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Abstract

Pseudo-Boolean monotone functions are unimodal functions which are trivial

to optimize for some hillclimbers, but are challenging for a surprising number

of evolutionary algorithms. A general trend is that evolutionary algorithms are

efficient if parameters like the mutation rate are set conservatively, but may

need exponential time otherwise. In particular, it was known that the (1 + 1)-

EA and the (1 + λ)-EA can optimize every monotone function in pseudolinear

time if the mutation rate is c/n for some c < 1, but that they need exponential

time for some monotone functions for c > 2.2. The second part of the statement

was also known for the (µ+ 1)-EA.

In this paper we show that the first statement does not apply to the (µ+1)-

EA. More precisely, we prove that for every constant c > 0 there is a constant

µ0 ∈ N such that the (µ + 1)-EA with mutation rate c/n and population size

µ0 ≤ µ ≤ n needs superpolynomial time to optimize some monotone functions.

Thus, increasing the population size by just a constant has devastating effects

on the performance. This is in stark contrast to many other benchmark func-

tions on which increasing the population size either increases the performance
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significantly, or affects performance only mildly.

The reason why larger populations are harmful lies in the fact that larger

populations may temporarily decrease the selective pressure on parts of the pop-

ulation. This allows unfavorable mutations to accumulate in single individuals

and their descendants. If the population moves sufficiently fast through the

search space, then such unfavorable descendants can become ancestors of future

generations, and the bad mutations are preserved. Remarkably, this effect only

occurs if the population renews itself sufficiently fast, which can only happen

far away from the optimum. This is counter-intuitive since usually optimization

becomes harder as we approach the optimum. Previous work missed the effect

because it focused on monotone functions that are only deceptive close to the

optimum.

Keywords: evolutionary algorithm, monotone functions, population size,

mutation rate, runtime analysis, hottopic functions
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1. Introduction

Population-based evolutionary algorithms (EAs) are general-purpose heuris-

tics for optimization. Having a population may be helpful, because it allows

for diversity in the algorithm’s states. Such diversity may be helpful for escap-

ing local minima, and it is a necessary ingredient for crossover operations as

they are used in genetic algorithms (GAs). Theoretical and practical analysis

of population-based algorithms have indeed mostly found positive or neutral

effects, and showed a general trend that larger populations are better [1], or

at least not worse than a population size of one [2]. The only (mild) observed

negative effect is, intuitively speaking, that maintaining a population of size µ

may slow down the optimization time by a factor of at most µ. Only few, highly

artificial examples are known [3, 4] in which a (µ + 1)-EA or (µ + 1)-GA with

time budget µt performs significantly worse than a (1+1)-EA with time budget

t. In this sense, it is easy to believe that a (µ+ 1) algorithm is at least as good
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as a (1 + 1) algorithm, except for the runtime increase that comes from each

individual only having probability 1/µ per round of creating an offspring.

Our results challenge this belief, and show that it is highly wrong for some

monotone functions. Our main results show that increasing µ from 1 to a larger

constant can increase the runtime from quasilinear to exponential.

A monotone3 pseudo-Boolean function is a function f : {0, 1}n → R such

that for every x, y ∈ {0, 1}n with x 6= y and xi ≥ yi for all 1 ≤ i ≤ n it holds

f(x) > f(y). Monotone functions are easy benchmark functions for optimization

techniques, since they always have a unique local and global optimum at the all-

ones string. Moreover, from every search point there are short, fitness-increasing

paths to the optimum, by flipping zero-bits into one-bits. Consequently, there

are many algorithms which can easily optimize every monotone function. A

particular example is random local search (RLS), which is the (1 + 1) algorithm

that flips in each round exactly one bit, uniformly at random. RLS can never

increase the distance from the optimum for a monotone function, and it op-

timizes any such function in time O(n log n) by a coupon collector argument.

Thus monotone functions are regarded as an easy benchmark for evolutionary

algorithms. Nevertheless it was shown in [5, 6, 7, 8] that a surprising number

of evolutionary algorithms need exponential time to optimize some monotone

functions, especially if they mutate too aggressively, i.e., the mutation param-

eter c is too large (see Section 1.2 for a detailed discussion). However, in all

considered cases the algorithms were efficient if the mutation parameter satisfied

c < 1.

1.1. Our Results

We show that the (µ + 1)-Evolutionary Algorithm, (µ + 1)-EA, becomes

inefficient even if the mutation strength is smaller than 1. More precisely, we

show that for every c > 0 there is a µ0 = µ0(c) ∈ N such that for all µ0 ≤ µ ≤ n

3Following [5, 6], we call them monotone functions, although strictly monotone functions

would be slightly more accurate.
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there are some monotone functions for which the (µ+1)-EA with mutation rate

c/n needs superpolynomial time to find the optimum. If µ is O(1) then this time

is even exponential in n. Note that for 0 < c ≤ 1, it is known that the (1 + 1)-

EA finds the optimum in quasilinear time for any monotone functions [8, 9, 10].

Thus when we increase the population size only slightly (from 1 to µ0), the

optimization time explodes, from quasilinear to exponential.

The monotone functions that are hard to optimize are due to Lengler and

Steger [5], and were dubbed HotTopic functions in [6]. These functions look

locally like linear functions in which all bits have some positive weights. How-

ever, in each region of the search space there is a specific subset of bits (the

‘hot topic’), which have very large weights, while all other bits have only small

weights. If an algorithm improves in the hot topic, then it will accept the off-

spring regardless of whether the other bits deteriorate. In [5, 6, 11] it was shown

that an algorithm like the (1 + 1)-EA with mutation rate c > 2.13.. will mutate

too many of these bits outside of the hot topic, and will thus not make progress

towards the global optimum.

The key insight of our paper is that for such weighted linear functions with

imbalanced weights, populations may also lead to an accumulation of bad mu-

tations, even if the mutation rate is small. Here is the intuition. For a search

point x, we call the number of one-bits in the hot topic in x the rank of x.

Consider a (µ+ 1)-EA close to the optimum, and assume for simplicity that all

search points in the population S0 have the same rank i. At some point one of

them will improve in the hot topic by flipping a zero-bit there. Let us call the

offspring x, and let us assume that its rank is i + 1. Then x is fitter than all

other search points in the population because it has a higher rank. Moreover,

every offspring or descendant of x will also be fitter than all the other points

in the population, as long as they maintain rank i + 1. Thus for a while the

(µ+ 1)-EA will accept all (or most) descendants of x, and remove search points

of rank i from the population. This goes on until some time t0 at which search

points of rank i are completely eliminated from the population. Note that at

time t0, most descendants x′ of x have considerably smaller fitness than x, since
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the algorithm accepts every type of mutation outside of the hot topic, and most

mutations are detrimental. If some descendant x′ of x creates an offspring y of

even higher rank, then y is accepted and the cycle repeats with y instead of x.

The crucial point is that y is an offspring of x′, which has accumulated a lot of

bad mutations compared to x. So typically, x′ is considerably less fit than x,

but still it passes on its bad genes.

The above effect needs that the probability of improving in the hot topic has

the right order. If the probability is too large (close to one), then x will already

spawn an offspring of rank i+ 1 before it has spawned many descendants with

the same rank. On the other hand, if the probability is too small then there will

be no rank-improving mutations until time t0, and after time t0 the algorithm

starts to remove the worst individuals of rank i + 1 from the population. We

remark that this latter regime was already studied in [6], for the extreme case

in which the improvement probability is so small that typically the population

of rank i + 1 collapses into copies of x before a further improvement is made.

(In the terminology of [6], it was the assumption that the parameter ε of the

HotTopic function was sufficiently small.) However, there is a rather large

range of improvement probabilities that lead to the aforementioned effect, i.e.,

they typically yield an offspring y from some inferior search point x′ of rank

i+ 1.

1.2. Related Work

The analysis of EAs on monotone functions started in 2010 by the work

of Doerr, Jansen, Sudholt, Winzen and Zarges [7, 8]. Their contribution was

twofold: firstly, they showed that the (1 + 1)-EA, which flips each bit indepen-

dently with static mutation rate c/n, needs time O(n log n) on all monotone

functions if the mutation parameter c is a constant strictly smaller than one.

This result was already implicit in [9].

On the other hand, it was also shown in [7, 8] that for large mutation rates,

c > 16, there are monotone functions for which the (1+1)-EA needs exponential

time. The construction of hard monotone functions in [7, 8] was later simplified
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by Lengler and Steger [5], who improved the range for c from c > 16 to c >

c0 = 2.13... Their construction was later called HotTopic functions in [6], and

it will also be the basis for the results in this paper.

For a long time, it was an open question whether c = 1 is a threshold at

which the runtime switches from polynomial to exponential. On the presumed

threshold c = 1, a bound of O(n3/2) was known due to Jansen [9], but it was

unclear whether the runtime is quasilinear. Finally, Lengler, Martinsson and

Steger [10] could show that c = 1 is not a threshold, showing by an information

compression argument an O(n log2 n) bound for all c ∈ [1, 1 + ε] for some ε > 0.

Recently, the limits of our understanding of monotone functions were pushed

significantly by Lengler [6, 11], who analyzed monotone functions for a mani-

fold of other evolutionary and genetic algorithms. In particular, he analyzed

the algorithms on HotTopic functions, and found sharp thresholds in the pa-

rameters, such that on one side of the threshold the runtime on HotTopic was

O(n log n), while on the other side of the threshold it was exponential. These

algorithms include the (1 + 1)-EA, the (1 + λ)-EA, the (µ + 1)-EA, for which

the threshold condition was c < c0, where c0 = 2.13.., and it further included

the (1 + (λ, λ))-GA, and the so-called ‘fast (1 + 1)-EA’ and ‘fast (1 + λ)-EA’.4

Surprisingly, for the genetic algorithms (µ + 1)-GA and the ‘fast (µ + 1)-GA’,

any parameter range leads to runtime O(n log n) on HotTopic if the popula-

tion size µ is large enough, showing that crossover is strongly beneficial in these

cases.

For some of the algorithms, Lengler in [6, 11] also complemented the results

on HotTopic functions by statements asserting that for less aggressive choices

of the parameters the algorithms optimize every monotone function efficiently.

For example, he proved that for mutation parameter c < 1 and for every constant

λ ∈ N, with high probability the (1 +λ)-EA optimizes every monotone function

4The so-called “fast” versions draw the parameter c randomly in each iteration from a

heavy-tailed distribution. This avoids that the probability of flipping k bits drops exponen-

tially in k [12].
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in O(n log n) steps. Analogous statements were proven for the ‘fast (1 + 1)-EA’

and ‘fast (1+λ)-EA’, and for the (1+(λ, λ))-GA, but the condition c < 1 needs

to be replaced by analogous conditions on the parameters of the respective algo-

rithms. Moreover, in the case of the ‘fast (1+λ)-EA’, the result was only proven

if the algorithm starts sufficiently close to the optimum. Lengler did not prove

any results for general monotone functions for the population-based algorithms

(µ+ 1)-EA and (µ+ 1)-GA, and for their ‘fast’ counterparts. Our result shows

that at least for the (µ + 1)-EA, this gap had a good reason. As mentioned

before, we will show that for every (constant) mutation parameter c > 0, there

are monotone functions on which the (µ + 1)-EA needs superpolynomial time

if the population size µ is larger than some constant µ0 = µ0(c). It also shows

that the (µ + 1)-EA and the (1 + λ)-EA behave completely differently on the

class of monotone functions, since the (1 + λ)-EA is efficient for all constant λ

whenever c < 1.

Surprisingly, our instance of a hard monotone function is again a HotTopic

function. This may appear contradictory to the result in [6, 11] that the (µ+1)-

EA is efficient on HotTopic functions if c < c0. The reason why there is

no contradiction is that all the results in [6, 11] on HotTopic come with an

important catch. The HotTopic functions come with several parameters, and

we will give the formal definition and a more detailed discussion in Section 2.3.

For now it suffices to know that one of the parameters, ε, essentially determines

how close the algorithm needs to come to the optimum before the fitness function

starts switching between different hot topics. In [6, 11], only small values of ε

were considered. More precisely, it was shown that for every µ ∈ N there is an

ε0 > 0 such that the results for the (µ+1)-EA hold for all HotTopic functions

with parameter ε ≤ ε0, and there were similar restrictions for other parameters

of the HotTopic function. In a nutshell, the effect of switching hot topics

was only studied close to the optimum. Arguably, this was a natural approach

since usually the hardest region for optimization is close to the optimum. In

this paper, we consider HotTopic functions in a different parameter regime:

we study relatively large values of the parameter ε, which is a regime of the
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HotTopic functions in which the action happens far away from the optimum.

Consequently, the results from [6, 11] on the (µ+ 1)-EA on HotTopic do not

carry over to the version of HotTopic functions that we consider in this paper.

We stress this point to resolve the apparent contradiction between our results

and the results in [6, 11].

