
that computes an optimal non-swapping discrete solution.

As mentioned above, we prove that there is no need to consider solutions which swap sensors,
but as opposed to the proof of Lemma 1, the proof for MaxVar is more involved and requires case
analysis. We will need the following lemma that was proven in [7] and whose proof is provided for
completeness.
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Lemma 5 ([7]). Let β1, β2, γ1, γ2 ≥ 0 such that (i) γ1 < β1 ≤ β2, and (ii) β1 + β2 ≥ γ1 + γ2. Also
let α ≥ 1. Then, α

√
β1 + α

√
β2 ≥ α

√
γ1 + α

√
γ2.

Proof. The proof for α = 1 is straightforwards, hence we assume that α > 1.

Let s = β1 +β2, and define γ′2
def
= s− γ1. We prove that γ

1/α
1 + (s− γ1)1/α < β

1/α
1 + (s−β1)1/α.

The lemma follows, since γ′2 > γ2. To prove the above, define f(x) = x1/α + (s − x)1/α. The
derivative of f is:

f ′(x) =
∂f

∂x
=
x1/α−1

α
− (s− x)1/α−1

α
=

1

αx1−1/α
− 1

α(s− x)1−1/α
.

f ′(x) = 0 implies that x = s
2 and f ′(x) > 0 for 0 ≤ x < s

2 . It follows that f(x) is an increasing
function in the interval (0, s2). Thus we have f(β1) > f(γ1).

Before proving that there is a non-swapping optimal solution for any MaxVar instance we need
the following definition. Given a solution (y, r) we define di = |yi− xi|. Also, given an energy level
E and a position p, we define βi(p,E) = (E − a|p − xi|)/t and ri(p,E) = α

√
βi(p,E). The radius

ri(p,E) is the maximum possible radius that can be maintained for t time, assuming that i moves
to p and that E − a|p− xi| > 0.

Lemma 6. Any MaxVar instance has a non-swapping optimal solution.

Proof. Let (x, t) be a MaxVar instance, and let (y, r) be an optimal solution for (x, t) using
maximum energy E, that minimizes the number of swaps. Throughout the proof we assume that
the radius of sensor i is ri(yi, E), for all i. If there are no swaps, then we are done. Otherwise,
we show that the number of swaps can be decreased. Assume to the contrary that there are
swaps, and consider a swap between a pair of adjacent sensors i and j. That is, xi < xj , yj < yi,
and yk 6∈ (yj , yi) for every k 6= i, j. As shown in the proof of Lemma 1, there are six possible
configurations for such a pair of sensors as shown in Figure 2.

If the barrier can be covered without i, then i is moved to yj . Sensor i has enough energy for
moving to yj , since either |yj − xi| ≤ |yi − xi| or |yj − xi| ≤ |yj − xj |. Similarly, if the barrier is
covered without j, then j is moved to yi. Sensor j has enough energy to move to yi, since either
|yi − xj | ≤ |yj − xj | or |yi − xj | ≤ |yi − xi|. In both cases we get a solution with fewer swaps
than (y, r), hence we may assume in the following that both sensors are necessary for covering the
barrier (i.e., the removal of either i or j breaks coverage). We define the coverage interval of i and
j to be [u, v] = [yj − rj , yi + ri].

For each of the six cases (that are shown in Figure 2) we provide a solution (y′, r′) such that
y′k = yk and r′k = rk, for k 6= i, j, y′i ≤ y′j , and the interval [u, v] is covered by i and j. Moreover,
Ek(y

′, r′) ≤ Ek(y, r) = E, for every k. Then, we eliminate any new swaps that may have been
created by moving i and j. The resulting solution has fewer swaps than (y, r), and we get a
contradiction.

We start with cases (c) and (d), since they are easier. Then, we move to deal with the other
cases. Newly created swaps will be considered later on.

Case (c): yj ≤ xi < xj ≤ yi.
Swap the positions and radii of sensors i and j, namely set y′i = yj , r

′
i = rj , y

′
j = yi, and

r′j = ri (as shown in Figure 5). Observe that [u, v] is covered, and no new swaps are created.
Also, d′i ≤ dj and d′j ≤ di, which means that Ei(y

′, r′) ≤ Ej(y, r) and Ej(y
′, r′) ≤ Ei(y, r).

10



xi yi
xjyj

vu v+u
2

(i) Original deployment.

xi y′i
xjy′j

vu v+u
2

(ii) New deployment.

Figure 7: Case (d): Swapping where xi ≤ yj < yi ≤ xj .

Case (d): xi ≤ yj < yi ≤ xj .
First, notice that since both i and j participate in the cover, we have that yj ≤ u+v

2 ≤ yi.
Place sensor i at y′i = u + ri with radius r′i = ri and sensor j at y′j = v − rj with radius
r′j = rj . See example in Figure 7. Observe that [u, v] remains covered as y′j − y′i = yi − yj .
Also, we have that y′i ≤ u+v

2 ≤ yi and y′j ≥ u+v
2 ≥ yj . If y′i ≥ xi, then d′i ≤ di. Otherwise, if

y′i < xi, then
d′i = xi − y′i ≤ yj − y′i < y′j − y′i = yi − yj ≤ yi − xi = di ,

which means that i moves less. Hence, Ei(y
′, r′) ≤ Ei(y, r). A similar argument can be made

for sensor j.

Cases (a): xi < xj ≤ yj < yi.

