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Abstract

V -order is a total order on strings that determines an instance of Unique Max-

imal Factorization Families (UMFFs), a generalization of Lyndon words. The

fundamental V -comparison of strings can be done in linear time and constant

space. V -order has been proposed as an alternative to lexicographic order (lex-

order) in the computation of suffix arrays and in the suffix-sorting induced by

the Burrows-Wheeler transform (BWT). In line with the recent interest in the

connection between suffix arrays and Lyndon factorization, in this paper we

obtain similar results for the V -order factorization. Indeed, we show that the

results describing the connection between suffix arrays and Lyndon factorization

are matched by analogous V -order processing. We also describe a methodology

for efficiently computing the FM-Index in V -order, as well as V -order substring

pattern matching using backward search.
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1. Introduction

This paper extends current knowledge on applications of a non-lexico-

graphic global order known as V -order [2] (see Definition 2). It is an intrigu-

ing question, now investigated for more than 20 years, whether such a counter-

intuitive ordering might nevertheless yield algorithmic efficiencies, or other theo-

retical/computational benefits, compared to lexicographic order (lexorder). We

begin by mentioning some applications already considered.

Analogous to lexicographic comparison, the central problem of efficient V -

ordering of strings was considered in [3, 4, 5, 6, 7], culminating in a remarkably

simple, linear time, constant space comparison algorithm [8], further improved

in [9]. In work closely related to ideas in this paper, [3, 4] also described efficient

Lyndon-like factorization of a string x = x[1..n] into V -words (Definition 11).

Other V -order applications include a variant (V -BWT or V -transform) of the

standard lexicographic Burrows-Wheeler transform, introduced in [10], where

instances of enhanced data clustering were demonstrated. Also described in

[10] was a linear-time algorithm for V -sorting all the conjugates of a string,

based on the work in [3, 4] and the linear-time suffix-sorting algorithm of Ko-

Aluru [11]. In particular, [10] showed how to compute the V -transform of a

V -word x in Θ(n) time and space; in addition, inverting the V -transform to

recover the original x was achieved in time O(n2 log k), using O(n + k) words

of additional storage, where k is the number of sequences of the largest letter

in x.

In this paper, we modify ideas given in [12] that relate Lyndon factorization

to suffix arrays and the Burrows-Wheeler transform in order to obtain similar re-

sults for the V -order factorization (Section 4). We go on to introduce FM-index

type functions in V -order (Section 5), thus raising the possibility of directly

applying them to pattern matching for letters in V -order, as done for lexorder

in [12]. We conclude by applying the backward search technique to substring

pattern matching in V -order (Section 6). The differences between lexorder and

V -order are intriguing: while the latter generally appears trickier to work with,
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on the other hand computing suffix arrays in V -order is trivial.

More generally, several recent papers have revealed deep connections between

suffix arrays and Lyndon decomposition that are still not well understood. For

example, in the first step of his linear-time non-recursive suffix array algorithm,

Baier[13] actually computes a sorted version of the Lyndon array LAx of string

x, where LAx[i] identifies the longest Lyndon word occurring at x[i]. The same

structure arises in the recent proof [14] that the number of maximal periodicities

(“runs”) in a string is less than its length. For further commentary see [15, 16,

17].

In this paper we begin the process of exploring analogous connections in the

context of V -order.

2. Preliminaries

We are given a finite totally ordered set Σ of cardinality σ = |Σ|, called

the alphabet, whose elements are characters (equivalently letters). A string

(equivalently word) is a sequence of zero or more characters over Σ. (In our

examples, we shall often suppose that Σ = {a, b, c, . . . }, the Roman alphabet

in its natural order, or Σ = {1, 2, 3, . . . }, the natural numbers.) A string x =

x1x2 · · ·xn of length |x| = n is represented by x[1..n], where xi = x[i] ∈ Σ for

1 ≤ i ≤ n. The set of all nonempty strings over the alphabet Σ is denoted by Σ+.

The empty string of zero length is denoted by ε, with Σ∗ = Σ+∪ε. If x = uwv

for strings u,w,v ∈ Σ∗, then u is a prefix, w a substring or factor, and v a suffix

of x. We denote the suffix starting at position i, 1 ≤ i ≤ n by Si. For a given

string x = x[1..n] and an integer sequence 0 < i1 < i2 < · · · < ik < n+1, the

string y = x[i1]x[i2] · · ·x[ik] is said to be a subsequence of x, proper if k < n.

If x = uk (a concatenation of k copies of u) for some nonempty string

u and some integer k > 1, then x is said to be a repetition; otherwise, x is

primitive. A string y = Ri(x) is the ith conjugate (or rotation) of x = x[1..n]

if y = x[i+1..n]x[1..i] for some 0 ≤ i < n (so that R0(x) = x).

Note that all strings are written in mathbold: x, w instead of x,w.
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We shall be considering various standard arrays associated with strings. The

suffix array SA = SAx[1..n] of x is an array of integers 1..n such that for every

i ∈ 1..n, SA[i] = j if and only if Sj is the ith suffix in lexorder. For example,

the suffixes of x = acab are ab, acab, b, cab in lexorder, so that SAx = (3, 1, 4, 2).

The Burrows-Wheeler transform BWT = BWTx of a given string y [18] is

a permutation formed in two equivalent ways from the string x = y$1, where $

is a sentinel letter assumed, for processing convenience, to be smaller than any

letter in Σ:

(1) Form a matrix Mlex
x of the rotations of x sorted in increasing lexorder,

then select the final column; or

(2) Compute the suffix array SAx, then for i ← 1 to n+1, set BWT[i] ←

x
[
SA[i]−1

]
whenever SA[i] > 1; BWT[i]← x[n+1] = $, otherwise.

Thus, given x = acab$, we effectively work from

Mlex
x = $ a c a b

a b $ a c

a c a b $

b $ a c a

c a b $ a

(1)

choosing BWTx = bc$aa from the last column. The underlined prefixes in the

table correspond to the suffix array entries SA[1..5] = (5, 3, 1, 4, 2).

In practice, method (2) is always used, since it requres only Θ(n) time,

compared to Θ(n2) for method (1). As in the example, the BWT often has the

useful property that equal letters are grouped together.

The FM-Index [19] is defined in terms of two functions:

• Cx(`) gives, for each letter ` ∈ Σ that occurs in x, the number of letters

in x smaller in lexorder than `. For x = acab, Cx(a) = 0, Cx(b) =

2, Cx(c) = 3.

1The introduction of the $ ensures that the two methods are indeed equivalent.
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• RANKx(p, `) gives the number of occurrences of letter ` in the prefix of

x of length p. Thus RANKacab takes the following values:

p/` 1 2 3 4

a 1 1 2 2

b 0 0 0 1

c 0 1 1 1

The functions C and RANK can be efficiently computed and are useful in the

processing of the BWT, as discussed in Section 5.