The above discussion also shows a rather uncommon phenomenon. Consider

a small mutation parameter, e.g., c = 1/2. Our results show that the (µ+1)-EA

fails to make progress if the HotTopic function starts switching hot topics far

away from the optimum. On the other hand, by the results in [6], the (µ+ 1)-

EA is not deceived if the HotTopic function starts switching hot topics close

to the optimum. Thus, we have found an example where optimization close to

the optimum is easier than optimization far away from the optimum, quite the

opposite of the usual behavior of algorithms. This strange effect occurs because

the problem of the (µ + 1)-EA arises from having a non-trivial population.

However, close to the optimum, progress is so hard that the population tends

to degenerate into multiple copies of a single search point, which effectively

decreases the population size to one and thus eliminates the problem (see also

the discussion in Section 1.1 above).

Most other work on population-based algorithms has shown benefits of larger

population sizes, especially when crossover is used [13, 14, 15, 16]. Without

crossover, the effect is often rather small [2]. The only exception in which

a population has theoretically been proven to be severely disadvantageous is

on Ignoble Trails. This rather specific function has been carefully designed

to lead into a trap for crossover operators [3], and it is deceptive for µ = 2

if crossover is used, but not for µ = 1. Arguably, the HotTopic functions

are also rather artificial, although they were not specifically designed to be

deceptive for populations. However, regarding the larger and more natural

framework of monotone functions, our results imply that a (µ + 1)-EA with

mutation parameter c = 1 does not optimize all monotone functions efficiently

if µ is too large, while the corresponding (1 + 1)-EA is efficient.
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Moreover, Lengler and Schaller pointed out an interesting connection be-

tween HotTopic functions and a dynamic optimization problem in [17], which

is arguably more natural. In that paper, the algorithm should optimize a linear

function with positive weights, but the weights of the objective function are

re-drawn each round (independently and identically distributed). This setting

is similar to monotone functions, since a one-bit is always preferable over a zero-

bit, and the all-one string is always the global optimum. However, the weight

of each bit changes from round to round, which somewhat resembles that the

HotTopic function switches between different hot topics as the algorithm pro-

gresses. In [17] the (1 + 1)-EA was studied, and the behavior in the dynamic

setting is very similar to the behavior on HotTopic functions. It remains open

whether the effects observed in our paper carry over to this dynamic setting.

2. Preliminaries and Definitions

2.1. Notation

Throughout the paper we will assume that f : {0, 1}n → R is a monotone

function, i.e., for every x, y ∈ {0, 1}n with x 6= y and such that xi ≥ yi for

all 1 ≤ i ≤ n it holds f(x) > f(y). We will consider algorithms that try to

maximize f , and we will mostly focus on the runtime of an algorithm, which we

define as the number of function evaluations before the first evaluation of the

global maximum of f .

For n ∈ N, we denote [n] := {1, . . . , n}. For a search point x, we write Om(x)

for the OneMax-value of x, i.e., the number of one-bits in x. For x ∈ {0, 1}n

and ∅ 6= I ⊆ [n], we denote by d(I, x) := |{i ∈ I | xi = 0}|/|I| the density of

zero-bits in I. In particular, d([n], x) = 1 − Om(x)/n. Landau notation like

O(n), o(n), . . . is with respect to n → ∞. An event E = E(n) holds with high

probability or whp if Pr[E(n)] → 1 for n → ∞. A function f : N → R grows

stretched-exponentially if there is δ > 0 such that f(x) = exp{Ω(nδ)}, and it

grows quasilinearly if there is C > 0 such that f(x) = O(n logC n).
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Throughout the paper we will use n for the dimension of the search space,

µ for the population size, and c for the mutation parameter. We will always

assume that the mutation parameter c is a constant independent of n, but the

population size µ = µ(n) may depend on n.

2.2. Algorithm

We will consider the (µ + 1)-EA with population size µ ∈ N and mutation

parameter c > 0 for maximizing a pseudo-boolean fitness function f : {0, 1}n →

R. This algorithm maintains a population of µ search points. In each round,

it picks one of these search points uniformly at random, the parent xt for this

round. From this parent it creates an offspring yt by flipping each bit of xt

independently with probability c/n, and adds it to the population. From the µ+

1 search points, it then discards the one with lowest fitness from the population,

breaking ties randomly 5.

2.3. HotTopic Functions

In this section we give the construction of hard monotone functions by

Lengler and Steger [5], following closely the exposition in [6]. The functions

come with five parameters n ∈ N, 0 < β < α < 1, 0 < ε < 1, and L ∈ N,

and they are given by a randomized construction. Following [6], we call the

corresponding function HotTopicn,α,β,ε,L = HTn,α,β,ε,L = HT.

For 1 ≤ i ≤ L we choose sets Ai ⊆ [n] of size αn independently and uniformly

at random, and we choose subsets Bi ⊆ Ai of size βn uniformly at random. We

define the level `(x) of a search point x ∈ {0, 1}n by

`(x) := max {`′ ∈ [L] : d(B`′ , x) ≤ ε} , (1)

where we set `(x) = 0, if no such `′ exists. Then we define f : {0, 1}n → R as

5We break ties randomly for simplicity. Other selection schemes may give preference to

offspring, or generally to more recent search points in case of ties. However, the tie-breaking

scheme does not have an impact on our analysis.
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Algorithm 1: The (µ + 1)-EA with mutation parameter c for maxi-

mizing an unknown fitness function f : {0, 1}n → R. The population

S is a multiset, i.e., it may contain some search points several times.

1 Initialization:

2 S0 ← ∅;

3 for i = 1, . . . , µ do

4 Sample x(0,i) uniformly at random from {0, 1}n;

5 S0 ← S0 ∪ {x(0,i)};

6 Optimization:

7 for t = 1, 2, 3, . . . do

8 Mutation:

9 Choose xt ∈ St−1 uniformly at random;

10 Create yt by flipping each bit in xt independently with

probability c/n;

11 Selection:

12 Set St ← St−1 ∪ {yt};

13 Select x ∈ arg min{f(x) | x ∈ St} (break ties randomly) and

update St ← St \ {x};
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follows:

HT(x) := `(x) · n2 +
∑

i∈A`(x)+1

xi · n+
∑

i∈R`(x)+1

xi, (2)

where R`(x)+1 := [n] \ A`(x)+1, and where we set AL+1 := BL+1 := ∅. One

easily checks that this function is monotone [6].

So the set A`+1 defines the hot topic while the algorithm is at level `, where

the level is determined by the sets Bi. Following up on the discussion in the

introduction, observe that the level ` increases if the density of zero-bits in B`′

drops below ε for some `′ > `. From the analysis we will see that with high

probability this only happens if the density of zero-bits in A`+1 and in the whole

string is also roughly ε, up to some constant factors. Hence, the parameter ε

determines how far away the algorithm is from the optimum when the level

changes.

Throughout the paper we will assume that α and β are independent of

n, whereas we will choose small constants η, ρ > 0 and set ε = µ−1+η and

L = exp{ρεn/ log2 µ}, i.e., ε and L may depend of n, since we also allow µ to

depend on n.6

2.4. Tools

To obtain good tail bounds, we often apply Chernoff’s inequality.

Theorem 1 (Chernoff Bound [18]). Let Y1, . . . , Ym be independent random vari-

ables (not necessarily i.i.d.) that take values in [0, 1]. Let S :=
∑m
i=1 Yi, then

for all 0 ≤ δ ≤ 1,

Pr[S ≤ (1− δ)E[S]] ≤ e−δ
2 E[S]/2

and for all δ ≥ 0,

Pr[S ≥ (1 + δ)E[S]] ≤ e−min{δ2,δ}E[S]/3.

6In the papers [5, 6, 11] the parameter L was replaced by a constant parameter ρ such that

L = eρn. This had the advantage that their parameters were all independent of n, but since

our parameters depend on n anyway, it is more convenient to use the parameter L. However,

both versions are equivalent.
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Finally, for all k ≥ 2eE[S],

Pr[S ≥ k] ≤ 2−k.

In addition, we will need the following theorem to bound the sum of geo-

metrically distributed random variables.

Theorem 2 (Theorem 1 in [19]). Let Yj, 1 ≤ j ≤ m, be independent random

variables following the geometric distribution with success probability pj, and let

S :=
∑m
j=1 Yj. If

∑m
j=1 p

−2
j ≤ s <∞ then for any δ > 0,

Pr[S ≤ E[S]− δ] ≤ exp
(
− δ2

2s

)
.

For h := min{pj | j ∈ [m]},

Pr[S ≥ E[S] + δ] ≤ exp
(
− δ

4
min

{δ
s
, h
})
.

The following lemma estimates useful probabilities, e.g. the probability to

improve on the current hot topic.

Lemma 3. Let α, c > 0 be constants. Consider a set A ⊆ [n] of size αn where

n is large enough, and consider a search point x ∈ {0, 1}n.

1. The probability that the number of one-bits in A does not decrease after

a standard bit mutation with rate c/n on x can be bounded from below by

pR = e−αc/2.

2. The probability that a standard bit mutation with rate c/n strictly increases

the number of one-bits in A has a lower bound pL = ε(x)αce−αc/2 and an

upper bound pU = ε(x)αc, where ε(x) = d(A, x).

3. Let (1 − ε′)αn ≤ i ≤ αn where 0 < ε′ < 1 and ε′n ≥ 2ec. Let rk(x) :=

|{j ∈ A | xj = 1}| and let y be an offspring of x. If rk(x) < i, then at

least one of the following inequalities holds.

Pr[rk(y) ≥ i] ≤ 2−ε
′αn or

Pr[rk(y) ≥ i+ 1]

Pr[rk(y) ≥ i]
≤ 2ε′αc.
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Proof of Lemma 3. We show the statements one by one.

1. One way of creating an offspring with the same number of one-bits in A is

to flip no bits at all in A. This probability is (1−c/n)αn = e−αc−O(1/n) ≥

e−αc/2 when n is large enough.

2. We observe that the probability we consider is at least

Pr[flip 1 zero-bit and 0 one-bits in A] = ε(x)αn · c
n

(
1− c

n

)αn−1

= ε(x)αc
(
e−αc −O

( 1

n

))
≥ 1

2
ε(x)αce−αc.

And it is at most

Pr[flip at least 1 zero-bit] ≤
ε(x)αn∑
i=1

Pr[flip the i-th zero-bit] = ε(x)αc,

where the second inequality follows from a union bound over all zero-bits

in A.

3. Assume first that rk(x) < (1 − 2ε′)αn. Then for rk(y) ≥ i, at least

ε′αn zero-bits must be flipped in one mutation. The expected number of

flipped zero-bits is at most αn ·c/n = αc, so that happens with probability

2−ε
′αn by the Chernoff bound. So let us consider the other case, rk(x) ≥

(1 − 2ε′)αn. Let P be a permutation on the αn bits in A such that

P (j) < P (j′) for all xj = 1 and xj′ = 0. Consider mutating the bits in

x in the permuted order, and we track the number G := G0 −G1 during

that process, where G0 (G1) is the number of flipped zero-bits (one-bits).

Clearly, G will be decreasing while we are at the one-bits and increasing

afterwards. Then rk(y) ≥ i if and only if G ≥ i − rk(x) after flipping

some zero-bit j, and rk(y) ≥ i + 1 if and only if at least one more zero-

bit is flipped after bit j. The number of remaining zero-bits is at most

αn−rk(x)−1 < 2ε′αn, so the probability of flipping at least one remaining
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zero-bit is at most 2ε′αc by a union bound. Therefore,

Pr[rk(y) ≥ i+ 1] ≤ 2ε′αc · Pr[G ≥ i− rk(x) at some zero-bit j]

= 2ε′αc · Pr[rk(y) ≥ i].

We will use the following two theorems to bound the running time of the

(µ + 1)-EA. The first one states that a sequence of random variables whose

differences are small with exponentially decaying tail bound are sub-Gaussian.7.

Theorem 4 (Timo Kötzing, Theorem 10 in [20]). Let (Yi)i≥0 be a supermartin-

gale such that there are c′ > 0 and δ′ with 0 < δ′ < 1 and, for all i ≥ 0 and for

all y ≥ 0,

Pr[|Yi+1 − Yi| ≥ y | Y0, . . . , Yi] ≤ c′(1 + δ′)−y.

Then (Yi)i≥0 is (128c′δ′−3, δ′/4)-sub-Gaussian.

The other theorem bounds first hitting times of sub-Gaussian supermartin-

gales.

Theorem 5 (Timo Kötzing, Theorem 12 in [20]). Let (Yi)i≥0 be a sequence of

random variables and let r ∈ R. If, for all i ≥ 0,

E[Yi+1 − Yi | Y0, . . . , Yi] ≤ r,

then (Yi − ri)i≥0 is a supermartingale. If further (Yi − ri)i≥0 is (c′′, δ′′)-sub-

Gaussian, then, for all i ≥ 0 and all y > 0,

Pr
[

max
0≤j≤i

(Yj − Y0) ≥ ri+ y
]
≤ exp

(
− y

2
min

(
δ′′,

y

c′′i

))
.