First, place sensor i at the location y′i such that y′i − r′i(y
′
i, E) = u, namely to the point

where the left endpoint of the covering interval of i is u while using energy E. Since xi ≤ yj
and ri(xi, E) > rj(yj , E), we have that xi − ri(xi, E) < yj − rj(yj , E) = u. Furthermore,
yi − ri(yi, E) > u. Since the function gi(z) = z − ri(z, E) is continuous and also strictly
increasing for z ≥ xi, there exists one location y′i ∈ [xi, yi], for which y′i − ri(y′i, E) = u.

Next, place sensor j at the rightmost location y′j such that y′j ≤ yi and y′j−r′j(y′j , E) ≤ y′i+r′i.
We know that yj − rj(yj , E) = u < y′i + r′i. Also, observe that j can reach yi > y′i, since i
can. Since gj(z) = z − rj(z, E) is continuous and strictly increasing for z ≥ xj , we have that
there exists one location y′j > xj , for which y′j − rj(y′j , E) = y′i + r′i.

If y′j = yi, we get that y′j + r′j > v. Otherwise, observe that y′i < yi, y
′
i < yj , and y′j < yi. It

follows that d′i < di, d
′
j < di, and d′i + d′j < di + dj . Hence,

βi(yi, E) ≤ βi(y′i, E), βj(y
′
j , E) ,

and
βi(yi, E) + βj(yj , E) ≤ βi(y′i, E) + βj(y

′
j , E) .

By Lemma 5 we have that r′i + r′j > ri + rj , and thus

y′j + r′j = u+ 2r′i + 2r′j > u+ 2ri + 2rj ≥ v .

Case (e): yj ≤ yi ≤ xi < xj . Symmetric to case (a).

Case (b): xi ≤ yj ≤ xj ≤ yi.
In this case we have two options. First, if dj = xj − yj ≥ yj − xi, switch places and radii
between i and j (see Figure 6).
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Otherwise, dj < yj − xi. In this case place sensors i and j as done in case (a). Notice that
it may be that y′j < xj . However, it is enough that gj(z) is continuous for our purposes. If
y′j = yi, we get that y′j + r′j > v. Otherwise, observe that y′i < yi and y′j ∈ (yj , yi), which
means that d′i, d

′
j < di. Finally, if y′j ≤ xj , then d′j < dj , and we have d′i + d′j ≤ di + dj .

Otherwise, if y′j > xj , we have that

d′i + d′j = (y′i − xi) + (y′j − xj) < yi − xi = di ,

since y′i > xi. Again, apply Lemma 5 to show that r′i + r′j > ri + rj , and it follows that
y′j + r′j > v.

Case (f): yj ≤ xi ≤ yi ≤ xj . Symmetric to case (b).

It remains to deal with newly created swaps. If y′i < yi, there may be a sensor k such
that yk ∈ (y′i, yi], and by moving i to y′i a new swap is created, if xk < xi. Let SL =
{k : xk < xi ∧ yk ∈ (y′i, yi]}, and let SR = {k : xk ≥ xi ∧ yk ∈ (y′i, yi]}. By moving left to y′i, i creates
new swaps with sensors in SL, but eliminates swaps with sensors in SR. Let ` = argmink∈SL(yk−rk).
If y`−r` ≥ u, then the sensors in SL are not needed for coverage and are moved left to y′i. Consider
a sensor k ∈ SL. If xk ≤ y′i, then y′i is closer to xi than yk. Otherwise y′i is closer to xk than
to xi. Hence, in both cases k can reach y′i. On the other hand, if y` − r` < u, it follows that
[y′i− r′i, y′i+ r′i] ⊂ [y`− r`, y`+ r`], which means that i is not needed for coverage, and can be moved
to maxk∈SL yk. In both cases all new swaps are eliminated. The case of y′i > yi can be treated in a
symmetric manner. Also, any new swaps created by j, can be eliminated in a similar manner.

Thus there is a solution with minimum maximum energy E with fewer swaps. A contradiction.

Next, we show that we can focus on non-swapping discrete solutions.

Lemma 7. Let ε ∈ (0, 1), and let m = 8 dαµ/εe, where µ = 2n/ε1/α. Then, for any non-swapping
solution (y, r) there exists a non-swapping discrete solution (y′, r′) such that maxiEi(y

′, r′) ≤ (1 +
2ε) maxiEi(y, r).

Proof. The proof is almost the same as the proof of Lemma 2. The only difference is that Equa-
tion (1) should be replaced by

max
i
Ei(y

′, r′) ≤ eε/2 max
i
Ei(y, r) + t

ε

2αnα
≤ (1 + ε) max

i
Ei(y, r) + εopt ,

where the second inequality is due to eε/2 ≤ 1 + ε, for any ε ∈ (0, 1), and opt ≥ t 1
(2n)α .

We use dynamic programming to find the best non-swapping discrete solution.

Lemma 8. There exists an O(nm4) time algorithm that finds the optimal non-swapping discrete
solution.

Proof. This proof is basically the same as the proof of Lemma 3. The main difference is that
Equation 2 should be replaced by

Π(i, `, k) = min
`′≤`

{
min

{
max

{
a|g`′ − xi|,Π(i− 1, `′, k)

}
,

min
k′<k

max
{

Π(i− 1, `′, k′), a|g`′ − xi|+ trαi
}}}
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where ri = max {g`′ − gk′ , gk − g`′}. If i does not contribute to the cover, then we take the maximum
between the energy it requires to move and the min-max energy that is required by sensors 1 to
i − 1 to cover [0, gk]. If i participates in the cover, ri is determined such that i can cover [gk′ , gk]
while standing at g`′ . In this case we take the maximum between the energy consumed by i and
the min-max energy that is required by sensors 1 to i − 1 to cover [0, gk′ ], where i − 1 may stand
anywhere in [0, `′]

Corollary 3. There is an O(n5/ε4(1+1/α)) time FPTAS for MaxVar.

