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Balanced Stable Marriage: How Close is Close Enough?∗

Sushmita Gupta† Sanjukta Roy‡ Saket Saurabh† ‡ Meirav Zehavi†

Abstract

The Balanced Stable Marriage problem is a central optimization version of the
classic Stable Marriage problem. Here, the output cannot be an arbitrary stable match-
ing, but one that balances between the dissatisfaction of the two parties, men and women.
We study Balanced Stable Marriage from the viewpoint of Parameterized Complexity.
Our “above guarantee parameterizations” are arguably the most natural parameterizations
of the problem at hand. Indeed, our parameterizations precisely fit the scenario where there
exists a stable marriage that both parties would accept, that is, where the satisfaction of each
party is close to the best it can hope for. Furthermore, our parameterizations accurately
draw the line between tractability and intractability with respect to the target value.

1 Introduction

Matching under preferences is a rich topic central to both economics and computer science,
which has been consistently and intensively studied for over several decades. One of the main
reasons for interest in this topic stems from the observation that it is extremely relevant to
a wide variety of practical applications modeling situations where the objective is to match
agents to other agents (or to resources). In the most general setting, a matching is defined
as an allocation (or assignment) of agents to resources that satisfies some predefined criterion
of compatibility/acceptability. Here, the (arguably) best known model is the two-sided model,
where the agents on one side are referred to as men, and the agents on the other side are referred
to as women. A few illustrative examples of real life situations where this model is employed
in practice include matching hospitals to residents, students to colleges, kidney patients to
donors and users to servers in a distributed Internet service. At the heart of all of these
applications lies the fundamental Stable Marriage problem. In particular, the Nobel Prize
in Economics was awarded to Shapley and Roth in 2012 “for the theory of stable allocations
and the practice of market design.” Moreover, several books have been dedicated to the study
of Stable Marriage as well as optimization variants of this classical problem such as the
Egalitarian Stable Marriage, Sex-Equal Stable Marriage and Balanced Stable

Marriage problems [11,14,16].
The input of the Stable Marriage problem consists of a set of men, M , and a set of

women, W , each person ranking a subset of people of the opposite gender. That is, each person
a has a set of acceptable partners, A(a), whom this person subjectively ranks. Consequently,
each person a has a so-called preference list, where pa(b) denotes the position of b ∈ A(a) in a’s
preference list. Without loss of generality, it is assumed that if a person a ranks a person b, then
the person b ranks the person a as well. The sets of preference lists of the men and the women
are denoted by LM and LW , respectively. In this context, we say that a pair of a man and a
woman, (m,a), is an acceptable pair if both m ∈ A(w) and w ∈ A(m). Accordingly, the notion
of a matching refers to a matching between men and women, where two people that are matched
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to one another form an acceptable pair. Roughly speaking, the goal of the Stable Marriage

problem is to find a matching that is stable in the following sense: there should not exist two
people who prefer being matched to one another over their current “status”. More precisely, a
matching µ is said to be stable if it does not have a blocking pair, which is an acceptable pair
(m,w) such that (i) either m is unmatched by µ or pm(w) < pm(µ(m)), and (ii) either w is
unmatched by µ or pw(m) < pw(µ(w)). Here, the notation µ(a) indicates the person to whom
µ matches the person a. Note that a person always prefers being matched to an acceptable
partner over being unmatched.

The seminal paper [7] by Gale and Shapely on stable matchings shows that given an instance
of Stable Marriage, a stable matching necessarily exists, but it is not necessarily unique. In
fact, for a given instance of Stable Marriage, there can be an exponential number of stable
matchings, and they should be viewed as a spectrum where the two extremes are known as
the man-optimal stable matching and the woman-optimal stable matching. Formally, the man-
optimal stable matching, denoted by µM , is a stable matching such that every stable matching
µ satisfies the following condition: every man m is either unmatched by both µM and µ or
pm(µM (m)) ≤ pm(µ(m)). The woman-optimal stable matching, denoted by µW , is defined
analogously. These two extremes, which give the best possible solution for one party at the
expense of the other party, always exist and can be computed in polynomial time [7]. Naturally,
it is desirable to analyze matchings that lie somewhere in the middle, being globally desirable,
fair towards both sides or desirable by both sides.

Each notion above of what constitutes a desirable stable matching leads to a natural, dif-
ferent optimization problem. The determination of which notion best describes an appropriate
outcome depends on the specific situation at hand. Here, the quantity pa(µ(a)) is viewed as the
“satisfaction” of a in a matching µ, where a smaller value signifies a greater amount of satisfac-
tion. Under this interpretation, the egalitarian stable matching attempts to be globally desirable
by minimizing e(µ) =

∑
(m,w)∈µ(pm(µ(m)) + pw(µ(w))) over the set of all stable matchings,

which we denote by SM. The problem of finding an egalitarian stable matching, called Egali-

tarian Stable Marriage, is known be solvable in polynomial time due to Irving et al. [12].
Roughly speaking, this problem does not distinguish between men and women, and therefore it
does not fit scenarios where it is necessary to differentiate between the individual satisfaction
of each party. In such scenarios, the Sex-Equal Stable Marriage and Balanced Stable

Marriage problems come into play. Before we define each of these two problems, we would
like to remark that a survey of results related to Egalitarian Stable Marriage and Sex-

Equal Stable Marriage is outside the scope of this paper, and we refer interested readers
to the books [11,14,16]. Here, we consider these two problems only to understand the context
of Balanced Stable Marriage.

In the Sex-Equal Stable Marriage problem, the objective is to find a stable match-
ing that minimizes the absolute value of δ(µ) over SM, where δ(µ) =

∑
(m,w)∈µ pm(µ(m))

−
∑

(m,w)∈µ pw(µ(w)). It is thus clear that Sex-Equal Stable Marriage seeks a stable
matching that is fair towards both sides by minimizing the difference between their individ-
ual amounts of satisfaction. Unlike the Egalitarian Stable Marriage, the Sex-Equal

Stable Marriage problem is known to be NP-hard [13]. On the other hand, in Balanced

Stable Marriage, the objective is to find a stable matching that minimizes balance(µ) =
max{

∑
(m,w)∈µ pm(w),

∑
(m,w)∈µ pw(m)} over SM. At first sight, this measure might seem con-

ceptually similar to the previous one, but in fact, the two measures are quite different. Indeed,
Balanced Stable Marriage does not attempt to find a stable matching that is fair, but one
that is desirable by both sides. In other words, Balanced Stable Marriage examines the
amount of dissatisfaction of each party individually, and attempts to minimize the worse one
among the two. This problem fits the common scenario in economics where each party is selfish
in the sense that it desires a matching where its own dissatisfaction is minimized, irrespective
of the dissatisfaction of the other party, and our goal is to find a matching desirable by both
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parties by ensuring that each individual amount of dissatisfaction does not exceed some thresh-
old. In some situations, the minimization of balance(µ) may indirectly also minimize δ(µ), but
in other situations, this may not be the case. Indeed, McDermid [17] constructed a family of
instances where there does not exist any matching that is both a sex-equal stable matching and
a balanced stable matching (the construction is also available in the book [16]).

The Balanced Stable Marriage problem was introduced in the influential work of
Feder [6] on stable matchings. Feder [6] proved that this problem is NP-hard and that it
admits a 2-approximation algorithm. Later, it was shown that this problem also admits a
(2− 1/ℓ)-approximation algorithm where ℓ is the maximum size of a set of acceptable partners
[16]. O’Malley [19] phrased the Balanced Stable Marriage problem in terms of constraint
programming. Recently, McDermid and Irving [18] expressed interest in the design of fast
exact exponential-time algorithms for Balanced Stable Marriage. In this paper, we study
this problem in the realm of fast exact exponential-time algorithms as defined by the field of
Parameterized Complexity (see Section 2). Recall that SM is the set of all stable matchings.
In this context, we would like to remark that Egalitarian Stable Roommates problem
is NP-complete [6]. Recently, Chen et al. [1] showed that it is FPT parameterized by the
egalitarian cost. McDermid and Irving [18] showed that Sex-Equal Stable Marriage is
NP-hard even if it is only necessary to decide whether the target ∆ = minµ∈SM |δ(µ)| is 0 or
not [18]. In particular, this means that Sex-Equal Stable Marriage is not only W[1]-hard
with respect to ∆, but it is even paraNP-hard with respect to this parameter.1 In the case
of Balanced Stable Marriage, however, fixed-parameter tractability with respect to the
target Bal = minµ∈SM balance(µ) trivially follows from the fact that this value is lower bounded
by max{|M |, |W |}.2

Our Contribution. We introduce two “above-guarantee parameterizations” of Balanced

Stable Marriage. To this end, we consider the minimum value OM of the total dissat-
isfaction of men that can be realized by a stable matching, and the minimum value OW

of the total dissatisfaction of women that can be realized by a stable matching. Formally,
OM =

∑
(m,w)∈µM

pm(w), and OW =
∑

(m,w)∈µW
pw(m), where µM and µW are the man-

optimal and woman-optimal stable matchings, respectively. An input integer k would indicate
that our objective is to decide whether Bal ≤ k. In our first parameterization, the parameter is
k −min{OM , OW }, and in the second one, it is k −max{OM , OW }. In other words, we would
like to answer the following questions (recall that Bal = minµ∈SM balance(µ)).

Above-Min Balanced Stable Marriage (Above-Min BSM)
Input: An instance (M,W,LM ,LW ) of Balanced Stable Marriage, and a non-negative
integer k.
Question: Is Bal ≤ k?
Parameter: t = k −min{OM , OW }

Above-Max Balanced Stable Marriage (Above-Max BSM)
Input: An instance (M,W,LM ,LW ) of Balanced Stable Marriage, and a non-negative
integer k.
Question: Is Bal ≤ k?
Parameter: t = k −max{OM , OW }

Before stating our results, let us explain the choice of these parameterizations. Here, note
that the best satisfaction the party of men can hope for is OM , and the best satisfaction the
party of women can hope for is OW . First, consider the parameter t = k − min{OM , OW }.

1If a parameterized problem cannot be solved in polynomial time even when the value of the parameter is a
fixed constant (that is, independent of the input), then the problem is said to be paraNP-hard.

2We assume that any stable matching µ is perfect. We justify this assumption later.
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Whenever we have a solution such that the amounts of satisfaction of both parties are close
enough to the best they can hope for, this parameter is small. Indeed, the closer the satisfaction
of both parties to the best they can hope for (which is exactly the case where both parties would
find the solution desirable), the smaller the parameter is, and the smaller the parameter is, the
faster a parameterized algorithm is. In other words, if there exists a solution that is desirable
by both parties, our parameter is small.

