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Abstract

The concept of proxy re-encryption (PRE) dates back to the work of Blaze, Bleumer,
and Strauss in 1998. PRE offers delegation of decryption rights, i.e., it securely enables the
re-encryption of ciphertexts from one key to another, without relying on trusted parties.
PRE allows a semi-trusted third party termed as a “proxy” to securely divert encrypted
files of user A (delegator) to user B (delegatee) without revealing any information about
the underlying files to the proxy. To eliminate the necessity of having a costly certificate
verification process, Green and Ateniese introduced an identity-based PRE (IB-PRE). The
potential applicability of IB-PRE sprung up a long line of intensive research from its first
instantiation. Unfortunately, till today, there is no collusion-Resistant unidirectional IB-
PRE secure in the standard model, which can withstand quantum attack. In this paper,
we present the first concrete constructions of collusion-Resistant unidirectional IB-PRE,
for both selective and adaptive identity, which are secure in standard model based on the
hardness of learning with error problem.

1 Introduction

In a Proxy Re-encryption (PRE) scheme, a proxy is given some information that allows turning
a ciphertext encrypted under a given public key into one that is encrypted under a different
key. A naive way for a user A to have a proxy implementing such a mechanism is to simply
store her private key at the proxy: when a ciphertext arrives for A, the proxy decrypts it
using the stored secret key and re-encrypts the plaintext using B’s public key. The obvious
problem with this strategy is that the proxy learns the plaintext and A’s secret key. Blaze,
Bleumer, and Strauss [7] introduced the concept of PRE to achieve an efficient solution that
offers delegation of decryption rights without compromising privacy. PRE involves a semi-
trusted third party, called a proxy, to securely divert encrypted files of one user (delegator)
to another user (delegatee). The proxy, however, cannot learn the underlying message m, and
thus both parties’ privacy can be maintained. PRE (and its variants) have various applications
ranging from encrypted email forwarding [7], securing distributed file systems [4], to digital
rights management systems [33]. We notice a real-world file system employing a PRE scheme
by Toshiba Corporation [25]. On the other hand, various emerging ideas and techniques have
shown connections between re-encryption with other cryptographic primitives, such as program
obfuscation [19, 13, 12], and fully-homomorphic encryption [11]. Hence, further studies along
this line are both important and interesting for theory and practice.

PRE systems are, mainly, classified as unidirectional and bidirectional based on the direction
of delegation. It is worth mentioning that bidirectional construction easily implementable using
a unidirectional one. The first unidirectional PRE was proposed by Ateniese et al. in [4], where
following desired properties of a PRE are listed:
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• Non-interactivity: re-encryption key, rkA→B , can be generated by A alone using B’s
public key; no trusted authority is needed;

• Proxy transparency: neither the delegator nor the delegatees are aware of the presence of
a proxy;

• Key optimality: the size of B’s secret key remains constant, regardless of how many
delegations he accepts;

• Collusion resilience: it is computationally infeasible for the coalition of the proxy and
user B to compute A’s secret key;

• Non-transitivity: it should be hard for the proxy to re-delegate the decryption right,
namely to compute rkA→C from rkA→B , rkB→C .

To achieve the aforementioned properties (partially) with improved security guarantee, there
are elegant followup works that can be found in [10, 19, 22, 13, 12]. Unfortunately, all the
aforementioned constructions are vulnerable to quantum attacks. It is a need of the age to
construct a quantum-safe version of useful cryptographic primitives like PRE. Gentry [16] men-
tioned the feasibility of unidirectional PRE through a fully homomorphic encryption scheme
(FHE). However, FHE costs huge computation. Xagawa proposed the construction of PRE in
[35], but the construction lacks concrete security analysis. Further development of lattice-based
PRE can be found in [21, 12, 26, 15]. In [21], the first non-interactive CCA secure lattice-based
PRE proposed. Unfortunately, there is some issue regarding security reduction, which is fixed
by Fan et al. [15].

The Certificate management problem is one of the most crucial issues in the PKI based
schemes. This crucial issue was addressed by Green et al. [18] in the area of PRE. For lattice-
based construction, Singh et al. [31] proposed a bidirectional identity-based PRE. However, it
is required to use the secret key of both delegator and delegatee to generate a re-encryption key,
which lacks one of the fundamental properties of PRE. Further, they proposed unidirectional
identity-based PRE [32, 30], termed as IB-uPRE, secure in the random oracle model. However,
the size of the re-encrypted ciphertext blows up than the original encrypted one. Thus, [32, 30]
lack the property called Proxy transparency. Recently, Dutta et al. [14] proposed IB-uPRE

secure in standard model. Unfortunately, IB-uPRE of [14] is not collusion resistant. There are
some further attempts to construct lattice-based identity-based PRE, which are flawed1 [20, 36].
Our Contributions and Techniques: It is an interesting open research problem to construct
post-quantum secure collusion-Resistant IB-uPRE in the standard model. In this paper, we
resolve this daunting task by constructing concrete schemes based on the hardness of learning
with error (LWE) problem. We propose, both, selectively-secure IB-uPRE and an adaptively-
secure IB-uPRE. Proposed schemes enjoy the property of proxy transparency, i.e., a recipient
of ciphertext cannot distinguish whether the ciphertext is the original one or re-encrypted.
Furthermore, the proposed constructions have properties like non-interactivity, key optimality,
non-transitivity along with other properties follow generically from IB-PRE. We provide a
comparison among existing (IB)PRE and proposed schemes in Table 1.

To construct the IB-uPRE, we start with the construction of the identity-based encryption
scheme by Agrawal et al. [1]. From very high level, it may seems that the security reduction
works as in [1]. But, challenges arise during the simulation of ReKey oracle. We explain the
devised techniques to combat such challenges in subsequent paragraphs.

1In [20], authors claimed to prove IND-ID-CPA, but provide the proof for IND-CPA. In [36], authors assumed
a universally known entity (G matrix; see section 2.1) as a secret entity.
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Table 1: Comparison with Lattice-based (IB)PRE

Scheme Unidirectional PT CR IBE Std.

[3] × X × × X

[21] X X X × X

[26] X × X × X

[15] X × X × X

[32, 30] X × X X ×

[14] X X × X X

Proposed X X X X X

Schemes

PT: Proxy Transparency; CR: Collusion-Resistant; IBE:
Identity-based Encryption; Std.: security in standard
model.