Finally, a Lyndon word [20] is a primitive word that is minimum in lexorder

< over its conjugacy class. The following Lyndon factorization (LF) theorem is

fundamental in stringology and will be important in many of our applications:

Theorem 1. [20] Any word x can be written uniquely as a product LFx = x =

u1u2 · · ·uk of Lyndon words, with (u1 ≥ u2 ≥ · · · ≥ uk).

For further stringological definitions and theory, see [21, 22].

3. Results on V -Order

We now define a non-lexorder called V -order and describe some of its notable

properties. Let x = x1x2 · · ·xn be a string over Σ. Define h ∈ {1, . . . , n}

by h = 1 if x1 ≤ x2 ≤ · · · ≤ xn; otherwise, by the unique value such that

xh−1 > xh ≤ xh+1 ≤ xh+2 ≤ · · · ≤ xn. Let x∗ = x1x2 · · ·xh−1xh+1 · · ·xn,

where the star * indicates deletion of xh. Write xs∗ = (...(x∗)∗...)∗ with s ≥ 0

stars. Let g = max{x1, x2, . . . , xn}, and let k be the number of occurrences of

g in x. Then the sequence x,x∗,x2∗, ... ends gk, ..., g1, g0 = ε. From all strings

x over Σ we form the star tree, where each string x labels a vertex and there is

a directed edge upward from x to x∗, with the empty string ε as the root.

Definition 2 (V -order [2]). We define V -order ≺ between distinct strings x,
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y, where x, y do not contain $2. First x ≺ y if in the star tree x is in the

path y,y∗,y2∗, . . . , ε. If x,y are not in a path, there exist smallest s, t such that

x(s+1)∗ = y(t+1)∗. Let s = xs∗ and t = yt∗; then s 6= t but |s| = |t| = m say.

Let j ∈ [1..m] be the greatest integer such that s[j] 6= t[j]. If s[j] < t[j] in Σ

then x ≺ y; otherwise, y ≺ x. Clearly ≺ is a total order on all strings in Σ∗.

Example 3. [Star tree] We illustrate the star tree for the V -order comparison

of the words x = lexorder and y = matrix. The subscript h indicates the

V letter to be deleted (defined above as xh−1 > xh ≤ xh+1 ≤ xh+2 ≤ · · · ≤

xn). The circled letters are those compared in alphabetic order (defined above

as s[j] 6= t[j]).

x

>

l e x o r dh e r

l e x o r eh r

l e x oh r r

l e x rh r

l e x rh

l eh x

lh x

m a t r ih x

m a t rh x

mah t x

mh t x

th x

Figure 1: lexorder ≺ matrix

An instance where x and y occur in the same path in the star tree is given by

x = 42527, y = 57, yielding x∗ = 4257, x2∗ = 457, x3∗ = 57 and so 57 ≺ 42527.

2It turns out that, in V -order, it is useful to require, not only that $ be the smallest letter,
but moreover that $ ≺ ε. To avoid this situation, we transform strings containing $ into
equivalent $-free strings to which Definition 2 applies. See Definition 17.
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Definition 4 (V -form [2, 23, 3, 4]). The V -form of a string x is defined as

Vk(x) = x = x0gx1g · · ·xk−1gxk

for strings xi, i = 0, 1, . . . , k, where g is the largest letter in x — thus we

suppose that g occurs exactly k times. Note that, in this representation, any xi

may be the empty string ε. For clarity, when more than one string is involved,

we use the notation Lx = g, Cx = k.

Lemma 5. [2, 23, 3, 4] Suppose we are given distinct strings x and y with

corresponding V -forms as follows:

x = x0Lxx1Lxx2 · · ·xj−1Lxxj ,

y = y0Lyy1Lyy2 · · ·yk−1Lyyk,

where j = Cx, k = Cy.

Let h ∈ 0..max(j, k) be the least integer such that xh 6= yh. Then x ≺ y if

and only if one of the following conditions holds:

(C1) Lx < Ly

(C2) Lx = Ly and Cx < Cy

(C3) Lx = Ly, Cx = Cy and xh ≺ yh.

Observe the recursive nature of determining≺ in (C3); that is, each substring

pair xh, yh can likewise be decomposed into V -forms.

Example 6. [C1-C3] The following examples illustrate the three conditions in

Lemma 5:

• Using C1, if x = 345 and y = 456, we have x ≺ y as Lx = 5 < 6 = Ly.

• Using C2, if x = 1818181 and y = 78787, we have x � y as Lx = Ly = 8

and Cx = 3 > 2 = Cy.
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• Using C3, if x = 9616921 and y = 9616912, we have x ≺ y because

x0 = y0 = ε, x1 = y1 = 616 while x2 = 21 ≺ 12 = y2, since the V -form

x0 prefix of 21 is ε while for 12 it is 1 and ε ≺ 1. It is instructive to

extend this example to x′ = 961692198888 and y′ = 961691294, where

x′ ≺ y′ since the order is still determined by x′2 = 21 and y′2 = 12.

Lemma 7. [3, 4] For given strings x and y, if y is a proper subsequence of x,

then y ≺ x.

For example, using this lemma we immediately have 9374 ≺ 93748336,

937336 ≺ 93748336, and 9786 ≺ 93748336.

The remarkable Lemma 7 has many consequences, not least the trivial or-

dering of suffixes in V -order discussed in Section 4.

Lemma 8. [6, 8] For any strings u, v, x, y: x ≺ y ⇔ uxv ≺ uyv.

By Lemma 8, a comparison of two strings in V -order can ignore equal pre-

fixes (or suffixes). Therefore, on this basis, Algorithm COMPARE(x,y), first

presented in [8] and later upgraded in [9], ignores common prefixes of strings x

and y while comparing them. COMPARE also makes use of the following:

Lemma 9. [8] For any two strings x, y with x ≺ y and any two letters λ, µ

such that y ≺ xλ:

(i) if λ ≤ µ, then xλ ≺ yµ;

(ii) if λ > µ, then yµ ≺ xλ.

In contrast to comments made in the Conclusion of [4], Lemma 9 implies that

V -order comparison can be conducted in a positional manner just like lexorder

comparison. In fact, COMPARE(x,y) is an on-line algorithm that requires only

a one-character window!

The improved V -order comparison algorithm given in [9], called COMPARE-

Sensitive, was obtained by simple modifications of COMPARE. COMPARE-

Sensitive considers the structure of the input strings in order to achieve improved
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running times. A probabilistic argument shows that COMPARE-Sensitive runs

faster than COMPARE in almost all cases of interest, at least twice as fast

according to the experiments described in [9].

Lemma 10. [3, 4, 5, 7, 8, 9] V -order comparison of given strings x and y

requires linear time and constant space.

