Contents lists available at ScienceDirect

www.elsevier.com/locate/tcs

Disjoint paths and connected subgraphs for *H*-free graphs $\stackrel{\text{\tiny{$ؿm$}}}{\to}$

Walter Kern^{a,1}, Barnaby Martin^b, Daniël Paulusma^{b,*,2}, Siani Smith^b, Erik Jan van Leeuwen^c

^a Department of Applied Mathematics, University of Twente, the Netherlands

^b Department of Computer Science, Durham University, Durham, UK

^c Department of Information and Computing Sciences, Utrecht University, the Netherlands

ARTICLE INFO

Article history: Received 21 May 2021 Received in revised form 1 September 2021 Accepted 18 October 2021 Available online 22 October 2021 Communicated by D.-Z. Du

Keywords: Disjoint paths H-free graph Complexity dichotomy

ABSTRACT

The well-known DISJOINT PATHS problem is to decide if a graph contains k pairwise disjoint paths, each connecting a different terminal pair from a set of k distinct vertex pairs. We determine, with an exception of two cases, the complexity of the DISJOINT PATHS problem for H-free graphs. If k is fixed, we obtain the k-DISJOINT PATHS problem, which is known to be polynomial-time solvable on the class of all graphs for every $k \ge 1$. The latter does no longer hold if we need to connect vertices from terminal sets instead of terminal pairs. We completely classify the complexity of k-DISJOINT CONNECTED SUBGRAPHS for H-free graphs, and give the same almost-complete classification for DISJOINT CONNECTED SUBGRAPHS for Hfree graphs as for DISJOINT PATHS. Moreover, we give exact algorithms for DISJOINT PATHS and DISJOINT CONNECTED SUBGRAPHS on graphs with n vertices and m edges that have running times of $O(2^n n^2 k)$ and $O(3^n km)$, respectively.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

A path from a vertex *s* to a vertex *t* in a graph *G* is an *s*-*t* path of *G*, and *s* and *t* are called its *terminals*. Two pairs (s_1, t_1) and (s_2, t_2) are *disjoint* if $\{s_1, t_1\} \cap \{s_2, t_2\} = \emptyset$. In 1980, Shiloach [20] gave a polynomial-time algorithm for testing if a graph with disjoint terminal pairs (s_1, t_1) and (s_2, t_2) has vertex-disjoint paths P^1 and P^2 such that each P^i is an s_i - t_i path. This problem can be generalized as follows.

Instance:	a graph G and pairwise disjoint terminal pairs $(s_1, t_1) \dots, (s_k, t_k)$.
Question:	Does G have pairwise vertex-disjoint paths P^1, \ldots, P^k such that P^i is an s_i - t_i path for $i \in$
	$\{1, \ldots, k\}$?

 * An extended abstract of this paper appeared in the proceedings of IWOCA 2021 [14].

* Corresponding author.

https://doi.org/10.1016/j.tcs.2021.10.019 0304-3975/© 2021 Elsevier B.V. All rights reserved.

E-mail addresses: w.kern@twente.nl (W. Kern), barnaby.d.martin@durham.ac.uk (B. Martin), daniel.paulusma@durham.ac.uk (D. Paulusma), siani.smith@durham.ac.uk (S. Smith), e.j.vanleeuwen@uu.nl (E.J. van Leeuwen).

¹ Walter Kern recently passed away and we are grateful for his contribution.

 $^{^2\;}$ Daniël Paulusma was supported by the Leverhulme Trust (RPG-2016- 258).

Fig. 1. An example of a yes-instance (G, Z_1, Z_2) of (2-)DISJOINT CONNECTED SUBGRAPHS (left) together with a solution (right).

Karp [12] proved that DISJOINT PATHS is NP-complete. If k is fixed, that is, not part of the input, then we denote the problem as k-DISJOINT PATHS. For every $k \ge 1$, Robertson and Seymour proved the following celebrated result.

Theorem 1 ([19]). For all $k \ge 2$, k-DISJOINT PATHS is polynomial-time solvable.

The running time in Theorem 1 is cubic. This was later improved to quadratic time by Kawarabayashi, Kobayashi and Reed [13].

