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Abstract

Recently, initial conflicts were introduced in the framework of M-adhesive categories as an im-

portant optimization of critical pairs. In particular, they represent a proper subset such that each

conflict is represented in a minimal context by a unique initial one. The theory of critical pairs

has been extended in the framework of M-adhesive categories to rules with nested application

conditions (ACs), restricting the applicability of a rule and generalizing the well-known negative

application conditions. A notion of initial conflicts for rules with ACs does not exist yet.

In this paper, on the one hand, we extend the theory of initial conflicts in the framework of

M-adhesive categories to transformation rules with ACs. They represent a proper subset again

of critical pairs for rules with ACs, and represent each conflict in a minimal context uniquely.

They are moreover symbolic because we can show that in general no finite and complete set of

conflicts for rules with ACs exists. On the other hand, we show that critical pairs are minimally

M-complete, whereas initial conflicts are minimally complete. Finally, we introduce important

special cases of rules with ACs for which we can obtain finite, minimally (M-)complete sets of

conflicts.
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1. Introduction

Detecting and analyzing conflicts is an important issue in software analysis and design, which

has been addressed successfully using powerful techniques from graph transformation (see, e.g.,

[1, 2, 3, 4]), most of them based on critical pair analysis. The power of critical pairs is a consequence

of the fact that: a) they are complete, in the sense that they represent all conflicts; b) there is5

a finite number of them; and c) they can be computed statically. The main problem is that

their computation has exponential complexity in the size of the preconditions of the rules. For

this reason, some significantly smaller subsets of critical pairs that are still complete have been

defined [5, 6, 7], clearing the way for a more efficient computation. In particular, recently, in [6],
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a new approach for conflict detection was introduced based on a different intuition. Instead of10

considering conflicts in a minimal context, as for critical pairs, we used the notion of initiality

to characterize a complete set of minimal conflicts, showing that initial conflicts form a proper

subset of critical pairs. In particular, we have that every conflict is represented by a unique initial

conflict, as opposed to the fact that each conflict may be represented by many critical pairs.

Most of the work on critical pairs only applies to plain graph transformation systems, i.e.15

transformation systems with unconditional rules. Nevertheless, in practice, we often need to limit

the application of rules, defining some kind of application conditions (ACs). In this sense, in [8, 3]

we defined critical pairs for rules with negative application conditions (NACs), and in [9, 10] for

the general case of ACs, where conditions are as expressive as arbitrary first-order formulas on

graphs. However, to our knowledge, no work has addressed up to now the problem of finding20

significantly smaller subsets of critical pairs for this kind of rules.

In this paper we present new results along two different lines. In the first line of work, using the

fact that critical pairs areM-initial conflicts ([6]) and through the related notions of completeness

and M-completeness, we study the minimality of (M-)complete sets of conflicts. In particular,

we show how we can obtain a minimal (M-)complete set of conflicts out of an M-complete set.25

And, in the second line of work, we generalize the theory of initial conflicts to rules with ACs in

the framework of M-adhesive transformation systems. In particular, the main contributions of

this paper (as summarized in Table 1 in Section 7) are:

• The definition of the notion of initial conflict for rules with ACs, based on a notion of

symbolic transformation pair, showing that the set of initial conflicts is a proper subset of30

the set of critical pairs and that it is complete1. Moreover, as in the plain case, every conflict

is an instance of a unique initial conflict.

• A characterization of minimally (M-)complete sets of transformation pairs w.r.t. parallel

dependence, both for plain rules and for rules with ACs, in the sense that, no such set

(up to isomorphism) with smaller cardinality exists. In particular, using the notion of (M-35

)initiality, we show that M-initial conflicts (i.e. critical pairs) are minimally M-complete

and initial conflicts are minimally complete.

• A reduction construction that allows us to obtain a minimally complete or M-complete set

of conflicts S out of any M-complete set S ′ by removing all conflicts that are considered

(M-)redundant. In particular, we present a counter-example that shows that critical pairs40

for rules with NACs [8, 3] are not minimallyM-complete. Using the reduction construction

we can however build a minimally complete or minimally M-complete subset from the set

1Provided that the considered category has initial conflicts for the plain case.
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of critical pairs.

• The identification of a class of so-called regular initial conflicts that demonstrate a certain

kind of regularity in their application conditions. This allows us to unfold them into a45

minimally (M-)complete (and in the case of graphs also finite) set of conflicts. In particular,

we show that, in the case of rules with NACs, initial conflicts are regular, implying that our

initial conflicts represent a conservative extension of the critical pair theory for rules with

NACs.

The paper is organized as follows. We describe related work in Section 2 and, in Section 3,50

we present some preliminary material, where we also include some new results. More precisely, in

subsection 3.1 and subsection 3.2 we briefly reintroduce the framework of M-adhesive categories

and of rules with ACs; in subsection 3.3 we reintroduce critical pairs for rules with ACs following

[9, 10]; in subsection 3.4 we reintroduce initial conflicts for plain rules, and in subsection 3.5 we

introduce (M-)initial parallel independent transformation pairs and demonstrate their minimal55

(M-)completeness. This result is used in Section 4, where we present initial conflicts for rules

with ACs, and show their completeness. Then, in Section 5 we present our results about mini-

mally complete sets of transformation pairs w.r.t. parallel dependence, including the reduction

construction to build such sets. Afterwards, in Section 6 we show our results on unfolding initial

conflicts and on obtaining minimally (M−)complete sets of conflicts for rules with NACs. Finally,60

we conclude in Section 7 discussing some future work.

This paper is an extended version of [11], presented at ICGT 2020. Apart from including full

proofs for all our results, this extended version includes important new results about minimal (M-

)completeness. In particular, they have allowed us to show how we can obtain sets of minimally

(M-)complete conflicts for graph transformation rules with NACs.65

2. Related Work

Most work on checking confluence for rule-based rewriting systems is based on the seminal

paper from Knuth and Bendix [12], who reduced the problem of checking local confluence to

checking the joinability of a finite set of critical pairs obtained from superposing or overlapping

the left hand sides of pairs of rewriting rules. This technique has been extensively studied and70

applied in the area of term rewriting systems (see, for instance, [13]), and it was introduced

in the area of graph transformation by Plump [14, 15, 16] in the context of term-graph and

hypergraph rewriting. Moreover, he also proved that (local) confluence of graph transformation

systems is undecidable, even for terminating systems, as opposed to what happens in the area

of term rewriting systems. However, recently, in [17] it is shown that confluence of terminating75

DPO transformation of graphs with interfaces is decidable. The authors explain that the reason
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is that interfaces play the same role as variables in term rewriting systems, where confluence is

undecidable for terminating ground (i.e., without variables) systems, but decidable for non-ground

ones.

The notion of critical pairs in the area of graph transformation, as introduced by Plump [14, 15,80

16], has the characteristic that their computation is exponential in the size of the preconditions of

the rules. For this reason, different proper subsets of critical pairs with a considerably reduced size

were studied that are still complete [5, 6, 7], clearing the way for a more efficient computation.

The notion of essential critical pair [5] for graph transformation systems already allowed for a

significant reduction, and, the notion of initial conflict [6], introduced for the more general M-85

adhesive systems, allowed for an even larger reduction. A problem with initial conflicts is that not

allM-adhesive categories necessarily have them. In this sense, in [6] it is shown that, in particular,

typed graphs have initial conflicts and, a bit later, [7] extended that result proving that arbitrary

M-adhesive categories satisfying some given conditions also have initial conflicts. Moreover, they

provided a simple way of constructing the initial pair of transformations for a given conflict.90

A recent line of work concentrates on the development of multi-granular conflict detection

techniques [18, 4, 19]. In particular, an extensive literature survey shows [4] that conflict detection

is used at different levels of granularity depending on its application field. The overview shows that

conflict detection can be used for the analysis and design phase of software systems (e.g. for finding

inconsistencies in requirement specifications), for model-driven engineering (e.g. supporting model95

version management), for testing (e.g. generation of interesting test cases), or for optimizing rule-

based computations (e.g. avoiding backtracking). These multi-granular techniques are presented

for rules without application conditions (ACs). Our work builds further foundations for providing

multi-granular techniques also in the case of rules with ACs in the future.

The use of (negative) application conditions and of graph constraints, to limit the application100

of graph transformation rules, was introduced in [20, 21, 22]. Based on this notion of graph

constraints, in [23], Rensink presented a logic for expressing graph properties, closely related to the

logic of nested conditions of Habel and Penneman [24], shown to have the same expressive power as

first-order logic on graphs, and being (refutationally) complete as demonstrated in Lambers and

Orejas [25]. Checking confluence for graph transformation systems with application conditions105

(ACs) has been studied in [8, 3] for the case of negative application conditions (NACs), and in [9, 10]

for the more general case of ACs. Moreover, Bruggink et al. generalized the Local Confluence

Theorem to conditional reactive systems [26], a general abstract framework for rewriting, in which

reactive systems à la Leifer and Milner are enriched with ACs. In the case of rules with ACs, it

is an open issue to also come up with proper subsets of critical pairs of considerably reduced size110

(analogous to the previously mentioned works for rules without ACs).
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3. Preliminaries

We start with a very brief introduction of M-adhesive categories. We then revisit rules with

nested application conditions (ACs) (cf. subsection 3.2) as well as the main parts of critical pair

theory for this type of rules [9, 10] (cf. subsection 3.3). Thereafter, we reintroduce the notion115

of initial conflicts [6] for plain rules, i.e. rules without nested application conditions (cf. subsec-

tion 3.4). We also introduce the notion of (M-)initial parallel independent transformation pairs

as a counterpart (cf. subsection 3.5) to (M-)initial conflicts. They play a particular role when

defining initial conflicts for rules with ACs in subsection 4.3 and for showing that critical pairs for

rules with ACs actually coincide withM-initial conflicts. We assume that the reader is acquainted120

with the basic theory of DPO graph transformation and, in particular, the standard definitions of

typed graphs and typed graph morphisms (see, e.g., [27]) and its associated category, GraphsTG.

3.1. Graphs & High-Level Structures

The results presented in this paper do not only apply to a specific class of graph transfor-

mation systems, like standard (typed) graph transformation systems, but to systems over any125

M-adhesive category [28]. The idea behind the consideration ofM-adhesive categories is to avoid

similar investigations for different instantiations like e.g. different kinds of graphs, Petri nets,

hypergraphs, and algebraic specifications. An M-adhesive category is a category C with a distin-

guished morphism class M of monomorphisms satisfying certain properties. The most important

one is the (weak) van Kampen (VK) property stating a certain kind of compatibility of pushouts130

and pullbacks along M-morphisms.

Definition 1 (M-adhesive category). An M-adhesive category (C,M) consists of a category C

and a class M of monomorphisms in C such that the following properties hold:

1. M is closed under isomorphisms (f ∈M, g isomorphism (or vice versa) implies g◦f ∈M),

composition (f, g ∈ M implies g ◦ f ∈ M), and decomposition (g ◦ f ∈ M, g ∈ M implies135

f ∈M).

2. C has pushouts and pullbacks along M-morphisms, i.e. pushouts and pullbacks, where at

least one of the given morphisms is in M, and M-morphisms are closed under pushouts and

pullbacks, i.e. given a pushout (1) as in the figure below, m ∈M implies n ∈M and, given

a pullback (1), n ∈M implies m ∈M.140

3. Pushouts in C along M-morphisms are vertical weak van Kampen (VK) squares, short M-

VK squares, i.e. for any commutative cube in C where we have a pushout with m ∈ M in

the bottom, b, c, d ∈ M and the back faces are pullbacks, it holds: the top is pushout iff the

5



front faces are pullbacks.

A

B

C

D

m n(1)

A′

A C

C ′

f

cB′

B D

D′

b d
m

Moreover, the results in this paper require anM-adhesive category where additional properties

hold. In particular, we require that our categories have binary coproducts (for the results concerned

with M-initiality), initial pushouts (for the Local Confluence Theorem), describing the existence

of a special “smallest” pushout over a morphism, and E ′-M pair factorizations (for the results

concerned with shifting application conditions as well as initiality), extending the classical epi-145

mono factorization to a pair of morphisms with the same codomain:

Definition 2 (Initial pushouts, E ′-M pair factorizations). Let 〈C,M〉 be anM-adhesive category.

1. 〈C,M〉 has initial pushouts over M-morphisms, i.e., for every morphism f : A ↪→ A′ with

f ∈ M, there exists an initial pushout over f . A morphism b : B → A ∈ M is a boundary

over f if there is a pushout complement of f and b such that (1) in the diagram below is150

an initial pushout over f . Initiality of (1) over f means that, for every pushout (3) with

b′ ∈M, there exist unique morphisms b∗, c∗ ∈M such that b′ ◦ b∗ = b, c′ ◦ c∗ = c and (2) is

a pushout. B is called the boundary object and C the context with respect to f .