We now introduce the V -order equivalent of the lexorder Lyndon word:

Definition 11 (V -Word [23]). A string x over an ordered alphabet Σ is said to

be a V -word if it is the unique minimum in V -order ≺ in the conjugacy class

of x.

Thus, like a Lyndon word, a V -word is necessarily primitive.

Example 12. [≺] We can apply Definition 2, equivalently the structure given

by Lemma 5, to conclude that

7173 ≺ 7371 ≺ 1737 ≺ 3717,

so that 7173 is a V -word, while on the other hand 1737 is a Lyndon word.

Similarly, 71727174 and 818382 are V -words, while conjugates 17271747 and

183828 are Lyndon words.

Now consider two V -words x1 and x2 on an alphabet Σ. It may be that

x1x2 is also a V -word, a fact we record by writing x1 <V x2; if not, then we

write x1 ≥V x2. Thus, corresponding to the Lyndon factorization into Lyndon

words using ≥ (Theorem 1), we arrive at a V -order factorization expressed in

terms of an ordering ≥V of V -words:

Lemma 13. [3, 4] Using only linear time and space (see Algorithm VF in [4]3),

a string x can be factored uniquely into V -words x = x1x2 · · ·xm, where by

definition x1 ≥V x2 ≥V · · · ≥V xm.

3Although no claim is made in this reference, VF is an on-line algorithm, since it does no
backtracking and outputs the V -word factors in order from left to right.
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Example 14. [≥V ] For x = 33132421, the Lyndon decomposition is 3 ≥ 3 ≥

13242 ≥ 1, while the V -order factorization identifies nonextendible V -words

33132 and 421 with 33132 ≥V 421. (Note however that 33132 ≺ 421! See [24]

for more background on this phenomenon.) Similarly, from Example 12, the

string

x = uvw = (7173)(71727174)(818382)

has the unique V -order factorization u ≥V v ≥V w, even though u ≺ v ≺ w.

As we now discover, it will also be useful to order strings x, y based on a

lexicographic approach to their V -order factorizations. We call this ordering,

denoted ≺LEX(V ), lex-extension order, expressed here with respect to V -order

factorization, while another choice of factorization is given by the unique V -form

of a string.

Definition 15 (Lex-extension order [23, 4, 10]). Suppose that the V -order fac-

torization of distinct strings x,y ∈ Σ+ yields nonempty factors

x = x1x2 · · ·xp, y = y1y2 · · ·yq.

If either

(1) x is a proper prefix of y (that is, xi = yi for 1 ≤ i ≤ p < q) or else

(2) for some i ∈ 1..min(p, q), xj = yj for every 1 ≤ j < i, and xi ≺ yi,

then we write x ≺LEX(V ) y. Otherwise, x �LEX(V ) y (y ≺LEX(V ) x).

Intuitively, in ≺LEX(V ) ordering, we first factor the two strings to be com-

pared into V -factors. Then we treat each V -factor as a letter, and compare

strings by comparing the V -factors at the same position. Consider Example 16,

where y ≺ x, but x ≺LEX(V ) y.

Example 16. [≺LEX(V )] Given V -order factorizations

x = x1x2x3 = (33132)(422)(5), y = y1y2 = (33132)(413),
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we find x1 = y1, but since x2 ≺ y2, therefore x ≺LEX(V ) y (even though

x � y).

4. Computing the Extended Suffix Array in V -Order

In this section we discuss the V -order version, V -BWT, of the Burrows-

Wheeler transform [10]. As in the lexorder case, described in Section 2, it is

convenient to append a special sentinel letter $, less in lexorder than every letter

in Σ, to each string being processed. However, it turns out that, in V -order,

it could become necessary also to require that $ be less than the empty string

ε. For example, this requirement would arise if, while executing a V -order

comparison of strings containing $, an element xi corresponding to $ in the

V -form representation (Definition 4) were empty.

In order to avoid this situation, we introduce Definition 17, which transforms

x, y, each containing at most a single $, into $-free equivalent strings x′, y′

such that x′ ≺ y′ ⇒ x ≺ y. This is achieved by introducing new letters α and

α′ > α, both less than any letter in Σ, but not less than ε, to replace $ in x

and y.

Definition 17. [Transforming strings containing $ to equivalent $-free strings.]

Given distinct strings x, y, each containing at most one occurrence of $, we

construct new strings x′, y′ as defined below, by introducing new letters α and

α′ > α, both less than any letter in Σ, to replace $; that is, we replace Σ ∪ {$}

by Σ′ = Σ ∪ {α, α′}. The following rules are applied:

1. If x[r] = y[t] = $, 1 ≤ r < t ≤ n:

(a) x′ ← x[1..r − 1]αx[r + 1..|x|] (α replaces $),

y′ ← y[1..r − 1]α′y[r..|y|] (insert α′);

(b) y′ ← y′[1..t]αy′[t+ 2..|y′|] (α replaces $),

if |x′| ≥ t then x′ ← x′[1..t]α′x′[t+ 1..|x′|] (insert α′).

2. If x[r] = $, 1 ≤ r ≤ |x|, and ∀i, 1 ≤ i ≤ |y| : y[i] 6= $:

x′ ← x[1..r − 1]αx[r + 1..|x|], (α replaces $),

if |y| ≥ r − 1 then y′ ← y[1..r − 1]α′y[r..|y|] (insert α′).
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3. If x[r] = y[r] = $, 1 ≤ r ≤ |x|, |y|:

x′ ← x[1..r − 1]x[r + 1..|x|], y′ ← y[1..r − 1]y[r + 1..|y|]

(remove $ from both x and y).

Then x′ ≺ y′ ⇒ x ≺ y.

Since the ordering of letters between the strings x, y and x′, y′ is preserved,

and because α < α′, both less than every element in Σ, the ordering between

strings x,y and strings x′,y′, respectively, is preserved. Thus we extend the

application of Definition 2 to comparison of distinct strings x, y, each containing

at most one occurrence of $ ≺ ε. This also ensures the inequalities between

strings are well defined in all cases. Furthermore, since strings x′ and y′ are

strings over an alphabet Σ′ which does not include $, and V -order (Definition 2)

is defined for arbitrary alphabets (excluding $), all known results on V -order,

including all the lemmas presented in this paper, apply immediately to x′ and

y′. In particular, the transitivity property for V -order on Σ naturally holds on

Σ′ also.

We apply Definition 17 to the example strings x = $acab and y = acab$

introduced above. From Rule 1(a), we get x′ = αacab and y′ = α′acab$; next,

applying 1(b), we find x′ = αacabα′ and y′ = α′acabα. Then using the star

tree construction of Definition 2 to compare x′ and y′, we find as above that

s = x′
3∗

= αac and t = y′
3∗

= α′ac, yielding x′ ≺ y′. Hence, by Definition 17,

x ≺ y.

