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Abstract

Power consumption is the major cost factor in data centers. It can be reduced by dynamically
right-sizing the data center according to the currently arriving jobs. If there is a long period
with low load, servers can be powered down to save energy. For identical machines, the problem
has already been solved optimally by Lin et al. (2013) and Albers and Quedenfeld (2018).

In this paper, we study how a data-center with heterogeneous servers can dynamically be
right-sized to minimize the energy consumption. There are d different server types with various
operating and switching costs. We present a deterministic online algorithm that achieves a
competitive ratio of 2d as well as a randomized version that is 1.58d-competitive. Furthermore,
we show that there is no deterministic online algorithm that attains a competitive ratio smaller
than 2d. Hence our deterministic algorithm is optimal. In contrast to related problems like
convex body chasing and convex function chasing, we investigate the discrete setting where the
number of active servers must be integral, so we gain truly feasible solutions.

1 Introduction

Energy management is an important issue in data centers. A huge amount of a data center’s
financial budget is spent on electricity that is needed to operate the servers as well as to cool them
[12, 20]. However, server utilization is typically low. In fact there are data centers where the average
server utilization is as low as 12% [16]; only for a few days a year is full processing power needed.
Unfortunately, idle servers still consume about half of their peak power [29]. Therefore, right-sizing
a data center by powering down idle servers can save a significant amount of energy. However,
shutting down a server and powering it up immediately afterwards incurs much more cost than
holding the server in the active state during this time period. The cost for powering up and down
does not only contain the increased energy consumption but also, for example, wear-and-tear costs
or the risk that the server does not work properly after restarting [26]. Consequently, algorithms are
needed that manage the number of active servers to minimize the total cost, without knowing when
new jobs will arrive in the future. Since about 3% of the global electricity production is consumed by
data centers [11], a reduction of their energy consumption can also decrease greenhouse emissions.
Thus, right-sizing data centers is not only important for economical but also for ecological reasons.

Modern data centers usually contain heterogeneous servers. If the capacity of a data center is
no longer sufficient, it is extended by including new servers. The old servers are still used however.
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Hence, there are different server types with various operating and switching costs in a data center.
Heterogeneous data centers may also include different processing architectures. There can be servers
that use GPUs to perform massive parallel calculations. However, GPUs are not suitable for all
jobs. For example, tasks with many branches can be computed much faster on common CPUs than
on GPUs [31].

Problem Formulation We consider a data center with d different server types. There are
mj servers of type j. Each server has an active state where it is able to process jobs, and an
inactive state where no energy is consumed. Powering up a server of type j (i.e., switching from the
inactive into the active state) incurs a cost of βj (called switching cost); powering down does not
cost anything. We consider a finite time horizon consisting of the time slots {1, . . . , T}. For each
time slot t ∈ {1, . . . , T}, jobs of total volume λt ∈ N0 arrive and have to be processed during the
time slot. There must be at least λt active servers to process the arriving jobs. We consider a basic
setting where the operating cost of a server of type j is load- and time-independent and denoted
by lj ∈ R≥0. Hence, an active server incurs a constant but type-dependent operating cost per time
slot.

A schedule X is a sequence x1, . . . ,xT with xt = (xt,1, . . . , xt,d) where each xt,j indicates the
number of active servers of type j during time slot t. At the beginning and the end of the considered
time horizon all servers are shut down, i.e., x0 = xT+1 = (0, . . . , 0). A schedule is called feasible if
there are enough active servers to process the arriving jobs and if there are not more active servers
than available, i.e.,

∑d
j=1 xt,j ≥ λt and xt,j ∈ {0, 1, . . . ,mj} for all t ∈ {1, . . . , T} and j ∈ {1, . . . , d}.

The cost of a feasible schedule is defined by

C(X) :=

T
∑

t=1





d
∑

j=1

ljxt,j +

d
∑

j=1

βj(xt,j − xt−1,j)
+



 (1)

where (x)+ := max(x, 0). The switching cost is only paid for powering up. However, this is
not a restriction, since all servers are inactive at the beginning and end of the workload. Thus the
cost of powering down can be folded into the cost of powering up. A problem instance is specified
by the tuple I = (T, d,m,β, l,Λ) where m = (m1, . . . ,md), β = (β1, . . . , βd), l = (l1, . . . , ld) and
Λ = (λ1, . . . , λT ). The task is to find a schedule with minimum cost.

We focus on the central case without inefficient server types. A server type j is called inefficient
if there is another server type j′ 6= j with both smaller (or equal) operating and switching costs,
i.e., lj ≥ lj′ and βj ≥ βj′ . This assumption is natural because a better server type with a lower
operating cost usually has a higher switching cost. An inefficient server of type j is only powered
up, if all servers of all types j′ with βj′ ≤ βj and lj′ ≤ lj are already running. Therefore, excluding
inefficient servers is not a relevant restriction in practice. In related work, Augustine et al. [6]
exclude inefficient states when operating a single server.

Our contribution We analyze the online setting of this problem where the job volumes λt

arrive one-by-one. The vector of the active servers xt has to be determined without knowledge
of future jobs λt′ with t′ > t. A main contribution of our work, compared to previous results, is
that we investigate heterogeneous data centers and examine the online setting when truly feasible
(integral) solutions are sought.

In Section 2, we present a 2d-competitive deterministic online algorithm, i.e., the total cost of
the schedule calculated by our algorithm is at most 2d times larger than the cost of an optimal
offline solution. Roughly, our algorithm works as follows. It calculates an optimal schedule for the
jobs received so far and ensures that the operating cost of the active servers is at most as large as
the operating cost of the active servers in the optimal schedule. If this is not the case, servers with
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high operating cost are replaced by servers with low operating cost. If a server is not used for a
specific duration depending on its switching and operating costs, it is shut down.

In Section 3, we devise a randomized version of our algorithm achieving a competitive ratio of
e

e−1d ≈ 1.582d against an oblivious adversary.
In Section 4, we show that there is no deterministic online algorithm that achieves a competitive

ratio smaller than 2d. Therefore, our algorithm is optimal. Additionally, for a data center that
contains m unique servers (that is mj = 1 for all j ∈ {1, . . . , d}), we show that the best achievable
competitive ratio is 2m.

Related work The design of energy-effcient algorithms has received quite some research interest
over the last years, see e.g. [10, 21, 3] and references therein. Specifically, data center right-sizing has
attracted considerable attention lately. Lin and Wierman [25, 26] analyzed the data-center right-
sizing problem for data centers with identical servers (d = 1). The operating cost is load-dependent
and modeled by a convex function. In contrast to our setting, continuous solutions are allowed, i.e.,
the number of active server xt can be fractional. This allows for other techniques in the design and
analysis of an algorithm, but the created schedules cannot be used directly in practice. They gave a
3-competitive deterministic online algorithm for this problem. Bansal et al. [9] improved this result
by randomization and developed a 2-competitive online algorithm. In our previous paper [1], we
showed that 2 is a lower bound for randomized algorithms in the continuous setting; this result was
independently shown by [4]. Furthermore, we analyzed the discrete setting of the problem where
the number of active servers is integral (xt ∈ N0). We presented a 3-competitive deterministic and
a 2-competitive randomized online algorithm. Moreover, we proved that these competitive ratios
are optimal.

Data-center right-sizing of heterogeneous data centers is related to convex function chasing,
which is also known as smoothed online convex optimization [15]. At each time slot t, a convex
function ft arrives. The algorithm then has to choose a point xt and pay the cost ft(xt) as well as
the movement cost ‖xt − xt−1‖ where ‖ · ‖ is any metric. The problem described by equation (1)
is a special case of convex function chasing if fractional schedules are allowed, i.e., xt,j ∈ [0,mj ]

instead of xt,j ∈ {0, . . . ,mj}. The operating cost
∑d

j=1 ljxt,j in equation (1) together with the

feasibility requirements can be modeled as a convex function that is infinite for
∑d

j=1 xt,j < λt

and xt,j /∈ [0,mj ]. The switching cost equals the Manhattan metric if the number of servers is
scaled appropriately. Sellke [30] gave a (d + 1)-competitive algorithm for convex function chasing.
A similar result was found by Argue et al. [5].

In the discrete setting, convex function chasing has at least an exponential competitive ratio,
as the following setting shows. Let mj = 1 and βj = 1 for all j ∈ {1, . . . , d}, so the possible server
configurations are {0, 1}d. The arriving convex functions ft are infinite for the current position xt−1

of the online algorithm and 0 for all other positions {0, 1}d \ {xt−1}. After T := 2d − 1 functions
arrived, the switching cost paid by the algorithm is at least 2d − 1 (otherwise it has to pay infinite
operating costs), whereas the offline schedule can go directly to a position without any operating
cost and only pays a switching cost of at most d.