As DISJOINT PATHS is NP-complete, it is natural to consider special graph classes. The DISJOINT PATHS problem is known to be NP-complete even for graph of clique-width at most 6 [8], split graphs [9], interval graphs [16] and line graphs. The latter result can be obtained by a straightforward reduction (see, for example, [8,9]) from its edge variant, EDGE DISJOINT PATHS, proven to be NP-complete by Even, Itai and Shamir [5]. On the positive side, DISJOINT PATHS is polynomial-time solvable for cographs, or equivalently, *P*₄-free graphs [8].

We can generalize the DISJOINT PATHS problem by considering terminal sets Z_i instead of terminal pairs (s_i, t_i) . We write G[S] for the subgraph of a graph G = (V, E) induced by $S \subseteq V$, where S is *connected* if G[S] is connected.

DISJOINT CONNECTED SUBGRAPHS

Instance: a graph G and pairwise disjoint terminal sets Z_1, \ldots, Z_k .

Question: Does G have pairwise disjoint connected sets S_1, \ldots, S_k such that $Z_i \subseteq S_i$ for $i \in \{1, \ldots, k\}$?

If k is fixed, then we write k-DISJOINT CONNECTED SUBGRAPHS. We refer to Fig. 1 for a simple example of an instance (G, Z_1, Z_2) of 2-DISJOINT CONNECTED SUBGRAPHS. Robertson and Seymour [19] proved in fact that k-DISJOINT CONNECTED SUBGRAPHS is cubic-time solvable as long as $|Z_1| + ... + |Z_k|$ is fixed (this result implies Theorem 1). Otherwise, van 't Hof et al. [23] proved that already 2-DISJOINT CONNECTED SUBGRAPHS is NP-complete even if $|Z_1| = 2$ (and $|Z_2|$ may have arbitrarily large size). The same authors also proved that 2-DISJOINT CONNECTED SUBGRAPHS is NP-complete for split graphs. Afterwards, Gray et al. [7] proved that 2-DISJOINT CONNECTED SUBGRAPHS is NP-complete for planar graphs. Hence, Theorem 1 cannot be extended to hold for k-DISJOINT CONNECTED SUBGRAPHS.

We note that in recent years a number of exact algorithms were designed for *k*-DISJOINT CONNECTED SUBGRAPHS. Cygan et al. [4] gave an $O^*(1.933^n)$ -time algorithm for the case k = 2 (see [18,23] for faster exact algorithms for special graph classes). Telle and Villanger [21] improved this to time $O^*(1.7804^n)$. Recently, Agrawal et al. [1] gave an $O^*(1.88^n)$ -time algorithm for the case k = 3. Moreover, the 2-DISJOINT CONNECTED SUBGRAPHS problem plays a crucial role in graph contractibility: a connected graph can be contracted to the 4-vertex path if and only if there exist two vertices u and v such that $(G - \{u, v\}, N(u), N(v))$ is a yes-instance of 2-DISJOINT CONNECTED SUBGRAPHS (see, e.g. [15,23]).

A class of graphs that is closed under vertex deletion is called *hereditary*. Such a graph class can be characterized by a unique set \mathcal{F} of minimal forbidden induced subgraphs. Hereditary graphs enable a systematic study of the complexity of a graph problem under input restrictions: by starting with the case where $|\mathcal{F}| = 1$, we may already obtain more general methodology and a better understanding of the complexity of the problem. If $|\mathcal{F}| = 1$, say $\mathcal{F} = \{H\}$ for some graph H, then we obtain the class of H-free graphs, that is, the class of graphs that do not contain H as an induced subgraph (so, an H-free graph cannot be modified to H by vertex deletions only). In this paper, we start such a systematic study for DISJOINT PATHS and DISJOINT CONNECTED SUBGRAPHS, both for the case when k is part of the input and when k is fixed.

Our results

By combining some of the aforementioned known results with a number of new results, we prove the following two theorems in Sections 3 and 4, respectively. In particular, we generalize the polynomial-time result for DISJOINT PATHS on P_4 -free graphs to hold even for DISJOINT CONNECTED SUBGRAPHS. See Fig. 2 for an example of a graph $H = sP_1 + P_4$; we refer to Section 2 for undefined terminology.

• • • • • - • - • - •

Fig. 2. The graph $H = 3P_1 + P_4$.