For selectively-secure IB-uPRE scheme, we consider identities as elements of Zn
q . In SetUp

phase, we choose uniformly random matrix Ā from Z
n×m̄
q and a random “short” matrix R from

the Gaussian distribution Dm̄×nk
Z,r . We construct A =

[
Ā −ĀR

]
and choose a uniformly

random vector u ∈ Z
n
q , where R is a trapdoor with tag 0. We set (A,u) as the public

parameters and R as the master secret key. To compute the secret key for an identity idi, we
construct Aidi

=
[
Ā −ĀR+Hidi

G
]
, where Hidi

is output of FRD[1], G is the gadget
matrix [23] and R is a trapdoor of Aidi

with invertible tag Hidi
. We sample the secret key

xidi
∈ Z

m from DΛ⊥
u
(Aidi

),s, using SampleO with trapdoor R for Aidi
and considering u

as syndrome. The public parameters (A,u) offers a significant advantage for the simulation:
The reduction can embed the LWE instance A∗ in the public shared matrix and then sets
u =

[
A∗ −A∗R

]
· xidi∗

, where xidi∗
is randomly chosen vector from appropriate Gaussian

distribution. We treat xidi∗
as the secret key for target identity idi∗ and use it to answer the

ReKey query from id∗. Such clever trick enables collusion resistance for the propose scheme.
We construct ReKey from idi to idj as

rki→j =

[
r1Aidj

r1u+ r2 − P2(xidi
)

01×m I1×1

]

,

using secret key of idi. Apparently, it seems that the structure of ReKey is same as in [32, 30].
In [32, 30], two matrices, of different order, A and X are constructed in public parameters. A
is used for encryption and X is used for re-encryption. In a simplified way, we can say that two
different encryption schemes are used to construct IB-uPRE of [32, 30]. Similar kind of technique
is also used in [26]. Unfortunately, such technique causes different sizes for original ciphertext
and re-encrypted ciphertext. Hence, property of proxy transparency is missing in [32, 30, 26].
Unlike aforementioned constructions, we use Aidi

for re-encryption and embed the property
of proxy transparency. For encryption and decryption, we use dual encryption method from
[17]. Since, the order of the original ciphertext and the re-encrypted ciphertext are same in our
scheme, we can use same decryption algorithm for both original and re-cncrypted ciphertext.
But, there are two different decryption algorithms for the original ciphertext and re-encrypted
ciphertext in [32, 30, 26].

For the adaptively-secure IB-uPRE, we consider identities as (b1, b2, · · · , bl) ∈ {−1, 1}l. In
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SetUp phase, we do same as in selectively-secure IB-uPRE, except choosing one short secret
matrix, we choose l random “short” secret matrices R1,R2, · · · ,Rl from the same distribution
and construct Āi = −ĀRi. In contrast of selectively-secure IB-uPRE, we choose l+1 uniformly
random vectors u0,u1, · · · ,ul from Z

n
q . We give (Ā, Āi,ui) as the public parameters and

(R1,R2, · · · ,Rl) as the master secret key. To compute the secret key of an identity idi =

(b1, b2, · · · , bl), we Construct uidi
= u0 +

∑l
j=1 bjuj and Aidi

=
[

Ā
∑l

j=1 bjĀj +G
]

,

where
∑l

j=1 bjRj is a trapdoor with tag I. We sample the secret key xidi
from DΛ⊥

uidi
(Aidi

),s as

in Selectively-secure IB-uPRE. For rekey, we do same as in Selectively-secure IB-uPRE, where u
is replaced by uidj

. Note that, uidj
can be constructed from public parameters and delegatee’s

identity.
Main challenge in the security reduction of adaptively-secure IB-uPRE is that the challenge

identity is not known beforehand. It causes abort event during security reduction. We deal with
this issue by using a family of abort-resistant hash functions as in [34, 1]. For simulation, we
setup public parameters as follows: set Āi = −A∗Ri+hiG, where hi a secret coefficient from Zq

for i = 1, · · · , l; set u0 = A∗ ·x1 and ui = −A∗Ri ·x2, where i = 1, · · · , l and x1,x2 are chosen
from appropriate Gaussian distribution. Such setup give leverage to simulate the secret key of

challenge identity. We treat x∗ =

[
x1

x2

]

as the secret key of challenge identity. We use x∗ to

create challenge ciphertext and to answer ReKey queries from challenge identity in Phase 2.

Note that, Aidi
=

[

A∗ −A∗
∑

j=1 bjRj + (1 +
∑l

i=1 hibi)G
]

. So, if (1 +
∑l

i=1 hibi) = 0,

then the coefficient of G in Aidi
is zero. Thus, we cannot sample the secret key of identities for

which (1 +
∑l

i=1 hibi) = 0. For these special identities the simulator will be unable to answer
key-extraction and ReKey queries, but will be able to construct a useful challenge to solve the
given LWE problem instance.

2 Preliminaries
We denote the real numbers and the integers by R,Z, respectively. We denote column-vectors
by lower-case bold letters (e.g. b), so row-vectors are represented via transposition (e.g. bt).
Matrices are denoted by upper-case bold letters and treat a matrix X interchangeably with
its ordered set {x1,x2, . . .} of column vectors. We use I for the identity matrix and 0 for
the zero matrix, where the dimension will be clear from context. We use [∗|∗] to denote the
concatenation of vectors or matrices. Singular value [23] of B ∈ R

n×k is denoted by si(B).

For x ∈ Z
n
q , we denote (u0, · · · ,u⌈log q⌉) ∈ Z

n·⌈log q⌉
2 by BD(x), where x =

∑⌈log q⌉
j=0 2j · uj and

uj ∈ Z
n
2 . For x ∈ Z

n
q , we denote (x, 2 · x, · · · , 2⌈log q⌉ · x) ∈ Z

n·⌈log q⌉
2 by P2(x). By Lemma 2 of

[8], we have BD(x)t · P2(y) = xty.
A negligible function, denoted generically by negl(n). We say that a probability is over-

whelming if it is 1−negl(n). The statistical distance between two distributions X and Y over a
countable domain Ω defined as 1

2

∑

w∈Ω |Pr[X = w]−Pr[Y = w]|. We say that a distribution over
Ω is ǫ-far if its statistical distance from the uniform distribution is at most ǫ. Throughout the
paper, r = ω(

√
logn) represents a fixed function which will be approximated by

√

ln(2n/ǫ)/π.

2.1 Lattices

A lattice Λ is a discrete additive subgroup of R
m. Specially, a lattice Λ in R

m with ba-
sis B = [b1, · · · ,bn] ∈ R

m×n, where each bi is written in column form, is defined as Λ :=
{∑n

i=1 bixi|xi ∈ Z ∀i = 1, . . . , n} ⊆ R
m. We call n the rank of Λ and if n = m we say that Λ is

a full rank lattice. The dual lattice Λ∗ is the set of all vectors y ∈ R
m satisfying 〈x,y〉 ∈ Z for
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all vectors x ∈ Λ. If B is a basis of an arbitrary lattice Λ, then B∗ = B(BtB)−1 is a basis for
Λ∗. For a full-rank lattice, B∗ = B−t. We refer to B̃ as a Gram-Schmidt orthogonalization of
B.