Already for the 1-dimensional case (i.e. identical machines), it is not trivial to round a fractional
schedule without increasing the competitive ratio (see [26] and [2]). In d-dimensional space, it is
completely unclear, if continuous solutions can be rounded without arbitrarily increasing the total
cost. Simply rounding up can lead to arbitrarily large switching costs, for example if the fractional
solution rapidly switches between 1 and 1 + ǫ. Using a randomized rounding scheme like in [2]
(that was used for homogeneous data centers) independently for each dimension can result in an
infeasible schedule (for example, if λt = 1 and xt = (1/d, . . . , 1/d) is rounded down to (0, . . . , 0)).
Therefore, Sellke’s result does not help us for analyzing the discrete setting. Other publications
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handling convex function chasing or convex body chasing are [17, 8, 13].
Goel and Wierman [19] developed a (3+O(1/µ))-competitive algorithm called Online Balanced

Descent (OBD) for convex function chasing, where the arriving functions were required to be µ-
strongly convex. We remark that the operating cost defined by equation (1) is not strongly convex,
i.e., µ = 0. Hence their result cannot be used for our problem. A similar result is given by Chen
et al. [15] who showed that OBD is (3 + O(1/α))-competitive if the arriving functions are locally
α-polyhedral. In our case, α = minj∈{1,...,d} lj/βj , so α can be arbitrarily small depending on the
problem instance.

Another similar problem is the Parking Permit Problem by Meyerson [28]. There are d different
permits which can be purchased for βj dollars and have a duration of Dj days. Certain days are
driving days where at least one parking permit is needed (λt ∈ {0, 1}). The permit cost corresponds
to our switching cost. However, the duration of the permit is fixed to Dj , whereas in our problem
the online algorithm can choose for each time slot if it wants to power down a server. Furthermore,
there is no operating cost. Even if each server type is replaced by an infinite number of permits
with the duration t and the cost βj + lj · t, it is still a different problem, because the algorithm has
to choose the time slot for powering down in advance (when the server is powered up).

Data-center right-sizing of heterogeneous data centers is related to geographical load balancing
analyzed in [24] and [27]. Other applications are shown in [32, 22, 14, 23, 7, 18, 33].

Notation

Let [k] := {1, 2, . . . k}, [k]0 := {0, 1, . . . k} and [k : l] := {k, k + 1, . . . , l} where k, l ∈ N0.

2 Deterministic Online Algorithm

In this section we present a deterministic 2d-competitive online algorithm for the problem described
in the preceding section. The basic idea of our algorithm is to calculate an optimal schedule for
the problem instance that ends at the current time slot. Based on this schedule, we decide when a
server is powered up. If a server is idle for a specific time, it is powered down.

Formally, given the original problem instance I = (T, d,m,β, l,Λ), the shortened problem
instance It is defined by It := (t, d,m,β, l,Λt) with Λt = (λ1, . . . , λt). Let X̂t denote an optimal
schedule for It and let XA be the schedule calculated by our algorithm A.

W.l.o.g. there are no server types with the same operating and switching costs, i.e., βj = βj′

and lj = lj′ implies j = j′. Furthermore, let l1 > · · · > ld, i.e., the server types are sorted by their
operating costs. Since inefficient server types are excluded, this implies that β1 < · · · < βd.

We separate a problem instance into m :=
∑d

j=1mj lanes. At time slot t, there is a single job
in lane k ∈ [m], if and only if k ≤ λt. We can assume that λt ≤ m holds for all t ∈ [T ], because
otherwise there is no feasible schedule for the problem instance. Let X be an arbitrary feasible
schedule with xt = (xt,1, . . . , xt,d). We define

yt,k :=

{

max{j ∈ [d] |
∑d

j′=j xt,j′ ≥ k} if k ∈
[

∑d
j=1 xt,j

]

0 else
(2)

to be the server type that handles the k-th lane during time slot t (see Figure 1). If yt,k = 0, then
there is no active server in lane k at time slot t. By definition, the values yt,1, . . . , yt,m are sorted in
descending order, i.e., yt,k ≥ yt,k′ for k < k′. Note that yt,k = 0 implies λt < k, because otherwise

there are not enough active servers to handle the jobs at time t. For the schedule X̂t, the server
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Figure 1: Example of a job sequence (upper plot) and a feasible schedule X written in both
notations xt,j (middle) and yt,k (lower plot). Outside of the rectangles in the lower plot, the value
of yt,k is 0.

type used in lane k at time slot t′ is denoted by ŷtt′,k. Our algorithm calculates yAt,k directly, the

corresponding variables xAt,j can be determined by xAt,j = |{k ∈ [m] | yAt,k = j}|. A tabular overview
of the notation is shown in A.

Our algorithm works as follows: First, an optimal solution X̂t is calculated. If there are several
optimal schedules, we choose a schedule that fulfills the inequality ŷtt′,k ≥ ŷt−1

t′,k for all time slots

t′ ∈ [t] and lanes k ∈ [m], so X̂t never uses smaller server types than the previous schedule X̂t−1.
We will see in Lemma 5 that such a schedule exists and how to construct it.

If there is a server type j with lj = 0, then in an optimal schedule such a server can be powered
up before it is needed, although λt = 0 holds for this time slot. Similarly, such a server can run for
more time slots than necessary. W.l.o.g. let X̂t be a schedule where servers are powered up as late
as possible and powered down as early as possible.

Beginning from the lowest lane (k = 1), it is ensured that A uses a server type that is not smaller
than the server type used by X̂t, i.e., yAt,k ≥ ŷtt,k must be fulfilled. If the server type yAt−1,k used in

the previous time slot is smaller than ŷtt,k, it is powered down and server type ŷtt,k is powered up.
A server of type j that is not replaced by a greater server type stays active for t̄j := ⌊βj/lj⌋ time
slots. If X̂t uses a smaller server type j′ ≤ j in the meantime, then server type j will run for at
least t̄j′ further time slots (including time slot t). Formally, a server of type j in lane k is powered
down at time slot t, if ŷt

′

t′,k 6= j′ holds for all server types j′ ≤ j and time slots t′ ∈ [t− t̄j′ + 1 : t].
The pseudocode below clarifies how algorithm A works. The variables ek for k ∈ [m] store the

time slot when the server in the corresponding lane will be powered down. Figure 2 visualizes how
the schedule XA changes from time slot t− 1 to t.

Structure of optimal schedules Before we can analyze the competitiveness of algorithm A,
we have to show that an optimal schedule with the desired properties required by line 2 actually
exists. First, we will investigate basic properties of optimal schedules. The following lemma shows
that in an optimal schedule, a server of type j that runs in lane k does not change the lane while
being active.
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Algorithm 1 Algorithm A

1: for t := 1 to T do

2: Calculate X̂t such that ŷtt′,k ≥ ŷt−1
t′,k for all t′ ∈ [t] and k ∈ [m]

3: for k := 1 to m do

4: if yAt−1,k < ŷtt,k or t ≥ ek then

5: yAt,k := ŷtt,k
6: ek := t+ t̄yA

t,k

7: else

8: yAt,k := yAt−1,k

9: ek := max{ek, t+ t̄ŷt
t,k
} where t̄0 := 0

6

4

3

6

2

1

. . .

. . .

. . .

t− 1 t t+ 4

yAt,k

5

4

3

. . .

. . .

. . .

t− 1 t

ŷtt,k

Figure 2: (figure is colored) Example of an update in algorithm A from time slot t− 1 to t. The
schedule of A (upper plot) at t− 1 is shown in blue, the changes after reacting to λt are printed in
green. The optimal schedule X̂t is shown in the lower plot in red. Let t̄j := j. In the lowest lane
k = 1, we have yAt,1 = 6 ≥ 5 = ŷtt,1, so server type yAt,1 will run for at least t̄5 = 5 further time slots

(including the current time slot t), i.e., yAt,1 will be powered down after time slot t+4. In lane k = 2,

server type yAt−1,2 = 2 is powered down (because yAt−1,2 < ŷtt,2) and replaced by ŷtt,2 = 4. In lane
k = 3, Algorithm A has no active server during time slot t − 1, so server type ŷtt,3 = 3 is powered
up.

Lemma 1 (No lane switching). Let X̂ be an optimal schedule. If ŷt−1,k = j and ŷt,k 6= j, then there
exists no other lane k′ 6= k with ŷt−1,k′ 6= j and ŷt,k′ = j.

Proof. Let ŷt−1,k = j and ŷt,k 6= j. To get a contradiction, assume that there exists a lane k′ 6= k
with ŷt−1,k′ 6= j and ŷt,k′ = j. We differ between the cases (1) k′ < k and (2) k′ > k. In case 1, the
server type ŷt−1,k′ must be greater than j, since the server types are sorted. Furthermore, at time
slot t− 1 there are at least k′ active servers whose types are greater than j, and at time slot t there
are at most k′ − 1 active servers whose types are greater than j. Therefore a server of type j′ > j
is powered down after t − 1. Let t′ > t be the first time slot where x̂t′,j < x̂t,j. By replacing one
server of type j during the time slots [t : t′ − 1] by j′ (i.e., j′ is not powered down at t, but instead
at t′), we reduce the operating cost without increasing the switching cost. Therefore, X̂ cannot be
an optimal schedule.

Case 2 works analogously: we have k′ > k, so the server type ŷt,k′ must be greater than j. At
time slot t − 1 there are at most k − 1 active servers whose types are greater than j, and at time
slot t there are at least k active servers whose types are greater than j. Therefore a server of type
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j′ > j is powered up after t− 1. Let t′ < t be the last time slot where x̂t′,j < x̂t,j . We replace server

type j during [t′ + 1 : t] by j′. The total costs are decreased by this transformation, so X̂ cannot
be an optimal schedule. Therefore, a lane k′ 6= k with ŷt−1,k′ 6= j and ŷt,k′ = j cannot exist.