2. 〈C,M〉 has a unique E ′-M pair factorization for a given class of morphism pairs E ′ with

the same codomain, i.e., for each pair of morphisms f1 : A1 → C and f2 : A2 → C, there

exist a unique (up to isomorphism) object K and unique (up to isomorphism) morphisms

e1 : A1 → K, e2 : A2 → K, and m : K ↪→ C with (e1, e2) ∈ E ′ and m ∈ M such that

m ◦ e1 = f1 and m ◦ e2 = f2. Notice that this means that if (f1 : A1 → C, f2 : A2 → C) ∈ E ′,

then (f1, f2, idC) is its pair factorization.

B A

C A′

b

f

c

(1)

B D A

C E A′

f

b∗

c∗

b′

c′

(2) (3)

b

c

=

=

K

A1

A2

C
e1

e2

m

f1

f2

=

=

Assumption 1. We assume that 〈C,M〉 is an M-adhesive category with a unique E ′-M pair

factorization and binary coproducts. For the Local Confluence Theorem for initial conflicts of155

rules with ACs 2, we in addition need initial pushouts (cf. subsection 4.4).

2Although it is a straightforward generalization of the one for critical pairs, we do not explicitly state it in this

paper, since we concentrate on the study of critical pairs, initial conflicts and minimal completeness here.
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Remark 1 (〈GraphsTG,M〉, 〈PTNets,M〉, 〈Spec,Mstrict〉 areM-adhesive and satisfy additional

properties [27, 28]). In particular, the category 〈GraphsTG,M〉 with the class M of all injective

typed graph morphisms is an M-adhesive category. It has a unique E ′-M pair factorization where

E ′ is the class of jointly surjective typed graph morphism pairs (i.e., the morphism pairs (e1, e2)160

such that for each x ∈ K there is a pre-image a1 ∈ A1 with e1(a1) = x or a2 ∈ A2 with e2(a2) = x).

Binary coproduct objects correspond to disjoint unions of graphs. All other examples are also M-

adhesive categories and satisfy the additional properties for suitable choices of M and E ′.

3.2. Rules with Application Conditions and Parallel Independence

We reintroduce nested application conditions [24] (in short, application conditions, or just165

ACs) following [10]. They generalize the corresponding notions in [22, 2, 29], where a negative

(positive) application condition, short NAC (PAC), over a graph P , denoted ¬∃a (∃a) is defined

in terms of a morphism a : P → C. Informally, a morphism m : P → G satisfies ¬∃a (∃a) if there

does not exist a morphism q : C → G extending a to m (if there exists q extending a to m). Then,

an AC (also called nested AC ) is either the special condition true or a pair of the form ∃(a, acC)170

or ¬∃(a, acC), where the first case corresponds to a PAC and the second case to a NAC, and in

both cases acC is an additional AC on C. Intuitively, a morphism m : P → G satisfies ∃(a, acC)

if m satisfies a and the corresponding extension q satisfies acC . Moreover, ACs (and also NACs

and PACs) may be combined with the usual logical connectors.

Definition 3 (application condition and satisfaction). An application condition acP over an175

object P is inductively defined as follows:

• For every morphism a : P → C and every application condition acC over C, ∃(a, acC) is an

application condition over P .

• For application conditions c, ci over P with i ∈ I (for finite index sets I), ¬c and ∧i∈Ici are

application conditions over P .180

We define inductively when a morphism satisfies an application condition:

• A morphism p : P → G satisfies an application condition ∃(a, acC), denoted p |= ∃(a, acC),

if there exists an M-morphism q such that q ◦ a = p and q |= acC .

• A morphism p : P → G satisfies ¬c if p does not satisfy c and satisfies ∧i∈Ici if it satisfies

each ci (i ∈ I).185

P

G

C,a

p q
=

acC

|=
)∃(
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Note that the empty conjunction (equivalent to true), satisfied by each morphism, serves as

base case in the inductive definition. Moreover, ∃a (resp. ∀(a, acC)) abbreviates ∃(a, true) (resp.

¬∃(a,¬acC)).

ACs are used to restrict the application of rules to a given object. The idea is to equip

the precondition (or left hand side) of rules with an application condition3. Then we can only190

apply a given rule to an object G if the corresponding match morphism satisfies the AC of the

rule. However, for technical reasons4, we also introduce the application of rules disregarding the

associated ACs.

Definition 4 (rules and transformations). A rule ρ = 〈p, acL〉 consists of a plain rule p = 〈L←↩

I ↪→ R〉 with I ↪→ L and I ↪→ R morphisms in M and an application condition acL over L.

L I R

DG H

m m∗(1) (2)

acL

=|

A direct transformation t : G⇒ρ,m,m∗ H consists of two pushouts (1) and (2), called DPO, with

match m and comatch m∗ such that m |= acL. G ←↩ D ↪→ H is called the derived span of t. An195

AC-disregarding direct transformation G⇒ρ,m,m∗ H consists of DPO (1) and (2), where m does

not necessarily need to satisfy acL. Given a set of rules R for 〈C,M〉, the triple 〈C,M,R〉 is an

M-adhesive system.

Remark 2. In the rest of the paper we assume that each rule (resp. transformation orM-adhesive

system) comes with ACs. Otherwise, we state that we have a plain rule (resp. transformation or200

M-adhesive system). This plain case can also be seen as a special case of a rule (resp. transfor-

mation or M-adhesive system) with ACs in the sense that the ACs are (equivalent to) true.

ACs can be shifted over morphisms and rules (from right to left and vice versa) as shown in

the following lemma (for constructions see [30] 5 and [24, 30], respectively). We only describe the

right to left case in Lemma 2, since the left to right case is symmetrical.205

Lemma 1 (shift ACs over morphisms [30]). For each morphism b : P → P ′ and application

condition acP , there is a construction Shift translating morphisms and application conditions to

application conditions (as inductively defined below) such that for each morphism n : P ′ → H it

3We could have also allowed to equip the right-hand side of rules with an additional AC, but this case can be

reduced to rules with left ACs only as shown in Lemma 2.
4For example, symbolic transformation pairs as introduced later, or also critical pairs for rules with ACs (see

Definition 8) consist of transformations that do not need to satisfy the associated ACs.
5Since this construction entails the enumeration of jointly epimorphic morphism pairs, its computation has

exponential complexity in the size of the precondition of the rule and the size of the AC.
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holds that n ◦ b |= acP ⇔ n |= Shift(b, acP ).

210

P

C

P ′

C ′

a a′(1)

b

b′

acC

Shift(b,∃(a, acC)) =
∨

(a′,b′)∈F ∃(a′,Shift(b′, acC))

if F = {(a′, b′) ∈ E ′ | b′∈M and (1) commutes} 6= ∅

Shift(b,∃(a, acC)) = false if F = ∅.

For Boolean formulas over ACs, Shift is extended in the usual way.

Lemma 2 (shift ACs over rules [24, 30]). For each application condition acR on R of a rule ρ,

there is a construction L translating rules and application conditions to application conditions (as215

inductively defined below) such that for every G⇒ρ,m,m∗ H it holds that m |= L(ρ, acR)⇔ m∗ |=

acR.

L K R

ZY X

l r

l∗ r∗

b a(2) (1)

L(ρ∗, acX) acX

L(ρ, ∃(a, acX)) = ∃(b,L(ρ∗, acX)) if 〈r, a〉 has a pushout com-

plement (1) and ρ∗ = 〈Y ←↩ Z ↪→ X〉 is the derived rule by

constructing the pushout (2).

L(ρ, ∃(a, acX)) = false, otherwise.

For Boolean formulas over ACs, L is extended in the usual way.

220

For parallel independence, when working with rules with ACs, we need not only that each rule

does not delete any element which is part of the match of the other rule, but also that the resulting

transformation defined by each rule application still satisfies the ACs of the other rule application.

Definition 5 (transformation pairs and parallel independence). A transformation pair H1 ⇐ρ1,o1225

G ⇒ρ2,o2 H2 is parallel independent if there exist morphisms d12 : L1 → D2 and d21 : L2 → D1

such that k2 ◦ d12 = o1, c2 ◦ d12 |= acL1
, k1 ◦ d21 = o2, and c1 ◦ d21 |= acL2

.

GD1H1

R1 I1 L1

D2 H2

R2I2L2

k1c1

o1

k2 c2

o2
d21 d12

acL1 acL2

We say that a transformation pair is in conflict, conflicting or also parallel dependent if it is

not parallel independent. We distinguish different conflict types, generalizing straightforwardly the

conflict characterization introduced for rules with NACs [8]. The transformation pair H1 ⇐ρ1,o1230

G⇒ρ2,o2 H2 is a use-delete (resp. delete-use) conflict if in Definition 5 the commuting morphism

d12 (resp. d21) does not exist, i.e. the second (resp. first) rule deletes something used by the first

(resp. second) one. Moreover, it is an AC-produce (resp. produce-AC ) conflict if in Definition 5

9



the commuting morphism d12 (resp. d21) exists, but an extended match is produced by the

second (resp. first) rule that does not satisfy the rule AC of the first (resp. second) rule. If a235

transformation pair is an AC-produce or produce-AC conflict, then we also say that it is an AC

conflict or AC conflicting.

Remark 3 (use-delete XOR AC-produce). A use-delete (resp. delete-use) conflict cannot occur

simultaneously to an AC-produce (resp. produce-AC) conflict. This is because the AC of the first

(resp. second) rule can only be violated if there exists an extended match for the first (resp. second)240

rule. However, a use-delete (resp. delete-use) conflict may occur simultaneously to a produce-AC

(resp. AC-produce) conflict, since in this case the extended match for the first (resp. second) rule

does not exist, whereas the extended match for the second (resp. first) rule exists and violates the

AC, i.e. both conflict types occur on opposite sides of the diagram in Definition 5.

For grasping the notion of completeness of transformation pairs w.r.t. a property like parallel245

(in-)dependence, it is first important to understand how two transformations via the same rules

can be related via extension diagrams. In particular, an extension diagram consists of two trans-

formation sequences t : G0 ⇒∗ Gn and t′ : G′0 ⇒∗ G′n via the same rules and extension morphism

k0 : G0 → G′0 that maps G0 to G′0 as shown in the following diagram on the left. For each rule ap-

plication and direct transformation, we have two double pushout diagrams as shown on the right,250

where the rule ρi+1 is applied to both Gi and G′i. We also say that t is extended to t′, or that

t′ extends t via the extension morphism k0 and the corresponding extension diagram. Moreover,

given a transformation pair tp : H1 ⇐ρ1,m1
G ⇒ρ2,m2

H2 and tp′ : H ′1 ⇐ρ1,m′1
G′ ⇒ρ2,m′2

H ′2 we

say that tp extends to tp′ (or tp′ extends tp) if they are related via extension diagrams and some

common extension morphism f : G→ G′.255

G0 Gn

G′0 G′n

Li+1 Ii+1 Ri+1

Gi Di Gi+1

G′i D′i G′i+1

k0 kn

∗

∗
(1)

We introduce two different notions of completeness, distinguishing M-completeness from reg-

ular completeness, depending on the membership of the extension morphism in M.

Definition 6 ((M-)completeness of transformation pairs). A set of transformation pairs S for

a pair of rules 〈ρ1, ρ2〉 is complete (resp. M-complete) w.r.t. parallel (in-)dependence if each

parallel (in-)dependent direct transformation pair H1 ⇐ρ1,m1 G ⇒ρ2,m2 H2 extends some pair260

P1 ⇐ρ1,o1 K ⇒ρ2,o2 P2 from S via some extension morphism m : K → G (resp. m ∈M).

10



KP1 P2

GH1 H2

m

ρ1, o1 ρ2, o2

ρ1,m1 ρ2,m2

Figure 1: (M-)completeness of transformation pairs

It is known that critical pairs (resp. initial conflicts) for plain rules are M-complete (resp.

complete) w.r.t. parallel dependence [27, 6]. In subsection 3.3, we reintroduce the fact that

critical pairs for rules with ACs are M-complete w.r.t. parallel dependence, but as symbolic

transformation pairs. We learn in Section 4 that initial conflicts for rules with ACs are also265

complete in this symbolic way.

3.3. Critical Pairs

Critical pairs for plain rules are just parallel dependent transformation pairs, where morphisms

o1 and o2 are in E ′ (i.e., roughly, K is an overlapping of L1 and L2). In the category of Graphs

they lead to finite and M-complete sets of finite conflicts [27] (assuming that the rule graphs are270

also finite).

When rules include ACs, we cannot use the same notion of critical pair since, as we show in

Theorem 4, in general, for any two rules with ACs, there is no complete set of transformation

pairs that is finite. To avoid this problem, our critical pairs for rules with ACs are symbolic and

include special ACs, as in [9, 10], where they are proved to be M-complete. They are moreover275

finite in the category of Graphs (assuming again that the rules are finite).