In this paper, we mainly consider full rank lattices containing qZm, called q-ary lattices,
defined as the following, for a given matrix A ∈ Z

n×m
q and u ∈ Z

n
q

Λ⊥(A) := {z ∈ Z
m : Az = 0 mod q} .

Λ(At) :=
{
z ∈ Z

m : ∃ s ∈ Z
n
q s.t. z = Ats mod q

}
.

Λ⊥
u (A) := {z ∈ Z

m : Az = u mod q} = Λ⊥(A) + x for x ∈ Λ⊥(A).

Note that, Λ⊥(A) and Λ(At) are dual lattices, up to a q scaling factor: qΛ⊥(A)∗ = Λ(At), and
vice-versa. Sometimes we consider the non-integral, 1-ary lattice 1

qΛ(A
t) = Λ⊥(A)∗ ⊇ Z

m.
Gaussian on Lattices: Let Λ ⊆ Z

m be a lattice. For a vector c ∈ R
m and a positive

parameter s ∈ R, define: ρc,s(x) = exp
(

π ‖x−c‖2

s2

)

and ρc,s(Λ) =
∑

x∈Λ ρc,s(x). The discrete

Gaussian distribution over Λ with center c and parameter σ is DΛ,c,s(y) =
ρc,s(y)
ρc,s(Λ) , ∀y ∈ Λ.

Hard Problems on Lattices:

• Consider publicly a prime q, a positive integer n, and a distribution χ over Zq. An
(Zq, n, χ)-LWE problem instance consists of access to an unspecified challenge oracle O,
being either a noisy pseudo-random sampler Os associated with a secret s ∈ Z

n
q , or a truly

random sampler O$ who behaviours are as follows:

Os: samples of the form (ai, vi) = (ai, a
t
is + ei) ∈ Z

n
q × Zq where s ∈ Z

n
q is a uniform

secret key, ai ∈ Z
n
q is uniform and ei ∈ Zq is a noise withdrawn from χ.

O$: samples are uniform pairs in Z
n
q × Zq.

The (Zq , n, χ)-LWE problem allows responds queries to the challenge oracle O. We say
that an algorithm A decides the (Zq, n, χ)-LWE problem if

AdvLWE

A :=
∣
∣Pr[AOs = 1]− Pr[AO$ = 1]

∣
∣

is non-negligible for a random s ∈ Z
n
q . We denote, (Zq, n, χ)-LWE as LWEq,χ.

Let Ψ̄α be a distribution of the random variable ⌊qX⌉ mod q, where α ∈ (0, 1) and X is
a normal random variable with mean 0 and standard deviation α/

√
2π. It is well known

that, under a (quantum) reduction, solving the LWE problem with χ = Ψ̄α or DZ,s on
average is as hard as the worst case of the approximation version of the shortest inde-
pendent vector problem, SIV Pγ , and the decision version of the shortest vector problem,
GapSV Pγ , where γ is an approximation factor [27, 29, 9].

We denote stA+ et mod q for A ∈ Z
n×m
q , s ∈ Z

n
q and a Gaussian e ∈ Z

m by gA(e, s).

• The Small Integer Solution (SIS) problem was first suggested to be hard on average by
Ajtai [2] and then formalized by Micciancio and Regev [24]. Finding a non-zero short
preimage x ∈ Z

m such that fA(x) = Ax = 0 mod q, with ‖x‖ ≤ β, is an instantiation
of the SISq,n,m,β problem.

Trapdoors for Lattices: Here, we briefly describe the main results of [23]: the definition of
G-trapdoor, the algorithms InvertO , SampleO.

A G-trapdoor is a transformation (represented by a matrix R) from a public matrix A to
a special matrix G which is called as gadget matrix. The formal definitions as follows:
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Definition 1 ([23]). Let A ∈ Z
n×m
q and G ∈ Z

n×w
q be matrices with m ≥ w ≥ n. A G-

trapdoor for A is a matrix R ∈ Z
(m−w)×w such that A

[
R
I

]

= HG, for some invertible

matrix H ∈ Z
n×n
q . We refer to H as the tag or label of the trapdoor.

InvertO(R,A,b,Hi) [23]: On input a vector bt = stA+ et, a matrix
A and its corresponding G-trapdoor R with invertible tag H, the algorithm first computes

b′t = bt

[
R
I

]

and then run the inverting oracle O(b′) for G to get (s′, e′). The algorithm outputs s =
H−1s′ and e = b − Ats. Note that, InvertO produces correct output if ei ∈ [− q

4 ,
q
4 ) i.e.

e ∈ P1/2(q ·B−t), where B = Sk or S̃k, Sk is a basis of Λ⊥(G); cf. [23, Section 4.1, Theorem
5.4].

SampleO(R,A,H,u, s) [23]: On input (R,A′,H,u, s),
the algorithm construct A =

[
A′ −A′R+HG

]
, where R is the G-trapdoor for matrix

A with invertible tag H and u ∈ Z
n
q .The algorithm outputs, using an oracle O for Gaussian

sampling over a desired coset Λ⊥
v (G), a vector drawn from a distribution within negligible

statistical distance of DΛ⊥
u
(A),s.

2.2 Identity-Based Unidirectional Proxy Re-Encryption

Definition 2 (Identity-Based Unidirectional Proxy ReEncryption (IB-uPRE) [18]). A uni-

directional Identity-Based Proxy Re-Encryption (IB-uPRE) scheme is a tuple of algorithms

(SetUp,Extract,ReKeyGen,Enc,ReEnc,Dec) :

• (PP,msk) ←− SetUp(1n) : On input the security parameter 1n, the setup algorithm

outputs PP,msk.

• skid ←− Extract(PP,msk, id) : On input an identity id, public parameter PP, master

secret key msk, output the secret key skid for id.

• rki→j ←− ReKeyGen(PP, skidi
, idi, idj) : On input a public parameter PP , secret key

skidi
of a delegator i, and the identities of delegator i and delegatee j, idi, idj respectively,

output a unidirectional re-encryption key rki→j .

• ct ←− Enc(PP, id,m) : On input an identity id, public parameter PP and a plaintext

m ∈M, output a ciphertext ct under the specified identity id.

• ct′ ←− ReEnc(PP, rki→j , ct) : On input a ciphertext ct under the identity i and a re-

encryption key rki→j , output a ciphertext ct′ under the identity j.

• m←− Dec(PP, skidi
, ct) : On input the ciphertext ct under the identity i and secret key

skidi
of i, the algorithm outputs a plaintext m or the error symbol ⊥.