Applying this methodology to x = acab$, we can sort all its conjugates into

V -order – cab$a ≺ $acab ≺ acab$ ≺ b$aca ≺ ab$ac – yielding the V -order

Burrows-Wheeler matrix MVx instead of the lexorder version Mlex
x given in (1):

MVx = c a b $ a

$ a c a b

a c a b $

b $ a c a

a b $ a c

(2)
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Finally we form V -BWTx = ab$ac from the last column L of MVx.

We go on now to introduce the extended suffix array and its V -order imple-

mentation, making use of the V -BWT in a manner suggested recently by the

lexorder methodology of Mantaci et al. [12].

We begin by showing how to translate the results of [12] from lexorder into

V -order. These authors describe a strategy for obtaining the suffix array SAx of

a string x from its Lyndon factorization LFx. To do the equivalent calculation

in V -order — SAx from the V -order factorization of x (Lemma 13) — is not

however of interest, because, as remarked earlier, sorting the suffixes of x in

V -order is trivial! By virtue of Lemma 7, the V -order of the suffixes is

x[n] ≺ x[n− 1..n] ≺ · · · ≺ x[1..n],

so that SAx[i] = n− i+ 1 for all x.

Thus, in the V -order version of this problem, we replace the suffixes with

the “extended suffixes” (conjugates of x) employed to determine the V -BWT.

Then the i-th extended suffix is defined by

ESi ≡ x[i..n]x[1..i− 1]. (3)

The following example, from [10], shows that the ordering of the extended suf-

fixes is no longer straightforward:

Example 18. For x = 9191919293, consider suffixes S5 = 919293 and S3 =

91919293, with S5 ≺ S3 by Lemma 7. However, extending these suffixes and

applying Lemma 5 (C3) yields the opposite order:

9191929391 ≺ 9192939191⇐⇒ ES3 ≺ ES5.

Thus we show here how to use the V -order factorization of x (in particular,

the on-line algorithm VF mentioned in Lemma 13) to generate the Burrows-

Wheeler matrix MVx and thus the corresponding V -BWTx. We call the cor-
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responding suffix array EVSA = EVSAx, equivalent to the rotations of x as

ordered in MVx. For example, in Equation (2), for x′ = acab$, EVSAx′ =

(2, 5, 1, 4, 3) and MVx′ can be derived from each other, each yielding the conclu-

sion that V -BWTx′ = ab$ac.

We remark that the difference between Lyndon and V -order factorization of

x [3, 4] provides more options for efficient string processing. Examples 12 and

14 give an idea of the variation that can occur between lexorder and V -order.

Now we turn to the idea of “compatibility” of sorted suffixes as introduced

in [12]. Let x = x[1..n] be a string and u = x[i..j], 1 ≤ i ≤ j ≤ n, a substring

of x. Then the sorting of suffixes sp = x[p..j], sq = x[q..j] of u is compatible

with the sorting of the corresponding suffixes x[p..n], x[q..n] of x if these two

(p, q) pairs have the same order in both u and x. In lexorder, compatibility of

arbitrarily chosen u and v does not always hold [12], but does hold when they

are substrings of Lyndon factors in the Lyndon factorization of x. However, in

V -order, by Lemma 7, compatibility holds for every choice of p, q. Moreover,

the shorter suffix is always lesser, thus allowing comparison in terms of indexes:

Lemma 19. Let x ∈ Σ+ and u be a substring of x with s1 a suffix of u. If s2

is a proper suffix of s1 then s2 ≺ s1 with respect to both u and x.

Proof. Consider the suffixes s1t1 and s2t2 of x for possibly empty t1, t2.

Applying Lemma 7, we find that s2 ≺ s1 with respect to u and s2t2 ≺ s1t1

with respect to x, as required.

As we have seen, Lemma 19 is not sufficient for extended suffixes, but since

each conjugate has the same number of maximum g’s, condition (C3) implic-

itly applies. However, as a special case of this lemma, we obtain the following

V -order analogy of the result (Theorem 3.2) given in [12] for Lyndon decompo-

sition:

Corollary 20. Let x ∈ Σ+ with V -order factorization x = v1 · · ·vk, and let

u = vi · · ·vj , for 1 ≤ i ≤ j ≤ k. Then the sorting of the suffixes of u is

compatible with the sorting of the corresponding suffixes of x.

15



The intricate differences between lexorder and V -order, along with the su-

perficial nature of the V -order suffix array, lead to the following lemma that

aims toward incrementally building the extended V -order suffix array, EVSA,

in a manner similar to that employed in [12] for building SA. Thus, for k = 2,

the next lemma partly describes the structure of MVu, hence of EVSAu:

Lemma 21. Let u = v1v2$ ∈ Σ+, where v1, v2 are V -words with v1 ≥V v2

and Lv1 = Lv2 = L. Let R0, R1, . . . , RCv2
be the Cv2 + 1 consecutive rotations

of v2$ occurring in the V -order Burrows-Wheeler matrix MVv2$
that start with

$ or L. Then in MVu:

(a) for every j ∈ 0..Cv2 , there exists a unique row Er, with (nonempty) prefix

Pr and (possibly empty) suffix Sr, such that PrSr = Rj and SrPr = v2$;

(b) E0 has prefix $ and the remaining Cv2 entries Rj identified in (a) occur

in rows Ej , 1 ≤ j ≤ Cv2 , in ascending order of j.

Proof.

For both cases (a) and (b), appending $ to v2 ensures that working with

suffix arrays is equivalent to working with MVu and similarly for EVSAu (see

commentaries on the sentinel $ in Section 2 and prior to Equation 2).

(a) This follows from Corollary 20 and the fact that MVu includes all the

rotations of u.

(b) Since the first row of MVu must be least in V -order, and $ ≺ ε and v1

being a V -word beginning with L, it has prefix $ — this unique row is

identified as E0.

For the sake of rigour, consider converting to $-free strings. Since u con-

tains exactly one $, then it can only appear in the first position in any row

of MVu, once. Also since v1 is a V -word it must begin with L. So let r be

the row of MVu starting $L. Comparing row r with other rows in MVu, and

applying Definition 17 part 1, row r now starts with α and every other

row starts with α′, where α < α′. Consider the x0 prefix for the V -form

16



of each row in MVu, then for row r we have x0 = α and hence it is unique

out of all the x0 substrings. Furthermore, each of the other x0 substrings

must contain some letter greater than α, so that Lemma 5 (C1) applies,

thus establishing that r = E0. We now return to working with $.

Consider those suffixes Pr in the EVSA suffix array of v2$ which start

with $ or L, and suppose that they are V -ordered so that their subscripts

are in ascending order of j. The rows Er in MVu are then identified as

those of the form Prv1Sr.