3.4 Non-zero Finite Friction: Additive Approximation

In this section we show that MaxVar can be approximated to within an additive factor ε, for any
constant ε > 0. This is done using an algorithm that, given (x, t) and an energy level E, computes
a solution with value at most E+ε, if E is feasible, and outputs “No Solution”, if E+ε is infeasible.
Binary search is used to approximate the minimum energy level.

Our decision algorithm is based on an algorithm from [7] that solves a sort of a promise problem.

Theorem 4 ([7]). Let ε > 0 and assume efficient infinite precision computations. Then there exists
a polynomial time algorithm that, given x, t ≥ 0, and an energy bound E, satisfies the following:

1. If there is a non-swapping MaxVar solution (y, r), such that maxiE
t+ε
i (y, r) ≤ E, it com-

putes a solution (y′, r′), such that maxiE
t
i (y
′, r′) ≤ E.

2. If there is no non-swapping MaxVar solution (y, r), such that maxiE
t
i (y, r) ≤ E, it termi-

nates with “No Solution”.

We note that the result in [7] is actually more general, in two ways: it copes with non-uniform
energy levels and it works for any given final deployment order. (Here the initial order is the final
order.)

Next we show that, given a solution, increasing the lifetime by ε amounts to an increase of at
most ε in the energy consumption.

Observation 9. Given x and ε > 0, if (y, r) is a solution such that maxiE
t
i (y, r) ≤ E, then

maxiE
t+ε
i (y, r) ≤ E + ε.

Proof. Since ri ≤ 1 for every i, we have that keeping the network alive for an additional ε time
costs at most ε · 1α = ε.

The above observation allows us to “translate” the lifetime promise problem into an energy
promise problem.

Theorem 5. Let ε > 0 and assume efficient infinite precision computations. There exists a poly-
nomial time algorithm that, given x, t ≥ 0, and an energy bound E, satisfies the following:

1. If there is a non-swapping MaxVar solution (y, r), such that maxiE
t
i (y, r) ≤ E − ε, it

computes a solution (y′, r′), such that maxiE
t
i (y
′, r′) ≤ E.

2. If maxiE
t
i (y, r) > E for any non-swapping MaxVar solution (y, r), it terminates with “No

Solution”.
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Proof. We call the algorithm from Theorem 4 with x, t and E. First, assume that there exists a non-
swapping MaxVar solution (y, r), such that maxiE

t
i (y, r) ≤ E − ε. In this case, by Observation 9

we have that maxiE
t+ε
i (y, r) ≤ E. Hence, the algorithm computes a solution (y′, r′), such that

maxiE
t
i (y
′, r′) ≤ E as required. On the other hand, suppose that maxiE

t
i (y, r) > E for any

non-swapping MaxVar solution (y, r). Hence, the algorithm terminates with “No Solution” as
required.

Due to Lemma 6 and Theorem 5 we can perform a binary search on E. An upper bound on
E is t. Hence, the running time of the parametric search algorithm is polynomial in the input size
and in log 1

ε , where ε is the accuracy parameter. Hence we get the following result.

Theorem 6. There exists a polynomial time algorithm that, given a MaxVar instance and an
accuracy parameter ε > 0, computes a solution whose value is within an additive constant ε of the
optimum, assuming efficient infinite precision computations.

4 Minimum Max Energy with Fixed Radii

In this section we study MaxFix. Recall that in the fixed radii case the input contains a radii
vector ρ, and the goal is to find a radii assignment r, such that ri ∈ {0, ρi}, for every i.

First, we provide O(n log n) time algorithms for both MaxFix0 and MaxFix∞. Czyzowicz et
al. [12] presented an algorithm for MaxFix with uniform radii and t = 0. Chen et al. [11] improved
upon the running time of the above problem and gave a polynomial time algorithm for MaxFix
with t = 0. We show that, for a ∈ (0,∞), MaxFix is NP-hard even if x = (1

2 ,
1
2 , . . . ,

1
2), and that

it is strongly NP-hard when radii are non-uniform. We note that our reductions are based on the
fact that t > 0. We also present a 2-approximation algorithm for MaxFix.

4.1 Zero Friction

We describe a simple algorithm for solving MaxFix0.

Theorem 7. MaxFix0 can be solved in O(n log n) time.

Proof. First, observe that if
∑

i 2ρi < 1, the problem has no solution. Otherwise, initialize S = ∅.
As long as

∑
i∈S 2ρi < 1, add i = argmini 6∈S ρi to S. Finally, assign ri = ρi, for i ∈ S, and ri = 0,

for i 6∈ S. The correctness of this algorithm is straightforward. The running time of the algorithm
is O(n log n), since we need to sort the sensors by their radii.

4.2 Infinite Friction

Next, we show that the static version of MaxFix can be solved in O(n log n) time.

Theorem 8. MaxFix∞ can be solved in O(n log n) time.

Proof. Given a solution (x, r), observe that if ri = ρi, for some sensor i, then we may assume
without loss of generality that rj = ρj , for every j such that ρj ≤ ρi. This motivates the following
algorithm. Initialize S = ∅. As long as [0, 1] is not covered, add i = argmini 6∈S ρi to S. Finally,
assign ri = ρi, for all i ∈ S, and ri = 0, for all i 6∈ S. The value of the solution is tραi∗ , where i∗ was
the last sensor to join S. The correctness of this algorithm follows from the above observation.
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Sorting the sensors by their radii takesO(n log n) time. We maintain a list of uncovered segments
that is initialized by the segment [0, 1]. The list contains a set of non-intersecting segments ordered
by their left end-point. Notice that the addition of a sensor may increase the size of the list by
at most one due to splitting a segment. Hence, the list contains O(n) segments, and therefore the
insertion of a new sensor can be done in O(n) time. Consequently, the total running time is O(n2).