In the parameterization above, as we take the min of {OM , OW }, we need the satisfaction of
both parties to be close to optimal in order to have a small parameter. As we are able to show that
Balanced Stable Marriage is FPT with respect to this parameter, it is very natural to next
examine the case where we take the max of {OM , OW }. In this case, the closer the satisfaction of
at least one party to the best it can hope for, the smaller the parameter is. In other words, now
the demand from a solution—while not changing the definition of a solution in any way, that is,
a solution is still a stable matching µ minimizing balance(µ)—in order to have a small parameter
is weaker. In the jargon of Parameterized Complexity, it is said that the parameterization by
t = k − max{OM , OW } is “above a higher guarantee” than the parameterization by t = k −
min{OM , OW }, since it is always the case that max{OM , OW } ≥ min{OM , OW }. Unfortunately,
as we show in this paper, the parameterization by k−max{OM , OW } results in a problem that
is W[1]-hard. Hence, the complexities of the two parameterizations behave very differently. We
remark that in Parameterized Complexity, it is not at all the rule that when one takes an “above
a higher guarantee” parameterization, the problem would suddenly become W[1]-hard, as can
be evidenced by the most classical above guarantee parameterizations in this field, which are
of the Vertex Cover problem. For that problem, three above guarantee parameterizations
were considered in [3, 10,15,20], each above a higher guarantee than the previous one that was
studied, and each led to a problem that is FPT. In that context, unlike our case, it is still
not clear whether the bar can be raised higher. Overall, our results accurately draw the line
between tractability and intractability with respect to the target value in the context of two
very natural, useful parameterizations.

Finally, to be more precise, we note that our work proves three main theorems:

• First, we prove (in Section 3) that Above-Min BSM admits a kernel where the number of
people is linear in t. For this purpose, we introduce notions that might be of independent
interest in the context of a “functional” variant of Above-Min BSM. Our kernelization
algorithm consists of several phases, each simplifying a different aspect of Above-Min

BSM, and shedding light on structural properties of the Yes-instances of this problem.
Note that this result already implies that Above-Min BSM is FPT.

• Second, we prove (in Section 4) that Above-Min BSM admits a parameterized algorithm
whose running time is single exponential in the parameter t. This algorithm first builds
upon our kernel, and then incorporates the method of bounded search trees.

• Third, we prove (in Section 5) that Above-Max BSM is W[1]-hard. This reduction
is quite technical, and its importance lies in the fact that it rules out (under plausible
complexity-theoretic assumptions) the existence of a parameterized algorithm for Above-

Max BSM. Thus, we show that although Above-Max BSM seems quite similar to
Above-Min BSM, in the realm of Parameterized Complexity, these two problems are
completely different.

2 Preliminaries

Let f be a function f : A → B. For a subset A′ ⊆ A, we let f |A′ denote the restriction of f to
A′. That is, f |A′ : A′ → B, and f |A′(a) = f(a) for all a ∈ A′.

Throughout the paper, whenever the instance I of Balanced Stable Marriage under
discussion is not clear from context or we would like to put emphasis on I, we add “(I)” to the
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appropriate notation. For example, we use the notation t(I) rather than t. When we would
like to refer to the balance of a stable matching µ in a specific instance I, we would use the
notation balanceI(µ). A matching is called a perfect matching if it matches every person (to
some other person).

While designing our kernelization algorithm (see “Parameterized Complexity”), we might
be able to determine whether the input instance is a Yes-instance or a No-instance. For the
sake of clarity, in the first case, we simply return Yes, and in second case, we simply return
No. To properly comply with the definition of a kernel, the return of Yes and No should be
interpreted as the return of a trivial Yes-instance and a trivial No-instance, respectively. Here,
a trivial Yes-instance can be the one in which M = W = ∅ and k = 0, where the only stable
matching is the one that is empty and whose balance is 0, and a trivial No-instance can be the
one where M = {m}, W = {w}, A(m) = {w}, A(w) = {m} and k = 0.

Parameterized Complexity. A parameterization of a problem is the association of an integer
k with each input instance, which results in a parameterized problem. For our purposes, we need
to recall three central notions that define the parameterized complexity of a parameterized
problem. The first one is the notion of a kernel. Here, a parameterized problem is said to admit
a kernel of size f(k) for some function f that depends only on k if there exists a polynomial-
time algorithm, called a kernelization algorithm, that translates any input instance into an
equivalent instance of the same problem whose size is bounded by f(k) and such that the value
of the parameter does not increase. In case the function f is polynomial in k, the problem is
said to admit a polynomial kernel. Hence, kernelization is a mathematical concept that aims to
analyze the power of preprocessing procedures in a formal, rigorous manner. The second notion
that we use is the one of fixed-parameter tractability (FPT). Here, a parameterized problem Π
is said to be FPT if there is an algorithm that solves it in time f(k) · |I|O(1), where |I| is the
size of the input and f is a function that depends only on k. Such an algorithm is called a
parameterized algorithm. In other words, the notion of FPT signifies that it is not necessary
for the combinatorial explosion in the running time of an algorithm for Π to depend on the
input size, but it can be confined to the parameter k. Finally, we recall that Parameterized
Complexity also provides tools to refute the existence of polynomial kernels and parameterized
algorithms for certain problems (under plausible complexity-theoretic assumptions), in which
context the notion of W[1]-hard is a central one. It is widely believed that a problem that is
W[1]-hard is unlikely to be FPT, and we refer the reader to the books [2,5] for more information
on this notion in particular, and on Parameterized Complexity in general. The notation O∗ is
used to hide factors polynomial in the input size.
Reduction Rule. To design our kernelization algorithm, we rely on the notion of a reduction
rule. A reduction rule is a polynomial-time procedure that replaces an instance (I, k) of a
parameterized problem Π by a new instance (I ′, k′) of Π. Roughly speaking, a reduction rule
is useful when the instance I ′ is in some sense “simpler” than the instance I. In particular, it
is desirable to ensure that k′ ≤ k. The rule is said to be safe if (I, k) is a Yes-instance if and
only if (I ′, k′) is a Yes-instance.

A Functional Variant of Stable Marriage. To obtain our kernelization algorithm for
Above-Min BSM, it will be convenient to work with a “functional” definition of preferences,
resulting in a “functional” variant of this problem which we call Above-Min FBSM. Here,
instead of the sets of preferences lists LM and LW , the input consists of sets of preference
functions FM and FW , where FM replaces LM and FW replaces LW . Specifically, every person
a ∈ M ∪W has an injective (one-to-one) function fa : A(a) → N, called a preference function.
Intuitively, a lower function value corresponds to a higher preference. Since every preference
function is injective, it defines a total order over a set of acceptable partners. Note that all of
the definitions presented in the introduction extend to our functional variant in the natural way.
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For the sake of formality, we specify the required adaptations below.
The input of the Functional Stable Marriage problem consists of a set of men, M ,

and a set of women, W . Each person a has a set of acceptable partners, denoted by A(a), and
an injective function fa : A(a) → N called a preference function. Without loss of generality,
it is assumed that if a person a belongs to the set of acceptable partners of a person b, then
the person b belongs to the set of acceptable partners of the person a. The set of preference
functions of the men and the women are denoted by FM and FW , respectively. A pair of a
man and a woman, (m,a), is an acceptable pair if both m ∈ A(w) and w ∈ A(m). Accordingly,
the notion of a matching refers to a matching between men and women, where two people that
are matched to one another form an acceptable pair. A matching µ stable if it does not have a
blocking pair, which is an acceptable pair (m,w) such that (i) either m is unmatched by µ or
fm(w) < fm(µ(m)), and (ii) either w is unmatched by µ or fw(m) < fw(µ(w)). The goal of
the Functional Stable Marriage problem is to find a stable matching.

The man-optimal stable matching, denoted by µM , is a stable matching such that every
stable matching µ satisfies the following condition: every man m is either unmatched by both
µM and µ or fm(µM (m)) ≤ fm(µ(m)). The woman-optimal stable matching, denoted by µW ,
is defined analogously. Given a stable matching µ, define

balance(µ) = max{
∑

(m,w)∈µ

fm(w),
∑

(m,w)∈µ

fw(m)}.

Moreover, Bal = minµ∈SM balance(µ), where SM is the set of all stable matchings, OM =∑
(m,w)∈µM

fm(w), and OW =
∑

(m,w)∈µW
fw(m). Finally, Above-Min FBSM is defined as

follows.

Above-Min Functional Balanced Stable Marriage (Above-Min FBSM)
Input: An instance (M,W,FM ,FW ) of Functional Balanced Stable Marriage, and
a non-negative integer k.
Question: Is Bal ≤ k?
Parameter: t = k −min{OM , OW }

From the above discussions it is straightforward to turn an instance of Above-Min BSM

into an equivalent instance of Above-Min FBSM as stated in the following observation.

Observation 1. Let I = (M,W,LM ,LW , k) be an instance of Above-Min BSM. For each
a ∈ M ∪ W , define fa : A(a) → N by setting fa(b) = pa(b) for all b ∈ A(a). Then, I is a
Yes-instance of Above-Min BSM if and only if (M,W,FM = {fm}m∈M ,FW = {fw}w∈W , k)
is a Yes-instance of Above-Min FBSM.

Known Results. Finally, we state several classical results, which were originally presented in
the context of Stable Marriage. By their original proofs, these results also hold in the context
of Functional Stable Marriage. To be more precise, given an instance of Functional
Stable Marriage, we can construct an equivalent instance of Stable Marriage, by ranking
the acceptable partners in the order of their function values, where a smaller value implies a
higher preference. The instances are equivalent in the sense that they give rise to the exact
same set of stable matchings. Hence, all the structural results about stable matchings in the
usual setting (modeled by strict preference lists) apply to the generalized setting, modeled by
injective functions.

Proposition 1 ( [8]). For any instance of Stable Marriage (or Functional Stable Mar-

riage), there exist a man-optimal stable matching, µM , and a woman-optimal stable matching,
µW , and both µM and µW can be computed in polynomial time.

The following powerful proposition is known as the Rural-Hospital Theorem.
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Proposition 2 ( [9]). Given an instance of Stable Marriage (or Above-Min FBSM), the
set of men and women that are matched is the same for all stable matchings.

We further need a proposition regarding the man-optimal and woman-optimal stable match-
ings that implies Proposition 2 [9].

Proposition 3 ( [11]). For any instance of Stable Marriage (or Functional Stable

Marriage), every stable matching µ satisfies the following conditions: every woman w is
either unmatched by both µM and µ or pw(µM (w)) ≥ pw(µ(w)), and every man m is either
unmatched by both µW and µ or pm(µW (m)) ≥ pm(µ(m)).

3 Kernel

In this section, we design a kernelization algorithm for Above-Min BSM. More precisely, we
prove the following theorem.

Theorem 3.1. Above-Min BSM admits a kernel that has at most 3t men, at most 3t women,
and such that each person has at most 2t+ 1 acceptable partners.

3.1 Functional Balanced Stable Marriage

To prove Theorem 3.1, we first prove the following result for the Above-Min FBSM problem.

Lemma 3.1. Above-Min FBSM admits a kernel with at most 2t men, at most 2t women,
and such that the image of the preference function of each person is a subset of {1, 2, . . . , t+1}.

To obtain the desired kernelization algorithm, we execute the following plan.

1. Cleaning Prefixes and Suffixes. Simplify the preference functions by “cleaning” suf-
fixes and thereby also “cleaning” prefixes.

2. Perfect Matching. Zoom into the set of people matched by every stable matching.

3. Overcoming Sadness. Bound the number of “sad” people. Roughly speaking, a “sad”
person a is one whose best attainable partner, b, does not reciprocate by considering a as
the best attainable partner.

4. Marrying Happy People. Remove “happy” people from the instance.

5. Truncating High-Values. Obtain “compact” preference functions by truncating “high-
values”.

6. Shrinking Gaps. Shrink some of the gaps created by previous steps.

Each of the following subsections captures one of the steps above. In what follows, we let I
denote our current instance of Above-Min FBSM. Initially, this instance is the input instance,
but as the execution of our algorithm progresses, the instance is modified. The reduction rules
that we present are applied exhaustively in the order of their presentation. In other words,
at each point of time, the first rule whose condition is true is the one that we apply next.
In particular, the execution terminates once the value of t drops below 0, as implied by the
following rule.