7The reader can take the concept of being sub-Gaussian as a black box. Theorem 4 asserts

that exponential tail bounds guarantee the property, Theorem 5 describes the consequences.

For completeness, we also give the definition: a sequence of random variables (Yi)i≥0 is (c, δ)-

sub-Gaussian if and only if E[exp(z(Yi+1 − Yi)) | Y0, . . . , Yi] ≤ exp(z2c/2)holds for all i ≥ 0

and z ∈ [0, δ].

15



3. Formal Statement of the Result

The main result of this paper is the following.

Theorem 6. For every constant c > 0 and 0 < β < α < 1 there exist constants

µ0 = µ0(c) ∈ N and η, ρ > 0 such that the following holds for all µ0 ≤ µ ≤ n

where n is sufficiently large. Consider the (µ + 1)-EA with population size µ

and mutation rate c/n on the n-bit HotTopic function HTn,α,β,ε,L, where

ε = µ−1+η and L = bexp{ρεn/ log2 µ}c. Then with high probability the (µ+ 1)-

EA visits every level of the HT function at least once. In particular, it needs at

least L steps to find the optimum, with high probability and in expectation.

That is, if µ ≥ µ0 is a constant (independent of n) then with high probability

the optimization time is exponential.

We remark that the requirement µ ≤ n is not tight, and we conjecture that

the runtime is always superpolynomial for µ ≥ µ0, also for much larger values

of µ. However, we did not undertake big efforts to extend the range of µ since

we do not feel that it adds much to the statement. For larger values of µ,

e.g., µ = n2, our proof does not go through unmodified. With our definition

of ε = µ−1+η, we only get error probabilities of the form exp{−Ω(εn/ log2 µ)},

which are not o(1) if e.g. µ = n2. Hence we would need to choose larger values

of ε, and then we lose a very convenient property, namely that for every fixed i,

with high probability no individual of rank at most i− 1 creates an individual

of rank at least i+ 1. To avoid these complications, we only consider µ ≤ n.

4. Proof Overview

The next three sections are devoted to proving Theorem 6. The key ingredi-

ent is to analyze the drift of the density d([n], x) for search points x which have

roughly density ε. We start by giving an informal overview, and by discussing

similarities and differences to the situation in [5] and [6].

We will analyze the algorithm in the regime where the fittest search point
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x∗ in the population satisfies

d(A`+1, x
∗) ∈ [ε/2, 2ε] and d(R`+1, x

∗) ∈ [ε/2, 2ε], (3)

where ` = `(x∗) is the current level and ε = µ−1+η is the parameter of the

HotTopic function. It will turn out that for large µ, the algorithm already

needs stretched-exponential time to escape this situation.

The main idea is similar to [5, 6], in which the (1 + 1)-EA and other algo-

rithms were analyzed. We first sketch the main argument for the (1 + 1)-EA,

and explain afterwards which parts must be replaced by new arguments. The

crucial ingredient is that while the density d(A`+1, x) of zero-bits on the hot

topic decreases from 2ε to ε, the total density d([n], x) has a positive drift, i.e.,

a drift away from the optimum. Moreover, the probability to change k bits in

one step has a tail that decays exponentially with k. Therefore, it was shown

that with high probability d([n], x) stays above ε+γ for an exponential number

of steps, where γ is a small constant. Then it was argued that as long as d([n], x)

stays bounded away from ε, it is exponentially unlikely that the level ever in-

creases by more than one. Since there are an exponential number of levels, this

implies an exponential runtime.

The analysis of (µ+1)-EA and (µ+1)-GA for constant µ in [6] was obtained

by reducing it to the analysis of a related (1 + 1) algorithm. This was possible

since the choice of parameters in [6] (choosing the parameter ε = ε(µ) sufficiently

small) made the algorithm operate close to the optimum. In this range, there

are only few zero-bits, and thus it is rather unlikely that a mutation improves

the fitness. On the other hand, there is always a constant probability (if µ is

constant) to create a copy of the fittest individual. In such a situation, the

population degenerates frequently into a collection of copies of a single search

point. Thus, the population-based algorithms behave similarly to a (1 + 1)

algorithm. This (1 + 1) algorithm has essentially the same mutation parameter

as the (µ + 1)-EA, while for the (µ + 1)-GA it has a much smaller mutation

parameter (less than one), which is the reason why the (µ+1)-GA is efficient on

all HotTopic instances with small parameter ε. For us, the situation is more
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complex since we consider larger values of ε. As a consequence, it is easier to

find a search point with better fitness, and the population does not collapse.

Hence, it is not possible to represent the population by a single point.

Instead, we proceed as follows. Fix a fitness level `, and consider the auxiliary

fitness function

f`(x) := n
∑

j∈A`+1

xj +
∑

j∈R`+1

xj . (4)

We will first study the behavior of the (µ+1)-EA on f`. Considering this fitness

function is essentially the same as assuming that the level remains the same. We

will see in the end that this assumption is justified, by the same arguments as

in [5, 6]. For a search point x, we define the rank rk(x) := |{j ∈ A`+1 | xj = 1}|

of x as the number of correct bits in the current hot topic. Note that by

construction of f`, a search point with higher rank is always fitter than a search

point with smaller rank.

Now we define Xi to be the set of search points of rank i that are visited by

the (µ+ 1)-EA, and we define Zi to be the OneMax-value (the number of one-

bits) of the last search point in Xi that the algorithm deletes from its population.

Note that due to elitist selection, this search point is also (one of) the fittest

search point(s) in Xi that the algorithm ever visits, and hence it has the largest

OneMax-value among all search points in Xi that the algorithm ever visits.

Then our goal is to show that E[Zi+1−Zi] = −Ω(1), under the assumption that

the population satisfies (3), i.e., that the density of the fittest search point is

close to ε. This assumption can be justified by a coupling argument as in [5, 6].

Computing the drift of Zi is the heart of our proof, and the main technical

contribution of this paper. In fact, to simplify the analysis we only prove the

slightly weaker statement that E[Zi+K − Zi] = −Ω(1) for a suitable constant

K, which is equally suited. Once we have established this negative drift, the

remainder of the proof as in [5, 6] carries over almost unchanged.

To estimate the drift ∆ := E[Zi+K − Zi], we will assume for this exposition

that µ = ω(1), so that we may use O-notation. (In the formal proof we will
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use the weaker assumption µ ≥ µ0 for a sufficiently large constant µ0 = µ0(c).)

We distinguish between good and bad events. Good events will represent the

typical situation; they will occur with high probability, and if they occur K

times in a row, then it will deterministically follow that Zi+K − Zi ≤ − logµ.

On the other hand, bad events may lead to a positive difference, but they are

unlikely and thus they contribute only a lower order term to the drift. We will

discriminate two types of bad events. Firstly, we will show that the probability

Pr[Zi+K − Zi > λ logµ] drops exponentially in λ. This implies that the events

in which Zi+K −Zi > log2 µ contribute at most a term o(1) to the drift. Hence,

we can restrict ourselves to the case that Zi+K −Zi ≤ log2 µ. Now assume that

we have any event of probability o(log−2 µ). In the case Zi+K−Zi ≤ log2 µ, this

event can contribute at most a o(1) term to the drift. Hence, we may declare

any such event as a bad event, and conclude that all bad events together only

contribute a o(1) term to the drift.

As we have argued, we may neglect any event with probability o(log−2 µ).

This is a rather large error probability, which allows us to dub many events as

‘bad’, and to use rather coarse estimates on the error probability. We conclude

this overview by describing how a good event, and thus a typical situation, looks

like. In what follows, all claims hold with probability at least 1− o(log−2 µ).

Let us call ti the first round in which an individual of rank at least i is

created, and Ti the round in which the last individual of rank at most i is

eliminated. Then typically Ti − ti = O(µ logµ) ∩ Ω(µ). Let |Xi| = |Xi(t)|

denote the number of search points in the population of rank i at time t. We

want to study the family forest Fi of X≥i, which is closely related to the family

trees and family graphs that have been used in other work on population-based

EAs, e.g. [1, 2, 21, 22]. The vertices of this forest are all individuals of rank at

least i that are ever included into the population. A vertex is called a root if its

parent has rank less than i. Otherwise, the forest structure reflects the creation

of the search points, i.e., vertex u is a child of vertex v if the individual u was

created by a mutation of v.
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As Xi grows, eventually the first few search points of rank i+ 1 are created,

and form the first roots of the family forest. Then the forest starts growing, both

because new roots may appear and because the vertices in the forest may create

offspring. At some point we have |Xi+1| = µδ for some (suitably small) δ > 0.

At this point, we still have typically |Xi| = O(µδ/ε) = O(µ1+δ−η) = o(µ), where

the latter holds if δ is small enough. Moreover, at this point there are no search

points of rank strictly larger than i+ 1. The sets Xi and Xi+1 both continue to

grow with roughly the same speed until the search points of rank at most i− 1

are eliminated from the population. Afterwards, the search points of rank i are

eliminated from the population, until only search points of rank at least i + 1

remain. Crucially, up to this point every search point of rank at least i + 1 is

accepted into the population. In other words, there is no selective pressure on

the search points of rank i+1, and every mutation of a search point of rank i+1

enters the family tree, as long as the rank i+ 1 is preserved. Therefore, we can

contain the family forest Fi+1 of rank i+ 1 up to this point in a random forests

F ′ which is obtained by certain forest growth processes in which no vertex is

ever eliminated and all vertices continue to spawn offspring with a fixed rate.

We want to understand the set of individuals in Xi+1 that spawn offspring

in Xi+2, and thus spawn the roots for the family forest Fi+2. As before we can

argue that no individuals of rank at least i + 2 are created before the family

forest of rank i+1 reaches size µδ. Moreover, we can show that the time Ti+1 at

which all individuals of rank i + 1 are eliminated from the population satisfies

Ti+1 − ti+1 ≤ Cµ logµ for a suitable constant C > 0. Hence, Fi+1 is bounded

from above by the random forest F ′ at time ti+1 +Cµ logµ. This forest is only

polynomially large in µ.

The recursive trees that we use to bound Fi+1 are well understood, see also

Figure 1. In particular, it is known that even in F ′ only a small fraction µδ of the

vertices are in depth at most φ logµ, where δ, φ > 0 are suitable constants. Since

each such vertex creates an offspring of strictly larger rank with probability ε/µ

per round, the expected number of offspring of rank i + 2 of these vertices is

at most O(µδε/µ · (Ti+1 − ti+1)). With the right choice of parameters, this is
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Figure 1: A depiction of the family forest Fi, where φ and cd are constants to be introduced

in Section 5.3. The same picture also applies to its upper bound F ′.

µ−Ω(1), and we may conclude that no vertices of depth at most φ logµ create

roots of rank i+ 2. On the other hand, since we do not truncate any vertices in

the creation of F ′, they are obtained from their parents by unbiased mutations

of [n] \A`, and we can show that most (all but at most µδ) vertices of depth at

least φ logµ in F ′ have accumulated c′ logµ more bad than good bit-flips when

compared to their roots, for a suitable c′ > 0. For the µδ exceptional vertices,

none of them will create a root of rank i+ 2 in Ti+1 − ti+1 rounds, even if they

are in Fi+1.

To summarize, good events consist of the following four main points. Firstly,

no vertex of rank at most i creates an offspring of rank at least i+ 2. Secondly,

every vertex in Xi+1 that creates an offspring in Xi+2 has at least depth φ logµ

in the family forest. Thirdly, every vertex in Xi+1 of depth at least φ logµ that

creates an offspring in Xi+2 has a OneMax value that is at least c′ logµ smaller

than that of its root. Finally, we also require that no vertex in F ′ exceeds the

OneMax value of its root by more than C logµ, for some C > 0. The complete

list in the proof contains even more requirements, but these four already imply
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a decline in Zi if they hold over K consecutive steps. In this case, inductively

the OneMax values of all roots in Fi+K are at most Zi −Kc′ logµ. Moreover,

Zi+K exceeds the OneMax value of the corresponding root in Xi+K by at most

C logµ, so we have Zi+K ≤ Zi − Kc′ logµ + C logµ. Choosing K sufficiently

large shows that Zi must decrease in these typical situations.

5. Drift of Zi

In this main section of the proof, we show that the random variable Zi

has negative drift. We will use the same notation as in the proof outline. In

particular, Xi denotes the set of all search points of rank i that the algorithm

visits, and Zi denotes the OneMax-value of the last search point from Xi that

the algorithm keeps in its population. If Xi is empty (which, as we will see, is

very unlikely), then we set Zi := Zi−1. Moreover, we define X≥i :=
⋃
i′≥iXi′ ,

and the definition of terms like X>i is analogous. For a given parent individual

x, we denote by pI (by pR) the probability that an offspring of x has rank which

is strictly larger than (at least as large as) the rank of x.