A more efficient implementation can be obtained by storing the list in a balanced search tree.
Given a new sensor i whose covering interval is Ii = [xi−ρi, xi+ρi], search the left-most segment Li
and the right-most segment Ri in the list which intersect Ii. (Notice that it may be that Li = Ri.)
Replace Li and Ri by Li \ Ii and Ri \ Ii. (An empty segment means removal.) In addition, remove
all segments in the list that are located in between Li and Ri, if such segments exist. Observe
that the covering interval Ii of a sensor i may shorten one or two segments, and it may also split
a segment. If Ii splits a segment S, we treat the left segment as a short version of S and the right
segment as a new segment which is owned by i. (Only the segment [0, 1] has no owner.) Ownership
still applies if a segment is shortened. We charge the removal of a segment to its owner. Hence
each sensor is charged O(log n) time for searching and updating Li and Ri and O(log n) time for
the removal of its segment. It follows that the total running time is O(n log n).

4.3 Non-zero Finite Friction

As mentioned earlier, Czyzowicz et al. [12] presented a polynomial time algorithm for MaxFix
with uniform radii and t = 0. Their result is based on showing that there exists a non-swapping
optimal solution for the special case of uniform radii. We show that MaxFix is NP-hard, even
if x = (1

2 ,
1
2 , . . . ,

1
2), using a reduction from Partition. This implies that it is NP-hard to find

an optimal ordering of a MaxFix instance. On the other hand, we present a 2-approximation
algorithm for MaxFix that uses the algorithm for minimizing maximum movement, or for MaxFix
with t = 0, by Chen et al. [11].

The description of the algorithm is as follows. For each i ∈ {1, . . . , n}, execute the algorithm
from [11] for minimizing maximum movement only on the sensors in the set Si = {j : ρj ≤ ρi}. The
sensors that do not belong to Si remain in their original locations. Let (yi, ri) be the computed
solution for index i. Then, output the solution that minimizes the maximum energy, namely output
(yk, rk), where k = argmini maxj Ej(y

i, ri).

Lemma 10. Given a MaxFix instance (x, ρ, t), let (y∗, r∗) be an optimal solution. Then,
maxj Ej(y

k, rk) ≤ 2 maxj Ej(y
∗, r∗).

Proof. Let EM = a ·maxi |y∗i − xi| be the maximum movement energy of the optimal solution and
let ES = t ·maxi(r

∗
i )
α be its maximum sensing energy. Clearly, max {EM , ES} ≤ maxiEi(y

∗, r∗).
Let ` be the sensor with the largest radius among active sensors in (y∗, r∗), i.e., ` = argmaxi r

∗
i .

It follows that ES = t ·ρα` . By construction the solution (y`, r`) minimizes the maximum movement
with respect to the set S`. Hence it also minimizes the maximum energy invested in movement with

respect to S`. Since (y∗, r∗) is a solution with respect to S`, we have that EM ≥ a ·maxj

∣∣∣y`j − x`j∣∣∣.
If follows that

max
j
Ej(y

`, r`) ≤ a ·max
j∈S`

∣∣∣y`j − x`j∣∣∣+ t ·max
i

(r`i )
α ≤ EM + ES .

The lemma follows, since maxj Ej(y
k, rk) ≤ maxj Ej(y

`, r`).
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Figure 8: An example of the instance (2, 3, 4, 5, 6).

Lemma 10 and the fact that the running time of the algorithm from [11] is O(n2 log n) leads to
the following result:

Theorem 9. There exists an O(n3 log n) time 2-approximation algorithm for MaxFix.

Next we show that MaxFix is computationally hard.

Theorem 10. MaxFix is NP-hard even if x = (1
2 ,

1
2 , . . . ,

1
2), for every a ∈ (0,∞) and α ≥ 1.

Proof. Given a Partition instance (s1, . . . , sn), we construct a MaxFix instance with n+1 sensors
as follows. xi = 1

2 , for every i, ρi = si
4
∑
j sj

, for i ≤ n, and ρn+1 = 1
4 . Also, let t = a4α. The

MaxFix instance can be constructed in linear time. We show that (s1, . . . , sn) ∈ Partition if and
only if there is a solution (y, r) such that maxiEi(y, r) = a.

Suppose that (s1, . . . , sn) ∈ Partition, and let I ⊆ {1, . . . , n} such that
∑

i∈I si =
∑

i 6∈I si.

Set ri = ρi, for every i. Use sensor n+ 1 to cover the interval [1
4 ,

3
4 ], the sensors that correspond to

I to cover the interval [0, 1
4 ], and the rest of the sensors to cover the interval [3

4 , 1]. (See example in
Figure 8.) This is possible, since

∑
i∈I 2ρi =

∑
i∈{1,...,n}\I 2ρi = 1

4 . A sensor i, where i ≤ n, needs

less than a
2 energy to move, and at most a4α · 1

8

α
= a

2α ≤
a
2 for coverage, therefore it can stay alive

for a4α time. Sensor n + 1 stays put and requires a4α · 1
4α = a energy. Hence, maintaining cover

for a4α time can be obtained with maximum energy a.
Now suppose that there exists a solution (y, r) such that maxiEi(y, r) = a. Notice that

∑
i 2ρi =

1, and thus it must be that ri = ρi, for every i. Since sensor n + 1 requires all its energy for
covering, it must be that yn+1 = xn+1 = 1

2 . It follows that the interval [0, 1
4 ] is covered by a set

of sensors I that satisfy
∑

i∈I 2ρi = 1
4 . Hence

∑
i∈I si = 1

2

∑
i si, which means that (s1, . . . , sn) ∈

Partition.

