
Imbalance Parameterized by Twin Cover Revisited
Neeldhara Misra
Indian Institute of Technology, Gandhinagar, India
neeldhara.m@iitgn.ac.in

Harshil Mittal
Indian Institute of Technology, Gandhinagar, India
mittal_harshil@iitgn.ac.in

Abstract

We study the problem of Imbalance parameterized by the twin cover of a graph. We show that
Imbalance is XP parameterized by twin cover, and FPT when parameterized by the twin cover and
the size of the largest clique outside the twin cover. In contrast, we introduce a notion of succinct
representations of graphs in terms of their twin cover and demonstrate that Imbalance is NP-hard
in the setting of succinct representations, even for graphs that have a twin cover of size one.

2012 ACM Subject Classification Mathematics of computing → Graph algorithms; Theory of
computation → Parameterized complexity and exact algorithms

Keywords and phrases Imbalance, Twin Cover, Layout Problems, Partition, XP, FPT

1 Introduction

Graph layout problems are combinatorial optimization problems where the objective is to
find a permutation of the vertex set that optimizes some function of interest. In this paper we
focus on the problem of determining the imbalance of a graph G. Given a permutation π of
V , we define the left and right neighborhood of a vertex, NL(v) and NR(v), to be the number
of vertices in the neighborhood of v that were placed before and after v in π. The imbalance
of v is defined as the absolute difference between these quantities, that is,

∣∣|NL(v)|− |NR(v)|
∣∣

and the imbalance of the graph G with respect to π is simply the sum of the imbalances of
the individual vertices. The imbalance of G is the minimum imbalance of G over all orderings
of V , and an ordering yielding this imbalance is called an optimal ordering1 The problem was
introduced by [2], and finds several applications, especially in graph drawing [8, 9, 12, 13, 14].

Imbalance is known to be NP-complete for several special classes of graphs, including
bipartite graphs of maximum degree six [2] and for graphs of degree at most four [10]. Further,
the problem is known to be FPT when parameterized by imbalance [11], vertex cover [5],
neighborhood diversity [1], and the combined parameter treewidth and maximum degree [11].
Recently, it was claimed that imbalance is also FPT when parameterized by twin cover [7],
which is a substantial improvement over the vertex cover parameter. We mention briefly
here that a vertex cover of a graph G is a subset S ⊆ V(G) such that G \ S is an independent
set, and a twin cover of a graph is a subset T ⊆ V(G) such that the connected components
of G \ S consist of vertices which are true twins — in particular, note that each connected
component induces a clique, and further, all vertices have the same neighborhood in the cover
T . The method employed in [7] to obtain a FPT algorithm for Imbalance parameterized

1 We refer the reader to the preliminaries for formal definitions of the terminology that we use in this
section.

ar
X

iv
:2

00
5.

03
80

0v
1

 [
cs

.D
S]

 7
 M

ay
 2

02
0

mailto:neeldhara.m@iitgn.ac.in
mailto:mittal_harshil@iitgn.ac.in

2 Imbalance Parameterized by Twin Cover Revisited

by twin cover relies on a structural lemma which, roughly speaking, states that there exist
optimal orderings where any maximal collection of true twins appear together. Based on
this, it is claimed that the cliques of G \ S can be contracted into singleton vertices to obtain
an equivalent instance H. By observing that the twin cover of G is a vertex cover of H, we
may now use the FPT algorithm for Imbalance parameterized by vertex cover to obtain
an imbalance-optimal ordering for H, and the contracted vertices can be “expanded back in
place” to recover an optimal ordering for G.

Although the structural lemma is powerful, unfortunately, we are unable to verify the safety
of the contraction step based on it. We note that the graph H has lost information about the
sizes of the individual cliques from G, and the ILP formulation is blind to the distinctions
between vertices that correspond to cliques of different sizes. Consider, for example, an
instance with a twin cover of size one — the reduced instance is a star and any layout of H
that distributes the leaves of the star almost equally around the center would have the same
imbalance, and these are indeed all the optimal layouts of H. On the other hand, several
of these layouts could have different imbalances when considered in the context of G. A
natural fix to this issue is to mimic the ILP formulation directly for the graph H, and taking
advantage of the structural lemma to come up with an appropriate set of variables that
correspond to cliques of a fixed size. Unfortunately, this leads us to a situation where the
number of variables is a function of the sizes of the cliques, and only yields an algorithm that
is FPT in the size of the twin cover and the size of the largest clique outside the twin cover.

Our Contributions.

With the premise that there is more to the twin cover parameterization for Imbalance, the
focus of this paper is on the complexity of Imbalance parameterized by twin cover. We
demonstrate that the problem is in XP when parameterized by twin cover (Theorem 12), and
FPT when parameterized by the twin cover and the size of the largest clique (Theorem 14).
The first result is based on a slightly non-trivial dynamic programming algorithm, which can
be thought of as a generalization of the classic dynamic programming routine for the Partition
problem, in which we are given n numbers and the question is if they can be partitioned
into two groups of equal sum. Indeed, the approach is inspired by the fact that the problem
of finding the optimal layout for graphs that have a twin cover of size one is essentially
equivalent to the Partition problem. However, generalizing to larger-sized twin covers involves
accounting for several details and we also discuss why the natural brute-force approaches to
an XP algorithm end up failing. The second result is based on the ILP formulation that we
alluded to earlier. We mention here that we rely crucially on the structural result of [7] for
arguing the correctness of our algorithmic approaches.

We also propose a natural notion of a succinct representation for graphs with bounded twin
covers. Note that such graphs can be specified completely by the adjacency matrix of the
twin cover and for each clique outside the twin cover, its size and its neighborhood in the
twin cover. In contrast to the algorithmic results above, the resemblance to Partition leads
us to the curious observation that the problem of Imbalance is NP-hard even for graphs
that have a twin cover of size one in the succinct setting. This is formalized in Theorem 3.
We find it particularly interesting that Imbalance is a problem for which the choice of
representation leads to a stark difference in the complexity of the problem.

We note here that several FPT algorithms for other problems parameterized by twin cover
remain FPT in a “strongly polynomial” sense and can be easily adapted to the setting of
succinct input. For example, the algorithm for Equitable Coloring [6] relies on reducing

N. Misra and H. Mittal 3

the problem to a maximum flow formulation where the sizes of the cliques outside the twin
cover feature as capacities in the flow network, and this approach remains efficient for succinct
input since the maximum flow can be found in strongly polynomial time. Similarly, the
problems of PreColoring Extension, Chromatic Number, MaxCut, and Feedback
Vertex Set as proposed by Ganian [6] can be easily adapted to being strongly polynomial
in our succinct representation.

This paper is organized as follows. We begin by describing the notation and terminology
that is the most relevant to our discussions in the next section, and refer the reader to [3]
for background on the parameterized complexity framework and to [4] for a survey of graph
layout problems. We then establish the para-NP-hardness of Imbalance parameterized by
twin cover in the setting of succinct representations in Section 3. The XP algorithm when
parameterized by the twin cover, and the FPT algorithm in the combined parameter of twin
cover and largest clique size, are described in Sections 4 and 5, respectively.