Throughout this section, we fix a level ` and consider the (µ+ 1)-EA on the

linear function f` defined in (4). In this section, we will study the case that

i ∈ [(1− 2ε)αn, (1− ε/2)αn], where ε = µ−1+η. Note that this is a weaker form

of Condition (3), i.e., we consider search points for which the density in A is

close to ε.

5.1. Preliminaries

In this section we first give bounds on the time that the set X≥i needs to

grow from size 1 to size µκ, and we will conclude that X≥i is large at the latter

point in time. We start by bounding the time.

Lemma 7. For all 0 < α < 1, c > 0, 0 < η < κ ≤ 1, there exists a constant

µ0 such that the following holds for all µ0 ≤ µ ≤ n. Let i > (1− 2ε)αn, where

ε = µ−1+η. Consider the (µ + 1)-EA with mutation rate c/n on the linear
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function f`. Denote by Tκi = Tκ the number of rounds until |X≥i| reaches µκ

after the algorithm visits the first point xi in X≥i. With probability 1−2µ−Ω(1),

1

2
(κ− η)µ logµ ≤ Tκ ≤ 4κeαcµ logµ.

Moreover,

E[Tκ] ≤ 3κeαcµ logµ.

Proof. By the definition of f`, all individuals in X≥i are fitter than those in

X<i. So no points in X≥i will be discarded until X<i becomes empty, and we

are interested in the growth of |X≥i| during this period. Let Tj be the time

needed for |X≥i| to grow from j to j+1. By definition we have Tκ =
∑µκ−1
j=1 Tj .

Denote by xt the point selected as parent by the algorithm in round t and

denote by yt its offspring. The probability that both xt and yt belong to X≥i

is at least pj = j/µ · pR, where j is the size of X≥i at the beginning of round t

and pR = e−αc/2 is defined in Lemma 3.1. It is clear that we can dominate Tj

by random variable T̄j that follows a geometric distribution with parameter pj .

By Lemma 1.8.8 in [23], Tκ is dominated by T̄κ :=
∑µκ−1
j=1 T̄j . Next we apply

Theorem 2 to bound T̄κ from above.

The expectation of T̄κ is

E[T̄κ] =

µκ−1∑
j=1

E[T̄j ] ≤ 2eαcµ

µκ∑
j=1

1

j
.

For the Harmonic series, we have log(m + 1) <
∑m
j=1 1/j ≤ logm + 1, where

log denotes the natural logarithm. Therefore, for large enough µ,

E[Tκ] ≤ E[T̄κ] ≤ 2eαcµ(log(µκ) + 1) ≤ 3κeαcµ logµ. (5)

Let h := min{pj | j = 1, . . . , µκ − 1}, clearly h = p1 = e−αc/(2µ). Let s :=∑µκ−1
j=1 p−2

j , we have

s ≤ 4e2αcµ2

µκ∑
j=1

1

j2
≤ 2e2αcπ2

3
µ2,
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where the last step follows from
∑∞
j=1 1/j2 = π2/6. Given h and the bound on

s, by Theorem 2 it holds for δ = κeαcµ logµ that

Pr
[
T̄κ ≥ E[T̄κ] + δ

]
≤ e−Ω(log µ) = µ−Ω(1).

Since Tκ � T̄κ, together with equation (5) we conclude that Tκ ≤ 4κeαcµ logµ

with probability 1− µ−Ω(1).

We still need a lower bound of Tκ. Consider the probability that X≥i gets

a new offspring yt in a round where |X≥i| = j:

Pr
[
yt ∈ X≥i

]
= Pr

[
xt 6∈ X≥i ∧ yt ∈ X≥i

]
+ Pr

[
xt ∈ X≥i ∧ yt ∈ X≥i

]
≤ (µ− j)/µ · pU + j/µ · 1 ≤ j/µ+ pU ,

where pU is defined in Lemma 3.2. Let p′j = j/µ + pU , similarly as for the

upper bound on Tκ, we can subdominate Tκ with a random variable T̂κ =∑µκ−1
j=1 T̂j (Lemma 1.8.8 in [23]), where the T̂j are independent and geometrically

distributed with parameter p′j , respectively. Then

E[T̂κ] ≥
µκ−1∑
j=1

1

p′j
=

µκ−1∑
j=1

µ

j + µpU

≥
µκ−1∑
j=1

µ

j + dµpUe
=

µκ−1+dµpUe∑
j=1

µ

j
−
dµpUe∑
j′=1

µ

j′

> µ log
(
µκ + dµpUe

)
− µ

(
logdµpUe+ 1

)
.

Since i ≥ (1−2ε)αn, PU = O(ε) = O(µ−1+η) for 0 < η < κ. So dµpUe = O(µη).

Hence,

E[Tκ] ≥ E[T̂κ] ≥
(
1−O

(
log−1 µ

))
(κ− η)µ logµ.

Let s′ :=
∑µκ

j=1 p
′−2
j . As p′j > pj , it holds s′ < s that. Applying Theorem 2

with s′ and δ′ = ε′µ logµ, we obtain

Pr
[
T̂κ ≤ E[T̂κ]− δ′

]
≤ e−Ω(log2 µ) = µ−Ω(1).

Similarly, we have T̂κ � Tκ, by picking a sufficiently small ε′ we conclude that

Tκ ≥ 1

2
(κ− η)µ logµ
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with probability 1− µ−Ω(1).

In the following lemma, we give a lower bound on |X≥i+1| when X≥i reaches

a certain size.

Lemma 8. Let α, κ ∈ (0, 1), c > 0, η < 1 be constants such that κ > 1 − η/2.

Consider the (µ+1)-EA with µ ≤ n and mutation rate c/n on the linear function

f`. Let ε = µ−1+η and let i ≤ (1 − ε/2)αn. Denote by Y κi+1 = Y κ the size of

X≥i+1 when |X≥i| reaches µκ. Then with probability 1− exp
(
−Ω

(
µ2(κ−1)+η

))
,

Y κ = Ω
(
εµ2κ−1

)
= Ω

(
µ2(κ−1)+η

)
= µΩ(1).

Proof. Note that we may assume that µ ≥ µ0 for a constant µ0 of our choice,

since otherwise the probability may be zero and thus the statement is vacuous.

In each round |X≥i| increases by either 0 or 1, so after X≥i reaches size R :=

bµκ/2c there are at least R more rounds until |X≥i| = µκ. In each of the

remaining R rounds, the probability of a parent x ∈ X≥i being selected and its

offspring y belonging to X>i is at least

Pr[y ∈ X>i] > Pr[x ∈ X≥i ∧ y ∈ X>i] ≥ R/µ · pL,

where PL is defined in Lemma 3. Let Yj be independent Bernoulli variables

with parameters R/µ · pL for j ∈ [R]. Then Y κ dominates the sum of Yj , i.e.

Y κ � Ȳ κ :=
∑R
j=1 Yj . It holds that

E[Ȳ κ] = R ·R/µ · pL = Θ
(
εµ2κ−1

)
= Θ

(
µ2(κ−1)+η

)
.

By Chernoff’s inequality (Theorem 1), we have for any constant 0 < δ < 1,

Pr
[
Ȳ κ < (1− δ)E[Ȳ κ]

]
≤ exp

(
− Ω

(
µ2(κ−1)+η

))
.

The claim follows from Y κ � Ȳ κ.

5.2. Tail Bounds

In this section, we will give rather loose tail bounds to show that it is unlikely

that Zi is much larger than Zi−1. All constants in this section are independent

of µ. This includes all hidden constants in the O-notation.
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5.2.1. Tail Bound on the Lifetime of Xi

As before, let ti be the first round in which an individual of rank at least i

is created, and let Ti be the round in which the last individual of rank at most

i is eliminated.

Lemma 9. For all 0 < α, η < 1, c > 0, there is a constant µ0 ∈ N such

that the following holds for all µ0 ≤ µ ≤ n. Let i ∈ [(1 − 2ε)αn, (1 − ε/2)αn],

where ε = µ−1+η. Consider the (µ+1)-EA with mutation rate c/n on the linear

function f`. Then with probability at least 1 − µ−Ω(1), Ti − ti ≤ 8eαcµ logµ.

Moreover, for all β ≥ 1 and C = 16eαc,

Pr[Ti − ti ≥ β · Cµ logµ] ≤ 2−β .

Proof. We first show that Pr[Ti − ti ≥ C ′µ logµ] ≤ 1/2 for a suitable constant

C ′ > 0. Let x≥i be the first individual of rank at least i and let xj with rank j

be the first individual of rank strictly larger than i. We can divide the process

from ti to Ti into two parts. The first part ends when xj is created, and we

denote by tj the round when this happens. The second part starts after tj and

ends when X>i reaches size µ. Since we are proving an upper bound of the tail,

we can consider the second part ends when X≥j reaches µ for simplicity.

If x≥i = xj , then we have tj = ti, namely the first part does not exist. So

for the tail bound of the first part, we may assume that x≥i ∈ Xi. By Lemma

7, for some 1− η/2 < κ < 1, we have |X≥i| ≥ µκ at time T := ti + 4κeαcµ logµ.

By Lemma 8 we have |X>i| > 0 at this point, so xj must have been created

before time T . For the second part, we apply Lemma 7 again for X≥j . By time

tj + 4eαcµ logµ, X≥j reaches size µ.

To summarize, we have applied Lemma 7 twice and Lemma 8 once. There-

fore, with probability at least 1− 5µ−Ω(1), Ti − ti ≤ 8eαcµ logµ. Since µ ≥ µ0,

for large enough µ0 we obtain Pr[Ti − ti ≥ C ′µ logµ] ≤ 1/2 for C ′ = 8eαc.

To conclude the proof, we set C := 2C ′. Then for all integral β′ ∈ N we

consider β′ phases and repeat the same argument. This shows Pr[Ti − ti ≥
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β′ · C ′µ logµ] ≤ 2−β
′
. Hence, for C = 16eαc it holds for all β ≥ 1,

Pr[Ti − ti ≥ β · Cµ logµ] ≤ Pr[Ti − ti ≥ dβeC ′µ logµ] ≤ 2−dβe ≤ 2−β .

5.2.2. Family Forests

From now on we will be mostly working on family forests, so we introduce

the definition and several related lemmas here. The main idea is to couple the

algorithm with a process that is not subject to selection. This idea has been

used before to analyze population-based algorithms [1, 2, 21, 22].

We denote the family forest for search points with rank at least i by Fi. The

vertex set of Fi are the vertices in X≥i that are (once) in the population, while

the roots of the trees are vertices whose parents are in X<i. Moreover, any path

connecting a root and a vertex in Fi corresponds to a series of mutations that

create this vertex. Note that the size of Fi increase over time.

As analysing Fi directly can be complicated, we couple it with a simpler

random forest F ′, which is generated by the following process. In round 0 there

is a single root in F ′. In each subsequent round, each vertex in F ′ creates a

new child with probability 1/µ and a new root is added. Lemma 10 shows that

Fi can be coupled to a subgraph in F ′.

Lemma 10. The family forest Fi can be coupled to F ′ such that F ′ contains

Fi as a subgraph at any round.

Proof. Throughout the coupling process we maintain that Fi is a subgraph of

F ′. The first point x≥i that the algorithm visits in X≥i (in round ti) corresponds

to the only root r0 in round 0 in F ′. In every round t > ti, a point xt in the

current population is selected to create an offspring yt. For each x ∈ Fi, if xt = x

(which happens with probability 1/µ if x is still in the current population, and

with probability zero otherwise) then we attach a child to x in F ′: if yt ∈ X≥i
then we attach yt to x in F ′, otherwise we attach a dummy child to x in F ′.

In this case, we still associate the offspring with the dummy child, and in our

upcoming considerations we will ignore that this search point does belong to

X≥i. If xt is not in X≥i while yt is, we add yt as a new root rt to F ′, otherwise
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we add a new dummy root to F ′. For every node x ∈ F ′ that is a dummy node

(that has no corresponding node in F ) or whose copy in F has been removed

from the population, we add another dummy node as its child with probability

1/µ. In this way, for each vertex in F ′ we create a new child with probability

1/µ and a root is added in each round. On the other hand, by construction, Fi

is a subgraph of F ′ at all times.

Note that the search points associated with the vertices in F ′ are obtained

from the root by mutation only, without any interfering selection step. This

makes the process easy to analyze. Such a selection-free mutation process has

been analyzed before, e.g. [24]. In Lemma 11 we show several useful properties

of F ′. Due to the coupling from Fi to F ′, the properties will also hold for Fi as

well.