In particular, critical pairs are based on the notion of symbolic transformation pairs, which are

pairs of AC-disregarding transformations on some object K with two special ACs on K. These

two ACs, acK (extension AC ) and ac∗K (conflict-inducing AC ), are used to characterize which

extensions of this pair, via some morphism m : K → G, give rise to a transformation pair that is280

parallel dependent. If m |= acK , then m ◦ o1 : L1 → G and m ◦ o2 : L2 → G are two morphisms,

satisfying the associated ACs of ρ1 and ρ2, respectively. Moreover, if m |= ac∗K , then the two

transformations H1 ⇐ρ1,m◦o1 G ⇒ρ2,m◦o2 H2 are parallel dependent. Symbolic transformation

pairs allow us to present critical pairs as well as initial conflicts (cf. subsection 3.4) in a compact

and unified way, since they both are instances of symbolic transformation pairs. Finally, note that285

each symbolic transformation pair stpK : 〈tpK , acK , ac∗K〉 is by definition uniquely determined (up

to isomorphism and equivalence of the extension AC and conflict-inducing AC) by its underlying

AC-disregarding transformation pair.

Definition 7 (symbolic transformation pair). Given rules ρ1 = 〈p1, acL1〉 and ρ2 = 〈p2, acL2〉, a

symbolic transformation pair stpK : 〈tpK , acK , ac∗K〉 for 〈ρ1, ρ2〉 consists of a pair tpK : P1 ⇐ρ1,o1290

K ⇒ρ2,o2 P2 of AC-disregarding transformations together with ACs acK and ac∗K on K given by:
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acK = Shift(o1, acL1
) ∧ Shift(o2, acL2

), called extension AC, and

ac∗K = ¬(ac∗K,d12 ∧ ac∗K,d21), called conflict-inducing AC

with ac∗K,d12 and ac∗K,d21 given as follows:

if (∃ d12 with k2◦d12=o1) then ac∗K,d12 = L(p∗2,Shift(c2◦d12, acL1))

else ac∗K,d12 = false

if (∃ d21 with k1◦d21=o2) then ac∗K,d21 = L(p∗1,Shift(c1◦d21, acL2
))

else ac∗K,d21 = false

where p∗1 = 〈K k1←↩ D1
c1
↪→P1〉 and p∗2 = 〈K k2←↩ D2

c2
↪→P2〉 are defined by the corresponding double295

pushouts.

KD1P1p∗1 :

R1p1 : I1 L1

D2 P2 : p∗2

R2 : p2I2L2

k1c1

o1

k2 c2

o2
d21 d12

acL1 acL2

A critical pair6 is now a symbolic transformation pair in a minimal context such that it can

be extended to at least one pair of transformations being parallel dependent (or conflict).

Definition 8 (critical pair). Given rules ρ1 = 〈p1, acL1
〉 and ρ2 = 〈p2, acL2

〉, a critical pair for300

〈ρ1, ρ2〉 is a symbolic transformation pair stpK : 〈tpK , acK , ac∗K〉, where the match pair (o1, o2)

of tpK is in E ′, and there exists a morphism m : K → G ∈ M such that m |= acK ∧ ac∗K and

mi = m◦oi, for i = 1, 2, satisfy the gluing conditions, i.e. mi has a pushout complement w.r.t. pi.

Note that critical pairs for rules with ACs represent a conservative extension of critical pairs

for plain rules in the following sense. Each critical pair tpK for the plain rules 〈p1, p2〉 corresponds305

uniquely to a critical pair stpK : 〈tpK , acK , ac∗K〉 for 〈ρ1, ρ2〉 with ρ1 = 〈p1, acL1〉 and ρ2 =

〈p2, acL2
〉 such that acL1

and acL2
are true. This is because acK and ac∗K are true, since either

ac∗K,d12 or ac∗K,d21 needs to be false with tpK a use-delete/delete-use conflict.

Definition 9 ((M-)completeness of symbolic transformation pairs). A set of symbolic transforma-

tion pairs S for a pair of rules 〈ρ1, ρ2〉 is complete (resp. M-complete) w.r.t. parallel dependence310

if each parallel dependent direct transformation H1 ⇐ρ1,m1 G ⇒ρ2,m2 H2 extends some symbolic

transformation pair stpK : 〈tpK : P1 ⇐ρ1,o1 K ⇒ρ2,o2 P2, acK , ac∗K〉 from S as depicted in Figure 1

with extension morphism m : K → G (resp. m : K → G ∈M) and m |= acK ∧ ac∗K .

6A symbolic transformation pair with matches belonging to E ′ is called a weak critical pair in [9, 10]
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Theorem 1 (M-completeness of critical pairs [9, 10]). The set of critical pairs for a pair of

rules 〈ρ1, ρ2〉 is M-complete w.r.t. parallel dependence. Moreover, each critical pair P1 ⇐ρ1,o1315

K ⇒ρ2,o2 P2 for 〈ρ1, ρ2〉 extends to a parallel dependent pair H1 ⇐ρ1,m1
G⇒ρ2,m2

H2 via exten-

sion morphism m : K → G ∈M such that m |= acK ∧ ac∗K .

Note that based onM-completeness it is possible to formulate also a Local Confluence Theorem

for critical pairs of rules with ACs for M-adhesive categories with M-initial pushouts [9, 10].

3.4. Initial Conflicts for Plain Rules320

Initial conflicts for plain rules follow an alternative approach to the original idea of critical

pairs. Instead of considering all conflicting transformations in a minimal context (materialized by

a pair of jointly epimorphic matches), initial conflicts use the notion of initiality of transformation

pairs to obtain a more declarative view on the minimal context of critical pairs. Each initial

conflict is a critical pair but not the other way round. Moreover, all initial conflicts for plain rules325

are complete w.r.t. parallel dependence and they still satisfy the Local Confluence Theorem for

plain rules. Consequently, initial conflicts for plain rules represent an important, proper subset

of critical pairs for performing static conflict detection as well as local confluence analysis. One

contribution of this paper is to demonstrate how to achieve a similar situation for rules with ACs.

Definition 10 ((M-)initial transformation pair). Given a pair of plain direct transformations330

tp : H1 ⇐p1,m1
G ⇒p2,m2

H2, then tpI : HI
1 ⇐p1,mI

1
GI ⇒p2,mI

2
HI

2 is an initial transformation

pair (resp. M−initial transformation pair) for tp if it can be extended to tp via extension diagrams

(1) and (2) and extension morphism (resp. M-morphism) f I as in Figure 2 such that for each

transformation pair tp′ : H ′1 ⇐p1,m′1
G′ ⇒p2,m′2

H ′2 that can be extended to tp via extension

diagrams (3) and (4) and extension morphism (resp. M-morphism) f as in Figure 2 it holds that335

tpI can be extended to tp′ via unique extension diagrams (5) and (6) and unique vertical morphism

(resp. M-morphism) f ′I s.t. f ◦ f ′I = f I .

HI
1

gI1
��

(1)

GI
p1,m

I
1ks p2,m

I
2 +3

(2)fI

��

HI
2

gI2
��

H1 G
p1,m1ks p2,m1 +3 H2

HI
1

g′I1
��

(5)

GI
p1,m

I
1ks p2,m

I
2 +3

(6)f ′I

��

HI
2

g′I2
��

H ′1

g1

��
(3)

G′
p1,m

′
1ks p2,m

′
2 +3

(4)f

��

H ′2

g2

��
H1 G

p1,m1ks p2,m2 +3 H2

Figure 2: Initial transformation pair HI
1 ⇐p1,m

I
1
GI ⇒p2,m

I
2
HI

2 for H1 ⇐p1,m1 G ⇒p2,m2 H2

As shown in [6] an (M-)initial transformation pair is unique up to isomorphism w.r.t. a given

transformation pair for plain rules.
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The notion of initial conflicts is based on the requirement of the existence of initial trans-340

formation pairs for parallel dependent or conflicting plain transformation pairs. Note that for

the category of typed graphs, it is shown in [6] that this requirement holds. Moreover, [7] ex-

tended that result proving that arbitrary M-adhesive categories fulfilling some extra conditions

also satisfy it. In the case of M-initiality, no additional requirement is needed, since E ′-M pair

factorization is enough to ensure the existence of M-initial transformation pairs for each parallel345

dependent transformation pair [6].

Definition 11 (existence of (M-)initial transformation pair for conflict [6]). A plain M-adhesive

system has (M-)initial transformation pairs for conflicts if, for each transformation pair tp in

conflict, the (M-)initial transformation pair tpI exists.

Now initial conflicts for plain rules represent the set of all possible “smallest” conflicts. It is350

shown in [6] that, for a plain M-adhesive system, critical pairs are M-initial conflicts and each

initial conflict is a special critical pair.

Definition 12 ((M-)initial conflict for plain rules[6]). Given a plain M-adhesive system with

initial transformation pairs for conflicts, a pair of direct transformations in conflict tp : H1 ⇐p1,m1

G ⇒p2,m2
H2 is an initial conflict (resp. M-initial conflict) if it is isomorphic to the initial355

transformation pair (resp. M-initial transformation pair) tpI for tp.

Initial conflicts for plain rules are complete as transformation pairs w.r.t. parallel depen-

dence [6], whereas critical pairs, i.e., M-initial conflicts, for plain rules are M-complete [27].

Theorem 2 (completeness of initial conflicts [6]). Consider a plainM-adhesive system with initial

transformation pairs for conflicts. The set of initial conflicts for a pair of plain rules 〈p1, p2〉 is360

complete w.r.t. parallel dependence.

The Local Confluence Theorem (requiring initial POs) can be formulated for initial conflicts

of plain rules [6] similarly to the one for classical critical pairs (for plain rules) [27].

3.5. (M-)Initial Parallel Independent Transformation Pairs for Plain Rules

In this section, we show the existence of (M-)initial transformation pairs for parallel indepen-365

dent transformation pairs, allowing us to define an (M-)complete set also w.r.t. parallel indepen-

dence.

We start by showing the existence of M-initial transformation pairs for parallel independent

transformation pairs:

Lemma 3 (existence of M-initial transformation pair for parallel independent transformation370

pair). Given transformation rules 〈p1, p2〉, for every parallel independent transformation pair tp :

14



H1 ⇐p1,o1 G ⇒p2,o2 H2, the transformation pair tpI : HI
1 ⇐p1,o′1

GI ⇒p2,o′2
HI

2 , where (o′1, o
′
2) is

the pair factorization of (o1, o2), is M-initial with respect to tp.

Proof. We define tpI using E ′-M pair factorization. In particular, we know that there are unique

morphisms o′1 : L1 → GI , o′2 : L2 → GI ,m : GI → G, such that (o′1, o
′
2) ∈ E ′, m ∈M, o1 = m ◦ o′1375

and o2 = m ◦ o′2. We know because of the Restriction Theorem [27] and since m ∈ M that o′1, o
′
2

satisfy the gluing conditions such that tpI : HI
1 ⇐p1,o′1

GI ⇒p2,o′2
HI

2 exists. This means that we

can extend tpI to tp via m.

GIDI
1HI

1

R1p1 : I1 L1

DI
2 HI

2

R2 : p2I2L2

GD1H1 D2 H2

o1 o2m

k1c1

o′1

k2 c2

o′2

Now, let us assume that tp0 : H01 ⇐p1,o01 G0 ⇒p2,o01 H02 can be extended to tp via an M-

morphism m′. This means that o1 = m′ ◦o01 and o2 = m′ ◦o02. By E ′-M pair factorization, there380

are unique morphisms o′01 : L1 → G′0, o
′
02 : L2 → G′0,m

′′ : G′0 → G0, such that (o′01, o
′
02) ∈ E ′,

m′′ ∈ M, o01 = m′′ ◦ o′01 and o02 = m′′ ◦ o′02. But this means that o1 = m ◦ m′′ ◦ o′01 and

o2 = m ◦ m′′ ◦ o′02. By uniqueness of E ′-M pair factorization, this means that GI and G′0 are

isomorphic, so we have that tpI can be extended to tp0 via m′′ ◦ i, where i is the isomorphism

from GI to G′0.385

G′0

L1 L2

G0

G

o1 o2

o01 o02
m′′

m′

o′01 o′02
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Based on the existence of M-initial transformation pairs w.r.t. parallel independence, we can

now define an M-initial parallel independent transformation pair.

Definition 13 (M-initial parallel independent transformation pair). A pair of parallel indepen-

dent plain transformations tp : H1 ⇐p1,m1 G ⇒p2,m2 H2 is an M-initial parallel independent390

transformation pair if it is isomorphic to its M-initial transformation pair.

In the following proposition, we characterize the set of M-initial parallel independent trans-

formation pairs:

Proposition 1 (M-initial parallel independent transformation pairs). Given transformation rules

〈p1, p2〉, the parallel independent pair of transformations tp = P1 ⇐p1,o1 K ⇒p2,o2 P2 depicted in395

the diagram below is an M-initial transformation pair with respect to parallel independence if and

only if 〈o1, o2〉 ∈ E ′

KD1P1

R1 I1 L1

D2 P2

R2I2L2

k1c1

o1

k2 c2

o2
d21 d12

Proof. If 〈o1, o2〉 /∈ E ′, according to Lemma 3, the transformation pair tpI : HI
1 ⇐p1,o′1

GI ⇒p2,o′2

HI
2 , where (o′1, o

′
2) is the pair factorization of (o1, o2), is M-initial with respect to tp. But this

means that tp is not M-initial.400

Conversely, if 〈o1, o2〉 ∈ E ′ then 〈o1, o2〉, together with idK is its pair factorization, which

means, by Lemma 3, that tp is M-initial.