2 Preliminaries

We use G = (V ,E) to denote an undirected, simple graph unless mentioned otherwise, and we
will typically use n and m to denote |V | and |E|, respectively. The neighborhood of a vertex
v ∈ V is given by N(v) := {u | (u, v) ∈ E}. The closed neighborhood of a vertex v is given by
N[v] := N(v) ∪ {v}. Likewise, the open and closed neighborhoods of a set S ⊆ V are defined
as: N(S) := {v | v /∈ S and ∃u ∈ S such that (u, v) ∈ E} and N[S] := N(S) ∪ S, respectively.
A subset Y ⊆ V is said to be a set of true twins in G if for every pair of vertices u, v in Y,
N[u] = N[v].

Let S(V) denote the set of all orderings of V(G), and let σ be an arbitrary but fixed ordering
of V(G). For 1 6 i 6 n, ith vertex in the ordering is denoted by σ(i). The relation <σ
is defined as u <σ v if and only if u precedes v in the ordering σ. We also define the left
neighborhood and right neighborhood of a vertex v in the natural way:

NL(v,σ) = {u | u ∈ N(v) and u <σ v} and NR(v,σ) = {u | u ∈ N(v) and v <σ u}.

We also use p(v,σ) and q(v,σ) to denote the sizes of NL(v,σ) and NR(v,σ), respectively,
and we refer to these numbers as the predecessors and the successors of v with respect to σ.
If the permutation σ is clear form the context, we use the terms predecessors and successors
without qualifying for σ.

An ordering σ of V is said to be a clean ordering if for every inclusion-wise maximal subset
Y ⊆ V that forms a set of true twins in G, the vertices of Y appear consecutively in σ, i.e.,
Y contains all vertices in V that lie between the smallest and largest elements of Y (with
respect to <σ).

Imbalance. The imbalance of a vertex v with respect to an ordering σ of V is denoted
I(v,σ), and is defined as the absolute difference between the predecessors and the successors
of v, that is, I(v,σ) = |p(v,σ) − q(v,σ)|. The imbalance of an ordering σ, denoted I(σ), is
the total imbalance of all the vertices with respect to σ, and the imbalance of the graph G is
minimum imbalance over all permutations of V:

I(G) = min
σ∈S(V)

I(σ), where I(σ) =
∑
v∈V

I(v,σ).

4 Imbalance Parameterized by Twin Cover Revisited

An ordering σ of V is said to be an imbalance optimal ordering if I(σ) = I(G). We recall the
following fact from [7].

I Lemma 1 ([7]). There exists a clean imbalance optimal ordering.

Twin Cover. A subset S ⊆ V is called a twin cover if for every component X of G\S, vertices
of X form a set of true twins in G. In other words, for every component X of G \ S,vertices
of X form a clique such that for every pair of vertices u, v in V(X), N(u) ∩ S = N(v) ∩ S.
Henceforth, we will refer to the maximal cliques,or equivalently the components, of G \ S as
simply the ’cliques’ of G \ S for the sake of simplicity. We also say that S ⊆ V is a `-bounded
twin cover if it is a twin cover such that every clique in G \ S has at most ` vertices.

Note that the imbalance of a layout does not change if the positions of any pair of true twins
are exchanged. Therefore, the following is an immediate consequence of Lemma 1.

I Corollary 2. Let G be a graph and let S ⊆ V(G) be a twin cover of G. Then, there
exists an imbalance optimal ordering of G where the vertices of every clique in G \ S appear
consecutively.

For further discussion, a clean ordering in the context of a graph G given with a twin cover
S is understood to be an ordering in which the vertices of every clique of G \ S appear
consecutively. Further, we also abuse language slightly and use the term “cliques” to always
refer to the maximal cliques of G \ S, unless mentioned otherwise.

For a graph G with twin cover S, we define the type of a vertex v in G \ S as N(v) ∩ S, and
the type of a clique C in G \ S as the type of any arbitrarily chosen vertex in C. Observe
that all vertices of any clique C ∈ G \ S have the same type, and therefore the notion of the
type of a clique is well-defined. Note that G is completely specified once the structure of a
twin cover S and the sizes and types of all the cliques in G \ S is given.

In particular, given G := (H, {(`i,Si) | 1 6 i 6 r}), where each Si is a subset of V(H), the
graph G associated with G is defined in the following natural way. The vertex set of G is
given by V(G) := S ∪ C1 ∪ · · ·Ci ∪ · · · ∪ Cr, where |Ci| = `i for all i ∈ [r] and |S| = |V(H)|.
Now, identify the vertices of S with V(H) via an arbitrary but fixed mapping f, and define
the set of edges as follows. For any pair of vertices u, v ∈ S, we have (u, v) ∈ E(G) if and
only if (f(u), f(v)) ∈ E(H). Further, we induce a clique on each Ci, and finally, for any clique
Ci and a vertex v ∈ S we add edges between v and every vertex of Ci if and only if f(v) ∈ Si.
We say that G provides a succinct representation based on a twin cover. For brevity, we will
usually refer to G as a succinct representation of G. For further discussion,we use the same
notation to refer to both a vertex in V(H) and its preimage (under the function f) in S, i.e.,
for any w in V(H), we refer to f−1(w) in S as w for the sake of simplicity.

We now introduce the natural computational question associated with Imbalance. Given a
graph G = (V ,E), a twin cover S ⊆ V of size at most k, and a target t, determine if I(G) 6 t.
Unless mentioned otherwise2, our focus will be on Imbalance parameterized by k, the size
of the twin cover. For the most part, we assume that the input graph G is specified in the
standard way, i.e, by its adjacency matrix or adjacency list. If, on the other hand, G is
specified by a succinct representation in terms of its twin cover, then we say that the input
is succinct, and if this is the scenario we are in, we state it explicitly.

2 We also consider the parameter (k+ `) when we are given a `-bounded twin cover.

N. Misra and H. Mittal 5

3 Weak Para-NP-Hardness

In this section, we establish the NP-hardness of Imbalance when the input is succinct,
even for graphs that have a twin cover of size one. This can be interpreted as a “weak”
para-NP-hardness result for Imbalance when parameterized by twin cover.

I Theorem 3. For succinct input, Imbalance is NP-hard even for graphs that have a twin
cover of size one.

We establish this result by a reduction from Partition problem, which is well-known to be
weakly NP-hard. Recall that the input to Partition is a set of positive integers {a1, . . . ,ar},
and the question is if there exists a subset S ⊂ [r] such that

∑
i∈S ai =

∑
i/∈S ai. An intuitive

visual for graphs that have a twin cover of size one is to imagine that we have balls suspended
from a single point of varying weights, proportional to the sizes of the cliques, and a layout
that optimizes the imbalance is faced with the task of distributing these balls on either side
of the suspension point so that the total weight on either side is equally distributed. To
formalize this idea, we first argue a lower bound for the imbalance of any graph that has a
twin cover of size one. To begin with, consider the following function:

γ(`) :=

{
`2/2 if ` is even,
(`2 − 1)/2 if ` is odd.