Reduction Rule 1. If k < max{OM , OW }, then return No.

Lemma 3.3. Reduction Rule 1 is safe.

Proof. For every µ ∈ SM, it holds that balance(µ) ≥ max{OM , OW }. Thus, if k < max{OM , OW },
then every µ ∈ SM satisfies balance(µ) > k. In this case, we conclude that Bal > k, and therefore
I is a No-instance.

Note that if k < 0, then it also holds that t < 0, and that if t < 0, then k < min{OM , OW }.
We remark that by Proposition 1, it would be clear that each of our reduction rules can indeed
be implemented in polynomial time.
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Cleaning Prefixes and Suffixes. We begin by modifying the images of the preference func-
tions. We remark that it is necessary to perform this step first as otherwise the following steps
would not be correct. To clean prefixes while ensuring both safeness and that the parameter t
does not increase, we would actually need to clean suffixes first. Formally, we define suffixes as
follows.

Definition 3.1. Let (m,w) denote an acceptable pair. If m is matched by µW and fm(w) >
fm(µW (m)), then we say that w belongs to the suffix of m. Similarly, if w is matched by µM

and fw(m) > fw(µM (w)), then we say that m belongs to the suffix of w.

By Proposition 3, we have the following observation.

Observation 2. Let (m,w) denote an acceptable pair such that one of its members belongs to
the suffix of the other member. Then, there is no µ ∈ SM(I) that matches m with w.

For every person a, let worst(a) be the person in A(a) to whom fa assigns its worst preference
value. More precisely, worst(a) = argmaxb∈A(a)fa(b). We will now clean suffixes.

Reduction Rule 2. If there exists a person a such that worst(a) belongs to the suffix of a, then
define the preference functions as follows.

• f ′
a = fa|A(a)\{worst(a)}.

• f ′
worst(a) = fworst(a)|A(worst(a))\{a}.

• For all b ∈ M ∪W \ {a,worst(a)}: f ′
b = fb.

The new instance is J = (M,W, {f ′
m′}m′∈M , {f ′

w′}w′∈W , k).

Lemma 3.4. Reduction Rule 2 is safe, and t(I) = t(J ).

Proof. By the definition of the new preference functions, we have that for every µ ∈ SM(I) ∩
SM(J ), it holds that

∑
(m,w)∈µ fm(w) =

∑
(m,w)∈µ f

′
m(w) and

∑
(m,w)∈µ fw(m) =

∑
(m,w)∈µ f

′
w(m).

In particular, this means that to conclude that Bal(I) = Bal(J ) (which implies safeness) as well
as that OM (I) = OM (J ) and OW (I) = OW (J ) (which implies that t(I) = t(J )), it is suf-
ficient to show that SM(I) = SM(J ). For this purpose, first consider some µ ∈ SM(I). By
Observation 2, it holds that (a,worst(a)) /∈ µ. Hence, µ is a matching in J . Moreover, if µ has
a blocking pair in J , then by the definition of the new preference functions, it is also a blocking
pair in I. Since µ is stable in I, we have that µ ∈ SM(J ).

In the second direction, consider some µ ∈ SM(J ). Then, it is clear that µ is a matching
in I. Moreover, if µ has a blocking pair (m,w) in I that is not (a,worst(a)), then (m,w) is
an acceptable pair in J , and therefore by the definition of the new preference functions, we
have that (m,w) is also a blocking pair in J . Hence, since µ is stable in J , the only pair
that can block µ in I is (a,worst(a)). Thus, to show that µ ∈ SM(I), it remains to prove that
(a,worst(a)) cannot block µ in I. Suppose, by way of contradiction, that (a,worst(a)) blocks
µ in I. In particular, this means that fa(worst(a)) < fa(µ(a)). However, this contradicts the
definition of worst(a).

By cleaning suffixes, we actually also accomplish the objective of cleaning prefixes, which
are defined as follows.

Definition 3.2. Let (m,w) denote an acceptable pair. If m is matched by µM and fm(w) <
fm(µM (m)), then we say that w belongs to the prefix of m. Similarly, if w is matched by µW

and fw(m) < fw(µW (w)), then we say that m belongs to the prefix of w.

Let us now claim that we have indeed succeeded in cleaning prefixes.
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Lemma 3.5. Let I be an instance of Above-Min FBSM on which Reduction Rules 1 to 2
have been exhaustively applied. Then, there does not exist an acceptable pair (m,w) such that
one of it members belongs to the prefix of the other one.

Proof. Suppose, by way of contradiction, that there exists an acceptable pair (m,w) such that
one of its members belongs to the prefix of the other one. Without loss of generality, assume
that w belongs to the prefix of m. Then, fm(w) < fm(µM (m)). Since µM is a stable matching,
it cannot be blocked by (m,w), which means that w is matched by µM and fw(µM (w)) <
fw(m). Thus, we have that m belongs to the suffix of w, which contradicts the assumption that
Reduction Rule 2 was applied exhaustively.

As a direct result of this lemma, we have the following corollary.

Corollary 3.1. Let I be an instance of Above-Min FBSM on which Reduction Rules 1 to
2 have been exhaustively applied. Then, for every acceptable pair (m,w) in I where m and w
are matched (not necessarily to each other) by both µM and µW , it holds that fm(µM (m)) ≤
fm(w) ≤ fm(µW (m)) and fw(µW (w)) ≤ fw(m) ≤ fw(µM (w)).

Perfect Matching. Having Corollary 3.1 at hand, we are able to provide a simple rule that
allows us to assume that every solution matches all people.

Reduction Rule 3. If there exists a person unmatched by µM , then let M ′ and W ′ denote
the subsets of men and women, respectively, who are matched by µM . For each a ∈ M ′ ∪
W ′, denote A′(a) = A(a) ∩ (M ′ ∪ W ′), and define f ′

v = fv|A′(v). The new instance is J =

(M ′,W ′, {f ′
m}m∈M ′ , {f ′

w}w∈W ′ , k).

To prove the safeness of this rule, we first prove the following lemma.

Lemma 3.6. Let I be an instance of Above-Min FBSM on which Reduction Rules 1 to 2 have
been exhaustively applied. Then, for every person a not matched by µM , it holds that A(a) = ∅.

Proof. Let a be a person not matched by µM . Then, by Proposition 2, it holds that a is not
matched by any stable matching. Hence, we can assume w.l.o.g. that a is man m. First, note
that A(m) cannot contain any woman w that is not matched by some stable matching, else
(m,w) would have formed a blocking pair for that stable matching. Second, we claim that
A(m) cannot contain a woman w that is matched by some stable matching. Suppose, by way
of contradiction, that this claim is false. Then, by Proposition 2, it holds that A(m) contains
a woman w that is matched by µM . We have that w prefers µM(w) over m, else (m,w) would
have formed a blocking pair for µM , which is impossible as µM is a stable matching. However,
this implies that m belongs to the suffix of w, which contradicts the supposition that Reduction
Rule 2 has been exhaustively applied. We thus conclude that A(a) = ∅.

Lemma 3.7. Reduction Rule 3 is safe, and t(I) = t(J ).

Proof. By the definition of the new preference functions, we have that for every µ ∈ SM(I) ∩
SM(J ), it holds that

∑
(m,w)∈µ fm(w) =

∑
(m,w)∈µ f

′
m(w) and

∑
(m,w)∈µ fw(m) =

∑
(m,w)∈µ f

′
w(m).

To conclude that the lemma is correct, it is thus sufficient to argue that SM(I) = SM(J ). For
this purpose, first consider some µ ∈ SM(I). By Proposition 2, we have that µ is also a match-
ing in J . Moreover, if µ has a blocking pair in J , then by the definition of the new preference
functions, it is also a blocking pair in I. Since µ is stable in I, we have that µ ∈ SM(J ).

In the second direction, consider some µ ∈ SM(J ). Then, it is clear that µ is a matching in
I. By Lemma 3.6, if µ has a blocking pair (m,w) in I, then bothm ∈ M ′ and w ∈ W ′. However,
for such a blocking pair (m,w), we have that (m,w) is an acceptable pair in J , and therefore
by the definition of the new preference functions, we have that (m,w) is also a blocking pair in
J . Hence, since µ is stable in J , we conclude that µ is also stable in I.

9



By Proposition 2, from now onwards, we have that for the given instance, any stable match-
ing is a perfect matching. Due to this observation, we can denote n = |M | = |W |, and for any
stable matching µ, we have the following equalities.

∑

(m,w)∈µ

fm(w) =
∑

m∈M

fm(µ(m));
∑

(m,w)∈µ

fw(m) =
∑

w∈W

fw(µ(w)). (I)

Overcoming Sadness. As every stable matching is a perfect matching, every person is
matched by every stable matching, including the man-optimal and woman-optimal stable match-
ings. Thus, it is well defined to classify the people who do not have the same partner in the
man-optimal and woman-optimal stable matchings as “sad”. That is,

Definition 3.3. A person a ∈ M ∪W is sad if µM (a) 6= µW (a).

We let MS and WS denote the sets of sad men and sad women, respectively. People who
are not sad are termed happy. Accordingly, we let MH and WH denote the sets of happy men
and happy women, respectively. Note that MS = ∅ if and only if WS = ∅. Moreover, note that
by the definition of µM and µW , for a happy person a it holds that a and µM (a) = µW (a) are
matched to one another by every stable matching. Let us now bound the number of sad people
in a Yes-instance.

Reduction Rule 4. If |MS | > 2t or |WS | > 2t, then return No.

Lemma 3.8. Reduction Rule 4 is safe.

Proof. We only prove that if |MS | > 2t, then I is a No-instance, as the proof of the other case
is symmetric to this one. Let us assume that |MS | > 2t. Suppose, by way of contradiction, that
I is a Yes-instance. Then, there exists a stable matching µ such that balance(µ) ≤ k. Partition
MS = M ′

S ⊎M ′′
S as follows. Set M ′

S to be the set of all m in MS such that m is not the partner
of µ(m) in µW .

M ′
S = {m ∈ MS | fµ(m)(m) > fµ(m)(µW (µ(m)))}.

Accordingly, set M ′′
S = MS \M

′
S . Since |MS | > 2t, at least one among |M ′

S | and |M ′′
S | is (strictly)

larger than t. Let us first handle the case where |M ′
S | > t. Then,

∑

w∈W

fw(µ(w)) =
∑

{w |µ(w)∈M ′
S
}

fw(µ(w)) +
∑

{w |µ(w)/∈M ′
S
}

fw(µ(w))

≥
∑

{w |µ(w)∈M ′
S
}

[fw(µW (w)) + 1] +
∑

{w |µ(w)/∈M ′
S
}

fw(µW (w))

=
∑

w∈W

fw(µW (w)) +
∑

{w |µ(w)∈M ′
S
}

1 = OW + |M ′
S |

> OW + t ≥ k.