Corollary 1 (M-completeness ofM-initial parallel independent transformation pairs). The set of

M-initial parallel independent transformation pairs is M-complete w.r.t. parallel independence.

Proof. This follows directly from the property of E ′-M pair factorization, the Restriction Theorem,405

and Proposition 1.

The proof of the existence of initial transformation pairs for parallel independent transforma-

tion pairs requires the existence of binary coproducts. In this proof we will use the following

lemma:

Lemma 4 (extensions of coproduct transformation pair). Given rules p1 : L1 ← I1 → R1 and410

p2 : L2 ← I2 → R2 and transformation pairs tp : H1 ⇐p1,m1
G ⇒p2,m2

H2 and tpL1+L2
:

R1 + L2 ⇐p1,i1 L1 + L2 ⇒p2,i2 L1 + R2, where tp is parallel independent, we have that the

coproduct mediating morphism m : L1 + L2 → G defines the extension diagram:
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R1 + L2

��

L1 + L2
ks +3

m

��

L1 +R2

��
H1 Gks +3 H2

Proof. Let tp be:

GD1H1

R1 I1 L1

D2 H2

R2I2L2

k1c1

m1

k2 c2

m2

d21 d12

Let us prove that if m : L1 +L2 → G is the mediating morphism for the coproduct, satisfying that415

m ◦ i1 = m1 and m ◦ i2 = m2, where i1 : L1 → L1 + L2 and i2 : L2 → L1 + L2 are the coproduct

morphisms, then m defines the extension diagram:

R1 + L2

��
(1)

L1 + L2
ks +3

m

��
(2)

L1 +R2

��
H1 Gks +3 H2

In particular, we have to prove that (1) and (2) define extension diagrams. Let us argue w.r.t.

extension diagram (1) (we can argue analogously for (2)).

We have to prove that (3) and (4) are pushouts:420

R1 + L2 I1 + L2 L1 + L2

D1H1 G

m(3) (4)

We have that squares (5), (6) and (7) below are pushouts, therefore (4) is also a pushout,

according to the Butterfly Lemma (see [27]). Similarly, since squares (8), (9) and (10) below are

pushouts, for the same reason, (3) is also a pushout.

L2 D1 G

L2 D1 G

I1 L1

(5)

(6) (7)

d21 k1

d21 k1

m1

L2 D1 H1

L2 D1 H1

I1 R1

(8)

(9) (10)

d21 c1

d21 c1

Lemma 5 (existence of initial transformation pair for parallel independent transformation pair).425

Given a pair of parallel independent plain direct transformations tp : H1 ⇐p1,m1
G ⇒p2,m2

H2,
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L1 + L2I1 + L2R1 + L2p∗1 :

R1p1 : I1 L1

L1 + I2 L1 +R2 : p∗2

R2 : p2I2L2

GD1H1 D2 H2

m

k1c1

i1

k2 c2

i2

d21 d12

acL1 acL2

Figure 3: initial parallel independent transformation pair tpL1+L2
for parallel independent AC-disregarding trans-

formation pair tpG

then tpL1+L2 : R1+L2 ⇐p1,i1 L1+L2 ⇒p2,i2 L1+R2, where i1 : L1 → L1+L2 and i2 : L2 → L1+L2

are the coproduct morphisms, is initial for tp.

Proof. By Lemma 4, we know that (1)+(2) is an extension diagram, where m : L1 + L2 → G is

the mediating morphism for the coproduct L1 + L2.430

R1 + L2

��
(1)

L1 + L2
ks +3

m

��
(2)

L1 +R2

��
H1 Gks +3 H2

Let us now assume that tp′ : H ′1 ⇐p1,m′1
G′ ⇒p2,m′2

H ′2 can be extended to tp via f ′ : G′ → G,

defining extension diagrams (5)+(6).

R1 + L2

��
(3)

L1 + L2
ks +3

m′

��
(4)

L1 +R2

��
H ′1

��
(5)

G′ks +3

f ′

��
(6)

H ′2

��
H1 G +3ks H2

We know that there is a unique morphism m′ : L1 + L2 → G′, such that m ◦ i1 = m′1 and

m ◦ i2 = m′2, defining by Lemma 4 the extension diagrams (3)+(4). Hence, we only have to prove

that f ′ ◦m′ = m, but we know that m : L1 + L2 → G is the unique morphism that defines the435

outer extension diagrams (3)+(4)+(5)+(6), thus f ′ ◦m′ = m.

Because of uniqueness of initial transformation pairs up to isomorphism, it thus follows that

for each pair of plain rules 〈p1, p2〉 there is a unique initial parallel independent transformation

pair tpL1+L2 : R1+L2 ⇐p1,i1 L1+L2 ⇒p2,i2 L1+R2. Note that this is different from the situation

for conflicts for plain rules, where initial transformation pairs may differ from conflict to conflict.440
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Consequently, in general for a pair of rules we can have different initial conflicts, but there exists

always a unique initial parallel independent transformation pair.

Definition 14 (initial parallel independent transformation pair). A pair of parallel independent

plain transformations tp : H1 ⇐p1,m1 G⇒p2,m2 H2 is an initial parallel independent transforma-

tion pair if it is isomorphic to the transformation pair tpL1+L2
: R1 + L2 ⇐p1,i1 L1 + L2 ⇒p2,i2445

L1 +R2.

The one-element set consisting of the initial parallel independent transformation pair for a

given pair of rules is complete w.r.t. parallel independence.

Theorem 3 (completeness of initial parallel independent transformation pairs). The set consisting

of the initial parallel independent transformation pair tpL1+L2
: R1 + L2 ⇐p1,i1 L1 + L2 ⇒p2,i2450

L1 +R2 for a pair of plain rules 〈p1, p2〉 is complete w.r.t. parallel independence.

Proof. This follows directly from Lemma 5 and Definition 14.

4. Initial Conflicts for Rules with ACs

We start with showing why it is not possible to straightforwardly generalize the idea of initial

conflicts from plain rules to rules with ACs. On the one hand, conflict inheritance does not hold any455

more such that not each transformation pair that can be extended to a conflicting one is conflicting

again, which was the basis for being able to show completeness of initial conflicts for plain rules.

Actually, the reverse of inheritance, what we call conflict co-inheritance, does not hold either, i.e.,

not each transformation pair that extends a conflicting one is conflicting again (cf. subsection 4.1).

Moreover, it is impossible in general to find a finite and complete set of finite conflicts for rules460

with ACs (cf. subsection 4.2) as illustrated for the category of Graphs. Finiteness is a basic

prerequisite however to be able to practically compute a complete (i.e. representative) set of

conflicts statically. This motivates again the need for having symbolic transformation pairs as

introduced in Definition 7, allowing us to define initial conflicts (cf. subsection 4.3) as a set of

specific symbolic transformation pairs, being complete w.r.t. parallel dependence indeed (as shown465

in subsection 4.4). This set as well as its elements are also finite, for example, in the case of graphs

(and provided that the rules are finite).

4.1. Conflict Inheritance

Conflicts are in general not inherited (as opposed to the case of plain rules [6]) such that not

each (initial) transformation pair that can be extended to a conflicting one will be conflicting470

again. This may happen in particular for AC conflicts. Use-delete (resp. delete-use) conflicts for

rules with ACs are still inherited.
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Lemma 6 (Use-delete (delete-use) conflict inheritance). Given two transformation pairs tp and

tp′ such that tp′ extends tp, if tp is in use-delete (resp. delete-use) conflict so is tp′.

Proof. The proof is completely analogous to the one for the conflict inheritance lemma for plain475

rules in [6] and use-delete (resp. delete-use) conflicts.

Example 1 (Neither inheritance nor co-inheritance for AC conflicts). Consider rules p1 : ←

→ (with AC true), producing an outgoing edge with a node, and p2 : ← → with

NAC ¬∃n : → , producing a node only if two other nodes do not exist already. Consider

graph G = , holding two nodes. Applying both rules to G (with the matches sharing one node480

in G) we obtain a produce-AC conflict since the first rule creates a third node, forbidden by the

second rule. Now both rules can be applied similarly to the shared node in the subgraph G′ = of

G obtaining parallel independent transformations, illustrating that AC-conflicts are not inherited.

Assume that p2 would have the more complex AC (¬∃n : → ) ∨ (∃p : → ),

then the transformation pair arising from their application to G sharing one node with their485

matches is still produce-AC conflicting. Now the application of both rules to the extended graph

G′′ = (sharing with the extended matches the same node as in G) would satisfy the AC

and would be moreover parallel independent, illustrating that AC-conflicts are not co-inherited.

4.2. Complete Set of Conflicts

We show that in M-adhesive categories it is in general impossible to find a finite and com-490

plete set of finite conflicts for rules with ACs as illustrated for the category Graphs (under the

assumption7 that graph transformation rules are finite).

Theorem 4. Given finite rules ρ1 = 〈p1, acL1
〉 and ρ2 = 〈p2, acL2

〉 for the M-adhesive category

Graphs, in general, there is no finite set of finite transformation pairs S for ρ1 and ρ2 that is

complete w.r.t. parallel dependence.495

Proof. ACs over the empty graph ∅ express so-called graph properties. Graph properties formu-

lated this way have the same expressive power as first-order logic (FOL) on graphs8 as shown

in [24]. This means that we can express any graph property equivalently using a first-order for-

mula. For the same reason, we can state any graph property for graphs without isolated nodes

using a first-order formula (i.e., any graph property that, in particular, implies that the given500

graph has no isolated nodes).

Now consider the following two rules ρ1 = 〈∅ ← ∅ → ∅, c〉 and ρ2 = 〈∅ ← ∅ → 1N , true〉, with

1N the graph consisting of an isolated node and c some property (expressible using ACs over the

7Without this assumption even in the case of plain rules the set of critical pairs would already be infinite.
8FOL on graphs is standard first-order logic with two additional built-in predicates: Node(n) -to state that n is

a node and Edge(e, n, n′) to state that e is an edge from n to n′.
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empty graph) about graphs without isolated nodes. That is, the first rule can be applied to a

graph G, if G |= c, and it leaves G unchanged; and the second rule, which is always applicable,505

adds an isolated node to G. Thus the set of transformation pairs associated to these rules is

S0 = {G ⇐=ρ1 G =⇒ρ2 G ⊕ 1N | G |= c}. Note that all the transformation pairs in S0 are AC

conflicts, since G ⊕ 1N does not satisfy c having an isolated node, which means that the set of

conflicts of ρ1 and ρ2 is precisely S0. In particular, for any graph G either G |= c9 and both rules

can be applied to G in a unique way (since there is a unique match h : ∅ → G), or G 6|= c such510

that ρ1 cannot be applied. This means that, for any G, there is at most one transformation pair

G ⇐=ρ1 G =⇒ρ2 G ⊕ 1N starting from G. Consequently, if G and G′ satisfy c, any morphism

h : G → G′ defines an extension diagram between their associated transformations. For these

reasons, even if it is an abuse of notation, given sets of transformation pairs S0 (S), we write

G ∈ S0 (resp. S) meaning G⇐=ρ1 G =⇒ρ2 G⊕ 1N ∈ S0 (resp. S).515

Now let us assume that a finite set S of conflicts for rules ρ1 and ρ2 exists that is complete

w.r.t. parallel dependence. This means that G ∈ S0 if and only if there is a G′ ∈ S and a

morphism h : G′ → G. We know, by the property of epi-mono factorization, that any morphism

h : G′ → G can be decomposed into h = m ◦ e with m mono and e epi. Moreover, since G′ is

assumed to be finite, there is a finite number of epimorphisms whose source is G′. Let EpiG′ be

the set {G′′ | there is an epimorphism e : G′ → G′′}, then we would have that G ∈ S0 if and only

if there is a G′ ∈ S, a G′′ ∈ EpiG′ and a monomorphism m : G′′ → G. Note that, by definition

of satisfaction (cf. Definition 3), the property that there is a monomorphism m : G′′ → G is

equivalent to G |= ∃(∅ → G′′, true). Therefore G ∈ S0 if and only if there is a G′ ∈ S, and a

G′′ ∈ EpiG′ such that G |= ∃(∅ → G′′, true). But this means that G ∈ S0 if and only if there is

a G′ ∈ S such that G |=
(∨

G′′∈EpiG′
∃(∅ → G′′, true)

)
, or equivalently G |= c′, where c′ is the

condition

c′ =
( ∨
G′′∈EpiG′
G′∈S

∃(∅ → G′′, true)
)
.

This means however that c and c′ are logically equivalent, but this is a contradiction, since it is

not possible to represent any arbitrarily complex first-order formula, for instance a universally

quantified formula, in terms of a finite disjunction of existential atoms. Therefore, our assumption

was wrong and S is in general infinite.