We define the intrinsic imbalance of a clique C on ` vertices as γ(`). Our first claim is the
following.

I Proposition 4. Let G be given by G = (H, {(`i,Si) | 1 6 i 6 r}). Then:

I(G) >

(
r∑
i=1

γ(`i)

)
.

Proof. Let σ be an arbitrary clean imbalance optimal ordering of V . For every i in [r], let Yi
be the inclusion-wise maximal set of true twins containing the vertices of Ci. The vertices of
Yi appear consecutively in σ.Changing the inner order of true twins in a layout has no effect
on imbalance. So without loss of generality, we can assume that the vertices of Ci appear
consecutively in σ. Label them in the order of their appearance as v1

i <σ <σ v`ii . For
every j in [`i], q(vji,σ) = (`i − j) + q(v

`i
i ,σ) and p(v

j
i,σ) = (j− 1) + p(v1

i ,σ). Now,

I(G) = I(σ) >
r∑
i=1

`i∑
j=1

I(vji,σ) =
r∑
i=1

`i∑
j=1

∣∣∣q(v`ii ,σ) − p(v1
i ,σ) + (`i + 1) − 2j

∣∣∣
For every i in [r],

`i∑
j=1

|q(v`ii ,σ) − p(v
1
i ,σ) + (`i + 1) − 2j| >

`i∑
j=1

|(`i + 1) − 2j|

If `i is even,
`i∑
j=1

|(`i + 1) − 2j| = 2

`i
2∑
j=1

(2j− 1) = `2i
2

6 Imbalance Parameterized by Twin Cover Revisited

If `i is odd,
`i∑
j=1

|(`i + 1) − 2j| = 2

`i−1
2∑
j=1

2j = `2i − 1
2

Hence, I(G) >
∑r
i=1 γ(`i).

J

For a graph G given by G := (H, {(`i,Si) | 1 6 i 6 r}), define:

ι(G) :=

(
r∑
i=1

γ(`i)

)
.

The following observation is based on the fact that if a graph has a twin cover of size one,
then final imbalance of odd-sized cliques is one more than their intrinsic imbalance, and the
final imbalance of even-sized cliques is equal to their intrinsic imbalance, and this is true for
any clean ordering, irrespective of where the cliques are placed in the layout relative to the
twin cover vertex.

I Proposition 5. Let G be a connected graph given by G = (H, {(`i,Si) | 1 6 i 6 r}) where
H = {v}. Then I(G) > ι(G) +

∑r
i=1(`i mod 2).

Proof. We proceed in exactly the same way as in proof of Proposition 1 to obtain I(G) >∑r
i=1
∑`i
j=1

∣∣∣q(v`ii ,σ) − p(v1
i ,σ) + (`i + 1) − 2j

∣∣∣. Since |H| = 1 and G is a connected graph,for
every i in [r], either p(v1

i ,σ) = 1,q(v`ii ,σ) = 0 or p(v1
i ,σ) = 0,q(v`ii ,σ) = 1. In both cases,

we have:
`i∑
j=1

∣∣∣q(v`ii ,σ) − p(v1
i ,σ) + (`i + 1) − 2j

∣∣∣ =
 `i∑
j=1

|(`i + 1) − 2j|

+ (`i mod 2)

Hence, I(G) >
∑r
i=1(γ(`i) + (`i mod 2)) = ι(G) +

∑r
i=1(`i mod 2).

J

We have the following straightforward consequence of Proposition 5.

I Corollary 6. Let G be a connected graph given by G = (H, {(`i,Si) | 1 6 i 6 r}) where
H = {v}. Then I(G) = ι(G) +

∑r
i=1(`i mod 2) + I(v).

We are now ready to describe the reduction from Partition.

Proof. (Proof of Theorem 3.) Given an instance P := {a1, . . . ,ar} of Partition, let
GP be given by G(P) = (H, {(`i,Si) | 1 6 i 6 r}), which in turn is defined as follows:
H = {v}, `i = ai for all i ∈ [r], and Si = {v} for all i ∈ [r].

The instance of Imbalance is now given by (GP,S = {v}, t = ι(GP) +
∑r
i=1(ai mod 2)).

This completes the construction, and we now turn to a proof of equivalence.

Forward Direction. Suppose there exists a subset A ⊂ [r] such that
∑
i∈A ai =

∑
i∈[r]\A ai.

Let L := {Ci | i ∈ A} and R := {Ci | i ∈ [r] \A}. Consider an arbitrary clean ordering σ of
V(GP) that places the vertices of cliques in L to the left of v and the vertices of cliques in R

to the right of v,i.e.,σ is an arbitrary clean ordering such that

N. Misra and H. Mittal 7

for every clique X in L, for every vertex u in X, u <σ v
for every clique Y in R, for every vertex w in Y, w >σ v

Then, observe that:

I(v) =

∣∣∣∣∣∣
∑
i∈A

ai −
∑

i∈[r]\A

ai

∣∣∣∣∣∣ = 0,

and by Corollary 6, we have that I(GP) = ι(GP) +
∑r
i=1(ai mod 2), as desired.

Reverse Direction. Suppose I(GP) 6 ι(GP) +
∑r
i=1(ai mod 2). Using Proposition 2, we

also know that I(GP) > ι(GP)+
∑r
i=1(ai mod 2). Thus, I(GP) = ι(GP)+

∑r
i=1(ai mod 2).

Let σ be an arbitrary clean imbalance optimal ordering of V(GP).

Without loss of generality, vertices of Ci appear consecutively in σ, for every i in [r]. Let:

L := {i ∈ [r] | for every vertex u in Ci,u <σ v}
R := [r] \ L = {i ∈ [r] | for every vertex w in Ci,w >σ v}.

Recall that by Corollary 6, we have that I(v,σ) = 0. Thus, we have:

I(v,σ) =

∣∣∣∣∣∑
i∈L

ai −
∑
i∈R

ai

∣∣∣∣∣ = 0.

Hence,
∑
i∈L ai =

∑
i∈R ai, as desired. J

The argument above establishes the NP-hardness of Imbalance for succinct input, even
on graphs that have a twin cover of size one. We can also establish membership in NP as
follows. Observe that the imbalance of a layout is completely determined by the imbalance
of the vertex v, and therefore it suffices to provide a partition of the cliques as a certificate.
The layout corresponding to a partition of the numbers {`i | 1 6 i 6 r}) into (L,R) would
place all cliques whose sizes correspond to numbers in L to the left of the twin cover vertex,
and the remaining to the right. Note that it is straightforward to compute the imbalance
of the twin cover vertex in the layout associated with the given partition. Also, since the
quantity ι(G) +

∑r
i=1(`i mod 2) can be computed efficiently, we can check if this layout has

the desired imbalance in strongly polynomial time. Finally, note that any Yes-instance of
the problem admits a valid certificate since there exists an optimal layout that is also clean.
We generalize this argument for twin covers of arbitrary size in Section 4.