The next lemma shows that in an optimal schedule, a server is only powered up or powered
down if the number of jobs is increased or decreased, respectively.

Lemma 2. Let X̂ be an optimal schedule. If ŷt−1,k > 0 and ŷt,k = 0, then λt−1,k = 1 and λt,k = 0.
Analogously, ŷt−1,k = 0 and ŷt,k > 0 implies λt−1,k = 0 and λt,k = 1.

Proof. Let ŷt−1,k > 0 and ŷt,k = 0. By Lemma 1, we know that a server of type j := ŷt−1,k is
powered down after time slot t− 1. There cannot be a job in lane k at time t, because there is no
active server in X̂ , so λt,k = 0. Assume that there is no job for the previous time slot, i.e., λt−1,k = 0.
Then we get a better schedule by powering down the server in lane k one time slot earlier (i.e., after
time slot t− 2), because the operating cost is reduced by lj , so X̂ would not be optimal. Therefore,
λt−1,k = 1 must hold. For ŷt−1,k = 0 and ŷt,k > 0 the proof works analogously.

The following lemma shows that in an optimal schedule in a given lane k, the server type does
not change immediately, i.e., there must be at least one time slot, where no server is running in lane
k.

Lemma 3 (No immediate server changes). Let X̂ be an optimal schedule. If ŷt−1,k > 0 and ŷt,k > 0,
then ŷt−1,k = ŷt,k holds.

Proof. Assume that this lemma does not hold. Let t be the first time slot and k the lowest lane
during this time slot where ŷt−1,k > 0 and ŷt,k > 0, but ŷt−1,k 6= ŷt,k. To simplify the notation, let
j := ŷt−1,k and j′ := ŷt,k. We differ between the cases (1) j < j′ and (2) j > j′. In case 1, let t′ < t
be the last time slot where the server type j in lane k was powered up. By replacing server type j
by j′ during [t′ : t− 1], we reduce the operating cost without increasing the switching cost. If this
violates the condition x̂t,j ≤ mj, we instead choose the last time slot t′′ ∈ [t′ + 1 : t− 1] where j′ is
powered down. By replacing j with j′ during [t′′ + 1 : t− 1] we reduce the operating cost and save
the cost for powering up server type j′. It can happen that j has to be powered up one more time,
however, the switching cost of j′ is smaller than the switching cost of j, so the total switching cost
is reduced. Case 2 works analogously. We have shown that the total cost can be decreased, so X̂
would not be an optimal schedule. Therefore, the lemma must hold.

Given the optimal schedules X̂u and X̂v with u < v, we construct a minimum schedule Xmin(u,v)

with y
min(u,v)
t,k := min{ŷut,k, ŷ

v
t,k}. Furthermore, we construct a maximum schedule Xmax(u,v) as

follows. Let zl(t, k) be the last time slot t′ < t with ŷut′,k = ŷvt′,k = 0 (no active servers in both

schedules) and let zr(t, k) be the first time slot t′ > t with ŷut′,k = ŷvt′,k = 0. The schedule Xmax(u,v)

is defined by

y
max(u,v)
t,k := max

t′∈[zl(t,k)+1:zr(t,k)−1]
{ŷut′,k, ŷ

v
t′,k}. (3)

Another way to construct Xmax(u,v) is as follows. First, we take the maximum of both schedules
(analogously to Xmin(u,v)). However, this can lead to situations where the server type changes
immediately, so the necessary condition for optimal schedules would not be fulfilled. Therefore, we
replace the lower server type by the greater one until there are no more immediate server changes.
This construction is equivalent to equation (3).

We will see in Lemma 5 that the maximum schedule is an optimal schedule for Iv and fulfills
the property required by algorithm A in line 2, which says that the server type used in lane k at
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time t never decreases when the considered problem instance is expanded. To prove this property,
first we have to show that Xmin(u,v) and Xmax(u,v) are feasible schedules for the problem instances
Iu and Iv, respectively.

Lemma 4. Xmin(u,v) and Xmax(u,v) are feasible for Iu and Iv, respectively.

Proof. (a) Feasibility of Xmin(u,v)

First, we will show that the demand requirements are fulfilled, so for all k ∈ [m] and t ∈ [u],
there must be an active server in lane k at time t, if λt,k > 0. Since X̂u and X̂v are feasible

schedules, ŷut,k ≥ λt,k and ŷvt,k ≥ λt,k holds for all t ∈ [u] and k ∈ [m]. Thus, y
min(u,v)
t,k =

min{ŷut,k, ŷ
v
t,k} ≥ λt,k holds.

Second, we have to check if there are not more active servers in Xmin(u,v) than available, i.e.

x
min(u,v)
t,j ∈ [mj ]0 for all t ∈ [u] and j ∈ [d]. Assume that this is not the case, so there exists

a time slot t and a server type j with x
min(u,v)
t,j > mj. Since the server types of X̂u and X̂v

are sorted, the server types of Xmin(u,v) are sorted too. Thus, there must be at least mj + 1

consecutive lanes with y
min(u,v)
t,k = j. Let k+ be the topmost and k− be the lowermost lane

with y
min(u,v)
t,k = j. W.l.o.g. let ŷut,k+ = j (the case ŷvt,k+ = j works analogously), so ŷvt,k+ ≥ j.

It is not possible that ŷut,k− = j, because then there would be mj + 1 active servers of type j

in X̂u. On the other hand, ŷvt,k− = j implies that ŷvt,k+ = j, since the server types are sorted,

so there would be at least mj + 1 active servers of type j in X̂v . Thus, our assumption was
wrong and Xmin(u,v) is a feasible schedule for Iu.

(b) Feasibility of Xmax(u,v)

Consider the schedule X̃ with ỹt,k := max{ŷut,k, ŷ
v
t,k} (similar to Xmax(u,v), but without elimi-

nating immediate server changes). Analogous to part (a), it can be shown that X̃ is a feasible
schedule for Iv. Furthermore, we observe that the server types of X̃ are sorted for a given
time slot, since the server types of X̂u and X̂v are sorted. Taking the maximum preserves
this order.

The schedule Xmax(u,v) fulfills the demand requirements of Iv, because ỹt,k > 0 implies

y
max(u,v)
t,k > 0.

Assume that there are more active servers in Xmax(u,v) than available, i.e., there exists a time

slot t ∈ [v] and a server type j ∈ [d] with x
max(u,v)
t,j > mj . Let k+ be the topmost lane with

y
max(u,v)
t,k = j. There must be a time slot t′ such that ỹt′,k+ = j and y

max(u,v)
t′′,k+

= j for all t′′

between t and t′ (i.e., t′′ ∈ [min{t, t′} : max{t, t′}]), because otherwise y
max(u,v)
t,k+

= j cannot

be fulfilled. Let k− be the lowest lane with y
max(u,v)
t,k = j. Since the server types in X̃ are

sorted and since X̃ is a feasible schedule, ỹt′,k− > j holds, because ỹt′,k− = j would imply

that X̃ uses server type j in all lanes k ∈ [k− : k+], but |[k− : k+]| > mj. However, for all t′′

between t and t′ we have y
max(u,v)
t′′,k−

> 0, since there is an active server in the higher lane k+,

so y
max(u,v)
t,k−

= y
max(u,v)
t′,k−

≥ ỹt′,k− > j which is a contradiction to our assumption. Therefore,

Xmax(u,v) is a feasible schedule for Iv.

Now, we are able to show that the maximum schedule is optimal for the problem instance Iv.

Lemma 5. Let u, v ∈ [T ] with u < v. Xmax(u,v) is optimal for Iv.

8
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Figure 3: (figure is colored) Visualization of the proof of Lemma 5. The number inside each block
refers to the used server type. The blocks of the sets B− and B+ are marked in blue and green,
respectively. Block Bmax, which contains the largest server type, is drawn in red. Note that the
third block Bmin

3 in Xmin is mapped to the second block Bv
2 in X̂v, but it uses the server type

jmin
3 = min{ju2 , j

v
2} = ju2 = 7 instead of jv2 = 9. However, since β7 < β9, the switching cost of Bmin

3

is smaller than the switching cost of the assigned block Bv
2 .

Proof. To simplify the notation, let Xmin := Xmin(u,v) and Xmax := Xmax(u,v). Since X̂u and X̂v

are optimal schedules for Iu and Iv, respectively, we know from Lemma 4 that C(X̂u) ≤ C(Xmin)
and C(X̂v) ≤ C(Xmax). In the following we will show that C(Xmin)+C(Xmax) ≤ C(X̂u)+C(X̂v)
which implies that Xmin must be an optimal schedule for Iu and Xmax must be an optimal schedule
for Iv. First, we compare the operating cost and afterwards the switching cost of the schedules.

The operating costs of X̂u and X̂v in lane k at time slot t are

lŷu
t,k

+ lŷv
t,k

= lmin{ŷu
t,k

,ŷv
t,k

} + lmax{ŷu
t,k

,ŷv
t,k

} ≥ lymin
t,k

+ lymax
t,k

(4)

with l0 := 0 (if y = 0, then there is no active server, so the operating cost for this time slot
is zero). Note that lmin{ŷu

t,k
,ŷv

t,k
} = lymin

t,k
by definition of Xmin and lmax{ŷu

t,k
,ŷv

t,k
} ≥ lymax

t,k
because

max{ŷut,k, ŷ
v
t,k} ≤ ymax

t,k .