We use a similar approach to describe a reduction from 3-Partition. This implies strong
NP-hardness.

Theorem 11. MaxFix is strongly NP-hard, for every a ∈ (0,∞) and α ≥ 1.

Proof. Given a 3-Partition instance (s1, . . . , sn), where n = 3m,
∑

i si = mQ, and si ∈ (Q4 ,
Q
2 ),

for every i, we construct the following MaxFix instance with n+m− 1 sensors as follows. xi = 1
2

and ρi = si
2(2m−1)Q , for every i ≤ n, and xi =

2(i−n)− 1
2

2m−1 and ρi = 1
2(2m−1) , for i > n. Also, let

t = a2α(2m − 1)α. The instance can be constructed in linear time. We show that (s1, . . . , sn) ∈
3-Partition if and only if there exists a solution (y, r) such that maxiEi(y, r) = a.

Now suppose that (s1, . . . , sn) ∈ 3-Partition, and let I1, . . . , Im ⊆ {1, . . . , n}, such that |Ik| =
3 and

∑
i∈Ik si = Q, for every k. Set ri = ρi, for every i. Use sensor n+ k, for k ∈ {1, . . . ,m− 1}

to cover the interval [ 2k−1
2m−1 ,

2k
2m−1 ] by assigning yn+k = xn+k. Also, use the sensors in Ik, for

k ∈ {1, . . . ,m} to cover the interval [ 2k−2
2m−1 ,

2k−1
2m−1 ]. This is possible, since∑

i∈Ik

2ρi =
∑
i∈Ik

si
(2m− 1)Q

=
1

2m− 1
.
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Sensor i, where i ≤ n, needs less than a
2 energy to move, and

trαi < t(
1

4(2m− 1)
)α = a2α(2m− 1)α · 1

4α(2m− 1)α
=

a

2α
≤ a

2

for coverage, therefore it can stay alive for t time with energy a. Sensor i, where i > n stays put
and consumes a2α(2m− 1)α · 1

2α(2m−1)α = a energy. Hence, maintaining coverage for t time can be
obtained with maximum energy a.

Suppose that there exists a solution (y, r) such that maxiEi(y, r) = a. Notice that
∑

i 2ρi = 1,
and thus it must be that ri = ρi, for every i. Since sensor i, for i > n, requires all its energy
for covering, it must be that yi = xi, for i > n. It follows that the interval [ 2k−2

2m−1 ,
2k−1
2m−1 ], for

k ∈ {1, . . . ,m}, is covered by a set of sensors Ik that satisfy
∑

i∈Ik 2ρi ≥ 1
2m−1 . Hence

∑
i∈Ik si ≥ Q,

which means that (s1, . . . , sn) ∈ 3-Partition.

5 Minimum Sum Energy with Fixed Radii

In this section we consider SumFix. Li et al. [16] solved SumFix∞ using an elegant reduction to
the shortest path problem. We show that SumFix0 is NP-hard, if α = 1, but admits an FPTAS, for
any α. We also prove that SumFix with uniform radii can be approximated to within an additive
approximation ε > 0, for any constant ε > 0. This algorithm is based on the non-swapping property
and on placing the sensors on grid points. However, as opposed to the variable case, we cannot
change radii, only locations, which is problematic when there is very little excess coverage. We
cope with this issue by considering two solution types, small excess and large excess.

Czyzowicz et al. [13] showed that it is NP-hard to approximate the special case of SumFix1

where t = 0 to within any constant c. We extend their approach and obtain a stronger result,
namely that it is NP-hard to approximate SumFix, for any a ∈ (0,∞), to within a factor of O(nc),
for any constant c.

We note that the optimal solution and energy invested in movement may change dramatically
with the increase of the required lifetime t. Assume a = 1 and α > 1, and consider an instance
in which there are n − 1 sensors, where xi = i

n−1 and ρi = 1
2(n−1) , for i ≤ n − 1, and xn = 1

2 and

ρn = 1
2 . If t = 0, we can use sensor n to cover the barrier without moving any sensor. However, if

t is large enough, it is better to deploy sensor i at yi = 2i−1
2(n−1) , for i ≤ n− 1, and cover the barrier

without the help of sensor n. In this case the optimal value is 1
2 + t

2α(n−1)α−1 .

5.1 Zero Friction

We show that SumFix0 is NP-hard, for α = 1, and that it has an FPTAS, for any α. We start
with the hardness result.

Theorem 12. SumFix0 is NP-hard, for α = 1.

Proof. We present a reduction from Partition. Given a Partition instance (s1, . . . , sn), let
S =

∑
i si. We construct a SumFix0 instance with n sensors as follows. First, t = 1. Also, ρi = si

S ,
for every i. Notice that

∑
i ρi = 1. The instance can be constructed in linear time. We prove that

(s1, . . . , sn) ∈ Partition if and only if there is solution (y, r) such that
∑

iEi(y, r) ≤
1
2 .