Suppose that Pk ≺ Pl which is determined by applying lex-extension Defi-

nition 15 with the factorizations given by the V -forms of Pk and Pl. Since

v2$ only contains one $, then part 1 of this definition does not apply, for

if Pk was a proper prefix of Pl then Pl would contain two $’s. From part 2

there is a pair of substrings xi, yi with minimal i where xi is in Pk and yi

is in Pl with xi ≺ yi. Then Pk ≺ Pl implies Pkv1Sk ≺ Plv1Sl. In other

words, the V -order of Pkv1Sk and Plv1Sl is determined before the start

of v1 by the order of Pk and Pl which both end in $. Hence the order of

the Pr in MVv2$
is preserved in MVu.

Overall, we are essentially merging two lists of suffixes each ordered in lex-

extension order into a further lex-extension ordered list of suffixes, hence

maintaining the lists’ original orders.

We illustrate Lemma 21 with the following example:

Example 22. Let V -words v1 = 83 and v2 = 88182, where v1 ≥V v2, Lv1 =

Lv2 = 8, and u = 8388182$. The resulting matrices are given below, where the

rotations Rj (starting with $ or L = 8) are indicated in MVv2$
and the PiSi are
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underlined in MVu.

MVv2$
= R0 : $ 8 8 1 8 2

R1 : 8 8 1 8 2 $

R2 : 8 1 8 2 $ 8

R3 : 8 2 $ 8 8 1

1 8 2 $ 8 8

2 $ 8 8 1 8

(4)

MVu = $ 8 3 8 8 1 8 2

8 8 1 8 2 $ 8 3

8 1 8 2 $ 8 3 8

8 2 $ 8 3 8 8 1

8 3 8 8 1 8 2 $

1 8 2 $ 8 3 8 8

2 $ 8 3 8 8 1 8

3 8 8 1 8 2 $ 8

(5)

Equipped with Corollary 20 and Lemma 21, we can modify the clever incre-

mental suffix-sorting/BWT strategy of [12] to construct the extended V -order

suffix array, EVSA, of x = x[1..n]. We outline the steps:

Step 1: Identify the first factor v1 in the V -order factorization v1 ≥V · · · ≥V vk

of x in linear time [3, 4]; we assume the maximum letter in each factor is

L.

Step 2: Compute the lex-extension order suffix array EVSAv1$ of v1$ in linear

time [10]. In practice we will only need the suffixes starting with L in our

pattern matching application in Section 6.

Step 3: Extract BWTv1$ from EVSAv1$.

Step 4: For factor vi[1..t], 1 < i ≤ k, insert each suffix vi[t],vi[t−1..t], . . . ,vi[1..t]

into the current EVSA in its V -order — so for i = 2, one by one the
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suffixes of v2$ are inserted into EVSAv1$ giving the EVSA for v1v2$.

Further, as each vi is processed we can extract BWTv1···vi$: for a suffix

x[i..j] the BWT letter is x[i− 1].

Note: After the above steps all the V -word factors are incrementally processed

and V -BWTx computed. To reduce complexity, the method avoids merg-

ing the suffix arrays of both the extended suffix array computed to date

and that of the current factor being processed.

We now describe suffix insertion (Step 4) in more detail. For this we apply

Lemma 3.16 in [4] which states that, unlike Lyndon words, the order of the

set V of V -words is in some cases the same as V -order while in other cases it is

reversed. This leads to two cases for Step 4: first, the next factor to be processed

has a larger maximum letter L than those in all factors processed so far, and

second, the maximum letters are the same. However, the following example

shows that the method doesn’t work in the first case of distinct maximal letters

— hence they are restricted to be equal in Lemma 21.

Example 23. Let u = v1 ≥V v2 with v1 = 321 and v2 = 5152. The or-

dered conjugates of v1 are: 321 ≺ 132 ≺ 213, but note that the order of these

conjugates is changed after processing v2. We list the ordered conjugates of

u = 3215152 below with complete factors shown in square brackets and the con-

jugates of 321 underlined.

5152[321]

52[321]51

1[5152]32

152[321]5

21[5152]3

321[5152]

2[321]515

On the other hand, as we have seen, we are constrained to extended suffixes
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relating to a conjugacy class where each conjugate has the same maximal letter

L which occurs with the same frequency. In particular, Lemma 21 and condition

(C3) ensure that the order of an existing suffix array is preserved during this

iterative processing of factors for those suffixes starting with L; therefore we

now go on to deal with this case.

Suppose a prefix p of p factors of x has been processed resulting in EVSA(p)

with an associated set of ordered conjugates, where all conjugates have the same

maximum letter. The task is now to insert the suffixes of factor vp+1 into

EVSA(p). Applying properties established in [10], if g = Lw and k = Cw for

a string w (which does not have the sentinel $ appended), then in V -order the

first k conjugates of w start with g. Processing will be as follows:

• First all existing suffixes computed prior to processing vp+1 will have

vp+1 appended to them.

• The technique for calculating the index for inserting each proper suffix of

vp+1 (increasing one V -form xi type substring at a time from right to

left) into EVSA is given with the FM-index in Section 5.

• Inserting the last improper suffix, vp+1, is straightforward. We establish

that, analogous to the lexorder case in [12], this suffix is least in V -order

and can be entered directly into the extended suffix array. Consider v1:

since it is a V -word it is least in EVSA(v1) and likewise for v2. If we

suppose that v1 6= v2, then v2v1 ∈ V (see the generalized form of prop-

erties of V -words described by Theorem 2.7(3) in [4]), and v2v1 is least

in EVSA(v2v1), and further, v2 ≺ v2v1. Similarly, if v1 = v2, then

v2 ≺ v2v2. So suppose this assumption holds for all the first p+1 factors.

Then additionally, by Lemma 7, we have vp+1 ≺ v1 · · ·vpvp+1 holding in

the extended suffix array. This property holds iteratively as we continue

processing the factors of x.

As expressed in [12] for the Lyndon case, this technique is suitable for inte-

gration with the on-line V -order factoring algorithm: suffix-sorting can proceed
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in tandem as soon as the first V -factor is identified.

5. Computing the FM-Index in V -Order

Here we describe algorithms to compute the components of the FM-Index in

V -order. We assume that for a given string x, the V -BWT matrix MVx (sorted

conjugates in V -order) has been computed using the methodology described in

Section 4. Since the FM-index stores the first (denoted F) and last (denoted

L) columns of the Burrows-Wheeler matrix efficiently, our ultimate goal is to

implement, in the context of V -order, BWT-type pattern matching using FM-

index functions VC and VRANK analogous to those defined in Section 2.