Theorem 2. Let *H* be a graph. If $H \subseteq_i sP_1 + P_4$, then for every $k \ge 2$, *k*-DISJOINT CONNECTED SUBGRAPHS on *H*-free graphs is polynomial-time solvable; otherwise even 2-DISJOINT CONNECTED SUBGRAPHS is NP-complete.

Theorem 3. Let *H* be a graph not in $\{3P_1, 2P_1 + P_2, P_1 + P_3\}$. If $H \subseteq_i P_4$, then DISJOINT CONNECTED SUBGRAPHS is polynomial-time solvable for *H*-free graphs; otherwise even DISJOINT PATHS is NP-complete.

Theorem 2 completely classifies, for every $k \ge 2$, the complexity of *k*-DISJOINT CONNECTED SUBGRAPHS on *H*-free graphs. Theorem 3 determines the complexity of DISJOINT PATHS and DISJOINT CONNECTED SUBGRAPHS on *H*-free graphs for every graph *H* except if $H \in \{3P_1, 2P_1 + P_2, P_1 + P_3\}$. In Section 5 we reduce the number of open cases from six to *three* by showing some equivalencies.

In Section 6 we complement the above results by giving exact algorithms for both problems based on Held-Karp type dynamic programming techniques [10,2]. In Section 7 we give some directions for future work. In particular we prove that both problems are polynomial-time solvable for co-bipartite graphs, which form a subclass of the class of $3P_1$ -free graphs.

2. Preliminaries

We use $H \subseteq_i H'$ to indicate that H is an induced subgraph of H', that is, H can be obtained from H' by a sequence of vertex deletions. For two graphs G_1 and G_2 we write $G_1 + G_2$ for the *disjoint union* $(V(G_1) \cup V(G_2), E(G_1) \cup E(G_2))$. We denote the disjoint union of r copies of a graph G by rG. A graph is said to be a linear forest if it is a disjoint union of paths.

We denote the path and cycle on n vertices by P_n and C_n , respectively. The girth of a graph that is not a forest is the number of edges of a smallest induced cycle in it.

The line graph L(G) of a graph G has vertex set E(G) and there exists an edge between two vertices e and f in L(G) if and only if e and f have a common end-vertex in G. The claw $K_{1,3}$ is the 4-vertex star. It is readily seen that every line graph is claw-free. Recall that a graph is H-free if it does not contain H as induced subgraph. For a set of graphs $\{H_1, \ldots, H_r\}$, we say that a graph G is (H_1, \ldots, H_r) -free if G is H_i -free for every $i \in \{1, \ldots, r\}$.

A *clique* is a set of pairwise adjacent vertices and an *independent set* is a set of pairwise non-adjacent vertices. A graph is *split* if its vertex set can be partitioned into two (possibly empty) sets, one of which is a clique and the other is an independent set. A graph is split if and only if it is (C_4, C_5, P_4) -free [6]. A graph is a *cograph* if it can be defined recursively as follows: any single vertex is a cograph, the disjoint union of two cographs is a cograph, and the join of two cographs G_1, G_2 is a cograph (the *join* adds all edges between the vertices of G_1 and G_2). A graph is a cograph if and only if it is P_4 -free [3].

A graph G = (V, E) is *multipartite*, or more specifically, *r*-*partite* if *V* can be partitioned into *r* (possibly empty) sets V_1, \ldots, V_r , such that there is an edge between two vertices *u* and *v* if and only if $u \in V_i$ and $v \in V_j$ for some *i*, *j* with $i \neq j$. If r = 2, we also say that *G* is *bipartite*. If there exist an edge between every vertex of V_i and every vertex of V_j for every $i \neq j$, then the multipartite graph *G* is *complete*.

The complement of a graph G = (V, E) is the graph $\overline{G} = (V, \{uv \mid u, v \in V, u \neq v \text{ and } uv \notin E\})$. The complement of a bipartite graph is a cobipartite graph. A set $W \subseteq V$ is a dominating set of a graph G if every vertex of $V \setminus W$ has a neighbour in W, or equivalently, N[W] (the closed neighbourhood of W) is equal to V. We say that W is a connected dominating set if W is a dominating set and G[W] is connected.