Here, the first inequality followed directly from the definition of M ′
S . As we have reached a

contradiction, it must hold that |M ′′
S | > t. However, we now have that

∑

m∈M

fm(µ(m)) =
∑

m∈M ′′
S

fm(µ(m)) +
∑

m/∈M ′′
S

fm(µ(m))

≥
∑

m∈M ′′
S

[fm(µM (m)) + 1] +
∑

m/∈M ′′
S

fm(µM (m))

=
∑

m∈M

fm(µM (m)) +
∑

{m |µ(m)∈M ′′
S
}

1 = OM + |M ′′
S |
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> OM + t ≥ k.

Here, the first inequality followed from the definition ofM ′′
S . Indeed, for all m ∈ M ′′

S , we have
that fµ(m)(m) ≤ fµ(m)(µW (µ(m))), else m would have belonged to M ′

S . However, in this case
we deduce that m = µW (µ(m)), and since m ∈ MS , we have that µ(m) 6= µM (m), which implies
that fm(µ(m)) ≥ fm(µM (m)) + 1. As we have again reached a contradiction, we conclude the
proof.

Marrying Happy People. Towards the removal of happy people, we first need to handle the
special case where there are no sad people. In this case, there is exactly one stable matching,
which is the man-optimal stable matching (that is equal, in this case, to the woman-optimal
stable matching). This immediately implies the safeness of the following rule.

Reduction Rule 5. If MS = WS = ∅, then return Yes if balance(µM ) ≤ k and No otherwise.

Observation 3. Reduction Rule 5 is safe.

We now turn to discard happy people. When we perform this operation, we need to ensure
that the balance of the instance is preserved. More precisely, we need to ensure that Bal(I) =
Bal(J ), where J denotes the new instance resulting from the removal of some happy people.
Towards this, we let (mh, wh) denote a happy pair, which is simply a pair of a happy man and
happy woman who are matched to each other in every stable matching. Then, we redefine the
preference functions in a manner that allows us to transfer the “contributions” of mh and wh

from Bal(I) to Bal(J ) via some sad man and woman. We remark that these sad people exist
because Reduction Rule 5 does not apply. The details are as follows.

Reduction Rule 6. If there exists a happy pair (mh, wh), then proceed as follows. Select an
arbitrary sad man ms and an arbitrary sad woman ws. Denote M ′ = M \ {mh} and W ′ =
W \{wh}. For each person a ∈ M ′ ∪W ′, the new preference function f ′

a : A(a) \{mh, wh} → N

is defined as follows.

• The preference function of ms. For each w ∈ A(ms) \ {wh}: f ′
ms

(w) = fms(w) +
fmh

(wh).

• The preference function of ws. For each m ∈ A(ws) \ {mh}: f ′
ws
(m) = fws(m) +

fwh
(mh).

• For each w ∈ W ′ \ {ws}: f ′
w = fw|M ′.

• For each m ∈ M ′ \ {ms}: f ′
m = fm|W ′.

The new instance is J = (M ′,W ′, {f ′
m}m∈M ′ , {f ′

w}w∈W ′ , k).

Let us first state a lemma concerning the proof of the forward direction of the safeness of
Reduction Rule 6.

Lemma 3.9. Let µ ∈ SM(I). Then, µ′ = µ \ {(mh, wh)} is a stable matching in J such that
balanceJ (µ

′) = balanceI(µ).

Proof. We first show that µ′ ∈ SM(J ). By Reduction Rule 3, it holds that µ is a perfect
matching in I. Since (mh, wh) is a happy pair, it is clear that (mh, wh) ∈ µ, and therefore µ′

is a perfect matching in J . Let (m,w) /∈ µ′ be some acceptable pair in J . Since µ ∈ SM(I)
and it is a perfect matching, it holds that fm(w) > fm(µ(m)) or fw(m) > fw(µ(w)). Let us
consider these two possibilities separately.

• Suppose that fm(w) > fm(µ(m)). If m 6= ms, then f ′
m(w) = fm(w) and f ′

m(µ′(m)) =
fm(µ(m)), and therefore f ′

m(w) > f ′
m(µ′(m)). Else, f ′

m(w) = fm(w) + fmh
(wh) and

f ′
m(µ′(m)) = fm(µ(m)) + fmh

(wh), and therefore again f ′
m(w) > f ′

m(µ′(m)).
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• Suppose that fw(m) > fw(µ(w)). Analogously to the previous case, we get that f ′
w(m) >

f ′
w(µ

′(w)).

Since the choice of (m,w) was arbitrary, we conclude that µ′ does not have a blocking pair
in J , and therefore µ′ ∈ SM(J ). To show that balanceJ (µ

′) = balanceI(µ), note that

balanceJ (µ
′) = max{

∑

m∈M\{mh}

f ′
m(µ′(m)),

∑

w∈W\{wh}

f ′
w(µ

′(w))}

= max{f ′
ms

(µ′(ms)) +
∑

m∈M\{mh ,ms}

f ′
m(µ′(m)),

f ′
ws
(µ′(ws)) +

∑

w∈W\{wh,ws}

f ′
w(µ

′(w))}

= max{fms(µ(ms)) + fmh
(wh) +

∑

m∈M\{mh ,ms}

fm(µ(m)),

fws(µ(ws)) + fwh
(mh) +

∑

w∈W\{wh,ws}

fw(µ(w))}

= max{
∑

m∈M

fm(µ(m)),
∑

w∈W

fw(µ(w))} = balanceI(µ).

This concludes the proof.

To prove a lemma addressing the reverse direction, we first state the following observation,
whose correctness follows directly from Corollary 3.1.

Observation 4. Let I be an instance of Above-Min FBSM on which Reduction Rules 1 to 2
have been exhaustively applied. Then, for every happy pair (mh, wh), it holds that A(mh) = {wh}
and A(wh) = {mh}.

Lemma 3.10. Let µ′ ∈ SM(J ). Then, µ = µ′ ∪{(mh, wh)} is a stable matching in I such that
balanceI(µ) = balanceJ (µ

′).

Proof. We first show that µ ∈ SM(I). By Reduction Rule 3, it holds that µ′ is a perfect
matching in J . Since (mh, wh) is a happy pair and by Observation 4, we have that µ is a
perfect matching in I such that neither mh nor wh participate in any pair that blocks µ (if
such a pair exists). Let (m,w) /∈ µ′ be some acceptable pair in I such that m 6= mh and
w 6= wh. Since µ′ ∈ SM(J ) and it is a perfect matching, it holds that f ′

m(w) > f ′
m(µ′(m)) or

f ′
w(m) > f ′

w(µ
′(w)). Let us consider these two possibilities separately.

• Suppose that f ′
m(w) > f ′

m(µ(m)). If m 6= ms, then fm(w) = f ′
m(w) and fm(µ(m)) =

f ′
m(µ′(m)), and therefore fm(w) > fm(µ(m)). Else, fm(w) = f ′

m(w) − fmh
(wh) and

fm(µ(m)) = f ′
m(µ′(m))− fmh

(wh), and therefore again fm(w) > fm(µ(m)).

• Suppose that f ′
w(m) > f ′

w(µ
′(w)). Analogously to the previous case, we get that fw(m) >

fw(µ(w)).

Since the choice of (m,w) was arbitrary, we conclude that µ does not have a blocking pair
in I, and therefore µ ∈ SM(I). To show that balanceI(µ) = balanceJ (µ

′), we follow the exact
same argument as the one present in the proof of Lemma 3.9.

We now turn to justify the use of Reduction Rule 6.

Lemma 3.11. Reduction Rule 6 is safe, and t(I) = t(J ).

12



Proof. By Lemmata 3.9 and 3.10, it holds that Bal(I) = Bal(J ), and that both balanceI(µM (I)) =
balanceJ (µM (J )) and balanceI(µW (I)) = balanceJ (µW (J )). As the argument k remained un-
touched, we have that Reduction Rule 6 is safe as well as that t(I) = t(J ).

Before we proceed to examine preference functions more closely, let us take a step back and
prove the following result.

Lemma 3.12. Given an instance I of Above-Min FBSM, one can exhaustively apply Reduc-
tion Rules 1 to 6 in polynomial time to obtain an instance J such that t(J ) ≤ t(I). All people
in J are sad and matched by every stable matching, and there exist at most 2t men and at most
2t women.

Proof. Notice that each rule among Reduction Rules 1 to 6 can be applied in polynomial time,
and it either terminates the execution of the algorithm or shrinks the size of the instance. Hence,
it is clear that the instance J is obtained in polynomial time, and the claim that t(J ) ≤ t(I)
follows from Lemmata 3.7 and 3.11. Due to Reduction Rules 3 and 6, we have that all people
in J are sad and matched by every stable matching. Thus, due to Reduction Rule 4, we also
have that there exist at most 2t men and at most 2t women.

Truncating High-Values. Up until now, we have bounded the number of people. However,
the images of the preference functions can contain integers that are not bounded by a function
polynomial in the parameter. Thus, even though the number of people is upper bounded by 4t,
the total size of the instance can be huge. Accordingly, in what follows, we need to process the
images of the preference functions. Recall that we have already modified preference functions
so that they would not contain irrelevant information in their prefixes and suffixes. Our current
goal is to truncate “high-values”’ of preference functions. To understand the intuition behind
the rule we present next, suppose that there exists a stable matching µ and a man m such
that fm(µ(m)) > t + fm(µM (m)). That is, µ matches m to a woman whose position is larger
than the position of the woman with whom m is matched by µM by at least t units. Then,
balance(µ) ≥

∑
m′∈M fm′(µ(m′)) > OM + t ≥ k. Hence, irrespective of whether or not the

current instance is a Yes-instance, we know that µ is not a yes-certificate. We thus observe
that we should delete all those acceptable pairs whose presence in any stable matching prevents
its balance from being upper bounded by k. Formally,

Reduction Rule 7. If there exists an acceptable pair (m,w) such that fm(w) > (k − OM ) +
fm(µM (m)) or fw(m) > (k−OW )+fw(µW (w)), then define the preference functions as follows:

• f ′
m = fm|A(m)\{w}.

• f ′
w = fw|A(w)\{m}.

• For all a ∈ M ∪W \ {m,w}: f ′
a = fa.

The new instance is J = (M,W, {f ′
m′}m′∈M , {f ′

w′}w′∈W , k).

Lemma 3.13. Reduction Rule 7 is safe, and t(I) ≥ t(J ).

Proof. Without loss of generality, suppose that fm(w) > (k − OM (I)) + fm(µM (m)). Due to
Reduction Rule 1, we have that k − OM (I) ≥ 0, and therefore fm(w) > fm(µM (m)), which
implies that w 6= µM (m). We thus have that µM(I) is also a matching in J , and due to
Corollary 3.1, we deduce that µM (I) = µM (J ). First, we would like to show that t(I) ≥ t(J ).
For this purpose, it is sufficient to show that OM (I) ≤ OM (J ) and OW (I) ≤ OW (J ). Since
µM (I) = µM (J ), it is clear that OM (I) = OM (J ). By Reduction Rule 3, µM (I) matches all
people in I. Thus, by Proposition 2 and since µM (I) = µM (J ), we have that µW (J ) matches
all people in J , and hence all people in I. By Corollary 3.1, for any woman w and the man m
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most preferred by w in J , it holds that w does not prefer m over µW (w) in I. Thus, by the
definition of the preference functions, we have that OW (I) ≤ OW (J ).