Inequality (4) indicates that the sum of the operating costs of X̂min and X̂max are smaller than
or equal to the sum of the operating costs of X̂u and X̂v. In the following we will show that the
same holds for the switching costs.

Each lane k in the schedule Xmax is divided into blocks such that at the beginning of a block a
server is powered up and at the end of the block it is powered down. In the following we consider
one single block. Let j denote the server type used in that block and let a and b denote the start
and end time slot, respectively. Note that in the time slot immediately before the begin and after
the end of the block in both X̂u and X̂v there is no active server, i.e. ŷua−1,k = ŷva−1,k = 0 and
ŷub+1,k = ŷvb+1,k = 0. For t ∈ [a : b], there is always an active server in at least one of the schedules.

For the time interval [a : b] we divide lane k of the schedules X̂u, X̂v and Xmin(u,v) into blocks
Bw

1 , . . . , B
w
nw

with w ∈ {u, v,min} such that at the beginning of the block a server is powered up
and at the end of the block it is powered down. Let jwi denote the server type used in block Bw

i

with w ∈ {u, v,min} and i ∈ [nw].
In X̂u or X̂v (or both) there must be one block Bmax with jwi = j where w ∈ {u, v} (if there

are several blocks that fulfill this property, then we choose an arbitrary one). Let smax denote the
start time slot of Bmax. Let B− be the blocks in X̂u and X̂v that start before smax and let B+ be
the blocks that start after smax. Note that {B−,B+, {Bmax}} is a partition of

⋃

w∈{u,v},i∈[nw]B
w
i .

Each block Bmin
i which starts before smax is mapped to the block in B− which has the same

end time slot. There must be a block Bmin
i which starts at smax. This block is mapped to the last

9



block in B− (which cannot end before smax, so it was not mapped yet). Each block Bmin
i which

starts after smax is mapped to the block in B+ which has the same start time slot. The mapping
procedure is visualized in Figure 3. It ensures that all blocks Bmin

i with i ∈ [nw] are mapped to a
block of X̂u or X̂v, but not to the block Bmax. Since Xmin uses the smaller server type of X̂u and
X̂v, the switching cost of Bmin

i is smaller than or equal to the switching cost of the mapped block
Bw

i with w ∈ {u, v}.
Let β(B) denote the switching cost of block B. The switching costs of X̂u and X̂v in lane k

during the time interval [a : b] are equal to β(Bmax) +
∑

B∈B−∩B+ β(B). The switching cost of
Xmin in lane k during [a : b] is at most

∑

B∈B−∩B+ β(B) and the switching cost of Xmax is exactly
β(Bmax), because Xmax only consists of one single block. By using this result for all blocks of Xmax

and with equation (4), we get C(Xmin) + C(Xmax) ≤ C(X̂u) + C(X̂v) which implies that Xmax

must be an optimal schedule for Iv.

Feasibility In the following, let {X̂1, . . . , X̂T } be optimal schedules that fulfill the inequality
ŷtt′,k ≥ ŷt−1

t′,k for all t, t′ ∈ [T ] and k ∈ [m] as required by algorithm A. Lemma 5 ensures that such a
schedule sequence exists (and also shows how to construct it). Before we can prove that algorithm A
is 2d-competitive, we have to show that the computed schedule XA is feasible.

The following lemma shows that the running times t̄j are sorted in ascending order, i.e., t̄1 ≤
· · · ≤ t̄d. In other words, the higher the server type is, the longer it stays in the active state.

Lemma 6. For j < j′, t̄j ≤ t̄j′ holds.

Proof. Since j < j′, we have lj > lj′ and βj < βj′ , so t̄j = ⌊βj/lj⌋ ≤
⌊

βj′/lj′
⌋

= t̄j′.

In an optimal schedule X̂t, the values ŷtt′,1, . . . , ŷ
t
t′,m are sorted in descending order by definition.

This also holds for the schedule calculated by our algorithm.

Lemma 7. For all time slots t ∈ [T ], the values yAt,1, . . . , y
A
t,m are sorted in descending order, i.e.,

yAt,k ≥ yAt,k′ for k < k′.

Proof. Assume that Lemma 7 does not hold. Let t be the first time slot with yAt,k < yAt,k′ . If y
A
t,k′ is

powered up at time t, then ŷtt,k′ = yAt,k′ holds. By the definition of algorithm A, the server types used

during a given time slot are greater than or equal to the server types used by X̂t, so yAt,k ≥ ŷtt,k. The

server types in X̂t are sorted, so we get yAt,k ≥ ŷtt,k ≥ ŷtt,k′ = yAt,k′ which contradicts our assumption.

If yAt,k′ is already running at time t, we consider the time slot t′ < t when the value of ek′ has
changed for the last time. Formally, let t′ < t be the last time slot such that t′+ t̄

ŷt
′

t′,k′
> t. We have

ŷt
′

t′,k ≥ ŷt
′

t′,k′ , so by Lemma 6, yAt′,k runs at least as long as yAt′,k′. Therefore, the fact yAt′,k ≥ yAt′,k′

implies yAt,k ≥ yAt,k′ which is a contradiction to our assumption.

Now, we are able to prove the feasibility of XA.

Lemma 8. The schedule XA is feasible.

Proof. A schedule is feasible, if (1) there are enough active servers to handle the incoming jobs (i.e.,
∑d

j=1 x
A
t,j ≥ λt) and (2) there are not more active servers than available (i.e., xAt,j ∈ [mj]0).

(1) By the definition of algorithm A, the server types used during a given time slot are greater
than or equal to the server types used by X̂t, so there are at least as many active servers as
in X̂t. Therefore,

∑d
j=1 x

A
t,j ≥

∑d
j=1 x̂

t
t,j ≥ λt holds for all t ∈ [T ].
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(2) Assume that there exist t ∈ [T ] and j ∈ [d] such that xAt,j > mj. Let t be the first time slot
where algorithm A wants to use server type j in lane k, although it is used already mj times
in the lower lanes during the same time slot. Let K be the set of lanes where j is already
used, i.e., yAt,k′ = j for all k′ ∈ K ⊆ [k− 1]. We differ between case 1 where yAt,k is set in line 5

and case 2 where yAt,k is set in line 8.

In the first case (yAt,k is set in line 5), we know that X̂t uses j in lane k. Since the server types

of X̂t are sorted, the server types of X̂t in the lower lanes cannot be smaller than k. Formally,
we have ŷtt,k′ ≥ j for all k′ ∈ [k]. In the lanes where A uses server type j, the optimal schedule

X̂t cannot use a greater server type. Thus, there are exactly mj lanes below lane k where
ŷtt,k′ = j holds, so X̂t cannot use j in lane k.

In the second case (yAt,k is set in line 8), we know that yAt−1,k = j, but xAt−1,j ≤ mj, so there

must be a lane k′ ∈ K with yAt−1,k′ > j by Lemma 7. We consider the time slot t′ when
the value of ek has changed for the last time. Formally, let t′ < t be the last time slot such
that t′ + t̄ŷt′

t′,k

> t. We know that yAt′,k′ = yAt−1,k′ , because yAt−1,k′ > j cannot be powered up

during [t′ : t − 1] and powered down at t, as yAt−1,k′ > j ≥ ŷt
′

t′,k implies t̄yA
t−1,k′

≥ t̄
ŷt

′

t′,k

. Since

ŷt
′

t′,k ≤ ŷt
′

t′,k′ holds, the runtime of yAt′,k in lane k′ was extended at time slot t′, so it still runs

during time slot t. This is a contradiction to yAt,k′ = j.

Competitiveness To show the competitiveness of A, we divide the schedule XA into blocks
At,k with t ∈ [T ] and k ∈ [m]. Each block At,k is described by its creation time t, its start time st,k,
its end time et,k, the used server type jt,k and the corresponding lane k. The start time is the time
slot when jt,k is powered up and the end time is the first time slot, when jt,k is inactive, i.e., during
the time interval [st,k : et,k − 1] the server of type jt,k is in the active state.

There are two types of blocks: new blocks and extended blocks. A new block starts when a
new server is powered up, i.e., lines 5 and 6 of algorithm A are executed because yAt−1,k < ŷtt,k or

t ≥ ek ∧ yAt−1,k > ŷtt,k ∧ ŷtt,k > 0 (in words: the previous block ends and X̂t has an active server in
lane k, but the server type is smaller than the server type used by A in the previous time slot). It
ends after t̄yA

t,k
time slots. Thus st,k := t and et,k := t+ t̄yA

t,k
(i.e., et,k equals ek after executing line

6).
An extended block is created when the running time of a server is extended, i.e., the value of ek

is updated, but the server type remains the same (that is yAt−1,k = yAt,k). We have et,k := t + t̄ŷt
t,k

(i.e., the value of ek after executing line 9 or 6) and st,k := et′,k, where At′,k is the previous block in
the same lane. Note that an extended block can be created not only in line 9, but also in line 6, if
t = ek and yAt−1,k = ŷtt,k. If line 8 and 9 are executed, but the value of ek does not change (because
t + t̄ŷt

t,k
is smaller than or equal to the previous value of ek), then the block At,k does not exist.