It will be convenient for this discussion to assume that the given string x

is defined on an integer alphabet Σ = {0, 1, . . . , g}, where the least letter 0

corresponds to the sentinel letter $, thus ensuring that every rotation of the

string is distinct (x is not a repetition). In order to adapt RANK and C from

lexorder to V -order, we first establish a collection of results, Lemmas 24 – 29,

on properties of MVx, and illustrated by references to the example x = w′ in

Figure 2, which shows MVw′ corresponding to the following string:

1 2 3 4 5 6 7 8 9 10 11 12

w′ = 1 9 2 3 9 2 6 5 9 2 3 0

Lemma 24. The Last First Mapping holds for V -order.

Proof. We will establish the claim using the well-known BWT context sorting

argument.

Given a string x, let ri = uλ and rj = vλ be a pair of distinct rotations of

x occurring in the rows i, j of MVx such that ri ≺ rj , u,v 6= ε and λ ∈ Σ. The

context therefore is given by u and v.

By Lemma 8 we have uλ ≺ vλ =⇒ u ≺ v and further u ≺ v =⇒

λu ≺ λv. That is, the relative order of rows ri and rj is maintained under the

rotation of the letter λ.
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G−1

[
9 2 3 9 2 6 5 9 2 3 0 1
9 2 3 0 1 9 2 3 9 2 6 5
9 2 6 5 9 2 3 0 1 9 2 3

G1

[
0 1 9 2 3 9 2 6 5 9 2 3
1 9 2 3 9 2 6 5 9 2 3 0

G3

[ 3 9 2 6 5 9 2 3 0 1 9 2
3 0 1 9 2 3 9 2 6 5 9 2
2 3 9 2 6 5 9 2 3 0 1 9
2 3 0 1 9 2 3 9 2 6 5 9

G5[ 5 9 2 3 0 1 9 2 3 9 2 6

G6

[
6 5 9 2 3 0 1 9 2 3 9 2
2 6 5 9 2 3 0 1 9 2 3 9

Figure 2: MV
w′ for w′ = 192392659230, where $ = 0. This matrix can be partitioned into

five nonempty groups G−1, G1, G3, G5, G6 as shown in the table. For each nonempty group
Gj , let µj denote the maximum letter in the prefix w′

0 before the first occurrence of g = 9 in
every row of Gj . Then µ−1 = ε, µ1 = 1, µ3 = 3, µ5 = 5 and µ6 = 6. For j > −1, the µj are
underlined in each row. The groups G0, G2, G4, G7, G8 are empty and not shown in the figure.
EVSA = (2, 9, 5, 12, 1, 4, 11, 3, 10, 8, 7, 6), describing the ordering of the strings in MV

w′ , while

L = V -BWTw′ = 153302299629. Note that although w′ contains no letter repetitions, in
contrast V -BWTw′ does, as is typical with this transformation scheme.

Consider now the sequence S = rh1 , rh2 , · · · , ri, · · · , rj , · · · , rht of all rows

in MVx having suffix λ. Then the above argument holds for each adjacent pair

in the sequence S and therefore the relative order of all rows in the sequence is

maintained under the rotation of the letter λ.

Hence the i− th occurrence of the suffix letter λ in the last column L is the

same as the i − th occurrence of the prefix letter λ in the first column F. An

analogous argument shows the converse holds which establishes the claim.

For example, consider rows 3 and 4 of MV
w′

where u = 92659230192, v =

01923926592, and both end with λ = 3. Since row 3 is above row 4, so that

uλ ≺ vλ, therefore the rotations λu and λv, which correspond respectively to

rows 6 and 7, and which begin with λ = 3, satisfy λu ≺ λv.

Lemma 25. Let x (not containing $) be a string with k maximum letters g and

its associated V-BWT matrix be MVx. Then, the k letters g occur as the first k

letters in the first column F of MVx.
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Proof. We apply Lemma 5 (C3). Observe that any rotation xr of x with

xr
0 = ε in V -form must precede any rotation xr′

of x with xr′

0 6= ε. Hence the

k rotations of x starting g will occur first in column F of MVx. (Also see [10] for

a statement of this fact.)

Definition 26 (Groups). Consider the rows of MVx in their V -forms (Definition

4), and examine the (possibly empty) x0 substring of each row. The rows of

MVx are partitioned into collections of adjacent rows called groups, where each

group is characterized by a letter µ < g which is the maximum within every

x0 substring in the group, and is denoted by Gµ. When µ = ε, we denote its

corresponding group by G−1.

Lemma 27. Let x be a string, and MVx be its associated V-BWT matrix.

(i) If the first letter of column F is not $, then the first group in MVx is G−1;

otherwise, it is G0.

(ii) If the first letter of column F is $, then the first two groups must be

G0, G−1 respectively, followed by groups in the increasing order of their

characteristic letters µ.

Proof. The proof is a direct consequence of the fact that $ ≺ ε, condition (C3)

of Lemma 5 and Definition 26.

Lemma 28. Consider the group G−1 in MVx of all rows beginning with εg. Let

|G−1| = k and denote by k′ ≤ k the number of distinct letters in column L of

G−1 that do not equal g.

(i) Then there must exist k′ groups in MVx corresponding to these distinct

letters.

(ii) The k′ distinct groups will occur in ascending order of the k′ letters.

Proof.
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(i) Let gu1λ1, gu2λ2, . . . , guk′λk′ be the rows in MVx ending in the k′ suffix

letters λ1, λ2, . . . , λk′ . Since MVx contains every rotation of x, the rota-

tions beginning with the k′ suffix letters (which are now prefixes), that is,

λ1gu1, λ2gu2, . . . , λk′guk′ , must also exist in MVx. Considering these rows

in V -form, the x0 portion in each row is a single letter (possibly equal to

$). Hence, by Definition 26, groups Gλ1
, . . . , Gλk′ exist, corresponding to

rows λigu1, . . . , λk′guk′ , respectively. Therefore, k′ groups in MVx exist

corresponding to the k′ distinct suffix letters.

(ii) The proof of Part(ii) is a direct consequence of condition (C3) of Lemma 5

and Lemma 27.

For example, in Figure 2, the suffix letters of the first k′ = k = 3 rows are

1, 5, 3 corresponding to groups G1, G3, and G5 with µ1 = 1, µ3 = 3, and µ5 = 5.

Observation. It is possible for a letter λ in column F to occur (but not as the

maximum letter) in the x0 portion of distinct groups in a V -BWT matrix.

For example, in Figure 2, the letter 2 occurs in x0 for two groups G3 and

G6.

For the following lemma, recall that the V -form of a string x is Vk(x) = x =

x0gx1g · · ·xk−1gxk, where, if x is over the alphabet Σ = {1 < 2 < · · · } and

the final letter of xk is $, then $ is conveniently represented by 0.

Lemma 29. Given a string x = x0gx1g · · ·xk−1gxk, let x′ = x′0gx
′
1g · · ·x′k−1g

be the rotation of x such that x′0 = xkx0 and x′i = xi for 0 < i < k. Suppose

z = z[1..ji] = x′i is nonempty for some 0 ≤ i < k, and consider a letter µ = z[j]

in z, 1 ≤ j ≤ ji.