Lemma 11. F ′ satisfies the following properties:

1. Let st denote the number of vertices in F ′ in round t, then Pr[st ≥ S] ≤

tet/µ/S for all S > 0.

2. Let x be a search point that corresponds to a vertex in F ′ of depth at most

d with root y. Then for k ≥ 2edc,

Pr[x and y differ in more than k bits] ≤ 2−k.

3. Let x be a search point that corresponds to a vertex in F ′ of depth larger

than d with root y. If n is sufficiently large and Om(y) ≥ (1− 8ε)n then

Pr[x has more one-bits than y] ≤ 2e−dc/32

and

Pr[y has less than dc/16 more one-bits than x] ≤ 2e−dc/128. (6)

If n is sufficiently large and Om(y) ≤ (1 − 8ε)n then Pr[Om(x) ≥ (1 −

4ε)n] ≤ 2 · 2−εn.
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4. Let sdt denote the number of vertices of depth d in round t for an arbitrary

tree from F ′. Then

E[sdt ] ≤
td

d!µd
.

In particular, for t = O(µ logµ) the depth of the tree is at most e logµ with

probability 1− µ−Ω(1). Moreover, if t ≥ 2dµ,
∑d
i=0 E[sit] ≤ 2td/(d!µd).

Proof. We prove the statements one by one.

1. In t rounds we have added t roots to the forest, and we will give a uniform

bound for all of them. So we fix a root and denote by στ the number of

vertices in this tree in round τ , where 0 ≤ τ ≤ t. We assume pessimisti-

cally that the root is introduced in round 0. Then we have σ0 = 1 and

E [στ+1 | στ ] = (1 + 1/µ)στ for 0 ≤ τ ≤ t − 1. By linearity of expecta-

tion, we have E[σt] ≤ (1 + 1/µ)t. Since there are t roots, and using that

(1 + 1/µ)µ ≤ e, we obtain

E[st] ≤ tE[σt] ≤ t(1 + 1/µ)t ≤ tet/µ.

By Markov’s inequality, it holds that

Pr[st ≥ S] ≤ E[st]

S
≤ tet/µ

S
.

2. Let yi be the i-th bit in y, the event yi 6= xi implies that the i-th bit is

flipped at least once. Denote by d′ ≤ d the distance between x and y. By

a union bound

Pr[yi 6= xi] ≤ Pr[bit i is flipped at least once]

≤ d′ Pr[bit i is flipped in one mutation] ≤ dc/n.

Let D = |{i ∈ [n] | yi 6= xi}| be the number of bits in which y and x

differ. Then its expectation is E [D] ≤ dc. Since the bits are modified

independently, we can apply Chernoff’s inequality (Theorem 1) for k ≥

2edc ≥ 2eE[D] , and obtain

Pr [D ≥ k] ≤ 2−k.
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3. Let the depth of x be d′ ≥ d. First we argue that we may assume d′ ≤

n/(16ec). If d′ ≥ n/(16ec), then consider just the last n/(16ec) steps. In

these, every bit has a constant probability to be touched exactly once,

and a constant probability not to be touched at all. If the number of one-

bits before the last n/(16ec) steps was at least n/2, then with probability

1 − e−Ω(n), x has at least 8εn zero-bits as each one-bit has a constant

probability of being flipped exactly once in those steps, and if the number

of one-bits was at most n/2, x has also at least 8εn zero-bits as each

zero-bit has a constant probability of being untouched. In either case, x

has more zero-bits than y with sufficiently large probability. So we may

assume d′ ≤ n/(16ec).

We then consider the case Om(y) ≥ (1 − 8ε)n. Let B01 be the number

of bits flipped from 0 to 1. Then similarly as for Property 2 we bound

E[B01] by

|{i | yi = 0}| · Pr [xi = 1 | yi = 0]

≤ |{i | yi = 0}| · Pr[bit i flipped at least once in d′ mutations]

≤ 8εn · (d′c/n) = 8εcd′,

where the second inequality follows from a union bound. Similarly, let B10

be the number of bits flipped from 1 to 0 in d′ mutations, its expectation

E[B10] is

|{i | yi = 1}| · Pr [xi = 0 | yi = 1]

≥ |{i | yi = 1}| · Pr[bit i flipped exactly once in d′ mutations]

≥ n

2

(
d′

1

)
c

n

(
1− c

n

)d′−1

≥ d′c

2

(
1− c

n
d′
)
≥ d′c

4
.

Since all bits contribute independently, we may apply the Chernoff bound.

With probability at least 1 − e−d
′c/32 each, we have B01 ≤ cd′/8 and

B10 ≥ cd′/8. Both inequalities together imply that Om(x) ≤ Om(y) as

desired, and the probability that at least one of the inequalities is violated

is at most 2e−d
′c/32 ≤ 2e−dc/32.
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Similarly, the probability that B01 (B10) overshoot (undershoot) its expec-

tation by more than d′c/16 is at most e−d
′c/128. Therefore, the probability

that B01 ≥ B10 − d′c/16 is at most 2e−d
′c/128 ≤ 2e−dc/128.

For the second statement, assume Om(y) ≤ (1 − 8ε)n, and consider the

first vertex x′ on the path from y to x such that Om(x′) ≥ (1− 6ε)n. The

probability that more than εn bits were flipped in the creation of x′ is at

most 2−εn by the Chernoff bound, since by definition of x′ the parent of x′

has an Om-value smaller than (1 − 6ε)n, we may assume that Om(x′) ≤

(1 − 5ε)n. Then, starting from x′ we may use the same calculation as

above, only that we need to bound the probability that εn more zero-

bits than one-bits are flipped. This is bounded by the probability that

B01 ≥ εn. Since d′ ≤ n/(16ec) we have εn ≥ 16εcd′ ≥ 2eE[B01], by the

Chernoff bound, this probability is at most 2−εn.

4. There can only be one root in a tree, so s0
t = 1 for all t ≥ 0. For d ≥ 1

and t ≥ 1, it holds that

sdt = sdt−1 +

sd−1
t−1∑
i=1

Yi,

where Yi is an indicator variable that takes value 1 if the i-th vertex of

depth d− 1 creates a offspring in round t. By Wald’s equation, we obtain

E[sdt ] = E[sdt−1] + E[sd−1
t−1 ]/µ.

Plugging in E[sdt ] = 0 for all t < d, we can derive that

E[sdt ] =

t−1∑
i=d−1

E[sd−1
i ]/µ (7)

for all t ≥ d ≥ 1.

We show the result by induction. For d = 1, by equation (7) we have

E[s1
t ] = t/µ for all t ≥ 1. Now assume that E[sdt ] ≤ td/(d!µd) for all t ≥ d
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where d ≥ 1, again by equation (7) it holds that

E[sd+1
t ] ≤

t−1∑
i=d

id

d!µd
1

µ
=

1

d!µd+1

t−1∑
i=0

id

≤ 1

d!µd+1

t−1∑
i=0

td =
td+1

(d+ 1)!µd+1
(8)

for all t ≥ d+ 1.

Now consider t = O(µ logµ) and d = k logµ for some constant k > e.

With Stirling’s approximation d! = (1+O(1/d))
√

2πd(d/e)d and equation

(8), we have

E[sdt ] =O

(
µd(logµ)d

(d/e)dµd

)
= O

(
(e logµ)k log µ

(k logµ)k log µ

)
=O
( µk

µk log k

)
= O(µk(1−log k)).

By Markov’s inequality, Pr[sdt ≥ 1] = O(µk(1−log k)
√

logµ) = µ−Ω(1) as

k(1 − log k) < 0. Therefore, with probability 1 − µ−Ω(1), sdt = 0 for any

d > e logµ, which implies that the depth of the tree is at most e logµ.

For the last statement, let adt := td/(d!µd). If t ≥ 2dµ, ad−1
t /adt = dµ/t ≤

1/2 for d ≥ 1. Therefore,

d∑
i=0

E[sit] ≤
d∑
i=0

ait ≤
d∑
i=0

2−(d−i)adt < 2adt =
2td

d!µd
.

5.2.3. Tail Bound on Steps of Zi

The first consequence of the coupling is an exponential tail bound on the

difference Zi−Zi−1. Note that the tail bound only holds in one direction. There

is no comparable tail bound for Zi−1−Zi, at least not without further knowledge

on Xi−1: if there is a single search point x ∈ Xi−1 that has k more one-bits

than all other search points in Xi−1, then x might not spawn an offspring and Zi

could drop by k or more, and k could be as large as Ω(n) without assumptions

on Xi−1.

Lemma 12. For all 0 < α, η < 1, c > 0 there is a constant µ0 ∈ N such

that the following holds for all µ0 ≤ µ ≤ n, where n is sufficiently large. Let
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i ∈ [(1−2ε)αn, (1−ε/2)αn], where ε = µ−1+η. Assume that the (µ+1)-EA with

mutation rate c/n on the linear function f` satisfies Zi−1 ≥ (1−4ε)n. Then for

all 1 ≤ β ≤ εn/ log2 µ and C2 = 6400eαc+1,

Pr[Zi − Zi−1 ≥ β · C2 logµ] ≤ 2−β .

If on the other hand Zi−1 < (1 − 4ε)n, then Zi < (1 − 2ε)n with probability

1− e−Ω(εn/ log2 µ).

Proof. By Lemma 9, there is C = 16eαc such that for all β ≥ 1,

Pr[Ti − ti ≥ (β + 2) · Cµ logµ] ≤ 1
42−β .

By Lemma 11.1, at round t = (β + 2) · Cµ logµ we have

Pr[st ≥ µ2(β+2)C ] ≤ t

µ2(β+2)C
≤ (β + 2)Cµ1−2(β+2)C logµ < 1

42−β ,

where the last step holds for all µ ≥ µ0 if µ0 is sufficiently large. That is, the

probability that the algorithm visits at least µ2(β+2)C vertices in X≥i is at most

1
42−β .

From now on, we consider F ′ at a time when it has at most µ2(β+2)C vertices.

Let x be a search point that corresponds to a vertex in F ′ of depth at most

d = βC ′2 logµ with root r, where C ′2 = 200C/c. By Lemma 11.2, for C2 = 400eC

it holds for large enough µ0 that

Pr[x and r differ in more than βC2 logµ bits] ≤ 2−βC2 log µ ≤ 1
42−β · µ−2(β+2)C .

By a union bound over all vertices in F ′, the probability that there exists such

a vertex x among them is at most 1
42−β .

Now let x be a search point that corresponds to a vertex in F ′ of depth larger

than d with root r. For large enough µ0 by Lemma 11.3, if Om(r) ≥ (1− 8ε)n

then

Pr[x has more one-bits than r] ≤ 2e−dc/32 ≤ 1
82−β · µ−2(β+2)C .

The probability that there exists such a vertex x in F ′ is at most 1
82−β by a

union bound. On the other hand, if n is sufficiently large and Om(r) ≤ (1−8ε)n
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then for β ≤ εn/ log2 µ,

Pr[Om(x) ≥ (1− 4ε)n] ≤ 2 · 2−εn ≤ 1
82−β · µ−2(β+2)C ,

Similarly, the probability that such a vertex x exists in F ′ is at most 1
82−β .

To summarize, we have shown that each of the following four events happens

with probability at least 1− 1/4 · 2−β .

• E1: Ti − ti < (β + 2)Cµ logµ.

• E2: st < µ2(β+2)C at time t = (β + 2)Cµ logµ.

• E3: Among the first µ2(β+2)C vertices in F ′, there is no search point x with

a distance at most βC ′2 logµ to its root r such that |{i ∈ [n] | ri 6= xi}| >

βC2 logµ.

• E4: Among the first µ2(β+2)C vertices in F ′, there is no search point

x with a distance larger than βC ′2 logµ to its root r such that either

Om(r) ≥ (1 − 8ε)n and Om(x) > Om(r) or Om(r) ≤ (1 − 8ε)n and

Om(x) ≥ (1− 4ε)n.

Now we argue how the bounds for these events imply the lemma. By E1
and E2, we may restrict ourselves to the first µ2(β+2)C vertices in F ′. We claim

that there are no offspring x in distance at most βC ′2 logµ − 1 from their root

r that have Om-value larger than Zi−1 + βC2 logµ. To see this, we add the

parent of r, r′ ∈ X<i, and the edge between r′ and r to F ′. Now r′ is the

root of x and it can act as a reference point: by the definition of Zi−1 we have

Zi−1 ≥ Om(r′). If the distance from r′ to x is at most βC ′2 logµ, by E3 we have

Om(x) ≤ Om(r′) + βC2 logµ. If x is of larger distance from the added root r′,

we need to discriminate two cases. Either r′ has Om-value at least (1− 8ε)n in

which case Om(x) do not exceed Om(r′) by the first part of E4. Or r′ has Om-

value at most (1− 8ε)n, in which case x do not exceed a Om-value of (1− 4ε)n

by the second part of E4. Therefore, if Zi−1 ≥ (1− 4ε)n, we can conclude that

Om-value of x do not exceed Zi−1 in both cases. Hence, we have shown that
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Om(x)−Zi−1 > β ·C2 logµ is only possible if at least one of the events E1 - E4
does not occur, and thus

Pr[Zi − Zi−1 > β · C2 logµ] ≤
4∑
j=1

(1− Pr[Ej ]) ≤ 2−β .