To show that the rule is safe, we need to show that Bal(I) ≤ k if and only if Bal(J ) ≤ k.
For this purpose, let us first suppose that Bal(I) ≤ k. Then, there exists µ ∈ SM(I) such that
balanceI(µ) ≤ k. Notice that if µ(m) = w, then since fm(w) > (k −OM ) + fm(µM (m)) and by
the equations in “Perfect Matching”, we have that

k ≥ balanceI(µ)

≥
∑

m′∈M

fm′(µ(m′))

≥ (k −OM (I)) +
∑

m′∈M

fm′(µM (m′)) > (k −OM (I)) +OM (I),

which is a contradiction. Hence, (m,w) /∈ µ. Therefore, µ is a matching in J . By the definition
of the new preference functions, if µ has a blocking pair in J , then this pair also blocks µ in
I. Since µ is stable in I, we have that µ is also stable in J . Now, by our definition of the new
preference functions, we have that balanceI(µ) = balanceJ (µ). Since balanceI(µ) ≤ k, we thus
conclude that Bal(J ) ≤ k.

In the second direction, suppose that Bal(J ) ≤ k. Then, there exists µ ∈ SM(J ) such
that balanceJ (µ) ≤ k. Clearly, µ is also a matching in I. Moreover, by the definition of the
preference functions, every acceptable pair in I that is also present in J cannot block µ in I,
else it would have also blocked µ in J . Thus, if µ has a blocking pair in I, then this pair must be
(m,w). We claim that (m,w) cannot block µ in I, which would imply that µ ∈ SM(I). Suppose,
by way of contradiction, that this claim is not true. Recall that we have already proved that
µM (I) = µM (J ). Let us denote µM = µM (I). We have that µ matches m, which implies that
fm(µ(m)) > fm(w). Since fm(w) > (k−OM (I))+fm(µM (m)), we deduce that fm(µ(m)) > (k−
OM (I)) + fm(µM (m)). Furthermore, since f ′

m(µ(m)) = fm(µ(m)), f ′
m(µM (m)) = fm(µM (m))

and OM (I) = OM (J ), we get that f ′
m(µ(m)) > (k−OM (J )) + f ′

m(µM (m)). However, we then
have that

k ≥ balanceJ (µ)

≥
∑

m′∈M

f ′
m′(µ(m′))

≥ (k −OM (J )) +
∑

m′∈M

f ′
m′(µM (m′)) > (k −OM (J )) +OM (J ),

which is a contradiction. Therefore, µ ∈ SM(I). The definition of the new preference functions
imply that balanceI(µ) = balanceJ (µ). Since balanceJ (µ) ≤ k, we conclude that Bal(I) ≤ k.

Shrinking Gaps. Currently, there might still exist a man m or a woman w such that
fm(µM (m)) > 1 or fw(µW (w)) > 1, respectively. In the following rule, we would like to
decrease some values assigned by the preference functions of such men and women in a manner
that preserves equivalence.

Reduction Rule 8. If there exist m ∈ M and w ∈ W such that fm(µM (m)) > 1 and
fw(µW (w)) > 1, then define the preference functions as follows.

• The preference function of m. For all w′ ∈ A(m): f ′
m(w′) = fm(w′)− 1.

• The preference function of w. For all m′ ∈ A(w): f ′
w(m

′) = fw(m
′)− 1.

• For all a ∈ M ∪W \ {m,w}: f ′
a = fa.

The new instance is J = (M,W, {f ′
m′}m′∈M , {f ′

w′}w′∈W , k − 1).
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Lemma 3.14. Reduction Rule 8 is safe, and t(I) = t(J ).

Proof. Let us first observe that the set of acceptable pairs in I is equal to the set of acceptable
pairs of J . Furthermore, for every person a, including the cases where this person is either m or
w, any two acceptable partners b and b′ of a that satisfy fa(b) < fa(b

′) also satisfy f ′
a(b) < f ′

a(b
′),

and vice versa. Indeed, this observation follows directly from our definition of the new preference
functions. In other words, if a person prefers some person over another in I, then this person
also has the same preference order in J , and vice versa. We thus deduce that SM(I) = SM(J ).

We proceed by claiming that for all µ ∈ SM(I), we have that balanceI(µ) = balanceJ (µ) +
1. Indeed, by the definition of the new preference functions and the equations in “Perfect
Matching”, we have that

balanceI(µ) = max{
∑

m′∈M

fm′(µ(m′)),
∑

w′∈W

fw′(µ(w′))}

= max{fm(µ(m)) +
∑

m′∈M\{m}

fm′(µ(m′)), fw(µ(w)) +
∑

w′∈W\{w}

fw′(µ(w′))}

= max{f ′
m(µ(m)) + 1 +

∑

m′∈M\{m}

f ′
m′(µ(m′)), f ′

w(µ(w)) + 1 +
∑

w′∈W\{w}

f ′
w′(µ(w′))}

= max{
∑

m′∈M

f ′
m′(µ(m′)),

∑

w′∈W

f ′
w′(µ(w′))} + 1 = balanceJ (µ) + 1.

Furthermore, the arguments above also show that OM (I) = OM (J ) + 1 and OW (I) =
OW (J )+1. Hence, we have that Bal(I) = Bal(J )+1. Since k was decreased by 1, we conclude
that the rule is safe and that t(I) = t(J ).

The usefulness of Reduction Rule 8 lies in the observation that after the exhaustive appli-
cation of this rule, at least one of the two parties does not have any member without a person
assigned 1 by his/her preference function. More precisely,

Observation 5. Let I be an instance of Above-Min FBSM that is reduced with respect to
Reduction Rules 1 to 8. Then, either (i) for every m ∈ M , we have that fm(µM (m)) = 1, or
(ii) for every w ∈ W , we have that fw(µW (w)) = 1. In particular, either (i) OM = |M | or (ii)
OW = |W |.

This concludes the description of our reduction rules. We are now ready to prove Lemma 3.1.

Proof of Lemma 3.1. Given an instance I of Above-Min FBSM, our kernelization algorithm
exhaustively applies Reduction Rules 1 to 8, after which it outputs the resulting instance, J , as
the kernel. Notice that each rule among Reduction Rules 1 to 8 can be applied in polynomial
time, and it either terminates the execution of the algorithm or shrinks the size of the instance.
Hence, it is clear that the instance J is obtained in polynomial time. The claims that J and
I are equivalent and that t(J ) ≤ t(I) follow directly from the lemmata that prove the safeness
of each rule as well as argue with respect to the parameter. By Lemma 3.12, we also have that
the instance contains at most 2t (sad) men and at most 2t (sad) women.

It remains to show that the image of the preference function of each person is a subset
of {1, 2, . . . , t + 1}. By Reduction Rule 7, every acceptable pair (m,w) satisfies fm(w) ≤
(k −OM ) + fm(µM (m)) and fw(m) ≤ (k −OW ) + fw(µW (w)). Moreover, for every acceptable
pair (m,w), it holds that fm(µM (m)) ≤ OM−(|M |−1) and fw(µW (w)) ≤ OW−(|W |−1). Thus,
every acceptable pair (m,w) satisfies fm(w) ≤ k − (|M | − 1) and fw(m) ≤ k − (|W | − 1). By
Reduction Rule 3 and Observation 5, we have that t = k−min{OM , OW } = k− |M | = k− |W |.
Hence, we further conclude that every acceptable pair (m,w) satisfies fm(w) ≤ t + 1 and
fw(m) ≤ t+ 1.
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3.2 Balanced Stable Marriage

Having proved Lemma 3.1, we have a kernel for Above-Min FBSM. We would like to employ
this kernelization algorithm to design one for Above-Min BSM. For this purpose, we need to
remove gaps from preference functions. Once we do this, we can view preference functions as
preference lists and obtain the desired kernel. In what follows, we describe our kernelization
algorithm for Above-Min BSM.

Let K = (M ′,W ′,LM ′ ,LW ′ , k′) be the input instance, which is an instance of Above-Min

BSM. Our algorithm begins by applying the reduction given by Observation 1 to translate
K into an instance I ′ = (M ′,W ′,FM ′ ,FW ′ , k′) of Above-Min FBSM. Then, our algorithm
applies the kernelization algorithm given by Lemma 3.1 to I ′, obtaining a reduced instance
I = (M,W,FM ,FW , k) of Above-Min FBSM. By Lemma 3.1, this instance has at most 2t
men, at most 2t women, and the image of the preference function of each person is a subset
of {1, 2, . . . , t+ 1}. To eliminate “gaps” in the preference functions, the algorithm proceeds as
described below. Note that we no longer apply any reduction rule from Section 3.1 (even if
its condition is satisfied), as we currently give a new kernelization procedure rather than an
extension of the previous one. Let us first formally define the notion of a gap.

Definition 3.4. Let a ∈ M ∪W , and i be positive integer outside the image of f . If there exists
an integer j > i that belongs to the image of f , then fa is said to have a gap at i.

Inserting Dummies. We have ensured that the largest number in the image of any preference
function is at most t + 1. As every person is sad, it has at least two acceptable partners, and
hence it has at most t−1 ≤ t gaps. To handle the gaps of all people, we create a set of t dummy
men and t dummy women. Our objective is to introduce these dummy people as acceptable
partners for people who have gaps in their preference functions, such that the function values of
the dummy people would fill the gaps. In the context of the following rule, note that currently
there are no happy people, and hence this rule would be applied (only once).

Reduction Rule 9. If there do not exist happy people, then let X = {x1, x2, . . . , xt} denote a
set of new (dummy) men, and Y = {y1, y2, . . . , yt} denote a set of new (dummy) women. For
each i ∈ {1, 2, . . . , t}, initialize A(xi) = {yi}, A(yi) = {xi} and fxi

(yi) = fyi(xi) = 1. The new
instance is J = (M ∪X,W ∪ Y, {fm}m∈M∪X , {fw}w∈W∪Y , k + t).

We note that for all i ∈ {1, 2, . . . , t}, it holds that (xi, yi) is a happy pair.

Lemma 3.15. Reduction Rule 9 is safe, and t(I) = t(J ).

Proof. For all i ∈ {1, 2, . . . , t}, it holds that (xi, yi) is a happy pair, and therefore it is present
in every stable matching in J . By our definition of the new preference functions, it is clear that
if µ is a stable matching in I, then µ′ = µ ∪ {(x1, y1), . . . , (xt, yt)} is a stable matching in J .
Moreover, if µ′ is a stable matching in J , then µ = µ′\{(x1, y1), . . . , (xt, yt)} is a stable matching
in I. Hence, since for all i ∈ {1, 2, . . . , t}, it holds that fxi

(yi) = fyi(xi) = 1, our definition of
the new preference functions directly implies that Bal(I) + t = Bal(J ), OM (I) + t = OM (J )
and OW (I) + t = OW (J ). Hence, t(I) = t(J ), which concludes the proof.

Reduction Rule 10. [Male version] If there exists m ∈ M such that fm has a gap at some j,
then select some yi ∈ Y \ A(m), and set A′(m) = A(m) ∪ {yi} and A′(yi) = A(yi) ∪ {m}. The
preference functions are defined as follows.

• The preference function of m. f ′
m(yi) = j, and for all a ∈ A(m), f ′

m(a) = fm(a).

• The preference function of yi. f ′
yi(m) = max

m′∈A(yi)
(fyi(m

′) + 1), and for all a ∈ A(yi),

f ′
yi(a) = fyi(a).
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• For all a ∈ (M ∪W ) \ {m, yi}: f ′
a = fa.

The new instance is J = (M,W, {f ′
m′}m′∈M , {f ′

w′}w′∈W , k).