3. The proof of Theorem 2

We consider *k*-DISJOINT CONNECTED SUBGRAPHS for fixed *k*. First, we show a polynomial-time algorithm on *H*-free graphs when $H \subseteq_i sP_1 + P_4$ for some fixed $s \ge 0$. Then, we prove the hardness result.

For the algorithm, we need the following lemma for P_4 -free graphs, or equivalently, cographs. This lemma is well known and follows immediately from the definition of a cograph: in the construction of a connected cograph G, the last operation must be a join, so there exists cographs G_1 and G_2 , such that G obtained from adding an edge between every vertex of G_1 and every vertex of G_2 . Hence, the spanning complete bipartite graph of G has non-empty partition classes $V(G_1)$ and $V(G_2)$.

Lemma 1. Every connected P₄-free graph on at least two vertices has a spanning complete bipartite subgraph.

Two instances of a problem Π are *equivalent* when one of them is a yes-instance of Π if and only if the other one is a yes-instance of Π . We note that if two adjacent vertices will always appear in the same set of every solution (S_1, \ldots, S_k) for an instance (G, Z_1, \ldots, Z_k) , then we may contract the edge between them at the start of any algorithm. This takes linear

time. Moreover, H-free graphs are readily seen (see e.g. [15]) to be closed under edge contraction if H is a linear forest. Hence, we can make the following observation.

Lemma 2. For $k \ge 2$, from every instance of $(G, Z_1, ..., Z_k)$ of k-DISJOINT CONNECTED SUBGRAPHS we can obtain in polynomial time an equivalent instance $(G', Z'_1, ..., Z'_k)$ such that every Z'_i is an independent set. Moreover, if G is H-free for some linear forest H, then G' is also H-free.

We can now prove the following lemma.

Lemma 3. Let *H* be a graph. If $H \subseteq_i sP_1 + P_4$, then for every $k \ge 1$, *k*-Disjoint Connected Subgraphs on *H*-free graphs is polynomial-time solvable.

Proof. Let $H \subseteq_i sP_1 + P_4$ for some $s \ge 0$. Let $(G, Z_1, ..., Z_k)$ be an instance of k-DISJOINT CONNECTED SUBGRAPHS, where G is an *H*-free graph. By Lemma 2, we may assume without loss of generality that G is connected and moreover that $Z_1, ..., Z_k$ are all independent sets.

We first analyze the structure of a solution (S_1, \ldots, S_k) (if it exists). For $i \in \{1, \ldots, k\}$, we may assume that S_i is inclusion-wise minimal, meaning there is no $S'_i \subset S_i$ that contains Z_i and is connected. Consider a graph $G[S_i]$. Either $G[S_i]$ is P_4 -free or $G[S_i]$ contains an induced $rP_1 + P_4$ for some $0 \le r \le s - 1$. We will now show that in both cases, S_i is the (not necessarily disjoint) union of Z_i and a connected dominating set of $G[S_i]$ of constant size.

First suppose that $G[S_i]$ is P_4 -free. As $G[S_i]$ is connected and Z_i is independent, we apply Lemma 1 to find that $S_i \setminus Z_i$ contains a vertex u that is adjacent to every vertex of Z_i . Hence, by minimality, $S_i = Z_i \cup \{u\}$ and $\{u\}$ is a connected dominating set of $G[S_i]$ of size 1.

Now suppose that $G[S_i]$ has an induced $rP_1 + P_4$ for some $r \ge 0$, where we choose r to be maximum. Note that $r \le s - 1$. Let W be the vertex set of the induced $rP_1 + P_4$. Then, as r is maximum, W dominates $G[S_i]$. Note that G[W] has $r + 1 \le s$ connected components. Then, as $G[S_i]$ is connected and W is a dominating set of $G[S_i]$ of size $r + 4 \le s + 3$, it follows from folklore arguments (see e.g. [22, Prop. 6.3.24]) that $G[S_i]$ has a connected dominating set W' of size at most 3s + 1. Moreover, by minimality, $S_i = Z_i \cup W'$.

Hence, in both cases we find that S_i is the union of Z_i and a connected dominating set of $G[S_i]$ of size at most t = 3s + 1; note that t is a constant, as s is a constant.