9A graph property is an application condition over the empty graph ∅ (or, in the general case, the initial object

in the category of graphical structures considered), thus composed of literals of the form c = ∃(∅ → G′, c′). In

particular, we say that G |= c if iG |= c with iG the unique morphism from ∅ to G.
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4.3. Initial Conflicts and Critical Pairs for Rules with ACs520

We generalize the notion of initial conflicts for plain rules to rules with ACs. In particular,

we introduce them as special symbolic transformation pairs (cf. Def. 7). They are conflict-

inducing meaning that there needs to exist an unfolding of the symbolic transformation pair into

a conflicting transformation pair. Moreover, their AC-disregarding transformation pair needs to

be an initial conflict or initial parallel independent transformation pair. We also show formally525

the relationship between initial conflicts and critical pairs as reintroduced in subsection 3.3. In

particular, we demonstrate that initial conflicts represent a proper subset of critical pairs again.

Moreover, analogous to the case of plain rules, we are able to show that critical pairs coincide with

M-initial conflicts for rules with ACs, demonstrating that in this sense initial conflicts represent

a conservative extension.530

Definition 15 (unfolding of symbolic transformation pair). Given a symbolic transformation

pair stpK : 〈tpK , acK , ac∗K〉 for a rule pair 〈ρ1, ρ2〉, then its unfolding U(stpK) consists of all

transformation pairs H1 ⇐ρ1,m1
G ⇒ρ2,m2

H2 that extend the AC-disregarding transformation

pair tpK via some extension morphism m : K → G.

Remark 4 (non-empty unfolding). Note that the unfolding of a symbolic transformation pair is535

not empty if there exists an extension morphism m : K → G satisfying the gluing conditions as

well as acK for the derived spans (as can be followed directly from the Embedding Theorem [9, 10]

for rules with ACs, since m would be boundary as well as AC-consistent).

Definition 16 (conflict-inducing symbolic transformation pair). Given rules ρ1 = 〈p1, acL1〉 and

ρ2 = 〈p2, acL2〉, a symbolic transformation pair stpK : 〈tpK , acK , ac∗K〉 for 〈ρ1, ρ2〉 is conflict-540

inducing if there exists a pair of conflicting transformations in its unfolding U(stpK).

Remark 5 (conflict-inducing & unfolding). The unfolding of a conflict-inducing symbolic trans-

formation pair may contain parallel independent transformations. Consider rules ρ1 = 〈p1, true〉

and ρ2 = 〈p2,¬∃n〉 from Example 1 and symbolic transformation pair stp′ : 〈tpG′ , acG′ , ac∗G′〉, with

tpG′ the AC-disregarding transformation pair arising from applying rules p1 and p2 to G′ = ,545

acG′ = ¬∃n′ : → , and ac∗G′ = (∃p′ : → ) ∨ (∃p′′ : → ). Then stp′ is a

conflict-inducing symbolic transformation pair, since its unfolding includes the parallel dependent

transformation pair tpG arising from applying the rules ρ1 and ρ2 to G = . The extension

morphism m : G′ → G fulfills acG′ and ac∗G′ indeed. However, the transformation pair tpG′ satis-

fies all ACs, belongs to the unfolding U(stp) accordingly, but is parallel independent (as described550

in Example 1 and derivable from the fact that ac∗G′ is not fulfilled for the extension morphism

idG′).

An initial conflict (resp. M-initial conflict) is a conflict-inducing symbolic transformation pair

with its AC-disregarding transformation pair being initial (resp. M-initial). Note that we say that
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an AC-disregarding transformation pair is (M-)initial if it is (M-)initial as plain transformation555

pair (cf. Figure 3). Remember that each symbolic transformation pair is uniquely determined

by its underlying AC-disregarding transformation pair. This means that the set of (M-)initial

conflicts basically consists of a filtered set of plain (M-)initial conflicts (those that are conflict-

inducing as symbolic transformation pair) together with the set of (M-)initial parallel independent

transformation pairs (in case they are conflict-inducing as symbolic transformation pairs). Recall560

that the set of initial (resp. M-initial) parallel independent transformation pairs for plain rules

consists of the singleton {tpL1+L2} (resp. the set of parallel independent transformation pairs with

matches in E ′).

Definition 17 ((M-)initial conflict). Consider an M-adhesive system with initial transforma-

tion pairs for conflicts along plain rules. An initial conflict (resp. M-initial conflict) for rules565

ρ1 = 〈p1, acL1〉 and ρ2 = 〈p2, acL2〉 is a conflict-inducing symbolic transformation pair stpK :

〈tpK , acK , ac∗K〉 with the AC-disregarding transformation pair tpK being initial (resp. M-initial),

i.e. either tpK is an (M-)initial conflict for rules p1 and p2 (in this case stpK is called a use-

delete/delete-use (M-)initial conflict) or it is an (M-)initial parallel independent transformation

pair (in this case stpK is called an AC (M-)initial conflict).570

Analogous to the case of plain rules, M-initial conflicts coincide with critical pairs:

Proposition 2 (M-initial conflicts are critical pairs). A symbolic tranformation pair stp is a

critical pair if and only if stp is an M-initial conflict.

Proof. Direct consequence of Proposition 1 and of the definitions of critical pairs (i.e., M-initial

conflicts) for plain rules and of critical pairs for rules with ACs (Definition 8).575

Note that as explained in Remark 5 the unfolding of a conflict-inducing symbolic transfor-

mation pair (and in particular of an AC initial conflict) may entail apart from (at least one)

conflicting transformation pair(s) also parallel independent transformation pairs. All conflicts in

the unfolding of an AC initial conflict are AC conflicts, and never use-delete/delete-use conflicts

(because otherwise we would get a contradiction using Lemma 6).580

Example 2 (initial conflict). Consider again the rules from Example 1. Applying both rules to

L1 + L2 = (with disjoint matches) we obtain the AC initial conflict stpK = stpL1+L2
=

〈tpL1+L2
, acL1+L2

, ac∗L1+L2
〉. Thereby acL1+L2

is equivalent to ¬∃(
1 2
→

1 2
) ∧ ¬∃(

1 2
→

1,2
), expressing that when during extension both nodes are merged, no two additional nodes,

otherwise not one additional node should be given. Moreover, ac∗L1+L2
is equivalent to ∃(

1 2
→585

1,2
) ∨ ∃(

1 2
→

1 2
), expressing that either both nodes are not merged during extension,

otherwise one additional node should be present for a conflict to arise. Both transformation pairs
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(the conflicting one from G = as well as the parallel independent one from its subgraph

G′ = , sharing the merged node in their matches) described in Example 1 belong to its unfolding.

Each initial conflict is in particular also a critical pair.590

Theorem 5 (initial conflict is critical pair). Consider an M-adhesive system with initial trans-

formation pairs for conflicts along plain rules. Each initial conflict stpK : 〈tpK , acK , ac∗K〉 is a

critical pair.

Proof. Given some initial conflict stpK : 〈tpK , acK , ac∗K〉, for rules ρ1 = (p1, ac1), ρ2 = (p2, ac2)

we have two cases:595

• If tpK is an initial conflict for the AC-disregarding rules p1, p2, then since every initial conflict

for plain rules is a critical pair [6] and, as discussed above, each critical pair tpK for the

plain rules 〈p1, p2〉 corresponds uniquely to the critical pair stpK we have that stpK is a

critical pair for ρ1, ρ2.

• If tpK = tpL1+L2
then, by Proposition 1, we also have that stpK is a critical pair for600

ρ1, ρ2, since we can easily see that the coproduct injections (i1 : L1 → L1 + L2, i2 : L2 →

L1 + L2) ∈ E ′. In particular, we know that there should exist a unique pair factorization

(i′1 : L1 → C, i′2 : L2 → C) ∈ E ′ and m : C → L1 +L2, such that i1 = m ◦ i′1 and i2 = m ◦ i′2.

But, by the universal property of coproducts, there is a unique morphism m′ : L1 +L2 → C,

such that i′1 = m′ ◦ i1 and i′2 = m′ ◦ i2. Then, m ◦m′ satisfies that m ◦m′ ◦ i1 = m ◦ i′1 = i1605

and m ◦m′ ◦ i2 = m ◦ i′2 = i2, which implies m ◦m′ = idL1+L2 by the universal property of

coproducts. Similarly, m′ ◦m ◦ i′1 = m′ ◦ i1 = i′1 and m′ ◦m ◦ i′2 = m′ ◦ i2 = i′2, which implies

m′ ◦m = idC , by the uniqueness of pair factorization. This means that L1 + L2, i1 and i2

are isomorphic to C, i′1 and i′2, implying (i1, i2) ∈ E ′.

610

The reverse direction of Theorem 5 does not hold, i.e. in the case of rules with ACs initial

conflicts represent also a proper subset of the set of critical pairs. This proper subset relation

holds already in the case of plain rules. Each critical pair for plain rules tpK corresponds uniquely

to a critical pair stpK : 〈tpK , acK , ac∗K〉 with acK true and ac∗K . Thus in this special case we

would have as many critical pairs that are no initial conflicts as for the case with plain rules.615

More generally, critical pairs stpK : 〈tpK , acK , ac∗K〉 where tpK represents a use-delete/delete-use

conflict (but is not initial yet) are represented by the initial conflict stpI : 〈tpI , acI , ac∗I〉 with tpI

the unique initial conflict for tpK as plain transformation pair. Moreover, critical pairs stpK :

〈tpK , acK , ac∗K〉 where tpK is parallel independent as plain transformation pair are represented

by one initial conflict stpL1+L2 : 〈tpL1+L2 , acL1+L2 , ac∗L1+L2
〉 with tpL1+L2 the initial parallel620

independent transformation pair.
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Example 3 (initial conflicts: proper subset of critical pairs). Consider again the rules from Exam-

ple 1 and their application to G′ = . The symbolic transformation pair stpG′ : 〈tpG′ , acG′ , ac∗G′〉

is a critical pair, but not an initial conflict. In particular, this critical pair is represented by the

unique AC initial conflict stpL1+L2 : 〈tpL1+L2 , acL1+L2 , ac∗L1+L2
〉 (which is also a critical pair).625

4.4. Completeness

We show that initial conflicts are complete (not M-complete as in the case of critical pairs,

cf. Theorem 1) w.r.t. parallel dependence as symbolic transformation pairs.

Theorem 6 (completeness of initial conflicts). Consider anM-adhesive system with initial trans-

formation pairs for conflicts along plain rules. The set of initial conflicts for a pair of rules 〈ρ1, ρ2〉630

is complete w.r.t. parallel dependence.

Proof. Given a parallel dependent pair of transformations tpG : H1 ⇐ρ1,m1
G⇒ρ2,m2

H2 we need

to show that some initial conflict via rules ρ1 and ρ2 exists that can be extended to tpG via some

extension morphism m : K → G with m |= acK ∧ ac∗K .

Assume that tpG is a use-delete/delete-use conflict. Then tpG is also a use-delete/delete-use635

conflict as AC-disregarding transformation pair. This means that an initial conflict tpK for the

plain rules p1 and p2 exists according to Theorem 2 that can be extended via some extension mor-

phism m : K → G into tpG as AC-disregarding transformation pair. The symbolic transformation

pair stpK : 〈tpK , acK , ac∗K〉 is obviously conflict-inducing. We moreover show that m |= acK∧ac∗K .

It follows that m |= acK because of Lemma 1 and the fact that the matches of tpG satisfy acL1
640

and acL2
. Moreover m |= ac∗K since tpK is an initial conflict (i.e. delete-use) for the plain rules p1

and p2 such that ac∗K is true.

Assume that tpG is not a use-delete/delete-use conflict, but it is an AC conflict. Since tpG

is not a use-delete/delete-use conflict we know that it is parallel independent as AC-disregarding

transformation pair. This means that the initial parallel independent transformation pair tpL1+L2
:645

R1 +L2 ⇐p1,i1 L1 +L2 ⇒p2,i2 L1 +R2 for the plain rules p1 and p2 can be extended via morphism

m : L1 + L2 → G to tpG as AC-disregarding transformation pair (as illustrated in Figure 3).

The symbolic transformation pair stpL1+L2 : 〈tpL1+L2 , acL1+L2 , ac∗L1+L2
〉 is obviously conflict-

inducing. We moreover show that m |= acL1+L2
∧ ac∗L1+L2

. It follows that m |= acL1+L2
because

of Lemma 1 and the fact that the matches of tpG satisfy acL1
and acL2

. Moreover m |= ac∗L1+L2
650

with ac∗L1+L2,d12
= L(p∗2,Shift(c2◦d12, acL1)) and ac∗L1+L2,d21

= L(p∗1,Shift(c1◦d21, acL2)) because

of Lemma 1, Lemma 2, the fact that diagonal morphisms for plain parallel independence are unique

w.r.t. making the corresponding triangles commute, and the fact that tpG is AC conflicting (i.e.

either acL1
or acL2

are not satisfied by the extended matches into H2 and H1, respectively).

Remark 6 (uniqueness of initial conflicts). It holds again that for each conflict a unique (up-to-655

isomorphism) initial conflict exists representing it, since this property is inherited from the one for
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plain rules [6] and the fact that the initial parallel independent pair of transformations is unique

w.r.t. a given rule pair.

The Local Confluence Theorem [9, 10] for rules with ACs10 still holds in case we substitute

the set of critical pairs by initial conflicts, and moreover requiring initial pushouts. The proof660

runs completely analogously. The only difference is that for this proof, we need initial pushouts

over general morphisms whereas in the proof in [9, 10] initial pushouts over M-morphisms are

sufficient.