Lemma 3.16. Reduction Rule 10 is safe, and t(I) = t(J ).

Proof. The only modifications that are performed are the insertion of m intro the set of ac-
ceptable partners of yi as the least preferred person, and the insertion of yi into the set of
acceptable partners of m in a location that previosuly contained a gap. Let us first observe that
since fxi

(yi) = fyi(xi) = 1 and f ′
xi
(yi) = f ′

yi(xi) = 1, it holds that (xi, yi) is a happy pair in
both I and J . Hence, it is clear that SM(I) = SM(J ), OM (I) = OM (J ), OW (I) = OW (J ),
and that the balance of any stable matching in I is equal to its balance in J . We thus conclude
that the rule is safe and that t(I) = t(J ).

Analogously, we have a female version of Reduction Rule 10 where we fill a gap in the
preference function of some woman w ∈ W . We do not repeat our arguments again, and
straightaway state the following result, which follows directly from the safeness of Reduction
Rule 9 and the male and female versions of Reduction Rule 10.

Lemma 3.17. Above-Min FBSM admits a kernel that has at most 3t men among whom at
most 2t are sad, at most 3t women among whom at most 2t are sad, and such that each happy
person has at most 2t+ 1 acceptable partners and each sad person has at most t+ 1 acceptable
partners.

Finally, we translate the kernel for Above-Min FBSM to an instance of Above-Min

BSM as follows. For all a ∈ M ∪ W and b ∈ A(a), we set pa(b) = fa(b). The new instance
is J = (M,W, {pm}m∈M , {fw}w∈W , k). Clearly, we thus obtain an equivalent instance, which
leads us to the following somewhat stronger version of Theorem 3.1, relevant to Appendix 4.

Lemma 3.18. Above-Min BSM admits a kernel that has at most 3t men among whom at 2t
are sad, at most 3t women among whom at most 2t are sad, and such that each happy person
has at most 2t+1 acceptable partners and each sad person has at most t+1 acceptable partners.
Moreover, every stable matching in the kernel is a perfect matching.

This concludes the proof of Theorem 3.1.

4 Parameterized Algorithm

In this section, we design a parameterized algorithm for Above-Min BSM. More precisely, we
prove the following theorem.

Theorem 4.1. Above-Min BSM can be solved in time O∗(8t).

As our algorithm is based on the method of bounded search trees, we first give a brief
description of this technique.

4.1 Bounded Search Tree

The running time of an algorithm that uses bounded search trees can be analyzed as follows (see,
e.g., [2]). Suppose that the algorithm executes a branching rule which has ℓ branching options
(each leading to a recursive call with the corresponding parameter value), such that, in the ith

branch option, the current value of the parameter decreases by bi. Then, (b1, b2, . . . , bℓ) is called
the branching vector of this rule. We say that α is the root of (b1, b2, . . . , bℓ) if it is the (unique)
positive real root of xb

∗
= xb

∗−b1 +xb
∗−b2 + · · ·+xb

∗−bℓ , where b∗ = max{b1, b2, . . . , bℓ}. If r > 0
is the initial value of the parameter, and the algorithm (a) returns a result when (or before)
the parameter is negative, and (b) only executes branching rules whose roots are bounded by a
constant c > 0, then its running time is bounded by O∗(cr).
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4.2 Description of the Algorithm

Given an instance Î = (M̂, Ŵ , L̂M , L̂W , k̂) of Above-Min BSM, we begin by using the pro-
cedure given by Lemma 3.18 to obtain (in polynomial time) a kernel I = (M,W,LM ,LW , k)
of Above-Min BSM such that I has at most 3t men among whom at most 2t are sad, at
most 3t women among whom at most 2t are sad. Let us denote the happy pairs in I by
(x1, y1), (x2, y2), . . . , (xh, yh) for the appropriate h ≤ t, and the set of sad men by MS . Note
that |MS | ≤ 2t.

We proceed by executing a loop where each iteration corresponds to a different subset
M ′ ⊆ MS . For a specific iteration, our goal is to determine whether there exists a stable
matching µ such that the following conditions are satisfied:

• balance(µ) ≤ k.

• For all m ∈ M ′: µ(m) 6= µM (m).

• For all m ∈ MS \M ′: µ(m) = µM (m).

A stable matching satisfying the conditions above (in the context of the current iteration)
is said to be valid. We denote r = k −OM , and observe that r ≤ t.

Let us now consider some specific iteration. To determine whether there exists a valid stable
matching, our plan is to execute a branching procedure, called Branch, which outputs every set
S of pairs of a man in M ′ and a woman, such that the following conditions are satisfied.

1. Every man m in M ′ participates in exactly one pair (m,w) of S, and for that unique pair,
it holds that w ∈ A(m) and pm(w) > pm(µM (m)).

2.
∑

m∈M ′

(pm(µ(m))− pm(µM (m))) ≤ r.

The description of this procedure is given in the following subsection. Here, let us argue
that by having this procedure, we can conclude the proof of the correctness of the algorithm.
In the current iteration, we examine each set S in the outputted family of sets. Then, we
check whether the pairs in S, together with (x1, y1), (x2, y2), . . . , (xh, yh) and every pair in
{(m,µM (m)) : m ∈ M ′} form a stable matching whose balance is at most k. If the answer is
positive, then we terminate the execution and accept, which is clearly correct.

At the end, if we did not accept in any iteration, we reject. To see why this decision is
correct, suppose that there exists a stable matching µ whose balance is at most k. In this
case, due to our exhaustive search, there exists some iteration in which µ is also valid. In that
iteration, associated with some M ′ ⊆ M−S, observe that the set of pairs {(m,µ(m)) : m ∈ M ′}
is one of the outputted sets of pairs. Indeed, the satisfaction of Condition 1 follows from the
fact that µ is a stable matching satisfying the last two conditions of validity, and Condition 2
follows from the fact that µ satisfies the first condition of validity.

Let us denote by T the running of the procedure Branch. Then, the total running time of
our algorithm is bounded by O∗(2|MS | · T ) = O∗(4t · T ), and therefore to derive the running
time in Theorem 4.1, we will need to ensure that T = O∗(2t). For this purpose, it is sufficient
to ensure that T = O∗(2r).

4.3 The Branching Procedure

We now present the description of the procedure Branch in the context of some set M ′ ⊆ MS .
Let us denote M ′ = {m1,m2, . . . ,mp} for the appropriate p.

Each call to our procedure is of the form Branch(i, S) where i ∈ {0, 1, . . . , p+1} and S is a
set of pairs of a man in {m1,m2, . . . ,mi} and a woman, such that the following conditions are
satisfied.
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1. Every man m in {m1,m2, . . . ,mi} participates in exactly one pair (m,w) of S, and for
that unique pair, it holds that w ∈ A(m) and pm(w) > pm(µM (m)). We define µS as
the function whose domain is {m1,m2, . . . ,mi} and which assigns to each man m in its
domain the unique woman w such that (m,w) ∈ S.

2. Define balance(S) =
∑

m∈{m1,m2,...,mi}

(pm(µS(m))− pm(µM (m))). Then, balance(S) ≤ r.

Note that in case i = 0, we have that S = ∅. The call to Branch that is performed by
the algorithm given in Section 4.2 is precisely with these arguments, that is, Branch(0, ∅). The
objective of a call Branch(i, S) is to return a family F of sets, where each set F ∈ F is a set
of pairs of a man in {mi+1,mi+2, . . . ,mp} and a woman, such that the following conditions are
satisfied.

1. Every man m in {mi+1,mi+2, . . . ,mp} participates in exactly one pair (m,w) of F , and
for that unique pair, it holds that w ∈ A(m) and pm(w) > pm(µM (m)). We define µF as
the function whose domain is {mi+1,mi+2, . . . ,mp} and which assigns to each man m in
its domain the unique woman w such that (m,w) ∈ F .

2. balance(S) +
∑

m∈{mi+1,mi+2,...,mp}

(pm(µF (m))− pm(µM (m))) ≤ r.

Clearly, by accomplishing this goal, we also achieve the objective posed in Section 4.2. The
measure that we employ to analyze our procedure is (r − balance(S)) (recall that balance(S)
is defined in Condition 2 of the specification of a call), which is initially equal to r. Hence,
according to the method of bounded search trees (see Section 4.1), to derive the running time
O∗(2r), it is sufficient to ensure that Branch (a) returns a result when (or before) the measure
r is negative, and (b) only executes branching rules whose roots are bounded by 2. When the
measure r is negative, we should simply return F = ∅, as there does not exist a set F satisfying
the conditions above. Otherwise, when i = p+ 1, we can simply return F = {∅}.

Let us now consider a call Branch(i, S) where r ≥ 0 and i ≤ p. Denote W̃ = {w ∈ A(mi+1) :

pmi+1
(w) > pmi+1

(µM (mi+1))}. We further refine W̃ be letting W ∗ denote the set of those r

women in W̃ who are the most preferred by mi+1. In case there are no such r women since
|W̃ | < r, we simply denote W ∗ = W̃ . Let us also denote W ∗ = {w1, w2, . . . , wq} for the
appropriate q ≤ r. Then, our procedure executes r branches. At the jth branch, Branch calls
itself recursively with (i+1, S∪{(mi+1, wj)}). Eventually, Branch returns

⋃q
j=1{{(mi+1, wj)}∪

Fj : F ∈ Fj} where for all j ∈ {1, 2 . . . , q}, we set Fj to be the family of sets of pairs that was
returned by the recursive call of the jth branch. The correctness follows from the observation
that the process that we execute is an exhaustive search. More precisely, if there exists a set
F satisfying Conditions 1 and 2, then it must include exactly one of the pairs in {(mi+1, wj) :
j ∈ {1, 2, . . . , q}}. Now, let us observe that at the jth branch, the measure changes from
r−balance(S) to r−balance(S∪{(mi+1, wj)}). By our definition of wj , we have that pmi+1

(wj)−
pmi+1

(µM (mi+1))) = j. Hence, at the worst case, the branching vector is (1, 2, . . . , r). Since the
root of such a branching vector upper bounded by 2, our proof is complete.

5 Hardness

In this section, we prove the following theorem.

Theorem 5.1. Above-Max BSM is W[1]-hard.

For this purpose, we consider the Clique problem, which is defined as follows.
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Clique

Input: A graph G = (V,E), and a positive integer k.
Question: Does G contain a clique on k vertices?
Parameter: k.

The Clique problem is known to be W[1]-hard [4]. Thus, to prove Theorem 5.1, it is
sufficient to prove the following result.

Lemma 5.1. Given an instance I = (G = (V,E), k) of Clique, an equivalent instance Î =

(M,W,LM ,LW , k̂) of Above-Max BSM such that t = 6(k +
k(k − 1)

2
) can be constructed in

time O(f(k) · |I|O(1)) for some function f .

The rest of this section focuses on the proof of Lemma 5.1. To this end, we let I =
(G = (V,E), k) be some instance of Clique. In Section 5.1, we construct (in “FPT time”) an
instance Î = (M,W,LM ,LW , k̂) of Above-Max BSM. This section also contains an informal
explanation of the intuition underlying the construction. Then, in Section 5.2, we verify that

the parameter t associated with Î is equal to 6(k +
k(k − 1)

2
). Finally, in Section 5.3, we

prove that the input instance I of Clique and our instance Î of Above-Max BSM are
equivalent. In what follows, we select arbitrary orders on V and E, according to which we
denote V = {v1, v2, . . . , v|V |} and E = {e1, e2, . . . , e|E|}.