Our algorithm now does as follows. We consider all options of choosing a connected dominating set of each $G[S_i]$, which from the above has size at most t. As soon as one of the guesses makes every Z_i connected, we stop and return the solution. The total number of options is $O(n^{tk})$, which is polynomial as k and t are fixed. Moreover, checking the connectivity condition can be done in polynomial time. Hence, the total running time of the algorithm is polynomial. \Box

The proof our next result is inspired by the aforementioned NP-completeness result of [23] for instances (G, Z_1 , Z_2) where $|Z_1| = 2$ but G is a general graph.

Lemma 4. The 2-DISJOINT CONNECTED SUBGRAPHS problem is NP-complete even on instances (G, Z_1, Z_2) where $|Z_1| = 2$ and G is a line graph.

Proof. Note that the problem is in NP. We reduce from 3-SAT. Let $\phi = \phi(x_1, ..., x_n)$ be an instance of 3-SAT with clauses $C_1, ..., C_m$. We construct a corresponding graph G = (V, E) as follows. We start with two disjoint paths P and \overline{P} on vertices p_i, x_i, q_i and $\overline{p}_i, \overline{x}_i, \overline{q}_i$, respectively, where x_i, \overline{x}_i correspond to the positive and negative literals in ϕ , respectively. To be more precise, we define:

 $P = p_1, x_1, q_1, p_2, x_2, q_2, \dots, p_n, x_n, q_n$, and $\overline{P} = \overline{p}_1, \overline{x}_1, \overline{q}_1, \dots, \overline{p}_n, \overline{x}_n, \overline{q}_n$,

We add the two edges $e = p_1 \bar{p}_1$, and $f = q_n \bar{q}_n$. For i = 1, ..., n - 1, we also add edges $q_i \bar{p}_{i+1}$ and $\bar{q}_i p_{i+1}$. We now replace each x_i by vertices $x_i^{j_1}, x_i^{j_2}, ..., x_i^{j_r}$, where $j_1, ..., j_r$ are the indices of the clauses C_j that contain x_i . That is, we replace the subpath p_i, x_i, q_i of P by the path $p_i, x_i^{j_1}, x_i^{j_2}, ..., x_i^{j_r}, q_i$. We do the same path replacement operation on \bar{P} with respect to every \bar{x}_i . Finally, we add every clause C_j as a vertex and add an edge between C_j and x_i^j if and only if $x_i \in C_j$. This completes the description of G = (V, E). We refer to Fig. 3 for an illustration of our construction.

We now focus on the line graph L = L(G) of G. Let $Z_1 = \{e, f\} \subseteq E = V(L)$ and let Z_2 consist of all vertices of L that correspond to edges in G that are incident to some C_j . Note that Z_1 and Z_2 are disjoint. Moreover, each clause C_j corresponds to a clique of size at most 3 in L, which we call the clause clique of C_j . We claim that ϕ is satisfiable if and only if the instance (L, Z_1, Z_2) of 2-DISJOINT CONNECTED SUBGRAPHS is a yes-instance.

First suppose that ϕ is satisfiable. Let τ be a satisfying truth assignment for ϕ . In *G*, we let P^1 denote the unique path whose first edge is *e* and whose last edge is *f* and that passes through all $x_i^j \in V$ if $x_i = 0$ and through all \bar{x}_i^j if $x_i = 1$.

Fig. 3. The construction described with edges added for the clause $C_1 = (x_1 \lor x_2 \lor \bar{x_3})$.

In *L* we let S_1 consist of all vertices of $L(P^1)$; note that $Z_1 = \{e, f\}$ is contained in S_1 and that S_1 is connected. We let P^2 denote the "complementary" path in *G* whose first edge is *e* and whose last edge is *f* but that passes through all x_i^j if and only if P^1 passes through all \bar{x}_i^j , and conversely (i = 1, ..., n). In *L*, we put all vertices of $L(P^2)$, except *e* and *f*, together with all vertices of Z_2 in S_2 . As τ satisfies ϕ , some vertex of each clause clique is adjacent to a vertex of P^2 . Hence, as P^2 is a path, S_2 is connected and we found a solution for (L, Z_1, Z_2) .