4 An XP Algorithm

In this section, our goal is to demonstrate an XP algorithm for Imbalance parameterized
by twin cover when the entire input is given explicitly in the standard form. Throughout,
we use G to denote the graph given as input, S ⊆ V(G) denotes a twin cover of size k, and
the question is if G admits a layout whose imbalance is at most t. We denote the cliques
of G \ S by C1, . . . ,Cr, and we let `i denote the number of vertices in Ci. We also use ` to
denote max{`1, . . . , `r}.

To begin with, let us consider some natural brute-force approaches, described informally,
that will eventually motivate the definitions that we will encounter later. Assuming we are

8 Imbalance Parameterized by Twin Cover Revisited

dealing with a Yes-instance, let σ? denote a clean ordering of V(G) whose imbalance is at
most t.

A First Approach.

First, we may guess the relative order of the vertices of S in σ?. Further, since σ? is a clean
ordering, we know that for any Ci ∈ G \ S every vertex of Ci lies between some consecutive
pair of vertices from S in σ?. Thus, for every clique Ci ∈ G \ S, we may guess it’s “final
location”, i.e, the choice of the consecutive pair of twin cover vertices that the clique is
sandwiched between in σ?. Since there are k + 1 possible addresses for this final location,
this requires examining O((k+ 1)r) possibilities, which is too expensive.

Using Types Based on Neighbhorhoods.

Recall that the type of a clique is defined as its neighborhood in the twin cover S. While
there are an unbounded number of cliques in G \ S, there are at most 2k types of cliques,
and we might hope that cliques of the same type may be treated similarly. In particular,
consider that for each location between consecutive twin cover vertices in σ?, we guess the
number of cliques of each type that appear in that location. For a type τ, let r(τ) denote the
number of cliques of type τ. In contrast to the brute force approach above, this would only
require us to examine

∏
τ∈2S

(
k+ r(τ)

k

)
= O((nk)2k)

possibilities. Unfortunately, this guess is too “coarse”, and does not give us enough information
to determine the imbalance of the layout. For example, consider a connected graph with
a twin cover of size one. Here every clique has the same type (say τ) and there are two
locations to consider in σ?. Suppose we guess that we have r2 cliques of type τ in the first
location and r

2 cliques of type τ in the second location. It is easy to devise examples for which
there would be multiple layouts that are consistent with this guess, each with a different
imbalance. The main reason for this is that our notion of types here ignores the sizes of the
cliques, which is an important ingredient in determining the exact imbalance of the layout in
question. This is exemplified with a concrete example in Figure 1.

Figure 1 In first layout, C1 and C2 are placed to the left of v and C3 and C4 are placed to the
right of v and I(v) = 1. In the second layout, C3 and C2 are placed to the left of v and C4 and C1
are placed to the right of v and I(v) = 3.

N. Misra and H. Mittal 9

Refining Types.

A natural attempt to fix the previous approach is to refine the notion of types so that they
incorporate some information about the sizes of the cliques. To this end, for each j ∈ [`]

and each subset T ⊆ S we let λ(T , j) denote the set of cliques of type T that have size j.
Further, we say that any clique in λ(T , j) has a supertype τ(T , j). This refinement, used in the
framework above, does give us all the information that we need to compute the imbalance
of any layout that is consistent with our guesses. On the other hand, our guesses are once
again too expensive, since the size of the largest clique now features in the exponent, and is
unbounded in the parameter. In particular, note that the number of possibilities that we
have to examine has now increased to:

∏
(T ,j)∈2S×[`]

(
k+ |λ(T , j)|

k

)
= O((nk)`2

k

).

Note that although our upper bound is not tightly argued, there are graphs3 for which the
running time of this algorithm would run into Ω(k

√
n), and therefore, we may rule out the

hope for a XP bound based on an improved analysis of this algorithm.

Types with Thresholds: The Best of Both Worlds?

To overcome the challenges above, we introduce a type concept that distinguishes between
“small” and “large” cliques. The key observation that leads us to determine a threshold is
formalized in Corollary 8, but informally, it is the following idea. If two cliques Ci and Cj
are sufficiently large and happen to have the same parity and the same type τ, but possibly
different sizes (that is, `i 6= `j), then the total imbalance of their vertices in a layout σ can
be thought of as γ(`i) + cτ(x) and γ(`j) + cτ(y), where cτ(·) is a function that depends only
on the location of the cliques. In particular, this means that large cliques that have the same
type and parity, and which end up in the same location of a layout will have the same “excess
imbalance” over and above their “intrinsic imbalance” (which is given by γ). This eventually
allows us to estimate the total imbalance of large cliques by focusing only on the excess to
begin with, and finally adding the intrinsic imbalances of all large cliques across the board.

With this observation at hand, it is tempting to repeat the brute force approach from above
with this more nuanced notion of types. However, some reflection reveals that while the
approach would yield a XP running time, it is again somewhat information-starved: while
Lemma 7 will allow us to estimate the imbalance of all the cliques in any layout that respects
a fixed guess, we would still face ambiguity in determining the imbalances of the twin cover
vertices. Therefore, instead of employing the brute-force approach, we turn to a dynamic
programming routine, which is inspired by the well-known pseudo polynomial algorithm for
the Subset Sum problem. Indeed, for the special case when the input is a connected graph
with a twin cover of size one, our algorithm coincides with the Subset Sum DP.

Before describing our DP table and the associated recurrence, we first introduce some
definitions. A clique C in G \ S is said to be a large clique if |C| > k, and is said to be a
small clique otherwise. Further, a clique C ∈ G \ S is even (respectively, odd) if it has an

3 Consider, for instance, the running time that is obtained when the input graph has one clique each of
size one, two, three, and so on up to O(

√
n).

10 Imbalance Parameterized by Twin Cover Revisited

even (respectively, odd) number of vertices. Recall that the intrinsic imbalance of a clique
on ` vertices is γ(`). We now introduce two related notions. The total imbalance and excess
imbalance of a clique C on ` vertices with respect to a layout σ is given by, respectively:

γ?(C,σ) =
∑
v∈C

I(v,σ) and γ+(C,σ) = γ?(C,σ) − γ(`).

We now claim that the excess imbalance of any large clique is a function of its parity, type,
and location in the layout σ, and in particular, is independent of its size.

I Lemma 7. Let G be a graph and let S ⊆ V(G) be a twin cover of G of size k. Further, let
C be a large clique in G \ S of type T ⊆ S. For any layout σ we have:

γ+(C,σ) =
{
bδ(C,σ)2

2 c if C is an even clique,
dδ(C,σ)2

2 e if C is an odd clique,

where δ(C,σ) denotes the difference |NL(v,σ) ∩ S|− |NR(v,σ) ∩ S|, for any v ∈ C.