5.1 Reduction

First, to construct the sets M and W , we define three pairwise-disjoint subsets of M , called
MV ,ME and M̃ , and three pairwise-disjoint subsets of W , called WV ,WE and W̃ . Then, we
set M = MV ∪ME ∪M̃ ∪{m∗} and W = WV ∪WE ∪W̃ ∪{w∗}, where m∗ and w∗ denote a new
man and a new woman (which do not belong to the six sets defined previously), respectively.

• MV = {mi
v : v ∈ V, i ∈ {1, 2}}; WV = {wi

v : v ∈ V, i ∈ {1, 2}}.

• ME = {mi
e : e ∈ E, i ∈ {1, 2}}; WE = {wi

e : e ∈ E, i ∈ {1, 2}}.

• Let δ = 2(|V |+ |E|+ |V ||E| + |V ||E|2)− k(4 + 4k + 2|E|+ (k − 1)|V ||E|).

Then, M̃ = {m̃i : i ∈ {1, 2, . . . , δ}} and W̃ = {w̃i : i ∈ {1, 2, . . . , δ}}.

Note that |M | = |W |. We remark that in what follows, we assume w.l.o.g. that δ ≥ 0 and

|V | > k+
k(k − 1)

2
, else the size of the input instance I of Clique is bounded by a function of

k and can therefore, by using brute-force, be solved in FPT time.
Before we proceed, let us discuss the intuition behind the definition of the subsets of men

and women above, and the definitions of the preference lists that will follow. Roughly speaking,
each pair of men, m1

v and m2
v, represents a vertex, and we aim to ensure that either both men

will be matched to their best partners (in the man-optimal stable matching) or both men will
be matched to other partners (where there would be only one choice for these other partners
that preserves stability). Accordingly, we will guarantee that the choice of matching these two
men to their best partners translates to not choosing the vertex they represent into the clique,
and the other choice translates to choosing this vertex into the clique.

Now, having just the set MV , we can encode selection of vertices into the clique, but we
cannot ensure that the vertices we select indeed form a clique. For this purpose, we also have
the set ME which, in a manner similar to MV , encodes selection of edges into the clique. By
designing the instance in a way that the situation of the men in the man-optimal stable matching
is significantly worse than that of the women in the women-optimal stable matching, we are able
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to ensure that at most 2(k +
k(k − 1)

2
) men in MV ∪ME will not be assigned their best partners

(here, we exploit the condition that balance(µ) ≤ k̂ for a solution µ). We remark that here the

man m∗ plays a crucial role—by using dummy men and women (in the sets M̃ and W̃ ) that
prefer each other over all other people, we ensure that the situation of m∗ is always “extremely
bad” (from his viewpoint), while the situation of his partner, w∗, is always “excellent” (from
her viewpoint).

At this point, we first need to ensure that the edges that we select indeed connect the
vertices that we select. For this purpose, we carefully design our reduction so that when a pair
of men representing some edge e obtain partners worse than those they have in the man-optimal
stable matching, it must be that the men representing the endpoints of e have also obtained
partners worse than those they have in the man-optimal stable matching, else stability will not
be preserved—the partners of the men represting the endpoints of e will form blocking pairs
together with the men representing e.

Finally we observe that we still need to ensure that among our 2(k +
k(k − 1)

2
) distinguished

men in MV ∪ME, which are associated with k +
k(k − 1)

2
selected elements (vertices and edges),

there will be exactly 2k distinguished men from MV and exactly k(k − 1) distinguished men

from ME , which would mean we have chosen k vertices and
k(k − 1)

2
edges. For this purpose,

we construct an instance where for the women, it is only somewhat “beneficial” that the men
in MV will not be matched to their best partners, but it is extremely beneficial that the men in
ME will not be matched to their best partners. This objective is achieved by carefully placing
dummy men (from M̂) in the preference lists of women inWE . By again exploiting the condition
that balance(µ) ≤ k̂ for a solution µ, we are able to ensure that there would be at least k(k− 1)
distinguished men from ME .

Next, we proceed with the formal presentation of our reduction by defining pm for every
man m ∈ M , and thus constructing LM .

• For all m1
v ∈ MV : A(m1

v) = {w1
v , w̃

1, w̃2, w2
v}.

– pm1
v
(w1

v) = 1; pm1
v
(w̃1) = 2; pm1

v
(w̃2) = 3; pm1

v
(w2

v) = 4.

• For all m2
v ∈ MV : A(m2

v) = {w2
v , w

1, w2, w1
v}.

– pm2
v
(w2

v) = 1; pm2
v
(w̃1) = 2; pm2

v
(w̃2) = 3; pm2

v
(w1

v) = 4.

• For all m1
{u,v} ∈ ME where u < v:3 A(m1

{u,v}) = {w1
{u,v}, w

1
u, w

1
v , w

2
{u,v}}.

– pm1
{u,v}

(w1
{u,v}) = 1; pm1

{u,v}
(w1

u) = 2; pm1
{u,v}

(w1
v) = 3; pm1

{u,v}
(w2

{u,v}) = 4.

• For all m2
{u,v} ∈ ME where u < v: A(m2

{u,v}) = {w2
{u,v}, w

2
u, w

2
v , w

1
{u,v}}.

– pm2
{u,v}

(w2
{u,v}) = 1; pm2

{u,v}
(w2

u) = 2; pm2
{u,v}

(w2
v) = 3; pm2

{u,v}
(w1

{u,v}) = 4.

• For all m̃i ∈ M̃ such that i ≤ |V ||E|: A(m̃i) = {w̃i} ∪ WE ∪ {wi
v ∈ MV : m̃i ∈ A(wi

v)},
where for all wi

v ∈ WV , the set A(wi
v) is determined later.

– pm̃i(w̃i) = 1.

3Recall that we have defined an order on V .
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– For all j ∈ {1, 2, . . . , |E|}: pm̃i(w1
ej ) = j + 1; pm̃i(w2

ej ) = |E|+ j + 1.

– Denote X = {wi
v ∈ MV : m̃i ∈ A(wi

v)}. Let f : X → |X| be an arbitrarily chosen
bijection. Then, for all wi

v ∈ X: pm̃i(wi
v) = 2|E|+ f(wi

v) + 1.

• For all m̃i ∈ M̃ such that i > |V ||E|: A(m̃i) = {w̃i}.

– pm̃i(w̃i) = 1.

• For m∗: A(m∗) = W̃ ∪ {w∗}.

– For all i ∈ {1, 2, . . . , δ}: pm∗(w̃i) = i.

– pm∗(w∗) = δ + 1.

Accordingly, we define pw for every woman w ∈ W , and thus construct LW .

• For all w1
v ∈ WV : A(w1

v) = {m1
e ∈ ME : v ∈ e} ∪ {m2

v,m
1
v} ∪ {m̃i ∈ M̃ : i ≤ |E| −

degreeG(v)}.

– pw1
v
(m2

v) = 1

– For all i ∈ {1, 2, . . . , |E|}: pw1
v
(m1

ei) = i+ 1.

– pw1
v
(m1

v) = |E|+ 2.

• For all w2
v ∈ WV : A(w2

v) = {m2
e ∈ ME : v ∈ e} ∪ {m1

v,m
2
v} ∪ {m̃i ∈ M̃ : i ≤ |E| −

degreeG(v)}.

– pw2
v
(m1

v) = 1.

– For all i ∈ {1, 2, . . . , |E|}: pw2
v
(m2

ei) = i+ 1.

– pw2
v
(m2

v) = |E|+ 2.

• For all w1
e ∈ WE: A(w1

e) = {m̃i ∈ M̃ : i ∈ {1, 2, . . . , |V ||E|}} ∪ {m2
e,m

1
e}.

– pw1
e
(m2

e) = 1.

– For all i ∈ {1, 2, . . . , |V ||E|}: pw1
e
(m̃i) = i+ 1.

– pw1
e
(m1

e) = |V ||E|+ 2.

• For all w2
e ∈ WE: A(w2

e) = {m̃i ∈ M̃ : i ∈ {1, 2, . . . , |V ||E|}} ∪ {m1
e,m

2
e}.

– pw2
e
(m1

e) = 1.

– For all i ∈ {1, 2, . . . , |V ||E|}: pw2
e
(m̃i) = i+ 1.

– pw2
e
(m2

e) = |V ||E|+ 2.

• For all w̃i ∈ W̃ such that i ∈ {1, 2}: A(w̃i) = {m̃i} ∪ {m∗} ∪MV .

– pw̃i(m̃i) = 1; pw̃i(m∗) = 2.

– For all j ∈ {1, 2, . . . , |V |}: pw̃i(m1
vj ) = j + 2; pw̃i(m2

vj ) = |V |+ j + 2.

• For all w̃i ∈ W̃ such that i > 2: A(w̃i) = {m̃i} ∪ {m∗}.

– pw̃i(m̃i) = 1; pw̃i(m∗) = 2.
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• For w∗: A(w∗) = {m∗}.

– pw∗(m∗) = 1.

Finally, we define k̂ = |M | + δ + 6(k +
k(k − 1)

2
). It is clear that the entire construction

(under the assumptions that δ ≥ 0 and |V | > k +
k(k − 1)

2
) can be performed in polynomial

time.

5.2 The Parameter

Our current objective is to verify that t is indeed bounded by a function of k. For this purpose,
we first observe that for all i ∈ {1, 2, . . . , δ}, it holds that pm̃i(w̃i) = pw̃i(m̃i) = 1. Therefore, for
all µ ∈ SM(Î) and i ∈ {1, 2, . . . , δ}, we have that µ(m̃i) = w̃i, else (m̃i, w̃i) would have formed
a blocking pair for µ in Î.

Observation 6. For all µ ∈ SM(Î) and i ∈ {1, 2, . . . , δ}, it holds that µ(m̃i) = w̃i.

Now, note that A(m∗) = W̃∪{w∗}. Thus, by Observation 6, we have that for all µ ∈ SM(Î),
either m∗ is unmatched or µ(m∗) = w∗. However, A(w∗) = {m∗}, which implies that in the
former case, (m∗, w∗) forms a blocking pair. Thus, we also have the following observation.

Observation 7. For all µ ∈ SM(Î), it holds that µ(m∗) = w∗.

Let us proceed by identifying the man-optimal µM and the woman-optimal µW stable match-
ings. For this purpose, we first define a matching µ′

M as follows.

• For all mi
v ∈ MV : µ

′
M (mi

v) = wi
v.

• For all mi
e ∈ ME : µ

′
M (mi

e) = wi
e.

• For all m̃i ∈ M̃ : µ′
M(m̃i) = w̃i.

• µ′
M (m∗) = w∗.

Lemma 5.2. µM = µ′
M .

Proof. Since for all i ∈ {1, 2, . . . , δ}, it holds that µ′
M (m̃i) = w̃i and pm̃i(w̃i) = pw̃i(m̃i) = 1, we

have that there cannot exist a blocking pair with at least one person from M̃ ∪ W̃ . Now, notice
that for every m ∈ M , including m∗, the woman most preferred by m who is outside W̃ is also
the one with whom it is matched. Therefore, there cannot exist any blocking pair for µ′

M , and
by Observation 6, we further conclude that indeed µM = µ′

M .