Figure 4 visualizes the definition of At,k.
Let dt,k := et,k − st,k be the duration of the block At,k and let C(At,k) be the cost caused by

At,k if the block At,k exists or 0 otherwise. The next lemma describes how the cost of a block can
be estimated.

Lemma 9. The cost of the block At,k is upper bounded by

C(At,k) ≤

{

2βjt,k if At,k is a new block

ljt,kdt,k if At,k is an extended block
(5)
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Figure 4: (figure is colored) Visualization of the definition of the blocks At,k for one specific
lane k. The first line shows the values of ŷtt,k for t ∈ [0 : 18] and the second line the resulting
schedule of algorithm A. In this example, we have (t̄1, t̄2, t̄3) = (2, 3, 5). The blocks At,k are printed
as rectangles that show the start and end time st,k and et,k, e.g., s4,k = 5 and e4,k = 7 (note
that the server is in the active state during [st,k : et,k − 1]). The dashed line after A1,k indicates
that e1,k = 3, since the block is interrupted by A2,k. New blocks are drawn in green and extended
blocks are drawn in blue. The arrows indicate the creation time t of a block. The used server type
jt,k is equal to yAt,k. Blocks that are not printed do not exist, e.g., A3,k does not exist, because
t+ t̄ŷt

t,k
= 3 + t̄ŷ33,k

= 3 + t̄1 = 3 + 2 = 5 ≤ e2,k = 5, so ek is not updated at t = 3.

Proof. If At,k is a new block, its length is t̄j with j = jt,k. Therefore the total cost of At,k is
βj + lj t̄j = βj + lj ⌊βj/lj⌋ ≤ 2βj . If At,k is an extended block, then the server j = jt,k is already
running, so there is no switching cost and C(At,k) = ljdt,k.

To show the competitiveness of algorithm A, we introduce another variable that will be used in
Lemmas 11 and 12. Let

ỹut,k := max
t′∈[t:u]

ŷt
′

t′,k

be the largest server type used in lane k by the schedule X̂t′ at time slot t′ for t′ ∈ [t : u]. The next
lemma shows that ỹut,k is monotonically decreasing with respect to t as well as k and increasing with
respect to u.

Lemma 10. Let u′ ≥ u, t′ ≤ t and k′ ≤ k. It is ỹut,k ≤ ỹu
′

t′,k′.

Proof. We analyze the special cases where two inequalities are fulfilled with equality.

1. If t′ = t and k′ = k holds, then we have

ỹu
′

t,k = max
t′′∈[t:u′]

ŷt
′′

t′′,k ≤ max
t′′∈[t:u]

ŷt
′′

t′′,k = ỹut,k. (6)

2. Let u′ = u and k′ = k. By using the definition of ỹut,k, we get

ỹut,k = max
t′′∈[t:u]

ŷt
′′

t′′,k ≤ max
t′′∈[t′:u]

ŷt
′′

t′′,k = ỹut′,k (7)

since [t : u] ⊂ [t′ : u].

3. If u′ = u and t′ = t, then we can use the fact that the server types of X̂t′ at time slot t′ are
sorted, i.e., ŷt

′′

t′′,k ≤ ŷt
′′

t′′,k′ holds for all t
′′ ∈ [T ] and k′ ≤ k. Therefore,

ỹut,k = max
t′′∈[t:u]

ŷt
′′

t′′,k ≤ max
t′′∈[t:u]

ŷt
′′

t′′,k′ = ỹut,k′ . (8)
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By using equations (6), (7) and (8), we get ỹut,k ≤ ỹu
′

t′,k ≤ ỹu
′

t′,k ≤ ỹu
′

t′,k′ .

The cost of schedule X in lane k during time slot t is denoted by

Ct,k(X) :=











lyt,k + βyt,k if yt−1,k 6= yt,k > 0

lyt,k if yt−1,k = yt,k > 0

0 otherwise.

(9)

The total cost of X can be written as C(X) =
∑T

t=1

∑m
k=1Ct,k(X). The technical lemma below will

be needed for our induction proof in Theorem 13. Given the optimal schedules X̂u and X̂v with
u < v, the inequality

∑m
k=1

∑u
t=1Ct,k(X̂

u) ≤
∑m

k=1

∑u
t=1 Ct,k(X̂

v) is obviously fulfilled (because

X̂u is an optimal schedule for Iu, so X̂v cannot be better). The lemma below shows that this
inequality still holds if the cost Ct,k(·) is scaled by ỹut,k.

Lemma 11. Let u, v ∈ [T ] with u < v. It holds that

m
∑

k=1

u
∑

t=1

ỹut,kCt,k(X̂
u) ≤

m
∑

k=1

u
∑

t=1

ỹut,kCt,k(X̂
v). (10)

Proof. For j ∈ [d], let

ỹut,k,j :=

{

1 if ỹut,k ≥ j

0 otherwise

such that ỹut,k =
∑d

j=1 ỹ
u
t,k,j. In other words, ỹut,k,j = 1 means that the largest server type in the

sequence (ŷt
′

t′,k)t′∈[t:u] is at least j.
To deduce a contradiction, we assume that there exists a j ∈ [d] such that

m
∑

k=1

u
∑

t=1

ỹut,k,jCt,k(X̂
u) >

m
∑

k=1

u
∑

t=1

ỹut,k,jCt,k(X̂
v). (11)

We consider the schedule X̄u which is constructed in two steps. First, we insert the schedule X̂v

for all lanes k and time slots t where ỹut,k,j = 1 holds into X̂u. Afterwards, we eliminate immediate
server changes after ỹut,k,j switches from 1 to 0 by using the greater server type (equivalent to the
construction of the maximum schedule). By Lemma 10, ỹut,k,j = 1 implies ỹut′,k′,j = 1 for all j ∈ [d],

t′ ≤ t and k′ ≤ k, so if X̄u uses the schedule X̂v for a given time slot t and lane k, then it also uses
X̂v for the previous time slots t′ ≤ t and lanes k′ ≤ k.

The schedule X̄u is feasible for Iu, because for a given time slot t and lane k, the server type
used by X̂v is greater than or equal to the server type used by X̂u, so in X̄u there cannot be more
active servers than available. Furthermore the demand requirements are obviously fulfilled.

The total cost of X̄u is

C(X̄u) =

m
∑

k=1

u
∑

t=1

ỹut,k,jCt,k(X̄
u) +

m
∑

k=1

u
∑

t=1

(1− ỹut,k,j)Ct,k(X̄
u)

≤

m
∑

k=1

u
∑

t=1

ỹut,k,jCt,k(X̂
v) +

m
∑

k=1

u
∑

t=1

(1− ỹut,k,j)Ct,k(X̂
u)

(11)
<

m
∑

k=1

u
∑

t=1

ỹut,k,jCt,k(X̂
u) +

m
∑

k=1

u
∑

t=1

(1− ỹut,k,j)Ct,k(X̂
u)

= C(X̂u)
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In the first step, we simply split C(X̄u) into two parts (note that ỹut,k,j ∈ {0, 1}). The first inequality

uses the definition of X̄u: for ỹut,k,j = 1, we have Ct,k(X̄
u) = Ct,k(X̂

v) and for ỹut,k,j = 0, we have

Ct,k(X̄
u) ≤ Ct,k(X̂

u), because X̄u can use greater server types with lower operating costs than X̂u

due to the elimination of immediate server changes. The last inequality uses our assumption given
by equation (11).

We have shown that C(X̄u) < C(X̂u), however, this is a contradiction to the fact that X̂u is an
optimal schedule. Therefore, our assumption was wrong and for all j ∈ [d],

m
∑

k=1

u
∑

t=1

ỹut,k,jCt,k(X̂
u) ≤

m
∑

k=1

u
∑

t=1

ỹut,k,jCt,k(X̂
v)

holds. By summarizing these inequalities for all j ∈ [d] and by using the fact
∑d

j=1 ỹ
u
t,k,j = ỹut,k, we

get
m
∑

k=1

u
∑

t=1

ỹut,kCt,k(X̂
u) ≤

m
∑

k=1

u
∑

t=1

ỹut,kCt,k(X̂
v).

The following lemma shows how the cost of a single block Av,k can be folded into the term

2
∑v−1

t=1 ỹv−1
t,k Ct,k(X̂

v) which is the right hand side of equation (10) given in the previous lemma with
u = v − 1.