If Zi−1 < (1 − 4ε)n, with the same arguments and letting β ≥ εn/(log2 µ) we

have Zi < (1− 2ε)n with probability 1− 2−Ω(εn/ log2 µ).

5.3. Typical Situations

As outlined in the overview, our analysis of the drift will be based on studying

what happens in ’typical’ situations. To characterize these, we use the following

definition of ’good’ events. Again we consider the (µ + 1)-EA on the linear

function f`. For parameters φ, cd, ce > 0 we define the event Egood(i) := Ea ∩

Eb ∩ . . . ∩ Ee, where Ea etc. are the following events about the family forest Fi

of rank i. Recall the family forest consists of all x ∈ X≥i, and a vertex u is

a child of v if u was created as an offspring of v. We will be concerned about

those vertices in the family forest in Xi, i.e., vertices of rank exactly i.

• Ea: No vertex in X≤i−1 creates offspring in X≥i+1.

• Eb: There are at most εµ log3 µ roots in Fi.

• Ec: No vertex in Xi of depth at most φ logµ in Fi creates offspring in X>i.

• Ed: For every vertex x ∈ Xi that creates an offspring in X≥i+1, if the

root r of x has Om(r) ≥ (1 − 8ε)n then Om(x) ≤ Om(r) − cd logµ, and

if Om(r) ≤ (1 − 8ε)n then Om(x) ≤ (1 − 4ε)n. Moreover, the mutation

changes at most cd/2 · logµ bits.

• Ee: No vertex in Xi has an Om-value which exceeds the Om-value of its

root in Fi by more than ce logµ.

Lemma 13. For every 0 < α < 1, c > 0 there are cd, ce > 0 such that the

following holds. For any constant parameters 0 < φ < 1 and η > 0 that satisfy
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the following conditions, where g(φ) = φ(log(8eαc+1)− log φ),

η < min
{
g(φ),

1

2
− g(φ),

cφ

128
,
cd
6

}
, (9)

there exists µ0 such that for all µ0 ≤ µ ≤ n and all i ≥ (1−8ε)αn, the (µ+1)-EA

on f` satisfies

Pr [Egood(i)] ≥ 1−O
(

log−2 µ
)
.

We remark that g(φ) > 0 for 0 < φ < 1 and g(φ) < 1/2 for small enough φ,

so there exists η > 0 that satisfies (9).

Proof. We need to show that Pr[E ] = 1 − O(log−2 µ) holds for E = Ea, . . . , Ee.

Thus we split the proof into five parts. Note that we actually show the stronger

statement Pr[E ] = 1− µ−Ω(1) for E = Ea, Ec, Ed, Ee.

Ea: No vertex in X≤i−1 creates offspring in X≥i+1 for η < 1/2.

We consider the number of offspring that are created from points in X≤i−1

and are members of X≥i+1 after the first point x in X≥i is created.

We first argue that the probability that x ∈ Xi is 1 − O(ε). Since we

assume i ≥ (1− 8ε)αn and the rank of x is at least i, the density of zero-bits is

d(A`+1, x) ≤ 8ε. By Lemma 3,

Pr[x ∈ X≥i+1]

Pr[x ∈ X≥i]
≤ 16εαc,

which implies Pr[x ∈ Xi | x ∈ X≥i] = 1−O(ε) = 1−O(µη−1).

By Lemma 9, after the first search point in Xi is created, with probability

1 − O(µ−Ω(1)) it takes at most T = 8eαcµ logµ rounds until the set X≤i is

completely deleted. If a search point in X≤i−1 creates an offspring in X≥i+1, at

least 2 zero-bits need to be flipped. This probability is O(ε2) by a union bound,

and hence the expected number of offspring in X≥i+1 created from X≤i−1 is at

most O(ε2T ) = O(µ−1+2η logµ). Since η < 1/2, by Markov’s inequality, the

probability that the number of such offspring is at least 1 can be bounded by

O(µ−1+2η logµ) = O(log−2 µ), as required.

Eb: There are at most εµ log3 µ roots in Fi.
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We know from Ea(i − 1) that we may assume that no points in Xi are

created from X≤i−2. Hence, it suffices to count the number of roots in Xi

that are created from Xi−1. As in the proof for Ea, by Lemma 9, after the

first search point in Xi−1 is created, with probability 1 − µ−Ω(1) it takes at

most T = 8eαcµ logµ rounds until the set X≤i−1 is completely deleted. In each

round we have a probability of at most pU = O(ε) to create a new root in Xi

(pU defined in Lemma 3), so the expected number of roots in Xi is O(εT ). By

Markov’s inequality, the number of roots is at most εµ log3 µ with probability

O(εT/(εµ log3 µ)) = O(log−2 µ).

Ec: No vertex in Xi of depth at most φ logµ in Fi creates offspring in X>i.

As a sketch for the proof, we first show that the number of vertices of depth

at most φ logµ in Fi is at most µ2g(φ) with high probability. Then by a simple

estimation, the expected number of offspring in X>i created by those vertices is

O(µ−1+2η+2g(φ) log4 µ). Since g(φ) < 1/2 for small enough φ, for η < 1/2−g(φ)

with probability 1−O(µ−Ω(1)) no such offspring is created.

By Lemma 10, we couple Fi with F ′. Since by Eb there are at most εµ log3 µ

roots in Fi, we only need to consider εµ log3 µ trees in F ′.

Recall that by Lemma 9, the lifetime of Xi is at most T := 8eαcµ logµ with

probability at least 1 − µ−Ω(1), if µ ≥ µ0 for a sufficiently large µ0. Hence, it

suffices to study F ′ after T rounds. We want to bound the number of vertices

with depth at most φ logµ. We fix a root, and consider the tree attached to this

root. By Property Lemma 11.4 and by the Stirling formula k! = Θ(
√
k(k/e)k)

in the second step, the expected number of vertices with depth at most φ logµ

at round T is

φ log µ∑
d=0

E[sdT ] < 2E[sφ log µ
T ] =

2Tφ log µ

(φ logµ)!µφ log µ

= Θ
( (8eαcµ logµ)φ log µ

√
logµ(φ logµ/e)φ log µµφ log µ

)
= o
(
µφ(log(8eαc+1)−log φ)

)
= o(µg(φ)).
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Note that for 0 < φ < 1 we have g(φ) > 0. By Markov’s inequality,

Pr

[ φ log µ∑
d=0

sdT ≥ µ2g(φ)

]
= o
(
µ−g(φ)

)
.

Since we consider εµ log3 µ = µη log3 µ trees in F ′, by a union bound over all

trees, with probability at least 1− o(µη−g(φ) log3 µ) the number of vertices with

depth at most φ logµ is at most µη+2g(φ) log3 µ. Note that the error probability

is o(1) since we assumed that η < g(φ).

In each round, every such vertex has a probability of at most O(ε/µ) to

create an offspring of strictly larger rank: it must be selected as parent and its

offspring must have strictly larger rank. Since the vertices in Xi are present

for at most T = 8eαcµ logµ rounds, the expected number of offspring in X≥i+1

created by vertices in Xi of depth at most φ logµ is O(T ·ε/µ ·µη+2g(φ) log3 µ) =

O(µ−1+2η+2g(φ) log4 µ). By Markov’s inequality, the probability that the num-

ber of such offspring is at least 1 is O(µ−1+2η+2g(φ) log4 µ). Since g(x) is mono-

tonically increasing in (0, 1) and g(0) = 0, η < 1/2−g(φ) holds for small enough

constant φ, making the error probability µ−Ω(1). Hence, we have shown that

with sufficiently small probability the vertices in depth at most φ logµ do not

create offspring in X>i.

Ed: For every vertex x ∈ Xi that creates an offspring in X≥i+1, if the root r of x

has Om(r) ≥ (1−8ε)n then Om(x) ≤ Om(r)−cd logµ, and if Om(r) ≤ (1−8ε)n

then Om(x) ≤ (1 − 4ε)n. Moreover, the mutation changes at most cd/2 · logµ

bits.

If Ec holds, the vertices in Xi that create offspring in X≥i+1 must be of

distance at least d = φ′ logµ where φ′ > φ from their roots. Consider a root

r with Om(r) ≥ (1 − 8ε)n. By equation (6) in Lemma 11, for cd = cφ/16,

Pr[Om(x)−Om(r) ≥ −cd logµ] ≤ 2e−cd log µ/8 = 2µ−M , with M := cφ/128. If

Eb(i+ 1) holds, the number of offspring in X≥i+1 created by points in Xi is at

most εµ log3 µ, which means the number of points in Xi that create offspring

in X≥i+1 is at most εµ log3 µ. By a union bound, with probability at least

1−O(εµ log3 µ · 2µ−M ) = 1−O(µ−M+η log3 µ), a vertex in Xi that creates an

38



offspring in X≥i+1 has a Om-value which is at least cd logµ smaller than that

of its root. Since we assumed η < M , this probability is 1 − µ−Ω(1), and thus

sufficiently large. This concludes the case that the root has Om-value at least

(1− 8ε)n.

If a vertex x has a root which has at most Om-value (1− 8ε)n, we consider

the first vertex x′ of Om-value at least (1−6ε)n on the path from the root to x.

Then we know that x′ has Om-value at most (1−5ε)n, since its direct parent has

Om-value less than (1− 6ε)n and the probability to flip at least εn bits in one

mutation is 2−εn. Then by similar arguments as above, the probability that a

descendant of x′ has Om-value which is εn larger than x′ is also 2−εn = µ−ω(1),

and thus we can easily apply a union bound over εµ log3 µ vertices in Xi that

create offspring in X≥i+1.

Finally, we come to the number of bit flips in the improving mutation. In one

mutation the expected number of changed bits is c. Let cd/2 · logµ = (1 + δ′)c

for some δ′ > 1, by Chernoff bound, the probability that the number of changed

bits is larger than cd/2 · logµ can be bounded by e−δ
′c/3 = Θ(µ−cd/6). Simi-

larly, by a union bound, the error probability is at most O(εµ log3 µ · µ−cd/6) =

O(µη−cd/6 log3 µ), which is µ−Ω(1) since η < cd/6.

Ee: No vertex in Xi has an Om-value which exceeds the Om-value of its root in

Fi by more than ce logµ.

We set ce := 2e2ck where k > 1 is a positive constant to be chosen later

and assume the distance between a vertex x and its root r is d. By Lemma

11.4, with probability 1 − µ−Ω(1), d ≤ e logµ, and thus ce logµ ≥ 2edc. By

Lemma 11.2, the probability that x and r differ in more than ce logµ is at most

2−ce log µ = µ−2e2ck log 2. Therefore, the probability that Om(x) exceeds Om(y)

by more than ce logµ is at most µ−2e2ck log 2. Moreover, The lifetime of Xi

is 8eαcµ logµ with probability 1 − µ−Ω(1) by Lemma 9. By Lemma 11.1, with

probability 1−O(µ1−eαc logµ) there are at most µ9eαc vertices in Fi. By a union

bound over all these vertices, the error probability is at most O(µ9eαc−2e2ck log 2).

By choosing k > 9eαc/(2e2c log 2), this probability is µ−Ω(1).
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5.4. Estimating the Drift

We are now ready to collect the information to prove negative drift of the

Zi. We first give a lemma that shows that Zi+K −Zi is negative in case of good

events. As outlined in the introduction, good events don’t imply that Zi+1−Zi
is negative, we need to make K steps for some constant K ∈ N.

Lemma 14. Let ` ∈ [L] and i ∈ N. Consider the (µ + 1)-EA on the linear

auxiliary function f`(x) := n
∑
j∈A` xj +

∑
j∈R` xj. Assume that in some step

t ≥ 0 the highest rank in the population is i, that Egood(i), . . . , Egood(i+K) hold,

where K := d2(ce + 1)/cde, and that Om(r) ≥ (1− 8ε)n holds for all roots r in

Fi, . . . , Fi+K−1. Then Zi+K ≤ Zi − logµ.