Now, we define a matching µ′
W as follows.

• For all wi
v ∈ WV : µ

′
W (wi

v) = m3−i
v .

• For all wi
e ∈ WE: µ

′
W (wi

e) = m3−i
e .

• For all w̃i ∈ W̃ : µ′
W (w̃i) = m̃i.

• µ′
W (w∗) = m∗.

Lemma 5.3. µW = µ′
W .

Proof. In the matching µ′
W , every woman is matched with the man she prefers the most. Thus,

it is immediate that µW = µ′
W .

As a corollary to Lemmata 5.2 and 5.3, we obtain the following result.

Corollary 5.1. OM = |M |+ δ and OW = |W |.
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Proof. First, note that

OM =
∑

(m,w)∈µM

pm(w)

= pm∗(µM (m∗)) +
∑

m∈M\{m∗}

pm(µM (m)) = (δ + 1) + (|M | − 1) = |M |+ δ.

Second, note that

OW =
∑

(m,w)∈µW

pw(m) =
∑

w∈W

pw(µW (w)) = |W |.

We are now ready to bound t.

Lemma 5.4. The parameter t associated with Î is equal to 6(k +
k(k − 1)

2
).

Proof. By the definition of t, we have that

t = k̂ −max{OM , OW }

= |M |+ δ + 6(k +
k(k − 1)

2
)−max{|M |+ δ, |W |} = 6(k +

k(k − 1)

2
).

5.3 Correctness

First, from Lemma 5.2 and Proposition 2 we derive the following useful observation.

Observation 8. Every µ ∈ SM(Î) matches all people in M ∪W .

Next, we proceed to state the first direction necessary to conclude that the input instance
I of Clique and our instance Î of Above-Max BSM are equivalent.

Lemma 5.5. If I is a Yes-instance, then Î is a Yes-instance.

Proof. Suppose that I is a Yes-instance, and let U be the vertex-set of a clique on k vertices
in G. We denote MU

V = {mi
v ∈ MV : v ∈ U} and MU

E = {mi
{u,v} ∈ ME : u, v ∈ U}. Then, we

define a matching µ as follows.

• For all mi
v ∈ MV :

– If mi
v ∈ MU

V : µ(mi
v) = w3−i

v .

– Else: µ(mi
v) = wi

v.

• For all mi
e ∈ ME :

– If mi
e ∈ MU

E : µ(mi
e) = w3−i

e .

– Else: µ(mi
e) = wi

e.

• For all m̃i ∈ M̃ : µ(m̃i) = w̃i.

• µ(m∗) = w∗.

24



We claim that µ ∈ SM(Î) and balance(µ) ≤ k̂, which would imply that Î is a Yes-instance.
To this end, we first show that µ ∈ SM(Î). Since for all i ∈ {1, 2, . . . , δ}, it holds that
µ(m̃i) = w̃i and pm̃i(w̃i) = pw̃i(m̃i) = 1, we have that there cannot exist a blocking pair with

at least one person from M̃ ∪ W̃ . Thus, there can also not be a blocking pair with any person
from {m∗, w∗}.

On the one hand, notice that for every m ∈ (MV \MU
V ) ∪ (ME \MU

E ) ∪ {m∗}, the woman

most preferred by m who is outside W̃ is also the one with whom it is matched. Thus, no man
in (MV \MU

V )∪(ME \MU
E )∪{m∗} can belong to a blocking pair. Moreover, the set of acceptable

partners of any woman in WE matched to a man in ME \MU
E is a subset of M̃ ∪ (ME \MU

E ),
and therefore such a woman cannot belong to a blocking pair. On the other hand, let W ′ denote
the set of every woman that is matched to a man m ∈ MU

V ∪MU
E . Then, for every w ∈ W ′, the

man most preferred by w is also the one with whom she is matched. Therefore, no woman in
W ′ can belong to a blocking pair. Hence, we also conclude that no woman in WE can belong
to a blocking pair.

Thus, if there exists a blocking pair, it must consist of a man m ∈ MU
V ∪MU

E and a woman
w ∈ WV \W ′. Suppose, by way of contradiction, that there exists such a blocking pair (m,w).
First, let us assume that m = mi

v ∈ MU
V . In this case, since apart from wi

v, all women in A(mi
v)

belong to W̃ ∪ {µ(mi
v)}, we deduce that w = wi

v. However, wi
v prefers µ(wi

v) over mi
v, and

thus we reach a contradiction. Next, we assume that m = mi
{u,v} ∈ MU

E . In this case, it must

hold that w is either wi
v or wi

u. Without loss of generality, we assume that w = wi
v. However,

since mi
{u,v} ∈ MU

E , we have that v ∈ U . Therefore, µ(wi
v) = m3−i

v . Since wi
v prefers m3−i

v over

mi
{u,v}, we reach a contradiction.

It remains to prove that balance(µ) ≤ k̂. To this end, we need to show that

max{
∑

(m,w)∈µ

pm(w),
∑

(m,w)∈µ

pw(m)} ≤ |M |+ δ + 6(k +
k(k − 1)

2
).

First, note that
∑

(m,w)∈µ

pm(w) =
∑

m∈MU
V

pm(µ(m)) +
∑

m∈MV \MU
V

pm(µ(m)) +
∑

m∈MU
E

pm(µ(m))

+
∑

m∈ME\MU
E

pm(µ(m)) +
∑

m∈M̃

pm(µ(m)) + pm∗(µ(m∗))

= 4|MU
V |+ |MV \MU

V |+ 4|MU
E |+ |ME \MU

E |+ |M̃ |+ δ + 1

= |M |+ δ + 3(|MU
V |+ |MU

E |) = |M |+ δ + 6(k +
k(k − 1)

2
).

Second, note that

∑

(m,w)∈µ

pw(m) =
∑

m∈MU
V

pµ(m)(m) +
∑

m∈MV \MU
V

pµ(m)(m) +
∑

m∈MU
E

pµ(m)(m)

+
∑

m∈ME\MU
E

pµ(m)(m) +
∑

m∈M̃

pµ(m)(m) + pµ(m∗)(m
∗)

= |MU
V |+ |MV \MU

V |(|E|+ 2) + |MU
E |+ |ME \MU

E |(|V ||E|+ 2) + |M̃ |+ 1

= |M |+ 2(|V | − k)(|E| + 1) + 2(|E| −
k(k − 1)

2
)(|V ||E|+ 1)

= |M |+ δ + 6(k +
k(k − 1)

2
).

This concludes the proof of the lemma.

We now turn to prove the second direction.
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Lemma 5.6. If Î is a Yes-instance, then I is a Yes-instance.

Proof. Suppose that Î is a Yes-instance, and let µ be a stable matching such that balance(µ) ≤
k̂. By Observations 6 and 7, it holds that

• For all i ∈ {1, 2, . . . , δ}: µ(m̃i) = w̃i.

• µ(m∗) = w∗.

Thus, since Observation 8 implies that all vertices in MV should be matched by µ, we deduce
that

• For all v ∈ V : Either both µ(m1
v) = w1

v and µ(m2
v) = w2

v or both µ(m2
v) = w1

v and
µ(m1

v) = w2
v .

Let U denote the set of every v ∈ V such that µ(m2
v) = w1

v and µ(m1
v) = w2

v . Moreover,
denote MU

V = {mi
v ∈ MV : v ∈ U}. By the item above, and since all vertices in ME should also

be matched by µ, we further deduce that

• For all e ∈ E: Either both µ(m1
e) = w1

e and µ(m2
e) = w2

e or both µ(m2
e) = w1

e and
µ(m1

e) = w2
e .

Let S denote the set of every e ∈ E such that µ(m2
e) = w1

e and µ(m1
e) = w2

e . Moreover,
denote MS

E = {mi
e ∈ ME : e ∈ S}. If there existed {u, v} ∈ S such that u /∈ U , then (m1

{u,v}, w
1
u)

would have formed a blocking pair, which contradicts the fact that µ is a stable matching. Thus,
we have that the set of endpoints of the edges in S is a subset of U .

We claim that |U | = k and that U is the vertex-set of a clique in G, which would imply that
I is a Yes-instance. Since we have argued that the set of endpoints of the edges in S is a subset

of U , it is sufficient to show that |U | ≤ k and |S| ≥
k(k − 1)

2
(note that |S| ≥

k(k − 1)

2
implies

that |U | ≥ k), as this would imply that U is indeed the vertex-set of a clique on k vertices in

G. First, since balance(µ) ≤ k̂, we have that
∑

(m,w)∈µ

pm(w) ≤ |M |+ δ + 6(k +
k(k − 1)

2
). Now,

note that
∑

(m,w)∈µ

pm(w) =
∑

m∈MU
V

pm(µ(m)) +
∑

m∈MV \MU
V

pm(µ(m)) +
∑

m∈MS
E

pm(µ(m))

+
∑

m∈ME\MS
E

pm(µ(m)) +
∑

m∈M̃

pm(µ(m)) + pm∗(µ(m∗))

= 4|MU
V |+ |MV \MU

V |+ 4|MS
E |+ |ME \MS

E |+ |M̃ |+ δ + 1
= |M |+ δ + 6(|U | + |S|).

Thus, we deduce that |U |+ |S| ≤ k+
k(k − 1)

2
. Now, observe that since balance(µ) ≤ k̂, we

also have that
∑

(m,w)∈µ

pw(m) ≤ |M |+ δ + 6(k +
k(k − 1)

2
). Here, on the one hand we note that

∑

(m,w)∈µ

pw(m) =
∑

m∈MU
V

pµ(m)(m) +
∑

m∈MV \MU
V

pµ(m)(m) +
∑

m∈MS
E

pµ(m)(m)

+
∑

m∈ME\MS
E

pµ(m)(m) +
∑

m∈M̃

pµ(m)(m) + pµ(m∗)(m
∗)

= |MU
V |+ |MV \MU

V |(|E|+ 2) + |MS
E |+ |ME \MS

E |(|V ||E|+ 2) + |M̃ |+ 1
= |M |+ 2(|V | − |U |)(|E| + 1) + 2(|E| − |S|)(|V ||E|+ 1)
= |M |+ 2(|V |+ |E|+ |V ||E|+ |V ||E|2)− 2|U |(|E| + 1)− 2|S|(|V ||E| + 1).
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On the other hand, we note that

k̂ = |M |+ δ + 6(k +
k(k − 1)

2
)

= |M |+ 2(|V |+ |E|+ |V ||E| + |V ||E|2)− k(4 + 4k + 2|E|+ (k − 1)|V ||E|) + 6(k +
k(k − 1)

2
)

= |M |+ 2(|V |+ |E|+ |V ||E| + |V ||E|2)− 2k(|E| + 1)− k(k − 1)(|V ||E| + 1).

Thus, we have that

|U |(|E| + 1) + |S|(|V ||E|+ 1) ≥ k(|E| + 1) +
k(k − 1)

2
(|V ||E|+ 1)

Recall that we have also shown that |U |+|S| ≤ k +
k(k − 1)

2
. Thus, since |U | ≤ k +

k(k − 1)

2
<

|V |, to satisfy the above equation it must hold that |S| ≥
k(k − 1)

2
. Since |U | + |S| ≤

k +
k(k − 1)

2
, we deduce that |U | ≤ k. This, as we have argued earlier, finished the proof.

This concludes the proof of Theorem 5.1.
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