Proof. To begin with, note that the total imbalance of C is given by:

γ?(C,σ) =
|C|∑
j=1

∣∣∣δ(C,σ) + 2j− |C|− 1
∣∣∣ = |C|∑

j=1

∣∣∣δ(C,σ) − 2j+ |C|+ 1
∣∣∣,

where the second expression is obtained by adding the imbalances of the vertices of the clique
in reverse order. We consolidate this to:

γ?(C,σ) =
|C|∑
j=1

∣∣∣|δ(C,σ)|+ |C|+ 1− 2j
∣∣∣

Let us use κ(C,σ) to denote |C|+ |δ(C,σ)|. If κ(C,σ) is even:

γ?(C,σ) =
min(|C|,κ(C,σ)

2)∑
j=1

(
κ(C,σ) + 1− 2j

)
+

|C|∑
j=κ(C,σ)

2 +1

(
2j− (κ(C,σ) + 1)

)

We now claim that κ(C,σ)/2 < |C| when C is a large clique. Indeed, this follows from the
fact that δ(C,σ) 6 |S| = k, and further, |C| > k since C is a large clique. Therefore, the
expression above simplifies to:

γ?(C,σ) =

κ(C,σ)
2∑
j=1

(
κ(C,σ) + 1− 2j

)
+

|C|∑
j=κ(C,σ)

2 +1

(
2j− (κ(C,σ) + 1)

)
.

By a change of variable it’s straightforward to check that the terms above evaluate to the
following sums:

N. Misra and H. Mittal 11

γ?(C,σ) =

κ(C,σ)
2∑
j=1

(2j− 1) +

|C|−|δ(C,σ)|
2∑
j=1

(2j− 1) = δ(C,σ)2 + |C|2

2 .

Analogously4, for the case when κ(C,σ) is odd, we have:

γ?(C,σ) =

κ(C,σ)−1
2∑
j=1

(
κ(C,σ) + 1− 2j

)
+

|C|∑
j=κ(C,σ)+1

2

(
2j− (κ(C,σ) + 1)

)

=

κ(C,σ)−1
2∑
j=1

(2j) +

|C|−|δ(C,σ)|−1
2∑
j=1

(2j) = δ(C,σ)2 + |C|2 − 1
2

Hence,

γ+(C,σ) =
⌊
δ(C,σ)2 + |C|2

2

⌋
−

⌊
|C|2

2

⌋
=

{
bδ(C,σ)2

2 c if C is an even clique,
dδ(C,σ)2

2 e if C is an odd clique.

This concludes the proof. J

I Corollary 8. Let G be a graph and let S ⊆ V(G) be a twin cover of G of size k. Further,
let Ci and Cj be large cliques in G \ S that have the same parity and type. If σ is a layout
that places Ci and Cj in the same location, then γ+(Ci) = γ+(Cj).

Proof. The claim follows from the fact that δ(Ci,σ) = δ(Cj,σ) when Ci and Cj are both
large cliques with the same type and that share the same location in the layout σ. Further,
γ+(Ci,σ) = γ+(Cj,σ) since Ci and Cj are given to have the same parity. J

Let us now formalize the notion of ’location’ in an ordering. Let σ be an arbitrary but fixed
ordering. We say that a vertex v in G \ S is placed at the location |σ<v ∩ S| + 1, where
σ<v := {w | w <σ v}. If σ is a clean ordering, we also say that a clique C ∈ G \ S is placed at
the location |σ<v ∩ S|+ 1, where v is an arbitrarily chosen vertex of C. Note that since σ is
a clean ordering, for any clique C ∈ G \ S, all its vertices are placed at the same location.
Therefore the notion of the location of a clique is well-defined. Intuitively, the location of a
clique tells us where it lies in the layout relative to the twin cover vertices. In particular,
cliques that are placed at location 1 < i 6 k lie between the (i− 1)th and the ith twin cover
vertex; with cliques at locations 1 and k+ 1 being placed to the left of the first twin cover
vertex and to the right of the last twin cover vertex, respectively.

Let C :=
(
2S × {0}× [k]

)
∪
(
2S × {1}× {e,o}

)
. A class is a triplet (T ,b, j) ∈ C. Recall that

the type of a clique C is given by N(C)∩ S. Let T ⊆ S be arbitrary but fixed, and let C be a
clique of type T . Then, the class of the clique C is given by:

(T , 1,o) if C is a large odd clique.
(T , 1, e) if C is a large even clique.
(T , 0, j) if C is a small clique on j vertices.

4 We skip directly to the last step since the argument is identical to the previous case.

12 Imbalance Parameterized by Twin Cover Revisited

We will typically use ν to denote an element of C.

We now turn to the notion of specifications, which capture the “demand” that we may make
for the number and the total sizes of the cliques of a particular class at a particular location.
Formally, a specification is a map from C× [k+ 1] to [n] ∪ {0}. We relate specifications to
layouts in the following definitions.

Given a specification α, we say that a layout σ respects α in count if, for each location
j ∈ [k + 1] and for every class ν ∈ C, the number of cliques of class ν in location j
according to σ is α(ν, j).
Given a specification β, we say that a layout σ respects β in size if, for each location
j ∈ [k + 1] and for every class ν ∈ C, the total size of cliques of class ν in location j
according to σ is β(ν, j).

We say that two layouts σ and π are similar with respect to S if the layouts are identical
when projected on the vertices of S. Our first observation is that the notion of specifications
is sufficiently rich in the context of imbalance in the following sense: for an arbitrary but
fixed pair of specifications (α,β), all similar layouts that respect α in size and β in count
have the same imbalance. We formalize this claim below.

I Lemma 9. Let G be a graph and let S be a twin cover of G of size k. Also, let α and β be
two specification functions for G and let σ and π be two clean layouts of G that are similar
with respect to S. If σ and π both respect α in count and β in size, then I(σ) = I(π).

Proof. Label the vertices of S in the order of their appearance in σ as s1 < . . . < sk. Note
that since σ and π are similar, this is also the order of the vertices of S in π. Let S0 := φ

and for every i in [k], let Si := Si−1 ∪ {si}. Also, let:

L := {C | C is a large clique in G \ S}.

For every T ⊆ S, p ∈ [k], q ∈ [k+ 1], we have the following.

The imbalance of a clique C of class (T , 0,p) (i.e, a small clique C of type T and size p)
placed at location q is given by:

γ∗(C) =

p∑
j=1

∣∣∣|T ∩ (S \ Sq−1)|− |T ∩ Sq−1|+ (p+ 1) − 2j
∣∣∣ =: θ(T ,0,p)(q)

By Lemma 7, the excess imbalance of a clique C of class (T , 1, e) (i.e, a large even clique
C of type T) placed at location q is given by:

γ+(C) =

(
|T ∩ (S \ Sq−1)|− |T ∩ Sq−1|

)2

2

 =: θ(T ,1,e)(q)

By Lemma 7, the excess imbalance of a clique C of class (T , 1,o) (i.e, a large odd clique
C of type T) placed at location q is given by:

γ+(C) =

(
|T ∩ (S \ Sq−1)|− |T ∩ Sq−1|

)2

2

 =: θ(T ,1,o)(q)

N. Misra and H. Mittal 13

For every i ∈ [k], imbalance of twin cover vertex si is given by:

I(si) =

∣∣∣∣∣∣∣∣|N(si) ∩ (S \ Si)|− |N(si) ∩ Si|+
∑

ν=(T ,·,·)∈C
si∈T

(k+1∑
q=i+1

β(ν,q) −
i∑
q=1

β(ν,q)
)∣∣∣∣∣∣∣∣ .