An Identity-Based Proxy Re-Encryption scheme is called single-hop if a ciphertext can be
re-encrypted only once. In a multi-hop setting proxy can apply further re-encryptions to already
re-encrypted ciphertext.
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Definition 3 (Single-hop IB-uPRE Correctness). A single-hop unidirectional Identity-Based

Proxy Re-Encryption scheme (SetUp,Extract,ReKeyGen,Enc, ReEnc,Dec) decrypts cor-
rectly for the message m ∈M if :

• For all skid output by Extract under id and for the message m ∈ M,

it holds that Dec(PP, skid,Enc(PP, id,m)) = m.

• For any re-encryption key rki→j output by ReKeyGen(PP, skidi
, idi, idj) and any ct =

Enc(PP, idi,m) it holds that

Dec(PP, skidj
,ReEnc(PP, rki→j , ct)) = m.

Security Game of Selectively Secure Identity-Based Unidirectional Proxy
Re-Encryption Scheme against Chosen Plaintext Attack (IND-sID-CPA) To de-
scribe the security model we first classify all of the users into honest (HU) and corrupted (CU).
In the honest case an adversary does not know secret key, whereas for a corrupted user the ad-
versary has secret key. Let A be the PPT adversary and Π = (SetUp,Extract,ReKeyGen,
Enc,ReEnc,Dec) be an IB-uPRE scheme with a plaintext spaceM and a ciphertext space C.
Let id∗(∈ HU) be the target user. Security game is defined according to the following game
ExpIND-sID-CPA

A (1n) :

1. SetUp: The challenger runs SetUp(1n) to get (PP,msk) and give PP to A.

2. Phase 1: The adversary A may make queries polynomially many times in any order to
the following oracles:

• OExtract: an oracle that on input id ∈ CU , output skid; Otherwise, output ⊥.
• OReKeyGen: an oracle that on input the identities of i-th and j-th users: if idi ∈ HU ,
idj ∈ HU or idi, idj ∈ CU or idi ∈ CU, idj ∈ HU , output rki→j ; otherwise, output
⊥.

• OReEnc: an oracle that on input the identities of i, j-th users and ciphertext of i-th
user: if idi, idj ∈ HU or idi, idj ∈ CU or idi ∈ CU, idj ∈ HUoutput re-encrypted
ciphertext; otherwise, output ⊥.

3. Challenge: A outputs a message m ∈ M. The challenger picks a random bit r ∈ {0, 1}
and a random ciphertext C from the ciphertext space. If r = 0 it sets the challenge
ciphertext ct∗ = Enc(PP, id∗,m). If r = 1 it sets the challenge ciphertext ct∗ = C. Then
challenger sends the ct∗ as the challenge to the adversary.

4. Phase 2: After receiving the challenge ciphertext, A continues to have access to the
OExtract, OReKeyGen and OReEnc oracle as in Phase 1.

5. ODecision: On input r′ from adversary A, this oracle outputs 1 if r = r′ and 0 otherwise.

The advantage of an adversary in the above experiment ExpIND-sID-CPA
A (1n) is defined as |Pr[r′ =

r] − 1
2 |.

Definition 4. An IB-uPRE scheme is IND-sID-CPA secure if all PPT adversaries A have at

most a negligible advantage in experiment ExpIND-sID-CPA
A (1n).

For the Adaptive-Identity, instead of announcing the challenge identity at the starting of
the game, Adversary will announce it at the time of challenge phase. Only constraints is that,
there was no Extract queries on that challenge identity before. The resulting security notion is
defined using the modified game as in Definition 4, and is denoted IND–ID-CPA.
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3 Selectively Secure Identity-Based Unidirectional Proxy
Re-Encryption Scheme (Selective-IB-uPRE)

3.1 Construction of Selective-IB-uPRE

In this section, we present our construction of Selective-IB-uPRE. In the following construction,
we encode identities as follows:

• Encoding of Identity: To encode identity, we use full-rank difference map (FRD) as in
[1]. FRD: Zn

q → Z
n×n
q ; id 7→ Hid. We assume identities are non-zero elements in Z

n
q . The

set of identities can be expanded to {0, 1}∗ by hashing identities into Z
n
q using a collision

resistant hash. FRD satisfies the following properties:

1. ∀ distinct id1, id2 ∈ Z
n
q , the matrix Hid1

−Hid2
∈ Z

n×n
q is full rank;

2. ∀ id ∈ Z
n
q \ {0}, the matrix Hid ∈ Z

n×n
q is full rank;

3. FRD is computable in polynomial time (in n log q).

We set the parameters as the following.

• G ∈ Z
n×nk
q is a gadget matrix for large enough prime power q = pe = poly(n) and

k = ⌈log q⌉ = O(log n), so there are efficient algorithms to invert gG and to sample for
fG.

• m̄ = O(nk) and the Gaussian D = Dm̄×nk
Z,r , so that (Ā, ĀR) is negl(n)-far from uniform

for Ā.

• The LWE error rate α for Selective-IB-uPRE should satisfy 1/α = O(nk)2 · r2.

The proposed Selective-IB-uPRE consists of the following algorithms:

SetUp(1n) On input a security parameter n, do:

1. Choose Ā ← Z
n×m̄
q , R ← D, and construct A =

[
Ā −ĀR

]
∈ Z

n×m
q , where m =

m̄+ nk.

2. Choose a uniformly random vector u from Z
n
q .

3. Output the public parameter PP = (A,u) and the master secret key is msk = R.

Extract(PP,msk, id) On input a public parameter PP , master secret key msk and the iden-
tity of i-th user idi, do:

1. Construct Aidi
=

[
Ā −ĀR+Hidi

G
]
∈ Z

n×m
q .

2. Sample xidi
∈ Z

m from DΛ⊥
u
(Aidi

),s, using SampleO with trapdoor R for Aidi
.

3. Output the secret key as skidi
= xidi

∈ Z
m.
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Enc(PP, idi, b) On input a public parameter PP , the identity of i-th user idi and a message
b ∈ {0, 1}, do:

1. Construct Aidi
=

[
Ā −ĀR+Hidi

G
]
∈ Z

n×m
q .

2. Choose a uniformly random s← Z
n
q .

3. Sample error vectors e ← DZ,αq, e0 ← Dm̄
Z,αq and e1 ← Dnk

Z,s′ , where s′2 = (‖e0‖2 +

m̄(αq)2)r2. Let the error vector e = (e0, e1) ∈ Z
m.

4. Compute c1 = At
idi

s+ e mod q ∈ Z
m
q and c2 = uts + e+ b · ⌊q/2⌋ mod q ∈ Zq.