5. Minimal Completeness

In previous sections we have seen that critical pairs (resp. initial conflicts), both in the plain665

case and in the case of rules with ACs, are M-complete (resp. complete) with respect to parallel

dependence. Similarly we have seen for the plain case that initial (resp. M-initial) parallel

independent transformation pairs are complete with respect to parallel independence. In this

section, we will see, firstly, that these sets are minimal, i.e., that we cannot find smaller sets that

are (M-)complete (cf. subsection 5.1). Moreover, we will also show that minimally complete (resp.670

M-complete) sets of conflicts coincide precisely with the sets of initial (resp. M-initial) conflicts

for the case of plain rules and with the sets of concrete initial (resp. M-initial) conflicts for the

case of rules with ACs, provided that (M-)initial transformation pairs exist (cf. subsection 5.2).

Then, in the last subsection, we will see how, out of an (M-)complete set of conflicts, we can

extract a subset that is minimally (M-)complete.675

5.1. (M-)Initial Conflicts are Minimally (M-)Complete

We start with defining what we understand by minimally complete sets of (symbolic) trans-

formation pairs.

Definition 18 (minimal (M-)completeness). A set of (symbolic) transformation pairs S for a pair

of rules is minimally complete (resp. minimallyM-complete) with respect to parallel dependence680

if S is complete (resp. M-complete) w.r.t. parallel dependence and there exists no other set with

smaller cardinality, that is also complete (resp. M-complete) w.r.t. parallel dependence.

A set of transformation pairs S for a pair of rules is minimally complete (resp. minimally

M-complete) with respect to parallel independence if S is complete (resp. M-complete) w.r.t.

parallel independence and there exists no other set with smaller cardinality, that is also complete685

(resp. M-complete) w.r.t. parallel independence.

10On top of strict confluence as in the case of plain rules, also so-called AC-compatibility is required.
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In the particular case of non-symbolic transformation pairs, we also say that we have a min-

imally complete set of conflicts (or parallel independent transformation pairs) if we have a set of

transformation pairs that is minimally complete w.r.t. parallel dependence (or parallel indepen-

dence, resp.).690

We start with studying minimal completeness w.r.t. parallel independence for plain rules.

In Proposition 1 we characterized the set of M-initial parallel independent transformation pairs

w.r.t. parallel independence and in Corollary 1 we showed their M-completeness. In Theorem 3,

we proved that the set of initial parallel independent transformation pairs consisting just of the

transformation pair tpL1+L2
, is also complete w.r.t. parallel independence. We can now show that695

these sets are minimal.

Proposition 3 (minimal (M-)completeness of (M-initial) parallel independent transformation

pairs for plain rules w.r.t parallel independence). The sets of initial (resp. M-initial) parallel

independent transformation pairs for a given pair of plain rules 〈p1, p2〉 are minimally complete

(resp. minimally M-complete) w.r.t. parallel independence.700

Proof. In the case of the set of initial parallel independent transformation pairs, the proof is trivial,

since the set consists just of one element, up to isomorphism.

In the case of the set S of M-initial parallel independent transformation pairs, the proof is

similar to the previous propositions. Assume that there exists a smaller set S ′ being complete

(resp. M-complete) w.r.t. parallel dependence. As before, we prove that the cardinality of S ′705

cannot be smaller than the cardinality of S. If it were, there would exist two parallel independent

transformation pairs tp1, tp2 for 〈ρ1, ρ2〉 and transformation pairs tp′1, tp
′
2 ∈ S, tp ∈ S ′, such that

tp′1 and tp′2 are not isomorphic, tp′1 is M-initial for tp1, tp′2 is M-initial for tp2, and tp can be

extended to tp1 and tp2 via someM-morphisms m1,m2. But this would imply, byM-initiality of

tp′1 and tp′2 that both tp′1 and tp′2 can be extended to tp. Consequently, tp′1 can be extended to tp2710

and tp′2 can be extended to tp1. But, by M-initiality of tp′1 and tp′2, they would be isomorphic,

contradicting the hypothesis.

We can see that critical pairs and initial conflicts for plain rules are minimally (M-)complete

sets of conflicts:

Proposition 4 (minimal (M)-completeness of (M)-initial conflicts for plain rules). Consider an715

M-adhesive system with initial transformation pairs for conflicts via plain rules. The set of initial

conflicts S (resp. M-initial conflicts, i.e. critical pairs) up-to-isomorphism, for rules 〈p1, p2〉 is

minimally complete (resp. minimally M-complete) w.r.t. parallel dependence.

Proof. Assume that there exists a smaller set S ′ being complete (resp. M-complete) w.r.t. parallel

dependence. We can see that the cardinality of S ′ cannot be smaller than the cardinality of S. If720
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it were, there would exist two conflicts tp1, tp2 for 〈p1, p2〉 and transformation pairs tp′1, tp
′
2 ∈ S,

tp ∈ S ′, such that tp′1 and tp′2 are not isomorphic, tp′1 is initial (resp. M-initial) for tp1, tp′2 is

initial (resp. M-initial) for tp2, and tp can be extended to tp1 and tp2 via some morphisms (resp.

M-morphisms) m1,m2. But this would imply, by initiality (resp. M-initiality) of tp′1 and tp′2 that

both tp′1 and tp′2 can be extended to tp. Consequently, tp′1 can be extended to tp2 and tp′2 can be725

extended to tp1. But, by initiality (resp. M-initiality) of tp′1 and tp′2, they would be isomorphic,

contradicting the hypothesis.

Critical pairs and initial conflicts for rules with ACs are also minimally M-complete:

Proposition 5 (minimal (M)-completeness of (M)-initial conflicts). Consider an M-adhesive

system with initial transformation pairs for conflicts via plain rules. The set of initial conflicts S730

(resp. M-initial conflicts, i.e. critical pairs) up-to-isomorphism, for rules 〈ρ1, ρ2〉 is minimally

complete (resp. minimally M-complete) w.r.t. parallel dependence.

Proof. The proof is very similar to the previous one. Assume that there exists a smaller set S ′

being complete (resp. M-complete) w.r.t. parallel dependence. Let Spl (S ′pl) be the equally sized

sets of plain transformation pairs via the rules 〈p1, p2〉 derived from S and S ′, respectively, by735

extracting merely the corresponding plain transformation pairs.

We can see that the cardinality of S ′pl cannot be smaller than the cardinality of Spl. If it

were, there would exist two transformation pairs tp1, tp2 for 〈ρ1, ρ2〉 and transformation pairs

tp′1, tp
′
2 ∈ Spl, tp ∈ S ′

pl
, such that tp′1 and tp′2 are not isomorphic, tp′1 is initial (resp. M-initial)

for tp1, tp′2 is initial (resp. M-initial) for tp2, and tp can be extended to tp1 and tp2 via some740

morphisms (resp. M-morphisms) m1,m2. But this would imply, by initiality (resp. M-initiality)

of tp′1 and tp′2 that both tp′1 and tp′2 can be extended to tp. Consequently, tp′1 can be extended

to tp2 and tp′2 can be extended to tp1. But, by initiality (resp. M-initiality) of tp′1 and tp′2, they

would be isomorphic, contradicting the hypothesis.

5.2. Minimally (M-)Complete Sets of Conflicts745

So far, we have seen that the set of critical pairs (i.e., set of M-initial conflicts) is minimally

M-complete, whereas the set of initial conflicts is minimally complete w.r.t. parallel dependence.

Then we may ask if the converse is also true when starting from a minimally (M-)complete set

of concrete, i.e. non-symbolic, transformation pairs. To this extent we generalize the notion of

(M-)initial conflicts to the case of rules with ACs, where the transformation pairs satisfy the ACs750

and remain concrete, i.e. without reverting to symbolic transformation pairs in order to keep

the set of initial conflicts finite (cf. Section 4). The definition of (M-)initial transformation pair

basically remains identical, except from the fact that we have rules with ACs and the matches of

the transformation pairs satisfy the ACs. Then we can indeed show that a minimally complete
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(resp. M-complete) set of conflicts equals the sets of concrete initial conflicts (resp. M-initial755

conflicts), provided that (M-)initial transformation pairs for conflicts exist for the considered

M-adhesive system.

Definition 19 ((M-)initial transformation pair, concrete (M-)initial conflict). Given a pair of

direct transformations tp : H1 ⇐ρ1,m1
G ⇒ρ2,m2

H2, then tpI : HI
1 ⇐ρ1,mI

1
GI ⇒ρ2,mI

2
HI

2 is

an initial transformation pair (resp. M-initial transformation pair) for tp if it can be extended760

to tp via extension diagrams (1) and (2) and extension morphism f I (resp. M-morphism) as

in Figure 2 such that for each transformation pair tp′ : H ′1 ⇐ρ1,m′1
G′ ⇒ρ2,m′2

H ′2 that can be

extended to tp via extension diagrams (3) and (4) and extension morphism (resp. M-morphism)

f as in Figure 2 it holds that tpI can be extended to tp′ via unique extension diagrams (5) and (6)

and unique vertical morphism (resp. M-morphism) f ′I s.t. f ◦ f ′I = f I .765

The fact that, in the case of plain rules, (M-)initial transformation pairs for conflicts exist

for M-adhesive systems in particular M-adhesive categories does not mean that the same will

happen in the case of rules with ACs. Actually, the following example shows that this is not the

case for typed graphs:

Example 4 (no initial transformation pairs). Assume that we are working with typed graphs770

including nodes of three types, 1, 2, and 3. Consider rules ρ1 = (p1, ac1) and ρ2 = (p2, ac2),

where:

• p1 : [
1 1

]← [
1 1

]→ [
1 1 1

]

• ac1 = true

• p2 : [
1 1

]← [
1 1

]→ [
1 1

]775

• ac2 =
(
∃(n : [

1 1
]→ [

1 1 2
], true) ∨ ∃(n : [

1 1
]→ [

1 1 3
], true)

)
.

That is, given two nodes of type 1 and an edge between them, p1 produces an additional outgoing

edge to an additional node of type 1; given two nodes of type 1 and an edge between them, p2

deletes the edge only if the given graph includes a node of type 2 or a node of type 3.

Now consider the conflict tp23 : [
1 1 1 2 3

] ⇐ [
1 1 2 3

] ⇒ [
1 1 2 3

], there780

exist M-morphisms m2 : [
1 1 2

] → [
1 1 2 3

] and m3 : [
1 1 3

] → [
1 1 2 3

].

Disregarding the ACs, tp23 would have tp : [
1 1 1

] ⇐ [
1 1

] ⇒ [
1 1

] as unique initial

transformation pair, witnessing the delete-use conflict that, after applying p2, we cannot apply p1.

However, tp cannot be an initial transformation pair for tp23, since the match for applying ρ2

does not satisfy ac2. Instead, we have two different transformation pairs witnessing the conflict785

that can be extended to tp23, consisting of tp2 : [
1 1 1 2

] ⇐ [
1 1 2

] ⇒ [
1 1 2

]

and tp3 : [
1 1 1 3

] ⇐ [
1 1 3

] ⇒ [
1 1 3

] that can be extended to tp23. Now if an
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initial transformation pair for tp23 exists, it must be either tp2, tp3 or tp23 itself, since no other

transformation pair can be extended to tp23. It cannot be tp2 (tp3), since then it should be possible

to extend it to tp3 (tp2). Moreover, it cannot be tp23 itself, since tp23 cannot be extended to tp2790

(or tp3). As a consequence, this example will not have concrete initial conflicts. We can reason

analogously for the case of M-initiality using this example.

Nevertheless, currently we do not know if in the case of rules with some specific kind of ACs,

like in the case of NACs, (M-)initial transformation pairs exist.

Definition 20 (existence of (M-)initial transformation pair for conflict). An M-adhesive system795

with ACs has (M-)initial transformation pairs for conflicts if, for each concrete transformation

pair tp in conflict, the (M-)initial transformation pair tpI exists.

Similar to the plain case, it can be derived that (M-)initial transformation pairs are unique.

Assuming that they exist, we can then define concrete (M-)initial conflicts.

Definition 21 (concrete (M-)initial conflict). Given an M-adhesive system for which initial800

(resp. M-initial) transformation pairs for conflicts exists. A parallel dependent transformation

pair tp : H1 ⇐ρ1,m1
G⇒ρ2,m2

H2 is a concrete initial conflict (resp. concreteM-initial conflict) if

it is equal (up to isomorphism) to its initial transformation pair (resp. M-)initial transformation

pair.

Now, we can show that if a givenM-adhesive system has (M-)initial transformation pairs for805

conflicts, then any minimally (M-)complete set of conflicts must be equal, up to isomorphism,

to the set of concrete (M-)initial conflicts. This means that, in the case of plain rules (where

M-initial transformation pairs exist), the only minimally (M-)complete sets of conflicts are the

sets of (M-)initial conflicts. But this is not necessarily true in the case of rules with ACs.