Lemma 12. For all lanes k ∈ [m] and time slots v ∈ [T ], it is

2

v−1
∑

t=1

ỹv−1
t,k Ct,k(X̂

v) + C(Av,k) ≤ 2

v
∑

t=1

ỹvt,kCt,k(X̂
v). (12)

Proof. If the block Av,k does not exists, equation (12) holds by Lemma 10 and C(Av,k) = 0.
If Av,k is a new block, then C(Av,k) ≤ 2βj with j := jv,k = ŷvv,k by Lemma 9. Since Av,k is a

new block, server type j was not used in the last time slot of the last t̄j schedules, i.e., ŷtt,k ≤ j − 1

for t ∈ [v − t̄j : v − 1]. If ŷ
v−t̄j
v−t̄j ,k

= j would hold, then yAv−1,k = j and there would be an extended

block at time slot v. By using the facts above and the definition of t̃vt,k, for t ∈ [v − t̄j : v − 1], we
get

ỹv−1
t,k = max

t′∈[t:v−1]
ŷt

′

t′,k ≤ j − 1 = ŷvv,k − 1 ≤ max
t′∈[t:v]

ŷt
′

t′,k − 1 = ỹvt,k − 1. (13)

By using Lemma 10 and equation (13), we can estimate the first sum in (12):

v−1
∑

t=1

ỹv−1
t,k Ct,k(X̂

v)
L10,(13)

≤

v−t̄j−1
∑

t=1

ỹvt,kCt,k(X̂
v) +

v−1
∑

t=v−t̄j

(ỹvt,k − 1)Ct,k(X̂
v)

≤
v
∑

t=1

ỹvt,kCt,k(X̂
v)− βj . (14)

For the second inequality, we add (ỹvv,k − 1) · Cv,k(X̂
v) ≥ 0 and use

∑v
t=v−t̄j

Ct,k(X̂
v) ≥ βj which

holds because either j was powered up in X̂v during [v − t̄j : v] (then there is the switching cost of
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βj) or j runs for t̄j+1 time slots resulting in an operating cost of lj ·(t̄j+1) = lj ·(⌊βj/lj⌋+ 1) ≥ βj .
Altogether, we get (beginning from the left hand side of equation (12) that has to be shown)

2

v−1
∑

t=1

ỹv−1
t,k Ct,k(X̂

v) + C(Av,k)
(14),L9
≤ 2

v
∑

t=1

ỹvt,kCt,k(X̂
v)− 2βj + 2βj

≤ 2

v
∑

t=1

ỹvt,kCt,k(X̂
v).

If Av,k is an extended block, then C(Av,k) ≤ ljd with j := jv,k and d := dt,k by Lemma 9. Let

j′ := ŷvv,k be the server type in X̂v that provoked the extended block. For each t ∈ [v−d+1 : v−1],

ŷtt,k ≤ j′ − 1 holds, because otherwise the duration of Av,k would be smaller than d. Analogously to
new blocks, equation (13) holds for all t ∈ [v − d + 1 : v − 1]. The first sum of equation (12) is at
most

v−1
∑

t=1

ỹv−1
t,k Ct,k(X̂

v)
L10,(13)

≤

v−d
∑

t=1

ỹvt,kCt,k(X̂
v) +

v−1
∑

t=v−d+1

(ỹvt,k − 1)Ct,k(X̂
v)

=

v−1
∑

t=1

ỹvt,kCt,k(X̂
v)−

v−1
∑

t=v−d+1

Ct,k(X̂
v)

≤

v
∑

t=1

ỹvt,kCt,k(X̂
v)−

v
∑

t=v−d+1

Ct,k(X̂
v). (15)

The last term in (15) satisfies

v
∑

t=v−d+1

Ct,k(X̂
v) ≥ lj′d, (16)

because either j′ runs for d time slots in X̂v during [v−d+1 : v] (then the operating cost is exactly
lj′d) or j

′ was powered up during this interval resulting in a cost of

βj′ ≥ lj′

⌊

βj′

lj′

⌋

= lj′ t̄j′ ≥ lj′d

as the duration d of block Av,k is upper bounded by t̄j .
Altogether, we get

2
v−1
∑

t=1

ỹv−1
t,k Ct,k(X̂

v) + C(Av,k)

(15),L9
≤ 2

v
∑

t=1

ỹvt,kCt,k(X̂
v)− 2

v
∑

t=v−d+1

Ct,k(X̂
v) + ljd

(16)

≤ 2

v
∑

t=1

ỹvt,kCt,k(X̂
v).

The last inequality holds, because j′ = ŷvv,k ≤ yAv,k = j implies lj′d ≥ ljd.

Theorem 13. Algorithm A is 2d-competitive.
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Proof. The feasibility of XA was already proven in Lemma 8, so we have to show that C(XA) ≤
2d · C(X̂T ). Let Cv(X

A) :=
∑v

t=1

∑m
k=1C(At,k) denote the cost of algorithm A up to time slot v.

We will show by induction that

Cv(X
A) ≤ 2

m
∑

k=1

v
∑

t=1

ỹvt,kCt,k(X̂
v) (17)

holds for all v ∈ [T ]0.
For v = 0, we have no costs for both XA and X̂v, so inequality (17) is fulfilled. Assume that

inequality (17) holds for v− 1. By using the induction hypothesis as well as Lemmas 11 and 12, we
get

Cv(X
A) = Cv−1(X

A) +

m
∑

k=1

C(Av,k)

I.H.
≤ 2

m
∑

k=1

v−1
∑

t=1

ỹv−1
t,k Ct,k(X̂

v−1) +
m
∑

k=1

C(Av,k)

L11,L12
≤ 2

m
∑

k=1

v
∑

t=1

ỹvt,kCt,k(X̂
v). (18)

Since ỹvt,k ≤ d, we get

CT (X
A)

(18)

≤ 2

m
∑

k=1

T
∑

t=1

ỹTt,kCt,k(X̂
T ) ≤ 2d

m
∑

k=1

T
∑

t=1

Ct,k(X̂
T ) ≤ 2d · C(X̂T ).

The schedule X̂T is optimal for the problem instance I, so algorithm A is 2d-competitive.

3 Randomized Online Algorithm

The 2d-competitive algorithm can be randomized to achieve a competitive ratio of e
e−1d ≈ 1.582d

against an oblivious adversary. The randomized algorithm B chooses γ ∈ [0, 1] according to the
probability density function fγ(x) = ex/(e− 1) for x ∈ [0, 1]. The variables t̄j are set to ⌊γ · βj/lj⌋,
so the running time of a server is randomized. Then, algorithm A is executed. Note that γ is
determined at the beginning of the algorithm and not for each block.

Lemmas 1-8 as well as 10 and 11 still hold, because they do not depend on the exact value of t̄j.
Only Lemmas 9 and 12 have to be adapted. First of all, we have to introduce a new variable. Let

τ̂t,k := max
{

τ ∈ [t̄ŷt
t,k
]
∣

∣ ∀τ ′ ∈ [τ − 1] : ŷt−τ ′

t−τ ′,k < ŷtt,k

}

be the number of time slots we have to go backwards in time to find an optimal schedule X̂t−τ that
uses a server type greater than or equal to ŷtt,k in its last time slot in lane k. The following lemma
replaces Lemma 9 and estimates the expected cost of the block At,k depending on τ̂t,k.

Lemma 14. Let c = e/(e − 1), j := ŷtt,k and τ := τ̂t,k The expected cost of the block At,k is upper
bounded by E[C(At,k)] ≤ ljτc.

Proof. Let q :=
lj
βj
τ (note that both j and τ do not depend on random decisions). We estimate the

cost of At,k depending on γ.
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If γ > q, then the server yBt−τ,k ≥ j is still running at time slot t, since ŷt−τ
t−τ,k ≥ ŷtt,k = j implies

t̄ŷt−τ
t−τ,k

≥ t̄j = ⌊γ · βj/lj⌋ > ⌊q · βj/lj⌋ ≥ τ.

Therefore, At,k is an extended block with duration at most τ (or At,k does not exists which is
equivalent to an extended block with duration 0). Furthermore, server type jt,k = yBt−τ,k used in

At,k is greater than or equal to j = ŷtt,k, so ljt,k ≤ lj . Thus, for γ > q, we have C(At,k) ≤ ljτ .
If γ ≤ q, then there can be a new block at time slot t. Note that this is only a necessary, not a

sufficient condition for a new block (e.g., if ŷt−τ−1
t−τ−1,k > ŷtt,k). If At,k is a new block, then its cost is

given by βj + lj t̄j. If y
B
t−τ,k still runs at time slot t, then At,k is an extended block whose cost is at

most lj t̄j, since j ≤ jt,k. Thus, for γ ≤ q, we have C(At,k) ≤ βj + lj t̄j = βj + lj ⌊γ · βj/lj⌋.
Now, we can estimate the expected cost of At,k by using the density function fγ.

E[C(At,k)] ≤

∫ q

0
fγ(x)

(

βj + lj

⌊

x ·
βj
lj

⌋)

dx+

∫ 1

q
fγ(x)ljτ dx

≤ βj

(

q · Fγ(q) +
q

e− 1

)

+ ljτ
(

1− Fγ(q)
)

.

The last inequality uses lj ⌊x · βj/lj⌋ ≤ βjx, so the integrals can easily be calculated. By using
βjq = ljτ (which follows from the definition of q), we get

E[C(At,k)] ≤ βj

(

Fγ(q)q +
q

e− 1

)

+ ljτ(1− Fγ(q))

= ljτ

(

1

e− 1
+ 1

)

= ljτc.

The following lemma replaces Lemma 12 and shows how the expected cost of block Av,k can be

folded into the term c ·
∑v−1

t=1 ỹv−1
t,k Ct,k(X̂

v) which is the right hand side of equation (10).

Lemma 15. For all lanes k ∈ [m] and time slots v ∈ [T ], it holds

c ·

v−1
∑

t=1

ỹv−1
t,k Ct,k(X̂

v) + E[C(Av,k)] ≤ c ·

v
∑

t=1

ỹvt,kCt,k(X̂
v). (19)

Proof. If ŷvv,k = 0, then Av,k does not exist, so E[C(Av,k)] = 0 and therefore equation (19) holds by

ỹv−1
t,k ≤ ỹvt,k (see Lemma 10).