Suppose that (s1, . . . , sn) ∈ Partition. It follows that there exists an index set I such that∑
i∈I si = 1

2S. Let ri = ρi, if i ∈ I, and ri = 0 otherwise. Also, let yi =
∑i−1

j=1 2rj + ri, for every
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i. Notice that
∑

i ri =
∑

i∈I
si
S = 1

2 . Hence, (y, r) covers [0, 1] and
∑

iEi(y, r) =
∑

i tri = 1
2 as

required.
Now suppose that there exists a solution (y, r) that satisfies

∑
iEi(y, r) ≤

1
2 . Since r covers

[0, 1] we have that
∑

i ri ≥
1
2 . On the other hand,

∑
iEi(y, r) = t

∑
i ri ≤

1
2 , which means that∑

i ri = 1
2 . Now let I = {i : ri = ρi}, and we have

∑
i∈I si = S

∑
i∈I ri = S

∑
i ri = 1

2S.

The FPTAS for SumFix0 is implied by a reduction to Minimum Knapsack.

Theorem 13. SumFix0 has an FPTAS.

Proof. We show a reduction from SumFix0 to Minimum Knapsack. Given a SumFix0 instance
(x, ρ) and t, we construct a Minimum Knapsack instance as follows. The covering requirement
is 1. Also, there are n items, where the coverage of item i is 2ρi, and its cost is tραi . Any solution
(y, r) can be mapped to the set I = {i : ri = ρi} of items that has the same cost. Any set of items
I can be mapped to the solution (y, r) with the same cost such that ri = ρi, if i ∈ I, and ri = 0
otherwise, and yi =

∑i−1
j=1 2rj + ri, for every i. Since the Minimum Knapsack problem has an

FPTAS [18], SumFix0 also has an FPTAS, for any α ≥ 1.

5.2 Non-Zero Finite Friction & Uniform Radii

We present a polynomial time algorithm that computes solutions within an additive factor ε, for
any constant ε > 0, for uniform SumFix instances.

We start the section with proving that there exists a non-swapping optimal solution. The proof
of the next lemma is identical to the proof of Lemma 1. One only needs to notice that a switch
can be made since ρi = ρj , for every i 6= j.

Lemma 11. Any uniform SumFix instance has a non-swapping optimal solution.

Given a SumFix instance with uniform radii, assume that ρ = (R,R, . . . , R), i.e., all sensors
have radius R. Given a feasible solution (y, r), let X(r) denote the excess coverage of the solution,
namely X(r) =

∑
i 2ri − 1. Clearly X(r) ≥ 0.

Let ε > 0. We first show that there is a polynomial time algorithm that computes a solution
within an additive factor ε for any uniform SumFix instance that has an optimal solution (y, r)
such that X(r) > ε

an .
Define m = an2/ε. We consider solutions in which the active sensors must be located on grid

points G = { jm : j ∈ {0, . . . ,m}}. We also introduce a slightly different notion of “non-swapping”.
A solution (y, r) (or a deployment y) is called weakly non swapping if: (i) xi < xj implies yi ≤ yj , if
both i and j are active, and (ii) yi = xi, if i is inactive. We prove that we only lose a small additive
factor by focusing on weakly non-swapping deployments that use grid points for active sensors.

Lemma 12. Let ε > 0, and let (x, ρ, t) be a uniform SumFix instance that has a non-swapping
optimal solution (y, r) with X(r) > ε

an . There is a weakly non-swapping deployment y′ such that

1. (y′, r) is feasible,
2. y′i ∈ G, if i is active, and
3.
∑

iEi(y
′, r) ≤

∑
iEi(y, r) + ε.
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Proof. First assume that all sensors are active (for ease of notation). Going from i = 1 to n, let y′i
be the rightmost grid point such that y′i ≤ yi + n

m and y′i ≤ y′i−1 + 2R, for i > 1, or y′1 ≤ R.
We claim that (y′, r) is feasible. Assume that it is not, namely that y′n + R < 1. We prove

by induction (from n to 1) that y′i < yi + n−i
m . In the base case, we have that y′n < yn. For the

inductive step, note that y′i+1 < yi+1 + n−(i+1)
m due to the inductive hypothesis. It follows that

y′i+1 = y′i + b2Rmc
m . Hence,

y′i = y′i+1 −
b2Rmc
m

< yi+1 +
n− (i+ 1)

m
− 2R+

1

m
≤ yi +

n− i
m

.

y′1 ≤ y1 + n−1
m implies that y′1 = bRmc

m . It follows that

y′n +R =
bRmc
m

+ (n− 1)
b2Rmc
m

+R ≥ 2nR− n

m
= 2nR− ε

an
> 2nR−X(r) = 1 ,

in contradiction to y′n +R < 1.
To bound the cost of the solution, we prove that y′i ≥ yi − i

m by induction on i. For the base

case, observe that y′1 ≥
bmy1c
m > y1 − 1

m . For the inductive step, we have two options. If y′i ≥ yi,
then we are done. Otherwise, y′i < yi, and in this case

y′i = y′i−1 +
b2Rmc
m

≥ yi−1 −
i− 1

m
+ 2R− 1

m
≥ yi −

i

m
.

It follows that |y′i − yi| ≤ n
m . Hence,∑

i

Ei(y
′, r) ≤

∑
i

Ei(y, r) + an
n

m
=
∑
i

Ei(y, r) + ε .

Finally, we deploy inactive sensors in their initial positions. This only decreases the energy
consumption. Also, observe that yi ∈ G, for any active sensors, and that y′ is weakly non-swapping
by construction.

In light of Lemma 12, we describe a directed acyclic graph G with a source s and a destination
d, such that a path from s to d corresponds to a solution for the SumFix instance. The vertex set
of G contains a vertex for every pair of sensor and grid point and two additional vertices, i.e.,

V (G) = {s, d} ∪ {(i, j) : i ∈ {1, . . . , n} , j ∈ {0, . . . ,m}} .