Now suppose that (L, Z_1, Z_2) is a yes-instance of 2-DISJOINT CONNECTED SUBGRAPHS. Then V(L) can be partitioned into two vertex-disjoint connected sets S_1 and S_2 such that $Z_1 \subseteq S_1$ and $Z_2 \subseteq S_2$. In particular, $L[S_1]$ contains a path P^1 from *e* to *f*. In fact, we may assume that $S_1 = V(P^1)$, as we can move every other vertex of S_1 (if they exist) to S_2 without disconnecting S_2 .

Note that P^1 corresponds to a connected subgraph that contains the adjacent vertices p_1 and \bar{p}_1 as well as the adjacent vertices q_n and \bar{q}_n . Hence, we can modify P^1 into a path Q in G that starts in p_1 or \bar{p}_1 and that ends in q_n or \bar{q}_n . Note that Q contains no edge incident to a clause vertex C_j , as those edges correspond to vertices in L that belong to Z_2 . Hence, by construction, Q "moves from left to right", that is, Q cannot pass through both some x_i^j and \bar{x}_i^j (as then Q needs to pass through either x_i^j or \bar{x}_i^j again implying that Q is not a path).

Moreover, if *Q* passes through some x_i^j , then *Q* must pass through all vertices $x_i^{j_h}$. Similarly, if *Q* passes through some \bar{x}_i^j , then *Q* must pass through all vertices $\bar{x}_i^{j_h}$. As *Q* connects the edges $p_1\bar{p}_1$ and $q_n\bar{q}_n$, we conclude that *Q* must pass, for i = 1, ..., n, through either every $x_i^{j_h}$ or through every $\bar{x}_i^{j_h}$. Thus we may define a truth assignment τ by setting

 $x_i = \begin{cases} 1 \text{ if } Q \text{ passes through all } \bar{x}_i^j \\ 0 \text{ if } Q \text{ passes through all } x_i^j. \end{cases}$

We claim that τ satisfies ϕ . For contradiction, assume some clause C_j is not satisfied. Then Q passes through all its literals. However, then in S_2 , the vertices of Z_2 that correspond to edges incident to C_j are not connected to other vertices of Z_2 , a contradiction. This completes the proof of the lemma. \Box

A straightforward modification of the reduction of Lemma 5 gives us Lemma 6. We can also obtain Lemma 6 by subdividing the graph G in the proof of Lemma 4 twice (to get a bipartite graph) or p times (to get a graph of girth at least p).

Lemma 5 ([23]). 2-DISJOINT CONNECTED SUBGRAPHS is NP-complete for split graphs, or equivalently, (2P₂, C₄, C₅)-free graphs.

Lemma 6. 2-DISJOINT CONNECTED SUBGRAPHS is NP-complete for bipartite graphs and for graphs of girth at least p, for every integer $p \ge 3$.

We are now ready to prove Theorem 2.

Theorem 2 (restated) Let *H* be a graph. If $H \subseteq_i sP_1 + P_4$, then for every $k \ge 1$, *k*-DISJOINT CONNECTED SUBGRAPHS on *H*-free graphs is polynomial-time solvable; otherwise even 2-DISJOINT CONNECTED SUBGRAPHS is NP-complete.

Proof. If *H* contains an induced cycle C_s for some $s \ge 3$, then we apply Lemma 6 by setting p = s + 1. Now assume that *H* contains no cycle, that is, *H* is a forest. If *H* has a vertex of degree at least 3, then *H* is a superclass of the class of claw-free graphs, which in turn contains all line graphs. Hence, we can apply Lemma 4. In the remaining case *H* is a linear forest. If *H* contains an induced $2P_2$, we apply Lemma 5. Otherwise *H* is an induced subgraph of $sP_1 + P_4$ for some $s \ge 0$ and we apply Lemma 3. \Box

4. The proof of Theorem 3

We first prove the following result, which generalizes the corresponding result of DISJOINT PATHS for P_4 -free graphs due to Gurski and Wanke [8]. We show that we can use the same modification to a matching problem in a bipartite graph.

Lemma 7. DISJOINT CONNECTED SUBGRAPHS is polynomial-time solvable for P₄-free graphs.