Thus, in the following we consider the case ŷvv,k > 0. For all t ∈ [v− τ +1 : v− 1] with τ := τ̂v,k,

the inequality ỹv−1
t,k ≤ ỹvt,k − 1 holds (see equation (13) in the proof of Lemma 12). Therefore, we

get

v−1
∑

t=1

ỹv−1
t,k Ct,k(X̂

v)

L10,(13)
≤

v−τ
∑

t=1

ỹvt,kCt,k(X̂
v) +

v−1
∑

t=v−τ+1

(ỹvt,k − 1)Ct,k(X̂
v)

≤
v
∑

t=1

ỹvt,kCt,k(X̂
v)−

v
∑

t=v−τ+1

Ct,k(X̂
v) (20)
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For the last inequality, we add the term (ỹvv,k − 1)Ct,k(X̂
v) which is positive, since ŷvv,k > 0.

The last term in (20) satisfies
v
∑

t=v−τ+1

Ct,k(X̂
v) ≥ ljτ (21)

with j := ŷvv,k, because either j runs for τ time slots in X̂v or j is powered up during [v − τ + 1 : v]
resulting in a cost of

βj ≥ lj

⌊

βj
lj
γ

⌋

= lj t̄j ≥ ljτ,

as τ ≤ t̄j by definition.
By using Lemma 14, we get

c ·
v−1
∑

t=1

ỹv−1
t,k Ct,k(X̂

v) + E[C(Av,k)]

(20),L14
≤ c ·

v
∑

t=1

ỹvt,kCt,k(X̂
v)− c ·

v
∑

t=v−τ+1

Ct,k(X̂
v) + ljτ · c

(21)

≤ c ·

v
∑

t=1

ỹTt,kCt,k(X̂
v)

Theorem 16. Algorithm B is e
e−1d-competitive against an oblivious adversary.

Proof. Lemma 8 still holds for algorithm B, so the schedule XB is feasible. We have to show that
E[C(XB)] ≤ cd · C(X̂T ) with c = e

e−1 . Let

Ev(X
B) := E

[

v
∑

t=1

m
∑

k=1

C(Av,k)

]

=
v
∑

t=1

m
∑

k=1

E[C(Av,k)]

denote the expected cost of algorithm B up to time slot v. We will show by induction that

Ev(X
B) ≤ c

m
∑

k=1

v
∑

t=1

ỹvt,kCt,k(X̂
v) (22)

holds for all v ∈ [T ]0.
For v = 0, we have no costs for both XB and X̂v , so inequality (22) is fulfilled. Assume that

inequality (22) holds for v− 1. By using the induction hypothesis as well as Lemmas 11 and 15, we
get

Ev(X
B) = Ev−1(X

B) +

m
∑

k=1

E[C(Av,k)]

I.H.
≤ c

m
∑

k=1

v−1
∑

t=1

ỹv−1
t,k Ct,k(X̂

v−1) +

m
∑

k=1

E[C(Av,k)]

L11
≤ c

m
∑

k=1

v−1
∑

t=1

ỹv−1
t,k Ct,k(X̂

v) +
m
∑

k=1

E[C(Av,k)]

L15
≤ c

m
∑

k=1

v
∑

t=1

ỹvt,kCt,k(X̂
v). (23)
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Since ỹvt,k ≤ d, we get

E[C(XB)] = ET (X
B)

(23)

≤ c
m
∑

k=1

T
∑

t=1

ỹTt,kCt,k(X̂
T )

≤ cd

m
∑

k=1

T
∑

t=1

Ct,k(X̂
T )

≤ cd · C(X̂T ).

The schedule X̂T is optimal for the problem instance I, so algorithm B is cd-competitive.

4 Lower bound

In this section, we show that there is no deterministic online algorithm that achieves a competitive
ratio that is better than 2d.

We consider the following problem instance: Let βj := N2j and lj := 1/N2j where N is a
sufficiently large number that depends on the number of servers types d. The value of N will be
determined later. The adversary will send a job for the current time slot if and only if the online
algorithm has no active server during the previous time slot. This implies that the online algorithm
has to power up a server immediately after powering down any server. Note that λt ∈ {0, 1}, i.e., it
is never necessary to power up more than one server. The optimal schedule is denoted by X∗. Let
A be an arbitrary deterministic online algorithm and let XA be the schedule computed by A.

W.l.o.g., in XA there is no time slot with more than one active server. If this were not the case,
we could easily convert the schedule into one where the assumption holds without increasing the
cost. Assume that at time slot t a new server of type k is powered up such that there are (at least)
two active servers at time t. If we power up the server at t+1, the schedule is still feasible, but the
total costs are reduced by lk. We can repeat this procedure until there is at most one active server
for each time slot.

Lemma 17. Let k ∈ [d]. If XA only uses servers of type lower than or equal to k and if the cost
of A is at least C(XA) ≥ Nβk, then the cost of A is at least

C(XA) ≥ (2k − ǫk) · C(X∗) (24)

with ǫk = 9k2/N and N ≥ 6k.

Proof. We will prove the lemma by induction.
For k = 1, let t be the length of the schedule XA and let n denote how often server type 1 is

powered up in XA. The cost of XA is C(XA) = nβ1 + l1(t − n + 1). We use two strategies to
estimate the cost of an optimal schedule. In the first strategy the server runs for the whole time,
so the cost is β1 + l1t. The second strategy is to power down the server when it is idle, so the cost
is n(β1 + l1).

We differ between the cases n ≥ N/8 (case 1) and n < N/8 (case 2). In case 1, the competitive
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ratio is

C(XA)

C(X∗)
=

nβ1 + l1(t− n+ 1)

C(X∗)

≥
(n− 1)β1 − l1(n− 1)

n(β1 + l1)
+

β1 + l1t

β1 + l1t

=

(

1−
1

n

)

−
2l1(n− 1)

n(β1 + l1)
+ 1. (25)

For the inequality, we split the cost of XA into two terms and estimate the cost of X∗ in left quotient
with the second strategy and C(X∗) in the right quotient with the first strategy.

The quotient 2l1(n−1)
n(β1+l1)

can be estimated by using n(β1 + l1) ≥ (n− 1)β1, the definitions of l1 and
β1 as well as the precondition of the lemma that requires N ≥ 6k.

2l1(n− 1)

n(β1 + l1)
≤

2l1(n− 1)

(n− 1)β1
≤

2

N4
<

1

N
.

By using this result in equation (25) as well as n ≥ N/8, we get

C(XA)

C(X∗)
> 2−

8

N
−

1

N
= 2− ǫ1,

since ǫ1 = 9/N .
In case 2, we use the fact that C(XA) ≥ Nβ1, so the competitive ratio is at least

C(XA)

C(X∗)
≥

Nβ1
n(β1 + l1)

>
8nβ1
2nβ1

= 4.

In the first inequality, we use the second strategy to estimate the cost of C(X∗). The second
inequality holds because n < N/8 and n(β1 + l1) ≤ 2nβ1.

For both cases, we have shown that C(XA) ≥ (2− ǫ1)C(X∗) holds, so equation (24) is fulfilled
for k = 1.

Next, assume that Lemma 17 holds for k − 1.
We divide the scheduleXA into phases L0,K1, L1,K2, . . . , Ln such that in the phasesK1, . . . ,Kn

server type k is used exactly once, while in the intermediate phases L0, . . . , Ln the other server types
1, . . . , k− 1 are used. A phase Ki begins when a server of type k is powered up and ends when it is
powered down. The phases Li can have zero length (if the server type k is powered up immediately
after it is powered down, so between Ki and Ki+1 an empty phase Li is inserted).

The operating cost during phaseKi is denoted by δiβk. The operating and switching costs during
phase Li are denoted by piβk. We divide the intermediate phases Li into long phases where pi > 1/N
holds and short phases where pi ≤ 1/N . Note that we can use the induction hypothesis only for
long phases. The index sets of the long and short phases are denoted by L and S, respectively.

To estimate the cost of an optimal schedule we consider two strategies (see Figure 5): In the
first strategy, a server of type k is powered up at the first time slot and runs for the whole time
except for phases Ki with δi > 1, then powering down and powering up are cheaper than keeping
the server in the active state (βk vs. δiβk). The operating cost for the phases Ki is δ∗i βk with
δ∗i := min{1, δi} and the operating cost for the phases Li is at most 1

N2 piβk, because algorithm A
uses servers whose types are lower than k and therefore the operating cost of A is at least N2 times
larger. Thus, the total cost of this strategy is upper bounded by

C(X∗) ≤ βk

(

1 +
n
∑

i=1

δ∗i +
∑

i∈L∪S

1

N2
pi

)

. (26)
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L0 K1 K2 L2 K3 L3

yt,k = k

1/α A 1/α

XA

λt

Strategy 1

Strategy 2

Figure 5: (figure is colored) Visualization of the two strategies to estimate the cost of an optimal
schedule. The schedule of algorithm A and the incoming jobs λt are shown in the middle. Long
phases are marked in blue and short phases are marked in green (L1 is a short phase with zero
length). Strategy 1 simply uses server type k the whole time. During the short phases, strategy 2
behaves like algorithm A. For the long phases, there is a solution that results in only 1/α of the
cost of XA with α := 2k− 2− ǫk−1. In the red blocks server type 1 is activated for exactly one time
slot.