Hence, the imbalance of any layout that respects α in count and β in size, and orders the
vertices of the twin cover as stated in the beginning is given by:

k∑
i=1

I(si) +
∑
T∈2S

k+1∑
q=1

k∑
p=1

(
α((T , 0,p),q) · θ(T ,0,p)(q)

)
+

∑
C∈L

γ(|C|) +
∑
T∈2S

k+1∑
q=1

(
α((T , 1, e),q) · θ(T ,1,e)(q) + α((T , 1,o),q) · θ(T ,1,o)(q)

)
.

Since these criteria apply to both σ and π, it follows that they have the same imbalance and
their imbalance is given by the expression above. J

Based on the proof of Lemma 9, we have the following lemma.

I Lemma 10. Let G be a graph and let S be a twin cover of G of size k. Also, let α and β
be two specification functions for G. Let π be an ordering of the vertices of S. For any layout
σ of the vertices of G that respects α in count and β in size, and which is consistent with π
when restricted to S, its imbalance can be computed in time O(g(k) · k · nO(1)).

Proof. Given α, β and π, the lemma follows from the fact that the imbalance of any layout
σ of the vertices of G that respects α in count and β in size, and which is consistent with π
when restricted to S is given by:

k∑
i=1

h(i) +
∑
T∈2S

k+1∑
q=1

k∑
p=1

(
α((T , 0,p),q) · θ(T ,0,p)(q)

)
+

∑
C∈L

γ(|C|) +
∑
T∈2S

k+1∑
q=1

(
α((T , 1, e),q) · θ(T ,1,e)(q) + α((T , 1,o),q) · θ(T ,1,o)(q)

)
,

where:

S0 := φ, and for each i ∈ [k],Si = Si−1 ∪ {π(i)}

for each T ∈ 2S,p ∈ [k],q ∈ [k+ 1],

θ(T ,0,p)(q) :=

p∑
j=1

∣∣∣|T ∩ (S \ Sq−1)|− |T ∩ Sq−1|+ (p+ 1) − 2j
∣∣∣

for each T ∈ 2S,q ∈ [k+ 1],

θ(T ,1,e)(q) :=

(
|T ∩ (S \ Sq−1)|− |T ∩ Sq−1|

)2

2

θ(T ,1,o)(q) :=

(
|T ∩ (S \ Sq−1)|− |T ∩ Sq−1|

)2

2

14 Imbalance Parameterized by Twin Cover Revisited

for each i ∈ [k],

h(i) :=

∣∣∣∣∣∣∣∣|N(π(i)) ∩ (S \ Si)|− |N(π(i)) ∩ Si|+
∑

ν=(T ,·,·)∈C
π(i)∈T

(k+1∑
q=i+1

β(ν,q) −
i∑
q=1

β(ν,q)
)∣∣∣∣∣∣∣∣ .

It is easy to check that the expression above can be computed in time O(g(k) ·k ·nO(1)). J

Our next claim is that the number of specification functions is bounded as a function that is
XP in k. More specifically, we have the following.

I Proposition 11. Let G be a graph and let S be a twin cover of G of size k. Then, the
number of specification functions is bounded by (n+1)g(k), where g(k) = (2k ·(k+2))×(k+1).

Proof. This follows from the fact that the number of possible classes is at most (2k · (k+ 2)),
and that the number of functions from a domain with a elements to a range with b elements
is ba. J

We are now finally ready to present our dynamic programming algorithm. For any pair of
specifications (α,β), we say that a layout respects (α,β) if it respects α in count and β in
size. Recall that the cliques of G \ S were denoted by C1, . . . ,Cr. For j ∈ [r], let Hj denote
the graph G[S ∪ C1 ∪ . . . ∪ Cj]. Now consider the following DP table, where α and β are
specifications and q ∈ [r]:

T(α,β,q) =
{
1 if there exists a layout σ of Hq that respects (α,β),
0 otherwise.

Before describing the recurrence for Tπ(α,β,q), we informally allude to why this is useful to
compute. To check if G admits a layout of imbalance at most t, our algorithm proceeds as
follows. For all specification pairs (α,β), we check if T(α,β, r) = 1. For all the instances
where the entries are one, we compute the imbalance of any layout that respects (α,β) based
on Lemma 9, by trying all possible choices for the ordering of twin cover vertices. If we ever
encounter an imbalance value that is at most t then we abort and return Yes, otherwise
we return No after all choices of π and the corresponding specification pairs have been
exhaustively examined.

We now turn to the computation of the DP table T. For the base case, we have q = 1, and
it is easy to see that there are exactly (k + 1) choices — one for each possible location —
of pairs of specifications (α,β) for which Tπ(α,β,q) = 1. For the sake of exposition, we
explicitly describe these pairs. Recall that the size of C1 is given by `1, suppose the class of
C1 is C?. Then consider the specification function pairs (αi,βi)i∈[k+1] defined as follows:

αi(C, j) =
{
1 if j = i and C = C?,
0 otherwise,

and

N. Misra and H. Mittal 15

βi(C, j) =
{
`1 if j = i and C = C?,
0 otherwise.

This motivates the definition of T for the base case:

T(α,β, 1) =

1 if there exists i ∈ [k+ 1] such that
α = αi and β = βi

0 otherwise.

Before proceeding to the recurrence, let us introduce a definition that will make the recurrence
simpler to describe. We say that a clique C of size ` whose class is C is an overfit for a
location j ∈ [k+ 1] with respect to the pair of specifications (α,β) if:

α(C, j) = 0, i.e, there is no “demand” for a clique of class C at location j; or
β(C, j) < `, i.e, the total sizes of the cliques of class C that are expected at location j is
smaller than the size of C.

We now turn to the recurrence for T(α,β,q) for some q ∈ [r]. Let the class of the clique Cq
be C?. Define the following auxiliary specifications for i ∈ [k+ 1], which, intuitively speaking,
capture the subproblems of interest if the clique Cq were to be placed at location i:

αi(C, j) =
{
α(C, j) − 1 if j = i and C = C?,
α(C, j) otherwise,

and

βi(C, j) =
{
βi(C, j) − `q if j = i and C = C?,
βi(C, j) otherwise.

Let B ⊆ [k+ 1] be the set of all locations for which Cq is not an overfit with respect to (α,β).
Then, we have:

T(α,β,q) = ∨i∈BT(αi,βi,q− 1).

The discussions above lead us to the main result of this section.

I Theorem 12. Imbalance is in XP when parameterized by twin cover.

Proof. Our algorithm begins by computing T as described above. For every pair of specifica-
tion functions (α,β) such that T(α,β, r) = 1, we guess a layout π of the vertices of the twin
cover S and use Lemma 9 to compute the imbalance of any layout which respects (α,β) and is
consistent with π when restricted to S. Observe that the DP table has ((n+1)2g(k) ·r) entries,

16 Imbalance Parameterized by Twin Cover Revisited

each of which require O(k) table lookups to be computed. Therefore, the total running time
of this approach, ignoring factors polynomial in n, is given by O?(k! · (n+ 1)2g(k) · r ·k · f(k)),
where f(k) is the time required to compute the expression given by Lemma 10.