(i) Then the group Gµ exists corresponding to the rotation of x starting with

µ, that is, the row z[j..ji]gx
′
i+1g · · ·x′k−1gx

′
0gx
′
1g · · ·x′i−1gz[1..j − 1] in

MVx, if and only if µ ≥ z[j′] for every j′ ∈ j+1..ji.

(ii) Let µ occur t number of times in xi. Let p1, p2, . . . , pt be the lengths

of the maximum prefix preceding each of the t occurrences of µ in xi
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respectively, such that every letter in the prefix is strictly less than µ.

Then the total number of rows in Gµ corresponding to µ in xi is equal to

p1 + p2 + . . .+ pt + t.

(iii) If the suffix letter of xk is $, then Gµ exists corresponding to µ = 0 if and

only if x0 = ε.

Proof. Part (i) (⇒). The proof is by contradiction. Suppose, there exists a

largest j′ ∈ j+1..ji such that µ < z[j′] and z[j′] is maximal in j+1..ji. Let

u = x′i+1g · · ·x′k−1gx
′
0gx
′
1g · · ·x′i−1gz[1..j − 1].

Then,

rh = z[j..j′..ji]gu, rh+1 = z[j+1..j′..ji]guz[j], . . . , rh+j′−j = z[j′..ji]guz[j..j′−1]

are the rows in the MVx matrix corresponding to the rotations starting with

letters z[j], . . . ,z[j′] respectively, and all these prefixes contain z[j′]. By Defini-

tion 26, Lemma 27, and the hypothesis µ < z[j′], the rows rh, rh+1, . . . , rh+j′−j

are in the vicinity of each other forming a group Gz[j′] characterized by the

maximum letter z[j′]. Clearly, Gz[j′] contains rh starting with µ = z[j]. There-

fore, a group Gµ does not exist containing rh, that is, the rotation of x starting

with µ = z[j], as this rotation belongs to Gz[j′] – hence a contradiction is

established. The converse can be shown analogously.

Part(ii): By Part (i), all t rotations starting with µ in x′i occur in Gµ and

therefore contribute to t rows. Further, any rotation of x′ starting with a prefix

preceding an occurrence (say the r-th occurrence) of µ in x′i such that each

letter in the prefix is strictly less than µ, also belongs to Gµ by Definition 26

and Lemma 5. Then the total number of such rows contributing to the size

of Gµ by the r-th occurrence of µ in xi is equal to the maximum length of

the associated prefix, that is, pr. Therefore, the total number of rows in Gµ

corresponding to all t occurrences of µ in xi is equal to p1 + p2 + . . .+ pt + t.

Part(iii) (⇒) Suppose G0 exists in MVx. Then by Lemma 27, G0 is the first
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group in MVx followed by G−1. Then, there exists a rotation starting with $g

in MVx. This is possible only when x0 = ε. Therefore (⇒) holds. The converse

can be shown analogously.

As an example, in Figure 2, consider w′2 = 265, which contributes to groups

with µ = 5 and µ = 6, but NOT µ = 2. Further, as an example of case (iii) of

the previous lemma, in the same example, w′0 = 1 6= ε, and so the three rows

starting with 9 appear at the start of MV
w′

, and the group G0 does not exist.

See Example 22 for an instance where x0 = ε.

We make use of Lemmas 24 – 29 to determine the number of rotations of the

given string x that occur within each of the ordered groups G0, G1, . . . , Gg−1.

Using it, we compute V C = V C[0..g−1], the V -order version of the C array

defined originally for lexorder:

Definition 30. (Array V C[0, 1, . . . , g−1]) Suppose x = x[1..n] is defined on an

integer alphabet Σ = {0, 1, . . . , g}, where x[n] = 0 corresponds to the sentinel

letter $. Then for each letter µ ∈ Σ that corresponds to a nonempty group Gµ,

0 ≤ µ < g, V C[µ] is the sum of the sizes of the groups Gj , 0 ≤ j ≤ µ−1; that

is,

V C[µ] =

µ−1∑
j=0

|Gj |;

for all other letters µ, V C[µ] = 0.

For instance, the V C array for the string w′ = 192392659230 is V C =

(0, 0, 0, 2, 0, 6, 7, 0, 0).

The computation of the V C array is given by Procedure compute vc in

Figure 3. Based on Lemmas 24 – 29 and Definitions 26 & 30, we state:

Lemma 31. Procedure compute vc correctly computes the V C array.

Proof. The proof is a direct consequence of Lemma 29.

Lemma 32. Procedure compute vc computes the V C array in O(n) time.
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procedure compute vc(x, n)
. Scan x to compute g and k
g ← −1
for i← 1 to n do

if x[i] > g then g ← x[i]; k ← 1
elseif x[i] = g then k ← k+1
i← i+1

. Compute x′ = rotated x (Lemma 29): x′[n] = g
h← 0
while x[n−h] < g do h← h+1
x′ ← x[n−h+1..n]x[1..n−h]
. Compute G (Lemma 29)
G[0..g−1]← 0g

for i = n downto 1 do
if x′[i] = g then µ← −1
else

if µ < x′[i] then µ← x′[i]
G[µ]← G[µ]+1

i← i−1
. Compute V C[0..g−1]
V C[0..g−1]← 0g; µ0 ← 0
while µ0 < g and G[µ0] = 0 do µ0 ← µ0+1
lastmu← µ0

for µ = µ0+1 to g−1 do
if G[µ] 6= 0 then

V C[µ]← V C[lastmu]+G[lastmu]; lastmu← µ
µ← µ+1

Figure 3: Computing the V C array.

Proof. The procedure compute vc has for and while loops that are executed

at most O(n) time. Therefore, the running time of the procedure is O(n).

We now discuss the FM-index RANK function with respect to V -order; that

is, the VRANK function defined as follows:

Definition 33 (VRANK Function). VRANKx(I, `) gives the number of occur-

rences of letter ` in the substring of x defined by the interval I = (i, j), where

1 ≤ i ≤ j ≤ |x|.