Proof. Let j ∈ {i + 1, . . . , i + K}, and let r ∈ Xj be any root in Fj . By

Ea(j − 1), the parent individual x of r is in Xj−1. By Ed(j − 1), the root r′

of x in Fj−1 satisfies Om(r′) ≥ Om(x) + cd logµ ≥ Om(r) + cd/2 · logµ. By

induction, we obtain that for every root r ∈ Xj there exists a root r̃ ∈ Xi

such that Om(r) ≤ Om(r̃)− (j − i)cd/2 · logµ ≤ Zi − (j − i)cd/2 · logµ, where

the second step holds since Om(r̃) ≤ Zi by definition of Zi. Now consider any

individual x̃ ∈ Xi+K , and let r ∈ Xj be its root. By Ee(i+K), we have

Om(x̃) ≤ Om(r) + ce logµ ≤ Zi −K · cd/2 · logµ+ ce logµ

≤ Zi − logµ, (10)

where the latter inequality follows from the definition of K. Since (10) holds

for all x̃ ∈ Xi+K , we obtain Zi+K ≤ Zi − logµ, as required.

We are now ready to prove the main theorem on the drift of Zi. Recall that

we have upper, but no lower tail bounds on Zi − Zi−1, cf. the comment before

Lemma 12. In order to still be able to apply the negative drift theorem later,

we show that the drift is even negative if we truncate the difference Zi+K − Zi
at − logµ.

Theorem 15. For every c > 0 there is a µ0 ∈ N and a K ∈ N such that for all

µ0 ≤ µ ≤ n where n is sufficiently large the following holds for the (µ + 1)-EA
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with mutation parameter c on the auxiliary function f`. Assume that in some

generation the fittest search point satisfies (3). Then

E[max{Zi+K − Zi,− logµ}] ≤ −1.

Proof. Let K be the constant from Lemma 14. Recall from Lemma 13 that

the event Egood has probability 1 − O(log−2 µ), which is at least 1/2 if µ is

sufficiently large. By Lemma 14, the event Egood implies Zi+K − Zi ≤ − logµ,

so in this case the term max{Zi+K − Zi,− logµ} evaluates to − logµ. Hence,

let Egood := E[max{Zi+K − Zi,− logµ} | Egood] · Pr[Egood], it holds that

Egood =

∞∑
j=−∞

max{j,− logµ} · Pr[Zi+K − Zi = j ∧ Egood]

= (− logµ) ·
−dlog µe∑
j=−∞

Pr[Zi+K − Zi = j ∧ Egood]

= − logµ · Pr[Egood] ≤ −2,

where the second equality holds because Pr[Zi+K − Zi = j ∧ Egood] = 0 for

j ≥ −blogµc and the last step follows from Pr[Egood] ≥ 1/2 if µ is sufficiently

large.

In the remainder, we will show that the term Egood is very close to E[max{Zi+1−

Zi,− logµ}]. In fact, the difference is

E[max{Zi+K − Zi,− logµ}]− Egood

=

∞∑
j=−∞

max{j,− logµ} · Pr[Zi+K − Zi = j ∧ ¬Egood]

≤
∞∑
j=1

j · Pr[Zi+K − Zi = j ∧ ¬Egood]. (11)

For an arbitrary constant C > 0 we may define j0 := dC logµ log logµe. Then

we bound j by j0 in the range j ≤ j0, and we bound Pr[Zi+K−Zi = j∧¬Egood]
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by Pr[Zi+K − Zi = j] for j > j0. Since for j > j0,

Pr[Zi+K − Zi = j] ≤ Pr[Zi+K − Zi ≥ j]

= Pr

[ K∑
k=1

(Zi+k − Zi+k−1) ≥ j
]

≤
K∑
k=1

Pr[Zi+K − Zi+k−1 ≥ j/K]︸ ︷︷ ︸
≤2−j/(KC2 log µ)by Lemma 12

≤ K2−j/(KC2 log µ). (12)

We obtain

(11) ≤
j0∑
j=1

j0 · Pr[Zi+K − Zi = j ∧ ¬Egood] +

∞∑
j=j0+1

j · Pr[Zi+K − Zi = j]

≤ j0 · Pr[¬Egood]︸ ︷︷ ︸
=O(log−2 µ)

+

∞∑
j=j0+1

j · Pr[Zi+1 − Zi = j]︸ ︷︷ ︸
≤K2−j/(KC2 log µ) by (12)

= O
(
j0 log−2 µ

)
+O

(
logµ · j02−j0/(KC2 log µ)

)
,

where the factor logµ in the second term appears because
∑∞
s=s0

s2−s/x =

O(xs02−s0/x) for x ≥ 1, which can be seen by grouping the sum into batches of

x summands. The second term is O(log−1 µ) if we choose the constant C > 0

in the definition of j0 = dC logµ log logµe appropriately. The first term is

O(log logµ · log−1 µ). Hence, by choosing µ sufficiently large, we can make

both terms smaller than 1/2, and obtain that E[max{Zi+K − Zi,− logµ}] ≤

Egood + 1 ≤ −1, as desired.

6. Proof of Theorem 6

In the previous section we have analyzed the random variable Zi, and in

particular we have shown that it has negative drift. In this section we will show

how our main result, the lower bound on the runtime for the (µ+1)-EA, follows

from the negative drift of Zi. The proof follows from similar ideas as in [5]

and [6]. We start with a lemma that describes the behavior of the (µ + 1)-EA

on f`.
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Lemma 16. For every constant 0 < δ < 2/7 the following holds. Let ` ∈ [L]

and consider the (µ+1)-EA on f` under the assumption that d([n], x) ≥ ε(1+2δ)

and d(A`+1, x) ≥ ε(1 + δ) hold for all x in the initial population. For t ≥ 0, let

xt be the offspring in round t. Then with probability 1 − exp{−Ω(εn/ log2 µ)},

the following holds for all t ≤ L.

• d([n], xt) ≥ ε(1 + δ).

• d([n], xt) ≥ ε(1 + 2δ) or d(A`+1, x
t) ≥ ε(1 + δ/4).

Before we come to the proof, let us briefly explain why the lemma is useful.

It is tailored to support an inductive proof for Theorem 6 for HotTopic. In

this induction, we will show that d([n], xt) ≥ ε(1 + δ) for exponential time. In

fact, when the algorithm enters a new level then the density is at least ε(1+2δ).

Moreover, one can show that with high probability the new hot topic did not

influence the algorithm up to this point, so it behaves just as a random subset

of positions of size αn. In particular, with high probability its density is at least

ε(1 + δ), so the assumptions of the lemma are satisfied. As long as the level

does not change, the HotTopic function is identical to f`, so we may apply

Lemma 16. The first item implies what we actually want to prove, at least as

long as we stay on the same level. For the second item, by the construction of the

HotTopic function the level increases when d(A`+1, x
t) ≈ ε < ε(1 + δ/4). So

the second item implies that at this point in time we have d([n], xt) ≥ ε(1+2δ),

which is the requirement for the next step in the induction. Note that we can’t

just merge the items into one. For example, if we would weaken the second

item to assert d([n], xt) ≥ ε(1 + δ) at the beginning of a level, then we could

not conclude that the next offspring satisfies the same bound with exponentially

small error probability.

Proof of Lemma 16. Let i0 be the largest rank in the initial population, i.e.,

the largest number of one-bits in A`+1 in the initial population. We fix an

offset a ∈ {0, . . . ,K − 1} and consider the sequence of random variables Yi,a :=

Zi0+a+iK/ logµ, where i is a non-negative integer. In the initial population,
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each individual has at most n (1− ε(1 + 2δ)) one-bits by assumption. Hence,

we also have Zi0+a ≤ n(1− ε(1 + 3δ/2)) with probability 1− exp{−Ω(εn)} for

all offsets a ∈ {0, . . . ,K − 1}, since otherwise at least one of the K mutations

would need to flip Ω(εn) bits, which happens only with probability exp{−Ω(εn)}

by the Chernoff bound. Thus for the first statement it suffices to show that

Yi,a ≤ Y0,a + εδn/(2 logµ) for all i ≥ 0. Since that is equivalent to Zi0+a+iK ≤

Zi0+a+εδn/2 for all i ≥ 0, and we already have Zi0+a ≤ n(1−ε(1+3δ/2)) for all

a with high probability, altogether it implies Zi′ ≤ n(1−ε(1 + δ)) for all i′ ≥ i0.

As Zi′ denotes the maximum number of one-bits in rank i′, we conclude that

d([n], xt) ≥ ε(1 + δ) holds for any individual xt of rank i′ ≥ i0. For the second

statement, we distinguish between two cases. Note that the index i counts, up

to the factor K, the increase in one-bits in A`+1. If i ≤ αnεδ/(4K) − 1, then

for any xt of rank i0 + a + iK, d(A`+1, x
t) ≥ (αnε(1 + δ/2) − a − iK)/(αn) >

ε(1 + δ/2) − (i + 1)K/(αn) ≥ ε(1 + δ/4). For i > αnεδ/(4K) − 1, we aim to

show that Yi,a ≤ Y0,a.

We would like to apply the negative drift theorem to Yi,a for the range

[(1 − ε(1 + 3δ/2))n/ logµ, (1 − ε(1 + δ))n/ logµ]. First note that we study a

linear function, and that the bits in A` have larger weights than the remaining

bits. Thus, it can be shown by a coupling argument (Lemma 4.2 in [5]) that

if d(A`+1, x) ≤ d([n], x) + δε holds initially, then the slightly weaker condition

d(A`+1, x) ≤ d([n], x) + 2δε remains true for all individuals in the population

for the next L rounds, with probability at least 1− Le−Ω(εn). By choosing the

constant parameter ρ in the definition of L = exp{ρεn/ log2 µ} small enough,

the factor L can be swallowed by the term e−Ω(εn). Thus we may assume that

whenever Yi,a is in the range [(1−ε(1+3δ/2))n/ logµ, (1−ε(1+δ))n/ logµ] then

d(A`+1, x) ≤ d([n], x) + 2δε ≤ ε(1 + 3δ/2 + 2δ) ≤ 2ε as δ < 2/7. In addition, we

have d(A`+1, x) ≥ ε/2 before the level changes, since otherwise with probability

1−e−Ω(εn) it holds that d(B`+1, x) < ε, which implies an increase of level. Thus

the conditions in (3) are satisfied, and thus Lemma 6 is applicable.

So let us study the drift of Yi,a in the range [(1− ε(1 + 3δ/2))n/ logµ,

(1− ε(1 + δ))n/ logµ]. First note that the probability to jump over more than
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half of this interval is exp{−Ω(εn/ log2 µ)}: for Yi,a ≥ (1 − 4ε)n/ logµ this

follows from the first statement in Lemma 12, for Yi,a < (1 − 4ε)n/ logµ it

follows from the second statement in Lemma 12. So we may assume that Yi,a

is contained in the first half of the interval for some i = i∗. To ease notation,

we will assume i∗ = 0. Inside of the interval, by Theorem 15, it holds that

E[Yi+1,a − Yi,a] = E[Zi0+a+(i+1)k − Zi0+a+ik]/logµ ≤ −1/logµ.

Moreover, by Lemma 12 the sequence of random variables (Yi,a)i≥0 has an

upper exponential tail bound, i.e., Pr[Yi+1,a − Yi,a ≥ K · βC2] ≤ K · 2−β for

all 1 ≤ β ≤ εn/ log2 µ. (In particular, the probability that there is ever a jump

larger than KC2εn/ log2 µ within L steps is at most O(L · 2−εn/ log2 µ) = o(1),

so we may assume that such jumps never occur.) To show sub-Gaussianity, we

should extend the inequality also for β < 1. Since any probability is bounded

by 1, the bound Pr[Yi+1,a − Yi,a + 1/logµ ≥ KβC2 + 1/logµ] ≤ 2K · 2−β is not

just true for β ≥ 1, but also trivially satisfied for any β ∈ [0, 1]. Therefore, for

any y ≥ 0, it holds that

Pr[Yi+1,a − Yi,a + 1/logµ ≥ y] ≤ 21+1/(KC2 log µ)K(21/(KC2))−y

≤ 21+1/(KC2 log 2)K(21/(KC2))−y.

However, we need exponential tail bounds in both directions, so we need

to truncate the downwards steps of Yi,a as follows. We set Ỹ0,a := Y0,a, and

we define Ỹi,a recursively by Ỹi,a − Ỹi+1,a := min{Yi,a − Yi+1,a, 1/logµ}. Then

clearly we have Ỹi,a ≥ Yi,a for all i ≥ 0, and Ỹi,a satisfies the tail bound condition

that

Pr[Ỹi,a − Ỹi+1,a − 1/logµ > 0] = 0.

Therefore, by Theorem 4, (Ỹi,a + i/logµ)i≥0 is (128c′δ′−3, δ′/4)-sub-Gaussian,

where c′ = 21+1/(KC2 log 2)K and δ′ = 21/(KC2) − 1. And by Theorem 5,

Pr
[

max
0≤j≤i

(Yj,a − Y0,a) ≥ −i/logµ+ y
]
≤ exp

(
− δ′y

8
min

(
1,

δ′2

32c′
· y
i

))
.