It only remains to establish the correctness of this approach. The correctness of the recurrence
defining T is an immediate consequence of the definitions. We now turn to the correctness of
the overall algorithm.

On the one hand, if the input is a Yes instance, then there exists a clean ordering of V(G),
say σ, whose imbalance is at most t. Let π be the ordering obtained from σ restricted to
the twin cover vertices, and let (α,β) be the unique pair of specification functions that σ
respects. Note that T(α,β, r) = 1, and the imbalance given by Lemma 10 when applied with
(α,β) as the choice of specification functions and π as the relative order on S is exactly the
imbalance of σ. Therefore, our algorithm outputs Yes.

Conversely, if the output of our algorithm is positive, then there is a choice of π, an ordering
of the twin cover vertices, and pair of specification functions (α,β), for which:

The entry T(α,β, r) = 1, and,
the imbalance as given by Lemma 9 when applied with (α,β) as the choice of specification
functions and π as the relative order on S is at most t.

By the semantics of T and the correctness of the recurrence, we know that T(α,β, r) = 1
implies the existence of a layout σ of V(G) that respects (α,β). We rearrange the vertices of
S so that the final layout is consistent with π. Observe that Lemma 10 guarantees that the
imbalance of the modified layout is at most t, and this concludes our argument. J

To conclude this section, we also remark that Imbalance is in NP for succinct inputs.

I Proposition 13. Imbalance is in NP for succinct inputs.

Proof. We argued the correctness of above claim for twin cover of size one in Section 3.Now
consider the case of a twin cover S ⊆ V(G) of any size k, not necessarily one. If the input
(G,S, t) is a YES-instance,we know that there exists a clean ordering,say σ, of imbalance at
most t. Since the imbalance of any clean ordering is completely determined by the relative
order of twin cover vertices and the location of every clique of G \ S in the ordering, it
suffices to provide σ when restricted to S (say s1 < . . . < sk) and the location of every clique
C1,,Cr of G \ S in σ as a certificate.Let S0 := φ and for every i in [k], let Si := Si−1 ∪ {si}.
For every i in [r], let us denote the location of Ci as d[i]. For every clique C of G\S, let τ(C)
denote the type of C. Also, for every q in [k + 1], let Pq := {Cj | j ∈ [r],d[j] = q}, i.e., Pq
denotes the set of cliques of G \S that are placed at location q in σ. Given the certificate,one
can compute the imbalance of σ and compare it against the target, i.e., t. This computation
can be done in strongly polynomial time as follows:

For every i in [k], the imbalance of ith twin cover vertex, si can be computed as follows:

I(si) =

∣∣∣∣∣∣∣∣
i∑
q=1

∑
C∈Pq
si∈τ(C)

|C|−

k+1∑
q=i+1

∑
C∈Pq
si∈τ(C)

|C|

∣∣∣∣∣∣∣∣
For every i in [r], imbalance of the vertices of clique Ci can be computed as follows:

N. Misra and H. Mittal 17

if Ci is a small clique,

γ?(Ci) =

|Ci|∑
j=1

∣∣∣|τ(Ci) ∩ (S \ Sd[i]−1)|− |τ(Ci) ∩ Sd[i]−1|+ (|Ci|− j) − (j− 1)
∣∣∣

if Ci is a large even clique,

γ?(Ci) = γ(|Ci|) +

⌊
(|τ(Ci) ∩ (S \ Sd[i]−1)|− |τ(Ci) ∩ Sd[i]−1|)

2

2

⌋
if Ci is a large odd clique,

γ?(Ci) = γ(|Ci|) +

⌈
(|τ(Ci) ∩ (S \ Sd[i]−1)|− |τ(Ci) ∩ Sd[i]−1|)

2

2

⌉
Now, the imbalance of the layout can be computed as:

k∑
i=1

I(si) +

r∑
i=1

γ?(Ci).

This concludes the proof. J

5 Parameterizing by bounded Twin Cover

In this section, we describe an ILP approach for the imbalance problem parameterized by
twin cover when the entire input is given explicitly in the standard form. As in the previous
section, we use G to denote the graph given as input, S ⊆ V(G) denotes a twin cover of size
k. Recall that the question we are addressing is if G admits a layout whose imbalance is at
most t. We denote the cliques of G \ S by C1, . . . ,Cr, and we let `i denote the number of
vertices in Ci. We also use ` to denote max{`1, . . . , `r}. Further, for each τ ∈ 2S,p ∈ [`], we
use W(τ,p) to denote the number of p-sized cliques of type τ. The number of variables that
we introduce here will be a function of k and `.

To begin with, let π be an arbitrary but fixed order on the twin cover vertices. Label the
vertices of S in the order of their appearance in π as s1 < . . . < sk. Let S0 := φ and for
every i in [k], let Si := Si−1 ∪ {si}. We also guess a sign signature tj ∈ {+1,−1} for all j ∈ [k]

which we will need for technical reasons that will be apparent in a moment. Now, for each
τ ∈ 2S,q ∈ [k+ 1],p ∈ [`], we introduce a variable xqτ,p for denoting the number of cliques of
size p and type τ placed at location q in a layout.

In particular, let X := {xqτ,p | τ ∈ 2S,q ∈ [k + 1],p ∈ [`]}. We say that an assignment
f : X→ [n] ∪ {0} is valid if:

for each τ ∈ 2S,p ∈ [`] :

k+1∑
q=1

xqτ,p =W(τ,p).

For a valid assignment f, we let σf be the following layout of V(G): for each q ∈ [k + 1],
τ ∈ 2S and p ∈ [`], we place xqτ,p p-sized cliques of type τ at location q. Further, we arrange
the twin cover vertices according to π. Now, for i ∈ [k], we define:

18 Imbalance Parameterized by Twin Cover Revisited

R(i) :=
∣∣N(si) ∩ (S \ Si)

∣∣+

k+1∑
q=i+1

∑
τ∈2S
s.t.
si∈τ

∑̀
p=1

(p · xqτ,p)

 ,

and:

L(i) :=
∣∣N(si) ∩ Si−1

∣∣+

i∑
q=1

∑
τ∈2S
s.t.
si∈τ

∑̀
p=1

(p · xqτ,p)

 .

Given a valid assignment f, note that L(i) and R(i) give the number of left and right neighbors
of si if each xqτ,p is substituted with f(xqτ,p).

Finally, for each τ ∈ 2S and q ∈ [k+ 1], we define ∆qτ :=
∣∣τ∩ (S \ Sq−1)

∣∣− ∣∣τ∩ Sq−1
∣∣ and let:

cqτ,p :=

(
p∑
i=1

∣∣∣∆qτ + (p− i) − (i− 1)
∣∣∣) .

We are now ready to describe the ILP formulation, which we propose as follows.