As can be observed, the only difference between RANK and VRANK is that

RANK returns the rank of the letter ` in a certain prefix of x, while VRANK
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L Tally Table (TL)
0 1 2 3 5 6 9

1 1 0 1 0 0 0 0 0
2 5 0 1 0 0 1 0 0
3 3 0 1 0 1 1 0 0
4 0 1 1 0 1 1 0 0
5 3 1 1 0 2 1 0 0

i = 6 2 1 1 1 2 1 0 0
7 2 1 1 2 2 1 0 0
8 9 1 1 2 2 1 0 1

j = 9 9 1 1 2 2 1 0 2
10 6 1 1 2 2 1 1 2
11 2 1 1 3 2 1 1 2
12 9 1 1 3 2 1 1 3

Figure 4: w′ = 192392659230, and L = V -BWTw′ = 153302299629.

returns the rank of ` in the substring x[i..j] of x. Then VRANK of a letter λ

in the substring x[i..j] of x can be computed as follows:

VRANKx((i, j), λ) =

VRANKx((1, j), λ), if i = 1

VRANKx((1, j), λ)−VRANKx((1, i− 1), λ), if i > 1

(6)

Analogous to RANK, VRANK can be computed easily using the Tally table

for L(TL) — a matrix where each column represents a letter in the string and

the i-th row represents the number of occurrences of the corresponding letter

in the prefix of length i of L. Then a cell TL(i, j) in the Tally table stores

the number of occurrences of letter j in the prefix of length i of L. Therefore,

TL(i, j) = VRANKL((1, i), j). For example, consider the Tally table given in

Figure 4: by Equation (6),

VRANKw′((6, 9), 2) = VRANKw′((1, 9), 2)−VRANKw′((1, 5), 2) = 2−0 = 2.

The Tally table can be computed in linear time in the length of the string

n, and the space required by it is O(σn). As discussed in [19], this space can be
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significantly reduced by storing only certain rows, starting at the first one, and

occurring at a predetermined constant offset (α) in the Tally table. A row that

is no longer stored in the Tally table is then computed in constant time by using

existing rows and simple arithmetic calculations (for more details see [19]). The

total size of the reduced Tally table is O(σnα ).

Application of VC and VRANK to fully implement BWT-type pattern match-

ing in V -order, analogous to the results in [12], remains an open problem.

6. V -Order Substring Matching

In this section we introduce V -order pattern matching using the backward

search technique for substrings rather than letters. For clarity of concept, we

exclude the use of the sentinel $ in this section.

To achieve substring matching, the last column in the V -BWT matrix will

be regarded as a column of substrings rather than letters, which we denote as

V L. Specifically, V L consists of the last suffix gxk of the V -form of each row in

the V -BWT matrix. Likewise, we get the first column V F of prefix substrings

in the V -BWT matrix, where the first k entries will be εg.

The substrings to be searched for (successfully) in a given string x take

the form of a substring X of the xi substrings in the V -form of x; thus X =

gxi · · · gxj for 1 ≤ i ≤ j ≤ k. So the greatest letters g are basically for

demarcation only. This demarcation ensures that string comparison is restricted

to the xi substrings and avoids the complex intermingling illustrated in Figure

5. Furthermore, if useful for particular required demarcation, such as length of

substrings, an artificial greatest letter can be inserted in specified positions of

the string x.

We now show a property for substrings in V -order analogous to the lexorder

BWT Last First mapping, in which the i-th occurrence of a letter in L is the

same as the i-th occurrence of the letter in F (see Lemma 24).

Lemma 34. The Last First Mapping holds for substrings in V -order.
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Proof. The proof follows immediately from the proof of Lemma 24 by replacing

the letter λ with a substring and applying Lemma 8.

In order to work with just the first k rows in the V -BWT matrix, we apply

this lemma to modify the FM-Index [19] functions in the obvious way (see

definitions of these functions for letters in Section 2):

• Cx(g`) gives, for each substring g` ∈ Σ+ that occurs in x, the number of

substrings gxi in x smaller in V -order than g`;

• RANKx(p, g`) gives the number of occurrences of substring g` in the

prefix of x of length p.

9 21 9 12 9 21 9 1314
9 21 9 1314 9 21 9 12
9 12 9 21 9 1314 9 21
9 1314 9 21 9 12 9 21
1 9 12 9 21 9 1314 9 2
1 9 1314 9 21 9 12 9 2
2 9 21 9 1314 9 21 9 1
21 9 12 9 21 9 1314 9
21 9 1314 9 21 9 12 9
12 9 21 9 1314 9 21 9
4 9 21 9 12 9 21 9 131
14 9 21 9 12 9 21 9 13
314 9 21 9 12 9 21 9 1
1314 9 21 9 12 9 21 9

Figure 5: V -BWTx, where the columns V F and V L are underlined.

Example 35 (Substring matching). For x = 49219129219131, the V -BWT

matrix MVx is shown in Figure 5. Consider the substring 921 in the fourth

row of the column V L. To calculate its index in V F we have Cx(921) = 0 and

RANKV L(4, 921) = 2 (alternatively, RANKV L(3, 921)+1 = 1+1 = 2 depending

on the formulation of the definition). Thus, the Last First mapping technique

maps 921 to index 0+2, namely the second position in V F .

The substrings 921 in Example 35 are clustered into a run of length 2.

Working with substrings potentially may allow for more effective preprocessing
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for compression as the substrings can be encoded, such as A = 921, and we

propose this avenue to be further examined.

Note that to compute the V -BWT matrix for substrings — that is, the first

k rows — we encode each substring as above to generate a new alphabet and

apply a linear sorting algorithm such as radix sort along with linear V -order

string comparison to order the alphabet. Then we apply the techniques in [10]

to compute the V -BWT matrix with respect to substrings in linear time overall.

Generally this will result in space reduction for the columns V F and V L.

7. Future Research

As mentioned in Section 5, an immediate research problem is the application

of VC and VRANK to BWT-type pattern matching in V -order, analogous to

the lexorder results in [12].

Computing the V -BWT for substrings invites thorough experimental inves-

tigation in terms of the numbers of runs of similar substrings (rather than the

usual letters) obtained. Furthermore, lex-extension order opens avenues for var-

ious techniques for substring clustering with appropriately defined BWTs: as

discussed in [4], this hybrid ordering method can combine lexorder with any

other total order on the factors induced in the factorization — here we com-

bined lexorder with applying V -order to the factors, and propose considering

other combinations of ordering methods.

The natural ordering of suffixes in V -order by their length suggests that

further simple suffix computations and applications should be achievable. For

instance, V -letters [4] are defined as V -words where the first letter in a string

is strictly greater than the subsequent letters; for example, the V -word 812321.

Then applying the trivial suffix-sorting to V -letters, the BWT V -transform

is obtained simply by reversing the V -letter, and a V -letter can be similarly

recovered from the V -transform [10]. We seek further efficient applications of

these ideas. The computation of parallel V -ordering is also open.

Finally we propose the following problem. Suppose that x,y ∈ Σ+ with
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x ≺ y. Under what permutations π — that is, x → π(x) and y → π(y)

— does π(x) ≺ π(y) hold? For instance, for 21 ≺ 12 no permutation works,

whereas interchanging the first and last letters does work for 142 ≺ 243, since

241 ≺ 342. This example generalizes to requiring that the rightmost substrings

of the V -forms are in V -order.
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