An arc connects two vertices (i, j) and (i′, j′), if i < i′ and j′

m ≤
j
m + 2R. An arc connects s and

(i, j) if j
m ≤ R, and an arc connects (i, j) and d if j

m ≥ 1 − R. The length of each arc leaving a

vertex (i, j) is a|xi − j
m |+ tRα, and the length of each arc leaving s is zero. There is a one to one

mapping between paths from s to d in G to grid solutions of a SumFix instance. If follows that,
given a uniform SumFix instance (x, ρ, t) such that X(r) > ε

an , we can compute a solution within
additive factor ε by constructing the above graph and finding a shortest path from s to d. Notice
that the running time is polynomial since m = O(n2).

It remains to consider instances with an optimal solution (y, r) such that X(r) ≤ ε
an . We show

that, in this case, we do not lose much by assuming that active sensors are located at the following
predetermined positions:

P = {R(2`− 1) : ` ∈ {1, . . . , χ}} ,
where χ =

⌈
1

2R

⌉
.
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Lemma 13. Let ε > 0, and let (x, ρ, t) be a uniform SumFix instance that has a non-swapping
optimal solution (y, r) with X(r) ≤ ε

an . There is a weakly non-swapping feasible solution (y′, r′)
such that (i) there are χ active sensors deployed at P, and (ii)

∑
iEi(y

′, r′) ≤
∑

iEi(y, r) + ε.

Proof. Let i1, . . . , ik be the active sensors. Let δ1 = 0−(yi1−R) be the excess coverage to the left of
0; let δk+1 = (yik+R)−1 be the excess coverage to the right of 1; and let δj = (yij−1 +R)−(yij−R),

for j ∈ {2, . . . , k}, be the excess coverage due to cover overlaps. We have that X(r) =
∑k+1

j=1 δj .
To create the deployment y′ we first place all inactive sensors in their initial positions. Then, we

go from j = 1 to k, and move active sensors iq ≥ ij by δj rightwards. That is, y′iq = yiq +
∑

j≤q δj .
Inactive sensors simply remain at their initial positions. Next, we deactivate any active sensor that
does not cover [0, 1], and move these sensors back to the their original location. Observe that y′ is
weakly non-swapping by construction.

We show by induction on j that y′ij = R(2j − 1), for every j. For the base case, we have that

y′i1 = yi1 + δ1 = yi1 + 0− (yi1 −R) = R .

For the inductive step,

y′ij = yij +

j∑
`=1

δj = yij−1 + 2R− δj +

j∑
`=1

δj = R(2(j − 1)− 1) + 2R = R(2j − 1) .

It follows that there are χ active sensors located at P, and that (y′, r′) is feasible. Also, |y′i − yi| ≤
X(r), for every i, and therefore the additional movement cost is bounded by anX(r) ≤ ε. Hence∑

iEi(y
′, r) ≤

∑
iEi(y, r) + ε.

Assuming that exactly χ sensors are located at the predetermined positions, we construct a
directed acyclic graph H as follows. The vertex set is

V (H) = {(i, `) : i ∈ {1, . . . , n}, ` ∈ {1, . . . , χ}} ∪ {(0, 0), (n+ 1, χ+ 1)} ,

where (0, 0) is the source and (n+ 1, χ+ 1) is the destination. The arc set is

E(H) =
{

((i, `), (i′, `+ 1)) : i < i′
}
.

The length of arcs leaving (i, `), where i > 0, is a|xi − R(2` − 1)|, while arcs leaving (0, 0) are of
length zero. (There is no need to consider coverage energy, since we use exactly χ sensors.) As
before, there is a one to one mapping between paths from (0, 0) to (n+ 1, χ+ 1) in G to solutions
for the SumFix instance induced by Lemma 13. Hence a shortest path from (0, 0) to (n+ 1, χ+ 1)
corresponds to an optimal solution on the predetermined locations.

It follows that an approximate solution can be found by running both algorithms, and taking
the better solution. This leads to the following result.

Theorem 14. There exists a polynomial time algorithm that computes solutions within additive
factor ε, for any constant ε > 0, for SumFix with uniform radii.

We finish the section by observing that, if a = 0, an optimal solution uses χ active sensors.
Also, moving to the predetermined locations costs nothing.

Theorem 15. There exists a polynomial time algorithm for SumFix0 with uniform radii.
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(i) Long non swapping deployment.
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(ii) Short non swapping deployment.

Figure 9: Non Swapping deployments.

5.3 Non-zero Finite Friction & General Radii

Next, we show that non-swapping does not hold in general for non-uniform instances.

Lemma 14. There are SumFix instances in which an optimal solution must be swapping, for any
a > 0 and α ≥ 1. Moreover, the ratio between the value of best non-swapping solution and the
optimum is Ω(n).

Proof. Consider the following SumFix instance: two sensors are located at 0 both with radius 1
4 ,

and n− 2 sensors at 1
4 all with radius 1

4(n−2) . Also, let t = a.
First, assume no swapping. Let p be the maximum point that is covered by one of the first two

sensors. If p ≥ 3
4 , it follows that sensor 2 was deployed at y2 ≥ 1

2 . In this case yi ≥ y2 ≥ 1
2 , for

i ≥ 3. See Figure 9i. Hence, the movement energy is at least (n − 2)a4 . Otherwise, if p < 3
4 , we

have that [3
4 , 1] is covered by at least n−2

2 sensors. See Figure 9ii. Hence, the movement energy is
at least n−2

2
a
2 = (n − 2)a4 . It follows that at least (n − 2)a4 energy must be consumed if swapping

is disallowed. If swapping is allowed, we may cover the barrier with sensors 1 and 2. We deploy
sensors 1 and 2 at 1

4 and 3
4 , respectively, and assign r1 = r2 = 1

4 , and ri = 0, for every i > 2. The
movement energy in this case is exactly a, and the coverage energy is 2t 1

4α = 2a
4α . Hence, the total

energy consumption is a+ 2a
4α ≤

3a
2 . If n > 8, we have that (n− 2)a4 >

3a
2 .