5. Output the ciphertext ct = (c1, c2) ∈ Z
m
q × Zq .

Dec(PP, skidi
, ct) On input a public parameter PP , the secret key of i-th user skidi

and
ciphertext ct, do:

1. Compute b′ = c2 − xt
idi

c1 ∈ Zq.

2. Output 0 if b′ is closer to 0 than to ⌊q/2⌋ mod q; Otherwise output 1.

ReKeyGen(PP, skidi
, idi, idj) On input a public parameter PP , the secret key of i-th user

skidi
and identity of j-th user idj , do:

1. Construct Aidi
and Aidj

.

2. Choose r1 ← Dmk×n
Z,r and r2 ← Dmk×1

Z,r .

3. Construct the proxy re-encryption key

rki→j =

[
r1Aidj

r1u+ r2 − P2(xidi
)

01×m I1×1

]

∈ Z
(mk+1)×(m+1)
q

4. Output rki→j .

ReEnc(rki→j , ct) On input rki→j and i-th user’s ciphertext ct = (c1, c2), Compute:

1. Compute the re-encrypted ciphertext c̄t = (c̄1, c̄2) as follows:

c̄t
t
=

[
BD(c1)

t ct2
]
· rki→j ∈ Z

1×(m+1)
q

2. Output the re-encrypted ciphertext c̄t.

3.2 Correctness and Security

In this section, we analyze the correctness and security of the proposed scheme. In respect of
correctness, the main point is to consider the growth of error due to re-encryption. We have
proved that the growth of error is controlled in Theorem 5. Further, we have proved security
of the construction in the selective identity based model, according to the Definition 4, against
chosen plaintext attack in Theorem 6

Theorem 5 (Correctness). The Selective-IB-uPRE scheme with parameters proposed in Sec-

tion 3.1 is correct.

9



Proof: To show that the decryption algorithm outputs a correct plaintext, we will consider
both original and re-encrypted ciphertext. Let skidi

= xidi
and skidj

= xidj
be the secret key

for i-th and j-th user respectively.
From ReKeyGen(PP, skidi

, idi, idj) algorithm, we get

rki→j =

[
r1Aidj

r1u+ r2 − P2(xidi
)

01×m I1×1

]

.

Let ct = (c1, c2) be the ciphertext of a message b ∈ {0, 1} for i-th user and c̄t = (c̄1, c̄2) =
(ReEnc(PP, rki→j , ct)) be the re-encrypted ciphertext for the j-th user. Thus, we need to
prove that Dec(PP, skidi

, ct) = Dec(PP, skidj
, ct′) = b.

First we decrypt the original ciphertext,

b′ = c2 − xt
idi

c1

= uts+ e+ b · ⌊q/2⌋ − xt
idi

(At
idi

s+ e)

= uts+ e+ b · ⌊q/2⌋ − uts− xt
idi

e

= e− xt
idi

e
︸ ︷︷ ︸

error

+b · ⌊q/2⌋

To get a correct decryption, the norm of the error term should be less than q/4 i.e. |e −
xt
idi

e| < q/4. Let us estimate the norm of noises, we have s1(R) ≤ O(
√
nk) ·r [23, Lemma 2.9],

s1(xidi
) ≤ 2

√
6 ·√m ·

√

s1(R)2 + 1 ·r. We have e = (ē0, e1). By [1, Lemma 12], [5, Lemma 1.5],

‖e0‖ < αq
√
m̄ and ‖e1‖ < αq

√
2m̄nk·r i.e. ‖e‖ < 2αq

√
2m̄nk·r. So, |e−xt

idi
e| < αq·O(nk)2 ·r2.

As 1/α = O(nk)2 · r2, we have |e− xt
idi

e| < αq · O(nk)2 · r2 < q/4.

For the re-encrypted ciphertext c̄t for idj , we have c̄t
t
=

[
BD(c1)

t c2
]
·rki→j . We have,

b′
t
= c̄t2 − c̄t1xidj

= c̄t
t ·

[
−xidj

1

]

=
[
BD(c1)

t ct2
]
· rki→j ·

[
−xidj

1

]

=
[
BD(c1)

t ct2
]
·
[

r1Aidj
r1u+ r2 − P2(xidi

)
01×m I1×1

]

·
[
−xidj

1

]

=
[
BD(c1)

t ct2
]
·
[
−r1Aidj

xidi
+ r1u+ r2 − P2(xidi

)
1

]

=
[
BD(c1)

t ct2
]
·
[

r2 − P2(xidi
)

1

]

= BD(c1)
tr2 −BD(c1)

tP2(xidi
) + ct2

= BD(c1)
tr2 − ct1xidi

+ ct2

b′ = rt2BD(c1)− xt
idi

c1 + c2

= rt2BD(c1)− xt
idi

(At
idi

s+ e) + uts+ e+ b · ⌊q/2⌋
= rt2BD(c1)− xt

idi
e+ e

︸ ︷︷ ︸
error

+b · ⌊q/2⌋

To get a correct decryption, the norm of the error term should be less than q/4 i.e.
|rt2BD(c1)−xt

idi
e+e| < q/4. Let us estimate the norm of noises, we have s1(r2) ≤ O(

√
nk)·r [23,

10



Lemma 2.9] , |rt2BD(c1)| ≤ O(nk)1.5 ·r. Also, |e−xt
idi

e| < αq ·O(nk)2 ·r2. As 1/α = O(nk)2 ·r2,
|rt2BD(c1)− xt

idi
e+ e| < αq · O(nk)2 · r2 < q/4.

Theorem 6 (Security). The above scheme is IND-sID-CPA secure assuming the hardness of

decision-LWEq,χ.

Proof: Let the LWE samples of the form (ai, vi) = (ai, a
t
is + ei) ∈ Z

n
q × Zq, where s ← Z

n
q ,

uniformly random and ei ∈ Zq, sample from χ, ai is uniform in Z
n
q . we construct column-wise

matrix A∗ from these samples ai and a vector v∗ from the corresponding vi. Let idi∗ be the
target user. The proof proceeds in a sequence of games.

Game 0: This is the original IND-sID-CPA game from definition between an adversary A
against scheme and an IND-sID-CPA challenger.

Game 1: In Game 1 we change the way that the challenger generates A,u in the public
parameters. In SetUp phase, do as follows:

• Set the public parameter Ā = A∗, where A∗ is from LWE instance (A∗,v∗) and set
A =

[
A∗ −A∗R−Hidi∗

G
]
, where R is chosen in the same way as in Game 0.

• Choose xidi∗
← D = Dm×1

Z,r ; Set u =
[
A∗ −A∗R

]
· xidi∗

.

• Set PP = (A,u) and send it to the Adversary A.