In the second strategy, for the long phases L we use the strategy given by our induction hy-
pothesis, while for the short phases S we behave like algorithm A and in the phases Ki we run the
server type 1 for exactly one time slot (note that in Ki we only have λt = 1 in the first time slot of
the phase). Therefore the total cost is at most

C(X∗) ≤ βk

(

∑

i∈L

1

α
pi +

∑

i∈S

pi + 2nβ1/βk

)

(27)

with α := 2k − 2− ǫk−1.
The total cost of A is equal to βk

(
∑n

i=1(1 + δi) +
∑

i∈L∪S pi
)

, so the competitive ratio is given
by

C(XA)

C(X∗)
≥

∑n
i=1(1 + δi) +

∑

i∈L∪S pi

C(X∗)/βk

=
1 +

∑n
i=1 δi +

∑

i∈L∪S
1
N2 pi

C(X∗)/βk

+
n− 1 +

∑

i∈L∪S pi
(

1− 1
N2

)

C(X∗)/βk

≥ 1 +
n− 1 +

∑

i∈L∪S pi
(

1− 1
N2

)

C(X∗)/βk
.

In the first step, the numerator is separated into two parts. Then C(X∗) in the first fraction is
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estimated by equation (26) (first strategy). In the next step, we transform the second fraction.

C(XA)

C(X∗)
≥ 1 +

(

∑

i∈L pi +
∑

i∈S αpi + 2nα β1

βk

)

(

1− 1
N2

)

C(X∗)/βk

−

∑

i∈L∪S
1
N2pi

C(X∗)/βk
+

∑

i∈L∪S
1
N2pi

C(X∗)/βk

+
n− 1−

(

∑

i∈S(α− 1)pi + 2nα β1

βk

)

(

1− 1
N2

)

C(X∗)/βk

≥ 1 + α

(

1−
1

N2

)

−
α

N2
+

∑

i∈L∪S
1
N2pi

C(X∗)/βk

+
n− 1−

(

∑

i∈S(α− 1)pi + 2nα β1

βk

)

(

1− 1
N2

)

C(X∗)/βk
. (28)

The last inequality uses equation (27) (second strategy) to estimate C(X∗). In particular, we have

−

∑

i∈L∪S
1
N2 pi

∑

i∈L
1
αpi +

∑

i∈S pi + 2nβ1/βk
≥ −

∑

i∈L∪S
1
N2pi

∑

i∈L∪S
1
αpi

= −
α

N2
.

The fraction
∑

i∈L∪S
1

N2 pi

C(X∗)/βk
of (28) is transformed as follows

C(XA)

C(X∗)
≥ 1 + α

(

1−
2

N2

)

+

(

n+ 1 +
∑

i∈L∪S
1
N2 pi

)

(1− ξ)

C(X∗)/βk

+

(

n+ 1 +
∑

i∈L∪S
1
N2 pi

)

ξ

C(X∗)/βk

−
2 +

(

∑

i∈S(α− 1)pi + 2nα β1

βk

)

(

1− 1
N2

)

C(X∗)/βk

with 0 < ξ < 1. By using equation (26) and δ∗i ≤ 1 for all i ∈ [n], we get

C(XA)

C(X∗)
≥ 2− ξ + α

(

1−
2

N2

)

+

(

n+ 1 +
∑

i∈L∪S
1
N2 pi

)

ξ

C(X∗)/βk

−
2 +

(

∑

i∈S(α− 1)pi + 2nα β1

βk

)

(

1− 1
N2

)

C(X∗)/βk

≥ 2− ξ + α

(

1−
2

N2

)

−
−nξ + 2 + 2k(n+1)

N + 4kn
N2

C(X∗)/βk
.

22



For the last estimation we used the following inequalities:

n+ 1 +
∑

i∈L∪S

1

N2
pi ≥ n,

α− 1 ≤ 2k,
∑

i∈S

pi ≤
n+ 1

N

(by |S| ≤ n+ 1
and pi ≤ 1/N for i ∈ S),

1−
1

N2
≤ 1

and 2nα
β1
βk

≤ 4kn/N2 (by α ≤ 2k, k ≥ 2 and βk = N2k).

With N2 ≥ N , ξ := 6k/N , α ≤ 2k, the definition of α = 2k − 2− ǫk−1 and N ≥ 2k, we get

C(XA)

C(X∗)
≥ 2k − ǫk−1 −

10k

N
−

3

C(X∗)/βk
. (29)

If C(X∗) < N
2kβk holds, then C(XA) ≥ Nβk (a precondition of Lemma 17) implies 2k ·C(X∗) <

Nβk ≤ C(XA), so equation (24) is fulfilled and Lemma 17 holds. If C(X∗) ≥ N
2kβk, then

3
C(X∗)/βk

≤
6k
N and inequality (29) gives

C(XA)

C(X∗)
≥ 2k − ǫk−1 −

16k

N

≥ 2k −
9(k − 1)2

N
−

16k

N

≥ 2k −
9k2

N
≥ 2k − ǫk.

Theorem 18. There is no deterministic online algorithm for the data-center right-sizing problem
with heterogeneous servers and time- and load-independent operating costs whose competitive ratio
is smaller than 2d.

Proof. Assume that there is an (2d − ǫ)-competitive deterministic online algorithm A. Let N :=
max{6d, ⌈9k2/ǫ+1⌉}. We construct a workload as described at the beginning of Section 4 until the
cost of A is greater than Nβd (note that lj > 0 for all j ∈ [d], so the cost of A can be arbitrarily
large). By using Lemma 17 with k = d, we get

C(XA) ≥ (2d− ǫd) · C(X∗)

≥

(

2d−
9k2

⌈9k2/ǫ+ 1⌉

)

· C(X∗)

> (2d− ǫ) · C(X∗),

which is a contradiction to our assumption that algorithm A is (2d − ǫ)-competitive. Therefore,
there is no deterministic online algorithm whose competitive ratio is smaller than 2d.
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The schedule constructed for the lower bound only uses at most one job in each time slot, so
there is no reason for an online algorithm to utilize more than one server of a specific type. Thus,
for a data center with m unique servers (i.e. mj = 1 for all j ∈ [d]), the best achievable competitive
ratio is 2d = 2m.

Corollary 19. There is no deterministic online algorithm for the data-center right-sizing problem
with m unique servers and time- and load-independent operating costs whose competitive ratio is
smaller than 2m.

5 Summary

In this paper, we have settled the competitive ratio of online algorithms for right-sizing hetero-
geneous data centers with d different server types. We investigated a basic setting where each
server type has a constant operating cost per time unit. In contrast to related publications like [25]
or [30], we studied the discrete setting where the number of active servers must be an integral num-
ber. Thereby we gain truly feasible solutions. We developed a 2d-competitive deterministic online
algorithm and showed that 2d is a lower bound for deterministic algorithms. Hence our algorithm
is optimal. Furthermore, we presented a randomized version that achieves a competitive ratio of
e

e−1d ≈ 1.582d against an oblivious adversary.

A Variables

The following table gives an overview of the variables defined in this paper.

Variable Description

At,k Block at time slot t in lane k of the schedule XA

A Our deterministic online algorithm (Section 2) or any online algorithm (Section 4)

βj Switching cost of server type j

C(X) Total cost of the schedule X (see equation (1))

Ct,k(X) Switching and operating cost of the schedule X at time t in lane k (see equation (9))

C(At,k) Cost of block At,k (see Lemma 9)

d Number of server types

dt,k Duration of block At,k. Formally, dt,k := et,k − st,k

ek Variable in algorithm A that stores the time slot when the server in lane k will be powered down

et,k Last time slot (exclusive) of block At,k, i.e. et,k is the first time slot after At,k

I Problem instance. Formally, I := (T, d,m,β, l,Λ)

It Problem instance that ends at time slot t. Formally, It := (t, d,m,β, l,Λt)

jt,k Server type used in block At,k

m Total number of servers, m :=
∑d

j=1 mj

mj Number of servers of type j

lj Operating cost of server type j

λt Job volume that arrives at time slot t

st,k First time slot of block At,k

t̄j Number of time slots that a server of type j stays active in algorithm A; t̄j := ⌊βj/lj⌋

T Total number of time slots

X An arbitrary schedule. Formally, X = (x1, . . . ,xT ) and xt = (xt,1, . . . , xt,d)

X∗ An optimal schedule

XA The schedule calculated by our deterministic online algorithm (in Section 2) or by any online algo-
rithm (in Section 4)

XB The schedule calculated by our randomized online algorithm
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Variable Description

X̂t Optimal schedule for the problem instance It that ends at time t

xt,j Number of active servers of type j at time t in the schedule X

xA
t,j Number of active servers of type j at time t in the schedule XA

x̂u
t,j Number of active servers of type j at time t in the schedule X̂u

yt,k Server type used in the k-th lane at time t in the schedule X (see equation (2))

yA
t,k

Server type used in the k-th lane at time t in the schedule XA (see equation (2))

ŷu
t,k

Server type used in the k-th lane at time t in the schedule X̂u (see equation (2))

ỹu
t,k

Largest server type used in lane k by the schedule X̂t′ at time slot t′ for t′ ∈ [t : u]. Formally,

ỹu
t,k

:= maxt′∈[t:u] ŷ
t′

t′,k
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