Czyzowicz et al. [13] proved that the special case of SumFix in which t = 0 cannot be approxi-
mated within any constant. We show that their approach can be used for a stronger result, namely
that it is NP-hard to approximate SumFix, for any a ∈ (0,∞), to within a factor of O(nc), for any
constant c. Our reduction is very similar to the reduction from [13].

Theorem 16. SumFix cannot be approximated to within a factor of O(nc), for any constant c,
for every a ∈ (0,∞) and α ≥ 1, unless P=NP.

Proof. We show that it is NP-hard to approximate SumFix within a factor of Bnc/8, for any
constants c ∈ N and B ∈ N.

Given a 3-Partition instance (s1, . . . , sn), where n = 3m and
∑

i si = mQ, we construct a
SumFix instance with n + m` sensors, where ` = 8Bm(Q + 1)nc+1, as follows. First, xi = 0 and

ρi = si
2m(Q+1) , for every i ≤ n. We also add a ( j(Q+1)

m(Q+1) ,
1

m(Q+1) , `)-block, for every j ∈ {0, . . . ,m− 1},
where a (z,∆, `)-block is a set of ` sensors whose positions are at

{
z + ∆

` (i− 1
2) : i ∈ {1, . . . , `}

}
and their uniform radius is ∆

2` . Also, let t = 0. The running time is polynomial, since Q and ` are
polynomial in n. We show that (i) if (s1, . . . , sn) ∈ 3-Partition, then exists a solution (y, r) such
that

∑
iEi(y, r) ≤ na, and (ii) if (s1, . . . , sn) 6∈ 3-Partition, then

∑
iEi(y, r) > aBnc+1/8, for

any solution (y, r). It follows that it is NP-hard to approximate SumFix within a factor of Bnc/8.
Now suppose that (s1, . . . , sn) ∈ 3-Partition, and let I1, . . . , Im ⊆ {1, . . . , n}, such that |Ik| =

3 and
∑

i∈Ik si = Q, for every k. Set ri = ρi, for every i. Use the sensors in Ik to cover the segment
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[k(Q+1)−Q
m(Q+1) , k(Q+1)

m(Q+1) ]. This is possible, since
∑

i∈Ik 2ρi =
∑

i∈Ik
si

m(Q+1) = Q
m(Q+1) . Also, use the

sensors in the ( k(Q+1)
m(Q+1) ,

1
m(Q+1) , `)-block to cover [ k(Q+1)

m(Q+1) ,
k(Q+1)+1
m(Q+1) ], for every k ∈ {0, . . . ,m− 1}.

Now, sensor i, where i ≤ n, needs less than a energy to move. Hence, the total energy consumption
is less than na.

Next, suppose that (s1, . . . , sn) 6∈ 3-Partition, and let (y, r) be a feasible solution such that∑
iEi(y, r) ≤ aBnc+1/8. Notice that

∑
i 2ρi = 1, and thus it must be that ri = ρi, for every i.

It follows that there are no coverage overlaps. Consider the ( k(Q+1)
m(Q+1) ,

1
m(Q+1) , `)-block, for some k.

We would like to bound the number of sensors from this block that deploy outside the segment
[ k(Q+1)
m(Q+1) −

1
8m(Q+1) ,

k(Q+1)+1
m(Q+1) + 1

8m(Q+1) ]. Each such sensor needs more than a 1
8m(Q+1) energy, so

their number is at most Bnc+1/8 · 8m(Q+ 1) = Bnc+1m(Q+ 1). Hence at least 7`/8 sensors from
the kth block remain in the above segment. This means that all large radii sensors must be located
in [k(Q+1)−Q

m(Q+1) −
1

4m(Q+1) ,
k(Q+1)
m(Q+1) + 1

4m(Q+1) ], for some k, and therefore the blocks still act as static

delimiters. It follows that (s1, . . . , sn) ∈ 3-Partition. A contradiction.

6 Open Problems

We briefly mention some research directions and open problems.
We presented FPTASs for SumVar and MaxVar with non-zero finite friction. While it would

not be surprising if the hardness result for SumVar with infinite friction [16] can be extended to
SumVar with non-zero finite friction, the complexity of MaxVar remains open. Another open
question is to come up with an approximation algorithm whose ratio is better than 2 or with a
lower bound for MaxFix, for a ∈ (0,∞).

Another possible research direction is to consider a model in which sensors are allowed to move
and to change their covering radii at any given time. Constant factor approximation algorithms
were given for the case where radii can change at any time but moving is disallowed (i.e., a =∞)
for both variable and fixed radii [5, 21], but determining the complexity even for this special case
is an open question.

In another natural extension, sensors are located on a barrier and are required to cover a region
(e.g., sensors on a coastline covering the sea). In the dual model, sensors could be located anywhere
in the plane and are asked to cover a boundary (e.g., sensors in the sea covering the coastline). In
an even more general model, a sensor network is required to cover a region in the plane and the
initial locations of the sensors are anywhere in the plane. Note that the hardness results of the
one-dimentional setting still apply.
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