Minimize:

k+1∑
q=1

∑
τ∈2S

∑̀
p=1

cqτ,p · xqτ,p +

k∑
j=1

tj(R(j) − L(j))

subject to:

for each τ ∈ 2S,p ∈ [`] :

k+1∑
q=1

xqτ,p =W(τ,p),

for all j ∈ [k] : tj(R(j) − L(j)) > 0,

and:

xqτ,p > 0 for all τ ∈ 2S,p ∈ [`], and q ∈ [k+ 1].

Note that the number of variables in the ILP is given by 2k · (k+ 1) · `, which implies that the
time we need to solve the ILP using Lenstra’s algorithm is FPT in k and `. The correctness
of the formulation is largely self-evident, and we sketch a brief argument for the sake of
completeness.

Any clean ordering σ of V(G) can be realized by an assignment to the variables of the ILP
as follows: for each q ∈ [k+ 1], τ ∈ 2S,p ∈ [`], we set xqτ,p to the number of p-sized cliques of
type τ that are placed in location q of σ. Further, let π be the ordering σ restricted to S.
For each j ∈ [k], we set tj = 1 if NR(sj,σ) > NL(sj,σ), and tj = −1 otherwise. It is easy to

N. Misra and H. Mittal 19

check that the objective function of the ILP evaluates to I(σ) under this assignment of the
variables. Since there exists an optimal clean ordering, we have that the ILP is minimized at
a value that is at most the optimal imbalance of G among all layouts that order the vertices
of the twin cover according to π.

In the other direction, consider an assignment g to the variables X ∪ {tj | j ∈ [k]} that
optimizes the ILP above. Let f be the restriction of g to X. By the first constraint, we know
that f is a valid assignment as defined before. Note that the setting of the values of tj’s
mimic the behavior of the absolute value function due to the second constraint. Based on
this, it is straightforward to verify that the value of the objective function with respect to
the assignment f corresponds to the imbalance of the layout σf. This establishes that the
optimal imbalance of G among all layouts that order the vertices of the twin cover according
to π is also a lower bound for the optimal value of the ILP.

Therefore, by examining all k! orderings of the twin cover vertices S and solving the cor-
responding ILPs, it is clear from the discussion above that we can determine the optimal
imbalance of G in FPT time when parameterized by the size of the twin cover S and size of
the largest clique in G \ S. This concludes the proof of the following theorem.

I Theorem 14. Imbalance is FPT when parameterized by (k+ `), where k is the size of a
`-bounded twin cover.

6 Concluding Remarks

We investigated the complexity of Imbalance parameterized by twin cover. We demonstrated
that that the problem is XP by a dynamic programming approach, and that it is FPT when
parameterized by twin cover as well as the size of the largest clique in the graph when the
twin cover is removed. It is also easy to see that the problem is FPT when parameterized by
the twin cover and the number of cliques outside the twin cover, by simply restricting our
attention to clean orderings and trying all possible permutations of the cliques and guessing
where the twin cover vertices ‘fit’ among them. This leads us to conclude that the tractable
cases are, roughly speaking, when there are a small number of large cliques or a large number
of small cliques, and the interesting cases lie in the middle of this spectrum. The most
evident open question that emerges from our discussions is the issue of whether Imbalance
is FPT when parameterized by twin cover.

We also introduced a notion of succinct representations of graphs in terms of their twin
cover. It would be interesting to revisit problems which are FPT in twin cover but with
a “pseudo-polynomial” running time in the setting of succinct input as described here. In
particular, from the work of Ganian [6], there are already some problems whose stated
algorithms are not efficient in the succinct setting. For example, the algorithm for Boxicity
relies on the fact that the edges within the clique are irrelevant, based on which we may
obtain an equivalent instance for which the twin cover becomes a vertex cover. It would be
an interesting direction of future work to examine which of these problems remain FPT with
a strongly polynomial running time when we work with succinct representations. Our work
here demonstrates that Imbalance is already one problem for which the representation has
a non-trivial influence on the complexity.

20 Imbalance Parameterized by Twin Cover Revisited

References
1 Olav Røthe Bakken. Arrangement problems parameterized neighbourhood diversity. Master’s

thesis, University of Bergen, 2003.
2 Therese C. Biedl, Timothy M. Chan, Yashar Ganjali, Mohammad Taghi Hajiaghayi, and

David R. Wood. Balanced vertex-orderings of graphs. Discrete Applied Mathematics, 148(1):27–
48, 2005.

3 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.

4 Josep DÃaz, Jordi Petit, and Maria J. Serna. A survey of graph layout problems. ACM
Comput. Surv, 34(3):313–356, 2002.

5 Michael R. Fellows, Daniel Lokshtanov, Neeldhara Misra, Frances A. Rosamond, and Saket
Saurabh. Graph layout problems parameterized by vertex cover. In Seok-Hee Hong, Hiroshi
Nagamochi, and Takuro Fukunaga, editors, Algorithms and Computation, 19th International
Symposium, ISAAC 2008, Gold Coast, Australia, December 15-17, 2008. Proceedings, volume
5369 of Lecture Notes in Computer Science, pages 294–305. Springer, 2008.

6 Robert Ganian. Twin-cover: Beyond vertex cover in parameterized algorithmics. In Dániel
Marx and Peter Rossmanith, editors, Parameterized and Exact Computation - 6th International
Symposium, IPEC 2011, Saarbrücken, Germany, September 6-8, 2011. Revised Selected Papers,
volume 7112 of Lecture Notes in Computer Science, pages 259–271. Springer, 2011.

7 Jan Gorzny and Jonathan F. Buss. Imbalance, cutwidth, and the structure of optimal order-
ings. In Proceedings of the 25th International Conference on Computing and Combinatorics,
COCOON 2019, Xi’an, China, July 29-31, 2019, Proceedings, volume 11653 of Lecture Notes
in Computer Science, pages 219–231. Springer, 2019.

8 Goos Kant. Drawing planar graphs using the canonical ordering. Algorithmica, 16(1):4–32,
1996.

9 Goos Kant and Xin He. Regular edge labeling of 4-connected plane graphs and its applications
in graph drawing problems. Theor. Comput. Sci., 172(1-2):175–193, 1997.

10 Jan Kára, Jan Kratochvíl, and David R. Wood. On the complexity of the balanced vertex
ordering problem. Discrete Mathematics & Theoretical Computer Science, 9(1), 2007.

11 Daniel Lokshtanov, Neeldhara Misra, and Saket Saurabh. Imbalance is fixed parameter
tractable. Inf. Process. Lett., 113(19-21):714–718, 2013.

12 Achilleas Papakostas and Ioannis G. Tollis. Algorithms for area-efficient orthogonal drawings.
Comput. Geom., 9(1-2):83–110, 1998.

13 David R. Wood. Optimal three-dimensional orthogonal graph drawing in the general position
model. Theor. Comput. Sci., 1-3(299):151–178, 2003.

14 David R. Wood. Minimising the number of bends and volume in 3-dimensional orthogonal
graph drawings with a diagonal vertex layout. Algorithmica, 39(3):235–253, 2004.

	1 Introduction
	2 Preliminaries
	3 Weak Para-NP-Hardness
	4 An XP Algorithm
	5 Parameterizing by bounded Twin Cover
	6 Concluding Remarks