• OExtract: To answer a secret key query against idi ∈ CU , challenger will do the following:
ConstructAidi

=
[
A∗ −A∗R−Hidi∗

G+Hidi
G

]
=

[
A∗ −A∗R+ (Hidi

−Hidi∗
)G

]
.

So, R is a trapdoor of Ãi with invertible tag (Hidi
−Hidi∗

). Then from Extract algo-
rithm, challenger gets the secret key skidi

= xidi
for idi, sends skidi

to the adversary A.
Challenger will send ⊥, against the secret key query for idi ∈ HU .

• OReKeyGen: For the re-encryption key query from idi∗ to idj ∈ HU , challenger will
compute Aidj

, then

rki∗→j =

[
r1Aidj

r1u+ r2 − P2(xidi∗
)

01×m I1×1

]

,

where r1, r2 was chosen as in the scheme. For other re-encryption key query chal-
lenger maintain the restrictions as in definition 4 and computes rki→j according to the
ReKeyGen algorithm to reply the adversary.

• OReEnc: For re-encryption query challenger maintain the restrictions as in definition 4 and
computes ReEnc(rki→j , ct) according to the ReEnc algorithm to reply the adversary.

Due to left-over hash lemma [1, Lemma 14], (A∗,−A∗R,
[
A∗ −A∗R

]
· xidi∗

) is sta-
tistically indistinguishable with uniform distribution.
Hence, (A∗,−A∗R−Hidi∗

G,
[
A∗ −A∗R

]
·xidi∗

) is statistically indistinguishable with
uniform distribution. Furthermore,A,u and responses to key queries are statistically close
to those in Game 0. Hence, Game 0 and Game 1 are statistically indistinguishable.

Game 2: In Game 2, we change the way that the challenger generates challenge ciphertext.
Here Challenger produces the challenge ciphertext ct∗ = (c∗1, c

∗
2) for the target identity idi∗ on

a message b∗ ∈ {0, 1} as follows:

11



• Choose a uniformly random s← Z
n
q and noise vectors e0 ← Dm̄

Z,αq.

Set c∗1 =

[
v∗

−Rtv∗

]

∈ Z
m
q and c∗2 = xt

idi∗
·
[

v∗

−Rtv∗

]

+ b∗ · ⌊q/2⌋ ∈ Zq, where v∗ =

A∗t · s + e0. [ (A
∗,v∗) be the LWE instance]

Send ct∗ = (c∗1, c
∗
2) to the adversary.

• Here c∗1, c
∗
2 satisfies,

c∗1 =

[
v∗

−Rtv∗

]

=

[
A∗t · s + e0

−RtA∗t · s−Rte0

]

=

[
A∗t

−RtA∗t

]

· s+
[

e0
−Rte0

]

= At
idi∗

s+

[
e0
−Rte0

]

∈ Z
m
q

c∗2 = xt
idi∗
·
[

v∗

−Rtv∗

]

+ b∗ · ⌊q/2⌋

= xt
idi∗
·
[

A∗t · s + e0
−RtA∗t · s−Rte0

]

+ b∗ · ⌊q/2⌋

= xt
idi∗
·At

idi∗
s+ xt

idi∗

[
e0
−Rte0

]

+ b∗ · ⌊q/2⌋

= uts+ xt
idi∗

[
e0
−Rte0

]

+ b∗ · ⌊q/2⌋ ∈ Zq

By Corollary 3.10 in [28], the noise term (e0,−Rte0) of c∗1 is within negl(n) statistical
distance from discrete Gaussian distribution Dnk

Z,s′ . The same argument, also, applies for
the noise term of c∗2. So, (c∗1, c

∗
2) is the valid challenge ciphertext in Game 2[1, Lemma

12, Lemma 14].

Hence, Game 1 and Game 2 are statistically indistinguishable.

Game 3: Here, we only change how the v∗ component of the challenge ciphertext is created,
letting it be uniformly random in Z

m̄
2q. Challenger constructs the public parameters, answers

the secret key queries, re-encryption queries and construct the remaining part of the challenge
ciphertext exactly as in Game 2. It follows from the hardness of the decisional LWEq,χ that
Game 2 and Game 3 are computationally indistinguishable.

Now, by the left-over hash lemma [1, Lemma 14], (A∗,v∗,−A∗R,−Rtv∗) is negl(n)-uniform
when R is chosen as in Game 2. Therefore, the challenge ciphertext has the same distribution
(up to negl(n) statistical distance) for any encrypted message. So, the advantage of the adver-
sary against the proposed scheme is same as the advantage of the attacker against decisional
LWEq,χ. This completes the proof.
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4 Adaptively Secure Identity-Based Unidirectional Proxy
Re-Encryption Scheme (Adaptive-IB-uPRE)

4.1 Construction of Adaptive-IB-uPRE

In this section, we present our construction of Adaptive-IB-uPRE. We set the parameters as in
section 3.1. The proposed Adaptive-IB-uPRE consists of the following algorithms:

SetUp(1n)

1. Choose Ā← Z
n×m̄
q and R1,R2, · · · ,Rl ← D = Dm̄×nk

Z,r , Construct Āi = −ĀRi ∈ Z
n×nk
q

for i = 1, · · · , l.

2. Choose l + 1 uniformly random vectors u0,u1, · · · ,ul from Z
n
q .

3. Output the public parameter PP = (Ā, Ā1, Ā2, · · · , Āl,u0,u1, · · · ,ul) and the master
secret key is msk = (R1,R2, · · · ,Rl).

Extract(PP,MK, id) On input public parameter PP, the master key MK and an identity of
i-th user, idi = (b1, b2, · · · , bl) ∈ {−1, 1}l:

1. ConstructAidi
=

[

Ā
∑l

j=1 bjĀj +G
]

∈ Z
n×m
q , wherem = m̄+nk. Here,

∑l
j=1 bjRj

is a trapdoor of Aidi
with tag I.

2. Construct uidi
= u0 +

∑l
j=1 bjuj .

3. Sample xidi
∈ Z

m from DΛ⊥
uidi

(Aidi
),s, using SampleO with trapdoor

∑l
j=1 bjRj forAidi

.

4. Output the secret key skidi
= xidi

∈ Z
m.

Enc(PP, idi, b) On input a public parameter PP , the identity of i-th user idi and a message
b ∈ {0, 1}, do:

1. Construct Aidi
=

[

Ā
∑l

j=1 bjĀj +G
]

∈ Z
n×m
q .

2. Choose a uniformly random s← Z
n
q .

3. Sample error vectors e ← DZ,αq, e0 ← Dm̄
Z,αq and e1 ← Dnk

Z,s′ , where s′2 = (‖e0‖2 +

m̄(αq)2)r2. Let the error vector e = (e0, e1) ∈ Z
m.