Theorem 7 (minimally (M-)complete sets of conflicts are concrete (M-)initial conflicts). Given810

anM-adhesive system with (M-)initial transformation pairs for conflicts, if S is a set of conflicts

that is minimally (M-)complete w.r.t. parallel dependence for rules 〈ρ1, ρ2〉 then S consists of all

concrete (M-)initial conflicts.

Proof. Let tp′ be a concrete initial conflict, since S is assumed to be complete there is a tp ∈ S,

such that there is a morphism (resp. M-morphism) h, such that h extends tp to tp′. But we815

also have that, if tp′′ is the initial transformation pair of tp′, then there is a morphism (resp. M-

morphism) g, such that g extends tp′′ to tp. This means that h ◦ g extends tp′′ into tp′, implying

that tp, tp′ and tp′′ are isomorphic, i.e., tp is initial. As a consequence, we may conclude that all

concrete initial conflicts are in S, but if S is minimal then no other transformation pair should be

in S.820
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5.3. Constructing Minimally (M-)Complete Sets of Conflicts from M-Complete Sets

Given anM-complete set of conflicts S, we are going to see that we can reduce it to a minimally

(M-)complete set of conflicts, S ′, by removing all its (M-)redundant transformation pairs. We

will use this reduction in the following section to show that for special cases of rules with ACs,

we can construct minimally (M-)complete sets of conflicts. In particular, we will see that this825

works for special initial conflicts, for which an unfolding into anM-complete set of conflicts exists

indeed. Note also that because of Theorem 7 we can use the reduction in particular also to reduce

any givenM-complete set of conflicts into the set of (M-)initial conflicts (provided that they exist

for the given transformation system).

Definition 22 ((M-)redundant transformation pair, (M-)maximal reduction). Given a set of830

transformation pairs S for a pair of rules 〈ρ1, ρ2〉, we say that tp is redundant (resp. M-redundant)

with respect to S if there is a transformation pair tp′ ∈ S that can be extended to tp via an extension

morphism h (resp. an extension (M-)morphism).

We say that S ′ is a maximal reduction of S (resp. anM-maximal reduction), if S ′ ⊆ S, every

transformation pair in S \S ′ is redundant (resp. M-redundant) with respect to S ′, and no tp ∈ S ′835

is redundant (resp. M-redundant) with respect to S ′ \ {tp}.

Theorem 8. Given a set S of transformation pairs, if S is M-complete with respect to parallel

dependence for rules 〈ρ1, ρ2〉, then:

1. If S ′ is an M-maximal reduction of S, then S ′ is minimally M-complete with respect to

parallel dependence for 〈ρ1, ρ2〉.840

2. Similarly, if S ′ is a maximal reduction of S, then S ′ is minimally complete with respect to

parallel dependence for 〈ρ1, ρ2〉.

Proof. We prove the second statement. The proof for the first statement is completely analogous.

Let tp be a conflict for rules 〈ρ1, ρ2〉. Because of M-completeness of S there must exist some

tp0 ∈ S such that tp0 can be extended to tp via someM-morphism m. In case that tp0 /∈ S ′, there845

must be some tp′0 ∈ S ′ such that tp′0 can be extended to tp0 via some morphism m′. Therefore,

tp′0 can be extended to tp via m′ ◦m. Otherwise, if tp0 ∈ S ′, we trivially have that tp0 can be

extended to tp via m.

For minimality, let us assume that S ′′ is another complete set of transformation pairs with

respect to parallel dependence for rules 〈ρ1, ρ2〉. Moreover, let us assume, without loss of generality,850

that S ′′ does not include any proper subset that is also complete. Let us see that for every tp′′ ∈ S ′′,

there must exist a tp′ ∈ S ′, such that tp′′ can be extended to tp′ via some morphism g. Let us

suppose that there is no tp′ ∈ S ′, such that tp′′ can be extended to tp′. Since S ′ is complete,

there must exist a tp′1 ∈ S ′ such that tp′1 can be extended to tp′′ via some morphism h and, since
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S ′′ is complete, there must exist a tp′′1 ∈ S ′′, with tp′′1 6= tp′′, such that tp′′1 can be extended to855

tp′1 via some morphism h′, implying that tp′′1 can be extended to tp′1 via h ◦ h′, contradicting the

hypothesis that S ′′ does not include any proper subset that is also complete. But, if for every

every tp′′ ∈ S ′′, there is a tp′ ∈ S ′, such that tp′′ can be extended to tp′ via some morphism g,

this means that the cardinality of S ′ is smaller or equal than the cardinality of S ′′.

860

Note that for obtaining a minimally complete set, we even obtain a slightly more general result

as the one in the above theorem in the sense that we can also start with a complete set (instead

of an M-complete one). This generalization also holds for the following corollary in the sense

that we can obtain under the given conditions the set of concrete initial conflicts starting from a

minimally complete (instead of an M-complete) set.865

Corollary 2. Given an M-adhesive system with (M-)initial transformation pairs for conflicts,

and given a set S of transformation pairs, if S is M-complete with respect to parallel dependence

for rules 〈ρ1, ρ2〉, then:

1. If S ′ is an M-maximal reduction of S, then S ′ is the set of concrete M-initial conflicts for

〈ρ1, ρ2〉.870

2. Similarly, if S ′ is a maximal reduction of S, then S ′ is the set of concrete initial conflicts

for 〈ρ1, ρ2〉.

Proof. Direct consequence of Theorem 7 and Theorem 8.

6. Unfoldings of Initial Conflicts

Initial conflicts are a very compact (but symbolic) way of representing the set of all parallel875

dependent transformation pairs for rules with ACs. However, from a user point of view they may

not provide much intuition about where are the problems that give rise to these conflicts, especially

in the case of AC-conflicts. Nevertheless, even if we have seen in Theorem 4 that, in general, given

two finite graph transformation rules with ACs, there is no finite set of transformation pairs which

is complete or M-complete, there are special cases where two rules with ACs have complete sets880

of transformation pairs which are finite. For example, this is true in the prominent case of rules

with negative application conditions (NACs), as shown in [8, 3]. Hence, in these cases being able

to compute minimally complete or M-complete sets of conflicts would provide a compact and

intuitive solution to the problem of characterizing the existing conflicts between two rules with

ACs.885

In this section, we show a sufficient condition for being able to unfold initial conflicts into an

M-complete set of conflicts that is finite if the set of initial conflicts is finite (cf. subsection 6.1).
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We demonstrate moreover that this sufficient condition is fulfilled for the special case of having

merely NACs as rule application conditions (cf. subsection 6.2). Finally, we show that in this case

we can obtain finite sets of conflicts that are minimally complete for rules with NACs, which in890

general are subsets of the critical pairs for rules with NACs, as introduced in [8].

6.1. Finite and M-Complete Unfolding

We introduce so-called regular initial conflicts leading to M-complete sets of conflicts, by

unfolding them in some particular way (cf. disjunctive unfolding in Definition 23). The idea

is that the extension and conflict-inducing AC (acK and ac∗K , respectively) of such a regular895

initial conflict stpK : 〈tpK , acK , ac∗K〉 have a specific form that is amenable to findingM-complete

unfoldings. We expect the condition acK ∧ ac∗K to consist of a disjunction of positive literals

(conditions of the form ∃(ai : K → Ci, ci)) with a so-called negative remainder (i.e. a condition

ci = ∧j∈J¬∃(bj : Ci → Cj , dj)). Intuitively, this means that there is a finite number of possibilities

to unfold the symbolic conflict into a concrete conflict by adding some specific positive context900

(expressed by the morphism ai). The negative remainder ci ensures that by adding this positive

context to the context K of the symbolic transformation pair within the initial conflict, we indeed

find a conflict when not extending further at all. Moreover, it expresses under which condition

the corresponding concrete representative conflict leads to further conflicts by extension. Finally,

the sets of M-complete conflicts built using the disjunctive unfolding can be shown to be finite if905

the set of initial conflicts it is derived from is finite.

Definition 23 (regular initial conflict, disjunctive unfolding). Consider an M-adhesive system

with initial transformation pairs for conflicts along plain rules. Given an initial conflict stpK :

〈tpK , acK , ac∗K〉 for rules 〈ρ1, ρ2〉, then we say that it is regular if acK ∧ ac∗K is equivalent to

a condition c = ∨i∈I∃(ai : K → Ci, ci) with ci = ∧j∈J¬∃(bj : Ci → Cj , dj) a condition on910

Ci, bj non-isomorphic and I some non-empty index set. Given a regular initial conflict stpK :

〈tpK , acK , ac∗K〉, then UDc (stpK) = ∪i∈I{tpCi
: D1,i ⇐ρ1,ai◦o1 Ci ⇒ρ2,ai◦o2 D2,i} is the disjunctive

unfolding of stpK associated to c.

In the following, for simplicity, we will just write UD(stpK) if c can be left implicit.

Remark 7 (disjunctive unfolding). The disjunctive unfolding of a regular conflict is non-empty,915

but might consist of less elements than literals in the disjunction ∨i∈I∃(ai : K → Ci, ci). It might

be the case that some of the morphisms ai do not satisfy the gluing condition of the derived spans.

If this is the case, then also every extension morphism starting from there will not satisfy the

gluing condition such that we can safely ignore these cases from the disjunctive unfolding.

Theorem 9 (finite and M-complete unfolding). Consider an M-adhesive system with initial920

transformation pairs for conflicts along plain rules. Given a rule pair 〈ρ1, ρ2〉 with set S of initial
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conflicts such that each initial conflict stp in S is regular, then ∪stp∈SUD(stp) is M-complete

w.r.t. parallel dependence. Moreover, ∪stp∈S UD(stp) is finite if S is finite.

Proof. Because each disjunctive unfolding of a regular initial conflict consists of a finite number

of elements (see finite index set Definition 3), the set ∪stp∈SUD(stp) is finite as soon as the set S925

of all initial conflicts is finite.

We now show that the set ∪stp∈SUD(stp) (consisting of transformation pairs) is also M-

complete w.r.t. parallel dependence. From Theorem 6 we know that the set of initial conflicts

S (consisting of symbolic transformation pairs) is complete w.r.t. parallel dependence. This

means that there exists some stpK : 〈tpK , acK , ac∗K〉 with AC-disregarding transformation pair930

tpK : P1 ⇐ρ1,o1 K ⇒ρ2,o2 P2 from S that can be extended to tpG via some extension morphism

m : K → G with m |= acK ∧ ac∗K .

Consequently, since m |= acK ∧ ac∗K we know that because of having only regular initial

conflicts m |= ∨i∈I∃(ai : K → Ci, ci). This means that m |= ∃(ai : K → Ci, ci) for some i ∈ I

meaning that there exists some qi : Ci → G ∈ M such that qi |= ci and qi ◦ ai = m. Because935

of the Restriction Theorem for plain rules [27] and the fact that qi is in M we know that there

exists a pair of plain transformations via matches ai ◦ o1 and ai ◦ o2 that can be extended to

tpG via extension morphism qi. Now we have to show that the matches ai ◦ o1 and ai ◦ o2 of

this transformation pair tpCi
indeed satisfy the conditions acL1

and acL2
, respectively. Moreover,

we argue that the transformation pair tpCi
is conflicting. To this extent, consider the identity940

morphism idCi
satisfying trivially ci. Consequently, ai |= ∃(ai : K → Ci, ci), and because of

regularity it follows that ai |= acK ∧ac∗K . By the Embedding Theorem [10, 30] it then follows that

we indeed obtain a pair of transformations with ai ◦ o1 and ai ◦ o2 satisfying the rule ACs acL1

and acL2
, since ai |= acK making it AC-consistent for both AC-disregarding transformations in

tpK indeed. Moreover, because of Lemma 6.2 (characterization of parallel dependency with ACs)945

in [10, 30] tpCi is also parallel dependent, since ai |= ac∗K .

Since pushouts and pushout complements are unique up to isomorphism this pair of transfor-

mations tpCi
(built for the matches ai ◦o1 and ai ◦o2) is indeed equivalent to some transformation

pair from UD(stpK). As a consequence we have indeed found an extension diagram extending

tpCi : D1,i ⇐ρ1,ai◦o1 Ci ⇒ρ2,ai◦o2 D2,i in UD(stpK) to tpG via qi.950

It is possible to automatically check if some initial conflict is regular by using dedicated auto-

mated reasoning [25] as well as symbolic model generation for ACs [31] as follows. The reasoning

mechanism [25] is shown to be refutationally complete ensuring that if the condition acK ∧ ac∗K of

some initial conflict is unsatisfiable, this will be detected eventually. Moreover, the related sym-

bolic model generation mechanism [31] is able to automatically transform each condition acK∧ac∗K955

into some disjunction ∨i∈I∃(ai : K → Ci, ci) with ci a negative remainder if such an equivalence
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holds.

We can reduce the (finite) M-complete disjunctive unfolding to a (finite) minimally (M-

)complete set of transformation pairs.

Corollary 3 (minimally (M-)complete unfolding). Under the same conditions of Theorem 9, if960

S ′ is a maximal reduction (resp. M-maximal reduction) of ∪stp∈SUD(stp), then S ′ is minimally

complete (resp. M-complete) with respect to parallel dependence for the same rules.