Proof. For some integer $k \ge 2$, let (G, Z_1, \ldots, Z_k) be an instance of DISJOINT CONNECTED SUBGRAPHS where *G* is a P_4 -free graph. By Lemma 2 we may assume that every Z_i is an independent set. Now suppose that (G, Z_1, \ldots, Z_k) has a solution (S_1, \ldots, S_k) . Then $G[S_i]$ is a connected P_4 -free graph. Hence, by Lemma 1, $G[S_i]$ has a spanning complete bipartite graph on non-empty partition classes A_i and B_i . As every Z_i is an independent set, it follows that either $Z_i \subseteq A_i$ or $Z_i \subseteq B_i$. If $Z_i \subseteq A_i$, then every vertex of B_i is adjacent to every vertex of Z_i . Similarly, if $Z_i \subseteq B_i$, then every vertex of A_i is adjacent to every set S_i , there exists a vertex y_i such that $Z_i \cup \{y_i\}$ is connected.

The latter enables us to construct a bipartite graph $G' = (X \cup Y, E')$ where X contains vertices x_1, \ldots, x_k corresponding to the set Z_1, \ldots, Z_k and Y is the set of non-terminal vertices of G. We add an edge between $x_i \in X$ and $y \in Y$ if and only if y is adjacent to every vertex of Z_i . Then $(G, Z_1 \ldots Z_k)$ is a yes-instance of DISJOINT CONNECTED SUBGRAPHS if and only if G' contains a matching of size k. It remains to observe that we can find a maximum matching in polynomial time, for example, by using the Hopcroft-Karp algorithm for bipartite graphs [11]. \Box

The first lemma of a series of four is obtained by a straightforward reduction from the EDGE DISJOINT PATHS problem (see, e.g. [8,9]), which was proven to be NP-complete by Even, Itai and Shamir [5]. The second lemma follows from the observation that an edge subdivision of the graph G in an instance of DISJOINT PATHS results in an equivalent instance of DISJOINT PATHS; we apply this operation a sufficiently large number of times to obtain a graph of large girth. The third lemma is due to Heggernes et al. [9]. We modify their construction to prove the fourth lemma.

Lemma 8. DISJOINT PATHS is NP-complete for line graphs.

Lemma 9. For every $g \ge 3$, DISJOINT PATHS is NP-complete for graphs of girth at least g.

Lemma 10 ([9]). DISJOINT PATHS is NP-complete for split graphs, or equivalently, $(C_4, C_5, 2P_2)$ -free graphs.

Lemma 11. DISJOINT PATHS is NP-complete for $(4P_1, P_1 + P_4)$ -free graphs.

Proof. We reduce from DISJOINT PATHS on split graphs, which is NP-complete by Lemma 10. By inspection of this result (see [9, Theorem 3]), we note that the instances $(G, \{(s_1, t_1), \ldots, (s_k, t_k)\})$ have the following property: the split graph *G* has a split decomposition (C, I), where *C* is a clique, *I* an independent set, *C* and *I* are disjoint, and $C \cup I = V(G)$, such that $I = \{s_1, \ldots, s_k, t_1, \ldots, t_k\}$. Now let *G'* be obtained from *G* by, for each terminal s_i , adding edges to s_j and t_j for all $j \neq i$. Then consider the instance $(G', \{(s_1, t_1), \ldots, (s_k, t_k)\})$.

We note that G'[C] is still a complete graph, while G'[I] is a complete graph minus a matching. It is immediate that G' is $4P_1$ -free. Moreover, any induced subgraph H of G' that is isomorphic to P_4 must contain at least two vertices of I and at least one vertex of C. If H contains two vertices of C, then as G'[C] is a clique, H contains two non-adjacent vertices in I. Similarly, if H contains one vertex of C (and thus three vertices of I), then H contains two non-adjacent vertices in I. Since C is a clique in G' and every (other) vertex of I is adjacent in G' to any pair of non-adjacent vertices of I, it follows that G' is $P_1 + P_4$ -free as well.

We claim that $(G, \{(s_1, t_1), \ldots, (s_k, t_k)\})$ is a yes-instance if and only if $(G', \{(s_1, t_1), \ldots, (s_k, t_k)\})$ is a yes-instance. This is because the edges that were added to G to obtain G' are only between terminal vertices of different pairs. These edges cannot be used by any solution of DISJOINT PATHS for $(G', \{(s_1, t_1), \ldots, (s_k, t_k)\})$, and thus the feasibility of the instance is not affected by the addition of these edges. \Box

We are now ready to prove Theorem 3.