4. Compute c1 = At
idi

s+ e mod q ∈ Z
m
q and c2 = ut

idi
s+ e+ b · ⌊q/2⌋ mod q ∈ Zq.

5. Output the ciphertext ct = (c1, c2) ∈ Z
m
q × Zq .

Dec(PP, skidi
, ct) On input a public parameter PP , the secret key of i-th user skidi

and
ciphertext ct, do:

1. Compute b′ = c2 − xt
idi

c1 ∈ Zq.

2. Output 0 if b′ is closer to 0 than to ⌊q/2⌋ mod q; Otherwise output 1.

13



ReKeyGen(PP, skidi
, idi, idj) On input a public parameter PP , the secret key of i-th user

skidi
and identity of j-th user idj , do:

1. Construct Aidi
and Aidj

,uidj
.

2. Choose r1 ← Dmk×n
Z,r and r2 ← Dmk×1

Z,r .

3. Construct the proxy re-encryption key

rki→j =

[
r1Aidj

r1uidj
+ r2 − P2(xidi

)
01×m I1×1

]

∈ Z
(mk+1)×(m+1)
q .

4. Output re-encryption key rki→j .

ReEnc(rki→j , ct) On input rki→j and i-th user’s ciphertext ct = (c1, c2), do:

1. Compute the re-encrypted ciphertext c̄t = (c̄1, c̄2) as follows:

c̄t
t
=

[
BD(c1)

t ct2
]
· rki→j ∈ Z

1×(m+1)
q .

2. Output the re-encrypted ciphertext c̄t.

4.2 Correctness and Security

In this section, we analyze the correctness and security of the proposed scheme. In respect of
correctness, the main point is to consider the growth of error due to re-encryption. We have
proved that the growth of error is controlled in Theorem 7. Further, we have proved security
of the construction in the adaptive identity based model, according to the Definition 4, against
chosen plaintext attack in Theorem 8

Theorem 7 (Correctness). The Adaptive-IB-uPRE scheme with parameters proposed in Sec-

tion 4.1 is correct.

Proof: Proof follows from the similar argument of Theorem 5.
To prove the security, we use the family of abort-resistant hash functions [1, 6, 34] FWat,

where FWat : {Fh : (Zl
q)

∗ → Zq}h∈Zl
q
and Fh(id) = 1 +

∑l
i=1 hibi for id = (b1, b2, · · · , bl) ∈

{−1, 1}l. FWat is a (Q,αmin, αmax) abort-resistant family, where αmin = 1
q (1 −

Q
q ) by [1,

Lemma 27] and Q is number of key extraction query. Since q ≥ 2Q, we have αmin ≥ 1
2q .

Theorem 8 (Security). The above scheme is IND-ID-CPA secure assuming the hardness of

decision-LWEq,χ.

Proof: Let the LWE samples of the form (ai, vi) = (ai, a
t
is + ei) ∈ Z

n
q × Zq, where s ← Z

n
q ,

uniformly random and ei ∈ Zq, sample from χ, ai is uniform in Z
n
q . we construct column-wise

matrix A∗ from these samples ai and a vector v∗ from the corresponding vi. The proof proceeds
in a sequence of games. Let Wi be the event that the adversary correctly guessed the challenge
bit at the end of Game i. The adversary’s advantage in Game i is |Pr[Wi]− 1

2 |.

Game 0. This is the original IND-ID-CPA game from definition between an adversaryA against
scheme and an IND-ID-CPA challenger.

Game 1. In Game 1 we change the way that the challenger generates Ā, Āi,u0, ui, where
i = 1, · · · , l in the public parameters. In SetUp phase, do as follows:
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• Set the public parameter Ā = A∗, where A∗ is from LWE instance (A∗,v∗).

• Challenger chooses l random scalars hi ∈ Zq for i = 1, · · · , l and set Āi = −A∗Ri +
hiG, where Ri are chosen in the same way as in Game 0.

• Choose x1 ← Dm̄×1
Z,r and x2 ← Dnk×1

Z,r ; Set x∗ =

[
x1

x2

]

∈ Z
m×1. Set u0 = A∗ · x1

and ui = −A∗Ri · x2 for i = 1, · · · , l .
• Set PP = (Ā, Ā1, Ā2, · · · , Āl,u0,u1, · · · ,ul) and send it to the Adversary A.
Due to left-over hash lemma [1, Lemma 14], the distribution of (A∗,−A∗Ri,A

∗ ·
x1,−A∗Ri ·x2) is statistically indistinguishable with uniform. Hence, (A∗,−A∗Ri+
hiG,A∗ ·x1,−A∗Ri ·x2) is statistically indistinguishable with uniform distribution.
So, in adversary’s view, these are uniform random matrices, as in Game 0. Hence,

Pr[W0] = Pr[W1]. (1)

Game 2. In Game 2, challenger introduce an abort event which is independent of the Ad-
versary’s view. Otherwise, Game 2 is identical to Game 1. Here, challenger behaves as
follows:

SetUp Except challenger chooses a random hash function Fh ∈ FWat, SetUp phase of
Game 2 is identical with Game 1. Challenger keeps Fh to himself.

Phase 1 The adversary A may make quires polynomially many times in any order to
the following oracles:

OExtract: To answer a Extract queries on idi ∈ CU , challenger does the following:

• If fidi
= Fh(idi) 6= 0, then using Extract, Construct

Aidi
=

[
A∗ −A∗

∑

j=1 bjRj + fidi
G

]
and uidi

= u0+
∑l

j=1 bjuj . So,
∑

j=1 bjRj

is a trapdoor of Aidi
with invertible tag fidi

.I. Then from Extract algorithm, chal-
lenger gets the secret key skidi

= xidi
for idi, sends skidi

to the adversary A.
For fidi

= 0, challenger will abort the game.

Challenger will send ⊥, against the secret key query for idi ∈ HU .

OReKeyGen: For Re-EncryptionKey queries from idi to idj , where idi, idj ∈ CU or
idi ∈ CU, idj ∈ HU , if Fh(idi) 6= 0 mod q, then using ReKeyGen algorithm, chal-
lenger will compute rki→j , sends to A. Otherwise, challenger will abort. If challenger
answered Extract queries before for idi, then using that keys challenger will construct
rki→j ; otherwise challenger will construct keys as in an extract query first and then use
the ReKeyGen algorithm to construct rekey, send to A.
For Re-EncryptionKey queries from idi to idj , where idi, idj ∈ HU , challenger will
construct Aidj

and choose r1 ← Dmk×n
Z,r , as in the scheme and one uniformly random

matrix K ← Z
mk×1
q . It will set the re-encryption key rki→j =

[
r1Aidj

K
01×m I1×1

]

∈

Z
(mk+1)×(m+1)
q , send rki→j to the adversary. In adversary’s view, simulated ReKey and

actual ReKey are identical.