Now for any i ≥ 0 and y = i/logµ + εδn/(4 logµ), with probability 1 −

exp{−Ω(εn/ log2 µ)} we have Yi,a ≤ Y0,a+εδn/(4 logµ). Note that εδn/(4 logµ)
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is half of the length of the interval of interest, which implies that Yi,a does

not go beyond the interval with high probability. Similarly, for every fixed

i ≥ αnεδ/(4K) and y = i/logµ we have Yi,a ≤ Y0,a with probability 1 −

exp{−Ω(εn/ log2 µ)}. The proof is concluded by a union bound over all possible

i. Since there are at most n possible values, this increases the error probability

by a factor of n, which we can swallow in the expression exp{−Ω(εn/ log2 µ)}.

Finally, we have collected all ingredients to prove our main result.

Proof of Theorem 6. Let L := exp{ρεn/ log2 µ} be the number of levels. For the

proof, we will consider an auxiliary run of the (µ+1)-EA with a dynamic fitness

function f̃ in which we only allow the levels to increase by one. In particular, the

function f̃ does not only depend on the current state of the algorithm, but also

on the algorithm’s history. More precisely, we define an auxiliary level ˜̀(x, t)

of a search point x, which we only allow to increase by at most one per round.

Recall that `(x) was defined in (1) as `(x) = max{`′ ∈ [L] : d(B`′ , x) ≤ ε}.

For ˜̀(t), we use the same definition except that we let the maximum go over

only `′ ≤ min{˜̀(t − 1) + 1, L}. I.e., we set ˜̀(0) := 0, and if an offspring

yt of xt enters the population in round t, then we set ˜̀(yt, t) := max{`′ ∈

[min{˜̀(xt, t− 1) + 1, L}] : d(B`′ , y
t) ≤ ε}. (If the population stays the same in

round t, then we leave ˜̀ unchanged.) Then we define the auxiliary fitness of yt

as

f̃(yt) := ˜̀(yt, t) · n2 +
∑

i∈A˜̀(yt,t)+1

yti · n +
∑

i∈R˜̀(yt,t)+1

yti ,

i.e., we use the same definition as for the HotTopic function except that we

replace `(yt) by ˜̀(t). Then we proceed as the (µ + 1)-EA, i.e., in each round

we compute and store the auxiliary fitness of the new offspring (which may

depend on the whole history of the algorithm), and we remove the search point

for which we have stored the lowest auxiliary fitness. This definition does not

make much sense from an algorithmic perspective, but we will see in hindsight
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that the auxiliary process behaves identical to the actual (µ + 1)-EA. We will

next argue why this is the case.

For the auxiliary process, it is obvious that we only need to uncover the

set Ai+1 and Bi+1 when we reach level ˜̀(t) = i. As we will show later for the

auxiliary process, with high probability the density d([n], xt) stays strictly above

ε · (1 + δ) for a suitable constant δ > 0. Now fix any round t with auxiliary level

˜̀(t). Since we do need to uncover B˜̀(t)+2 at some point after time t, its choice

does not influence the behavior of the auxiliary process until time t. Hence,

we can first let the auxiliary process run until time t, and afterwards uncover

the set B˜̀(t)+2. Since B˜̀(t)+2 ⊂ [n] is a uniformly random subset of size βn, it

contains at least βε(1 + δ)n zero-bits in expectation, and the probability that

B˜̀(t)+2 contains at most βεn zero-bits is exp{−Ω(βεn)}. The same argument

also holds for B˜̀(t)+3, . . . , BL. Since L = exp{ρεn/ log2 µ} with desirably small

ρ > 0, we can afford a union bound over all such sets and all times t ≤ L, which

is a union bound over less than L2 = exp{2ρεn/ log2 µ} terms. Hence, with high

probability we have d(Bi, x
t) > ε for all 1 ≤ t ≤ L and all ˜̀(t) + 2 ≤ i ≤ L. A

straightforward induction shows that this implies `(t) = ˜̀(t) for all t ≤ L, and

thus the (µ + 1)-EA behaves identical to the auxiliary process. Note that this

already implies that the (µ+1)-EA visits each of the L levels, which implies the

desired runtime bound. It only remains to show that there is a constant δ > 0

such that the auxiliary process satisfies d([n], xt) > ε · (1 + δ) for all t ≤ L.

The advantage of the auxiliary process is that we may postpone drawing

A`+1 until we reach level ˜̀ = `. In particular, since A`+1 ⊆ [n] is a uniformly

random subset, we may use the same argument as before and conclude that

|d(A`+1, x) − d([n], x)| < δε holds with probability 1 − exp{−Ω(εn)} for any

constant δ > 0 that we desire, and for all members x of the population when we

reach level `. In fact, we have exponentially small error probability, so we may

afford a union bound and conclude that with high probability the same holds

for all `. We want to show that the auxiliary process, if running on level ` and

starting with a population that initially satisfies |d(A`+1, x)−d([n], x)| < δε for

δ < 2/7, maintains d([n], xt) ≥ ε(1 + δ) for all new search points xt until t > L.
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By the first conclusion from Lemma 16, d([n], xt) ≥ ε(1 + δ) holds as long

as the level remains to be ` and t ≤ L. When a point x reaches level ` +

1, by definition we have d(B`+1, x) < ε. Since B`+1 is a uniformly random

subset of A`+1, by the Chernoff bound d(A`+1, x) < ε(1 + δ/4) holds with

probability 1− exp{−Ω(εn)}. So we apply the second conclusion of Lemma 16

to x and conclude that d([n], x) ≥ ε(1 + 2δ). With high probability, it holds

that d(A`+2, x) ≥ ε(1 + 2δ) − εδ and the conditions in Lemma 16 are satisfied

again for level `+ 1. By induction we obtain d([n], xt) ≥ ε(1 + δ) for all t ≤ L.

As the choice of ` is arbitrary, we start with ` = 0 and d([n], xt) ≥ ε(1+δ) holds

for all t ≤ L. This concludes the proof.

7. Simulation

In this section we will illustrate the detrimental effect of large populations on

(µ+ 1)-EAs by numerical simulations. Unless otherwise stated, the parameters

that we used to generate the HotTopic functions are n = 10000, L = 100,

α = 0.25, β = 0.05 and ε = 0.05. Each data point is obtained by 10 indepen-

dent runs on the same HotTopic function with different random seeds. Our

implementation is available at https://github.com/zuxu/MuOneEA-HotTopic.

7.1. Population Size

First of all, we plot typical behaviours of evolutionary algorithms with small,

medium and large population sizes. Figure 2 shows the distance between the

optimum and the fittest point p∗ in the population with respect to time. We

have two metrics for the distance: the density of 0-bits in p∗ and the remaining

levels of p∗ divided by L. As indicated by the sudden drops in level, for a

small population size (µ = 30), the algorithm skips many levels and reaches the

optimum quickly. In contrast, an algorithm with large µ = 70 visits the levels

one by one, without improvement on the fitness. This happens where the density

of 1-bits is relatively high, such that even though it gradually improves on the

current hot topic, it often accepts offspring that flip 1-bits to 0-bits outside
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Figure 2: Distance to the optimum as (µ+ 1)-EAs with c = 1.0 proceed. The solid lines are

the mean of 10 simulations, while the shaded areas are bounded by corresponding minimum

and maxmium values at each time step.

of the hot topic. With such offspring accumulating in a large population, the

average density of 0-bits remains significantly above ε before reaching the last

level. Therefore, with high probability the algorithm does not skip any level.

Once the highest level is reached, the remaining bits can be optimized easily as

in the coupon collector. For µ = 50, the density gets close, but slightly above

ε, so that it depends on chance whether levels are skipped or not. This leads to

a high variance in the running time.

In Figure 3, we show the running time and the number of visited levels for a

wide range of µ. The running time is highly concentrated when µ is very small

or very large. The reason is that the algorithm keeps skipping levels with small

µ and visits all levels with large µ. For a medium sized µ like 50, level skipping

only happens a few times. Since each time when the algorithm skips a level,
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Figure 3: Running time and number of visited levels for (µ+ 1)-EAs with different values of

µ and c = 1.0. Solid dots indicate the means and error bars show the standard deviations.

it lands at some higher level uniformly at random due to the definition of the

HotTopic function, which results in a larger variance in the running time.

7.2. Mutation Rate

The mutation rate c is the other factor that affects the magnitude of the

negative drift, so we also plot the running time for various values of c, see

Figure 4. For a small c, detrimental mutations do not occur frequently and thus

the average density of 1-bits in the population keeps increasing. Conversely,

with a large c, the algorithm tends to visit all the levels. To demonstrate the

resulting effect on the running time, we compare the cases where L = 100

and L = 200. If c is small (c ≤ 0.9), the algorithm skips levels quickly, and

the running time is almost independent of the number of levels. On the other
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Figure 4: Running time and number of visited levels for (µ+ 1)-EAs with different values of

c and µ = 50. Solid dots indicate the means and error bars show the standard deviations.

hand, if c is large (c ≥ 1.2) then the algorithm visits every level. In this case,

the running time is essentially proportional to the number of levels, plus some

initial phase. Note that in this range the running time can get almost arbitrarily

bad, since doubling the number of levels L will essentially lead to a doubling

of the running time. As our theoretical analysis shows, this holds even when L

becomes exponential in n, but for so many levels the running time becomes too

large to run experiments. Finally, for a medium sized c like 1.1, level skipping

only happens a few times. Each time when the algorithm skips a level, it lands

at some higher level uniformly at random, which results in a larger variance in

the running time, similar to Figure 3.

Finally, we investigate how values of µ and c jointly influence the behaviour

of a (µ+ 1)-EA. For a fixed c, we search for the minimum value of µ such that

the algorithm visits all levels in at least half of the 10 simulations. That is, we
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Figure 5: Minimum values of µ with respect to c such that the (µ+ 1)-EA visits all levels in

at least 5 out of 10 simulations. The choices of c ranges from 0.7 to 4.0 with step size 0.1.

seek for a minimum µ that induces long running times with constant probability.

As we can see from Figure 5, large values of c (≥ 3.2) are extremely harmful

even when there is only one individual in the population. An algorithm with a

large population can benefit greatly from having a small mutation rate. We did

not observe a stable slowdown for c = 0.7 until we raise the value of µ to more

than 1000.

8. Conclusion

We have shown that the (µ+1)-EA with arbitrary mutation parameter c > 0

needs exponential time on some monotone functions if µ is too large. This is

one of the very few known situations in which even a slightly larger population

size µ can lead to a drastic decrease in performance. The main reason is that, if

progress is steady enough that the population does not degenerate, the search

points that produce offspring are typically not the fittest ones. We believe that

this is an interesting phenomenon which deserves further investigations, also in

less artificial contexts.
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For example, consider the (µ + 1)-EA on weighted linear functions with a

skewed distribution (e.g., on BinVal), and with a fixed time budget (so that

the action happens away from the optimum). It is quite conceivable that the

same effect hurts performance, i.e., if the algorithm flips a high-weight bit, it will

allow (almost) any offspring of this individual into the population, even though

this offspring has probably fewer correct bits than other search points in the

population. Does that mean that the fixed-budget performance of the (µ+ 1)-

EA on BinVal deteriorates with increasing µ? Are the resulting individuals

further away from the optimum?

An even more pressing question is about crossover. We have studied the

(µ + 1)-EA, but do the same results also apply for the (µ + 1)-GA? In [6]

it was shown that close to the optimum (for small values of the HotTopic

parameter ε) crossover helps dramatically, and that a large population size can

even counterbalance large mutation parameters c. So, close to the optimum, for

the (µ + 1)-GA the effect of large population size was beneficial, while for the

(µ+ 1)-EA it was neutral and did not affect the threshold c0. Thus if we study

the (µ + 1)-GA on HotTopic functions with large ε, then a beneficial effect

of large populations is competing with a detrimental effect. Understanding this

interplay would be a major step towards a better understanding of crossover in

general.

Similarly, since the problems originate in non-trivial populations, what hap-

pens if we equip the (µ+ 1)-EA with a diversity mechanism (duplication avoid-

ance, genotypical or phenotypical niching), and study it close to the optimum?

Does it fall for the same traps? This question was already asked in [6], but our

results shed additional light on the question.

Finally, it is open whether the (µ+1)-EA is fast on any monotone function if

it starts close enough to the optimum. i.e., for every µ ∈ N, does there exist an

ε = ε(µ) such that the (µ+ 1)-EA, initialized with a random search point with

εn zero-bits, has runtime O(n log n) for every monotone function? Of course,

the same question also applies to other algorithms like the (µ+ 1)-GA and the

‘fast’ counterparts of the (µ + 1)-EA and the (µ + 1)-GA. Interestingly, the
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result in [6] that the ‘fast (1+λ)-EA’ with good parameters is efficient for every

monotone function was only proven under this assumption, that the algorithm

starts close to the optimum. So this also raises the question whether there are

traps for the ‘fast (1 +λ)-EA’ that only take effect far away from the optimum.
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