Proof. Direct consequence of Theorem 8, and Theorem 9

6.2. Unfolding for Rules with NACs

We show that in the case of having rules with NACs11, initial conflicts are regular. This means965

that in this special case there exists a complete set of conflicts that is e.g. in the case of graphs (and

assuming finite rules) also finite. This conforms to the findings in [8, 3], where an M-complete

set of critical pairs – as specific set of conflicts – for graph transformation rules with NACs was

introduced [8] (and generalized to M-adhesive transformation systems [3]).

Theorem 10 (regular initial conflicts for rules with NACs). Consider an M-adhesive system970

with initial transformation pairs for conflicts along plain rules. Every initial conflict stpK :

〈tpK , acK , ac∗K〉 for a pair of rules 〈ρ1, ρ2〉 with acLi = ∧j∈Ji¬∃nj : Li → Nj for i = 1, 2 and Ji

some finite index set, is regular. In particular, acK ∧ ac∗K is equivalent to a condition ∨i∈I∃(ai :

K → Ci, ci) with ci = ∧q∈Q¬∃nq a condition on Ci and I some non-empty index set.

Proof. This follows directly from Definition 7 and the constructions [30] related to Lemma 2 and975

Lemma 1. In particular, acK (arising from shifting each rule NAC over the match morphisms into

K) consists of a conjunction of NACs again, and ac∗K becomes true or consists of a (non-empty)

disjunction of PACs. We obtain by shifting (using Lemma 1) each NAC over each PAC morphism

(∃idK in the case ac∗K becomes true) a condition that is equivalent to a disjunction of literals of

the form ∃(ai : K → Ci,∧q∈Q¬∃nq).980

The negative remainder ci of each literal in ∨i∈I∃(ai : K → Ci, ci) of a regular initial conflict

for rules with NACs thus consists of a set of NACs. Intuitively this means that we obtain for each

initial conflict an M-complete set of conflicts by adding the context described by ai. As long as

no NAC from ci is violated we can extend such a conflict to further ones.

Corollary 4 (M-complete unfolding: rules with NACs). Consider an M-adhesive system, with985

initial transformation pairs for conflicts along plain rules. Given a rule pair 〈ρ1, ρ2〉 with acLi
=

∧j∈Ji¬∃nj : Li → Nj for i = 1, 2, then ∪stp∈SUD(stp) is M-complete w.r.t. parallel dependence.

11A rule with NACs consists of a plain rule with a conjunction of NACs as application condition, which is the

most common way of using NACs since their introduction in [22].

35



Proof. This follows directly from Theorem 9 and Theorem 10.

We show moreover that the initial conflict definition is a conservative extension of the critical

pair definition for rules with NACs as given in [8, 3]. In particular, we show that each conflict990

in the disjunctive unfolding of an initial conflict as chosen in the proof of Theorem 10 is in

particular a critical pair for rules with NACs. Note that a critical pair for rules with NACs is a

conflicting pair of transformations such that (1) its plain transformations have jointly epimorphic

matches and are use-delete/delete-use conflicting, or (2) the transformations are AC conflicting

(and possibly also use-delete/delete-use conflicting) in such a way that one of the rules produces995

elements responsible for violating one of the NACs not violated yet before rule application without

considering additional context not stemming already from one of the rules or the violated NAC

(i.e. technically the morphism violating the NAC and the corresponding co-match need to be

jointly surjective).

Let us recall the definition12 of critical pairs for rules with NACs [8], before showing that initial1000

conflicts for rules with ACs as defined in this paper represent a conservative extension in the sense

of Theorem 11.

Definition 24 (critical pair). A critical pair is a pair of direct transformations K
p1,m1⇒ P1 with

NACp1 and K
p2,m2⇒ P2 with NACp2 such that:

1. (a) ¬∃h12 : L1 → D2 : d2 ◦ h12 = m1 and (m1,m2) in E ′1005

(use-delete conflict)

or

(b) there exists h12 : L1 → D2 s.t. d2 ◦ h12 = m1, but for one of the NACs n1 : L1 → N1

of p1 there exists a morphism q12 : N1 → P2 ∈ M s.t. q12 ◦ n1 = e2 ◦ h12, and thus,

e2 ◦ h12 6|= NACn1 , and (q12,m
′
2) in E ′ (forbid-produce conflict)1010

or

2. (a) ¬∃h21 : L2 → D1 : d1 ◦ h21 = m2 and (m1,m2) in E ′

(delete-use conflict)

or

(b) there exists h21 : L2 → D1 s.t. d1 ◦ h21 = m2, but for one of the NACs n2 : L2 → N21015

of p2 there exists a morphism q21 : N2 → P1 ∈ M s.t. q21 ◦ n2 = e1 ◦ h21, and thus,

e1 ◦ h21 6|= NACn2
, and (q21,m

′
1) in E ′ (produce-forbid conflict)

12We assume that the class Q = M, since we for simplicity do not distinguish between morphisms used to satisfy

(or violate) a graph condition (Q-morphisms) and M-morphisms (as analogously assumed in the previous seminal

work w.r.t. rules with ACs [10, 30].
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Theorem 11 (conservative unfolding). Consider an M-adhesive system with initial transforma-

tion pairs for conflicts along plain rules. Given some initial conflict stpK : 〈tpK , acK , ac∗K〉 for a

pair of rules 〈ρ1, ρ2〉 with acLi = ∧j∈Ji¬∃nj : Li → Nj for i = 1, 2 and Ji some finite index set,1020

then each conflict as chosen in the proof of Theorem 10 in UD(stp) is in particular a critical pair

for 〈ρ1, ρ2〉 as given in [8, 3].

Proof. Recall that an initial conflict stpK : 〈tpK , acK , ac∗K〉 consists in particular of an initial

conflict for plain rules or of an initial parallel independent pair of transformations for plain

rules. Having rules with NACs only, we can unfold such an initial conflict into a set of con-1025

flicting transformations tpCi
with each conflict stemming from one literal in the finite disjunction

∨i∈I∃(ai : K → Ci, ci) with ci a condition of the form ∧q∈Q¬∃nq. When extending the initial

parallel independent pair via some ai : L1 + L2 → Ci, the corresponding transformation pair

remains plain parallel independent such that we in particular obtain a critical pair satisfying (1.b)

or (2.b) according to Definition 24. Moreover we know that (q12,m
′
2) and (q21,m

′
1) belong to E ′1030

by construction and we know that tpCi
is AC-conflicting indeed. In case that we extend an initial

conflict for the plain rules to a real conflict for the rules with NACs, we obtain a critical pair

either satisfying (1.a) or (2.a) according to Definition 24 in case no additional context is added by

the positive application condition ai stemming from the disjunction ∨i∈I∃(ai : K → Ci, ci) in the

unfolding, or satisfying (1.b) or (2.b) as in the previous case.1035

Example 5 (conservative unfolding). Consider again the rules from Example 1 (having only NACs

as ACs) and their application to the graph G = . The corresponding transformation pair tpG is

a critical pair for rules with NACs as given in [8, 3]. This is because it is in particular a conflicting

pair of transformations, and the morphism violating the NAC (since finding the three nodes) and

therefore causing the conflict after applying the first rule to G = obtaining some graph1040

H1 = is jointly surjective together with the corresponding co-match. As argued already in

Example 2 this critical pair for rules with NACs belongs to the unfolding (and in particular to the

disjunctive unfolding) of the unique AC initial conflict stpL1+L2
: 〈tpL1+L2

, acL1+L2
, ac∗L1+L2

〉.

Critical pairs for rules with NACs as introduced in [8, 3] are not minimally M-complete as

the following example illustrates. We can however reduce it to a finite, minimally (M-)complete1045

subset.
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Example 6 (Critical pairs for rules with NACs are not minimally M-complete). Consider the

rules p1 : ← → with NAC ¬∃n : → and p2 : ← → with NAC

¬∃n : → . Then we have a critical pair tpG starting from G = by applying both rules

to G with the matches sharing one node in G. This critical pair is a produce-forbid/forbid-produce1050

conflict. Now consider the graph G′ = and the critical pair tpG′ starting from G′ by applying

both rules to G′ with the matches sharing the only node in G′. This critical pair is a produce-forbid

conflict, but not a forbid-produce conflict. Now tpG′ can be extended injectively to tpG illustrating

that the set of critical pairs for rules with NACs is not minimally M-complete and can still be

reduced.1055

Corollary 5 (concrete (M-)initial conflicts for rules with NACs). Under the same conditions of

Corollary 4, if S is a maximal reduction (resp. M-maximal reduction) of the set of critical pairs

for 〈ρ1, ρ2〉, as given in [8, 3], then S is minimally complete (resp. minimally M-complete) with

respect to parallel dependence for 〈ρ1, ρ2〉.

Proof. Direct consequence of Theorem 7, Theorem 8, and Theorem 111060

7. Conclusion and Outlook

In this paper we have generalized the theory of initial conflicts (from plain rules, i.e. rules

without application conditions) to rules with application conditions (ACs) in the framework of

M-adhesive transformation systems as summarized in Table 1.

We build on the notion of symbolic transformation pairs, since it turns out that it is not pos-1065

sible to find a complete set of concrete conflicting transformation pairs in the case of rules with

ACs. We have shown that initial conflicts are complete w.r.t. parallel dependence as symbolic

transformation pairs. Moreover, initial conflicts represent (analogous to the case of plain rules)

proper subsets of critical pairs in the sense that for each critical pair (or also for each conflict),

there exists a unique initial conflict representing it. We have shown that initial conflicts (resp.1070

critical pairs) are minimally complete (resp. minimally (M-)complete), in the case of plain rules

and rules with ACs. In addition, we have shown how to extract a minimally (M-)complete set of

transformation pairs from anM-complete one. We concluded the paper by showing sufficient con-

ditions for finding unfoldings of initial conflicts that lead to (finite and) minimally (M-)complete

sets of conflicts (in particular for the case of rules with NACs). Thereby we have shown that initial1075

conflicts for rules with ACs represent a conservative extension of the critical pair theory for rules

with NACs.

As future work we want to study in more detail the case of rules with NACs. We have seen

that critical pairs, introduced and proved to beM-complete in [8, 3] are not minimal, though our

techniques show how to extract a minimally (M-)complete subset. However the straightforward1080
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plain rules rules with NACs rules with ACs

critical pairs (CPs) set of conflicts,

M-complete

[14, 15, 16, 27]

set of conflicts,

M-complete

[8, 3]

symbolic

M-complete

[9, 10]

minimally

M-complete

yes (Prop. 4) no (Example 5) yes (Prop. 5)

existence of min.

M-complete finite

set of conflicts?

yes, CPs yes, proper subset of CPs

(Cor. 5)

not guaranteed (Thm. 4)

initial conflicts proper subset of

CPs,

complete [6, 7]

symbolic (Def. 17),

regular (Thm. 10),

conservative extension of

CPs (Thm. 11)

symbolic (Def. 17),

proper subset of CPs

(Thm. 5)

conservative extension of

CPs (Prop. 4.3)

minimally complete yes (Prop. 4) yes (Prop. 5) yes (Prop. 5)

existence of min.

complete finite set

of conflicts?

yes, initial con-

flicts

yes, proper subset of CPs

(Cor. 5)

not guaranteed (Thm. 4)

Table 1: Critical pairs versus initial conflicts
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implementation of this reduction would probably not be very efficient. Hence, we would like to find

efficient procedures for their computation. This will be based on the study of the open problem if

(M-)initial transformation pairs exist for the case of NACs.

We also aim at finding further interesting classes allowing finite and (minimally) complete

unfoldings into sets of conflicts. This will serve as a guideline to be able to develop and imple-1085

ment efficient conflict detection techniques for rules with (specific) ACs, which has been an open

challenge until today.

We are moreover planning to develop (semi-)automated detection of unfoldings of initial con-

flicts into concrete conflicts for rules with arbitrary ACs using dedicated automated reasoning and

model finding for graph conditions [32, 25, 31]. It would be interesting to investigate in which use1090

cases initial conflicts (or critical pairs) are useful already as symbolic transformation pairs, and in

which use cases we rather need to consider unfoldings indeed. This is in line with the research on

multi-granular conflict detection [18, 4, 19] investigating different levels of granularity that can be

interesting from the point of view of applying conflict detection to different use cases.

Finally, we plan to investigate conflict detection in the light of initial conflict theory for at-1095

tributed graph transformation [27, 33, 34], and in particular the case of rules with so-called attribute

conditions more specifically. It would also be interesting to further investigate initial conflicts for

transformation rules (with ACs) not following the DPO approach. For example, one may con-

sider the single-pushout (SPO) approach introduced in [35], which is a generalization of the DPO

framework where only one morphism defines the rule, which may be partial to allow deletion.1100

In [22], SPO rules with negative application conditions are considered and the Local Confluence

and Parallelism Theorems are shown. As far as we know, a theory on SPO rules with nested

application conditions is missing. Moreover, the implications of initial conflict theory for the case

of graphs with inheritance [36] or rule amalgamation [37, 38] need to be further investigated.
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