OReEnc: For re-encryption query challenger first check that there was Rekey query before
or not, if yes, then challenger will do as follows:
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• If there is a ReEncKey, using that ReEncKey, challenger will computeReEnc(rki→j , ct)
according to the ReEnc algorithm to reply the adversary.

• If there was an abort, Challenger will abort here, too.

Otherwise, challenger will compute ReEnc Key (following the criteria for OReKeyGen)
maintain the restrictions as in definition 4 and computes ReEnc(rki→j , ct) according to
the ReEnc algorithm to reply the adversary.

Challenge In the challenge phase, the challenger checks if the challenge identity idi∗(∈
HU) = (b∗1, · · · , b∗l ) satisfies fidi∗

= 1+
∑l

j=1 hjb
∗
j = 0. If not, challenger abort the game

( and pretends that the adversary output a random bit r′ in {0, 1} in Decision Phase),
challenger will produce the challenge ciphertext ct∗ = (c∗1, c

∗
2) for the challenge identity

idi∗ on a message b∗ ∈ {0, 1}. Since, fidi∗
= 0, so Aidi∗

=
[

A∗ −A∗
∑l

j=1 b
∗
jRj

]

.

Let R∗ =
∑l

j=1 b
∗
jRj. We will treat x∗ =

[
x1

x2

]

as secret key of idi∗ . We will use x∗ to

answer ReKey queries from idi∗ in Phase 2. Check that Aidi∗
· x∗ = u0 +

∑l
j=1 b

∗
juj i.e.

Aidi∗
· x∗ = uidi∗

.

Challenger will produce the challenge ciphertext ct∗ = (c∗1, c
∗
2) for the challenge identity

idi∗ on a message b∗ ∈ {0, 1} as follows:

• Choose a uniformly random s← Z
n
q and noise vectors e0 ← Dm̄

Z,αq.

Set c∗1 =

[
v∗

−R∗tv∗

]

∈ Z
m
q and c∗2 = x∗t ·

[
v∗

−R∗tv∗

]

+ b∗ · ⌊q/2⌋ ∈ Zq, where

v∗ = A∗t · s+ e0. Send ct∗ = (c∗1, c
∗
2) to the adversary.

• Here c∗1, c
∗
2 satisfies,

c∗1 =

[
v∗

−R∗tv∗

]

=

[
A∗t · s+ e0

−R∗tA∗t · s−R∗te0

]

=

[
A∗t

−R∗tA∗t

]

· s+
[

e0
−R∗te0

]

= At
idi∗

s+

[
e0

−R∗te0

]

∈ Z
m
q

c∗2 = x∗t ·
[

v∗

−R∗tv∗

]

+ b∗ · ⌊q/2⌋

= x∗t ·
[

A∗t · s+ e0
−R∗tA∗t · s −R∗te0

]

+ b∗ · ⌊q/2⌋

= x∗t ·At
idi∗

s+ x∗t

[
e0

−R∗te0

]

+ b∗ · ⌊q/2⌋

= ut
idi∗

s+ x∗t

[
e0

−R∗te0

]

+ b∗ · ⌊q/2⌋ ∈ Zq
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By Corollary 3.10 in [28], the noise term (e0,−R∗te0) of c∗1 is within negl(n) statistical
distance from discrete Gaussian distribution Dnk

Z,s′ . The same argument, also, applies for
the noise term of c∗2. So, (c∗1, c

∗
2) is the valid challenge ciphertext in Game 2[1, Lemma

12, Lemma 14].

Phase 2 After receiving the challenge ciphertext, A continues to have access to the
OExtract, OReKeyGen and OReEnc oracle as in Phase 1. But for ReEnc Key query from

the challenge identity idi∗ to any honest user HU , challenger use x∗ =

[
x1

x2

]

as the

secret key of id∗, then using the ReKeyGen algorithm, it constructs the Rekey and send
to the adversary.

Decision Note that the adversary never sees Fh and has no idea if an abort event took
place. It is convenient to consider this abort at the Decision Phase. Nothing would
change if the challenger aborted the game as soon as the abort condition became true.
Let id1, id2, · · · , idQ ∈ CU be the identities, on which adversary did Extract and ReKey
queries.

In the final guess phase, the adversary outputs its guess r′ ∈ {0, 1} for r. The challenger
now does the following:

1. Abort check: The challenger checks if Fh(idi∗) = 0 and Fh(idi) 6= 0 for i =
1, · · · , Q. If not, it overwrites r′ with a fresh random bit in {0, 1} and we say
that challenger aborted the game. Note that the adversary never sees Fh and has
no idea if an abort event took place.

2. Artificial Abort: The challenger samples a bit Γ ∈ {0, 1} such that Pr[Γ = 1] =
γ(idi∗ , id1, · · · , idQ), where the function γ(·) is defind in [1, Lemma 28]. If Γ = 1 the
challenger overwrites r′ with a fresh random bit in {0, 1} and we say that challenger
aborted the game due to an artificial abort; see [1] for more details.

This completes the description of Game 2. Note that the abort condition is determined
using a hash function Fh that is independent of the adversary’s view. A similar argument
as in [1, Theorem 25] yields that

|Pr[W2]−
1

2
| ≥ 1

4q
|Pr[W1]−

1

2
|. (2)

Game 3. Here, we only change how the v∗ component of the challenge ciphertext is created,
letting it be uniformly random in Z

m̄
2q. Challenger construct the public parameters, answer

the secret key queries, re-encryption queries and construct the remaining part of the
challenge ciphertext exactly as in Game 2. It follows from the hardness of the decisional
LWEq,χ that Game 2 and Game 3 are computationally indistinguishable.

Now, by the left-over hash lemma [1, Lemma 14], (A∗,v∗,−A∗R∗,−R∗tv∗) is negl(n)-
uniform where R∗ is same as in Game 2. Therefore, the challenge ciphertext has the
same distribution (up to negl(n) statistical distance) for any encrypted message. So, the
advantage of the adversary against the proposed scheme is same as the advantage of the
attacker against decisional LWEq,χ. Since Pr[W3] =

1
2 , we obtain

|Pr[W2]−
1

2
| = |Pr[W2]− Pr[W3]| ≤ ǫ. (3)
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From equation (1), (2) and (3), we get |Pr[W0]− 1
2 | ≤ 4qǫ. This completes the proof.

5 Conclusion

In this paper, we first propose quantum-safe concrete constructions of collusion-resistant
Selective-IB-uPRE and Adaptive-IB-uPRE secure in standard model. All the proposed construc-
tions are single-hop. It is an interesting open issue to construct multi-hop version of the proposed
schemes.
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