Theorem 3 (restated) Let H be a graph not in $\{3P_1, 2P_1 + P_2, P_1 + P_3\}$. If $H \subseteq_i P_4$, then DISJOINT CONNECTED SUBGRAPHS is polynomial-time solvable for H-free graphs; otherwise even DISJOINT PATHS is NP-complete.

Proof. First suppose that H contains a cycle C_r for some $r \ge 3$. Then DISJOINT PATHS is NP-complete for the class of H-free graphs, as DISJOINT PATHS is NP-complete on the subclass consisting of graphs of girth r + 1 by Lemma 9. Now suppose that H contains no cycle, that is, H is a forest. If H contains a vertex of degree at least 3, then the class of H-free graphs contains the class of claw-free graphs, which in turn contains the class of line graphs. Hence, we can apply Lemma 8. It remains to consider the case where H is a forest with no vertices of degree at least 3, that is, when H is a linear forest.

If *H* contains four connected components, then the class of *H*-free graphs contains the class of $4P_1$ -free graphs, and we can use Lemma 11. If *H* contains an induced P_5 or two connected components that each have at least one edge, then *H* contains the class of $2P_2$ -free graphs, and we can use Lemma 10. If *H* contains two connected components, one of which has at least four vertices, then *H* contains the class of $(P_1 + P_4)$ -free graphs, and we can use Lemma 11 again. As $H \notin \{3P_1, 2P_1 + P_2, P_1 + P_3\}$, this means that in the remaining case *H* is an induced subgraph of P_4 . In that case even DISJOINT CONNECTED SUBGRAPHS is polynomial-time solvable on *H*-free graphs, due to Lemma 7.

5. Reducing the number of open cases to three

Theorem 3 shows that we have the same three open cases for DISJOINT PATHS and DISJOINT CONNECTED SUBGRAPHS, namely when $H \in \{3P_1, P_1 + P_3, 2P_1 + P_2\}$. We show that instead of six open cases, we have in fact only three.

Proposition 1. DISJOINT PATHS and DISJOINT CONNECTED SUBGRAPHS are equivalent for 3P₁-free graphs.

Proof. Every instance of DISJOINT PATHS is an instance of DISJOINT CONNECTED SUBGRAPHS. Let (G, Z_1, \ldots, Z_k) be an instance of DISJOINT CONNECTED SUBGRAPHS where G is a $3P_1$ -free graph. By Lemma 2 we may assume that each Z_i is an independent set. Then, as G is $3P_1$ -free, each Z_i has size at most 2. So we obtained an instance of DISJOINT PATHS. \Box

Proposition 2. DISJOINT PATHS on $(P_1 + P_3)$ -free graphs and DISJOINT CONNECTED SUBGRAPHS on $(P_1 + P_3)$ -free graphs are polynomially equivalent to DISJOINT PATHS on $3P_1$ -free graphs.

Proof. We prove that we can solve DISJOINT CONNECTED SUBGRAPHS in polynomial time on $(P_1 + P_3)$ -free graphs if we have a polynomial-time algorithm for DISJOINT PATHS on $3P_1$ -free graphs. Showing this suffices to prove the theorem, as DISJOINT PATHS is a special case of DISJOINT CONNECTED SUBGRAPHS and $3P_1$ -free graphs form a subclass of $(P_1 + P_3)$ -free graphs.

Let $(G, Z_1, ..., Z_k)$ be an instance of DISJOINT CONNECTED SUBGRAPHS, where *G* is a $(P_1 + P_3)$ -free graph. Olariu [17] proved that every connected $P_1 + P_3$ -free graph is either triangle-free or complete multipartite. Hence, the vertex set of *G* can be partitioned into sets $D_1, ..., D_p$ for some $p \ge 1$ such that

- every $G[D_i]$ is $3P_1$ -free or the disjoint union of complete graphs, and

- for every *i*, *j* with $i \neq j$, every vertex of D_i is adjacent to every vertex of D_j .

Using this structural characterization, we first argue that we may assume that each Z_i has size 2, making the problem an instance of DISJOINT PATHS. Then we show that we can either solve the instance outright or can alter G to be $3P_1$ -free.

First, we argue about the size of each Z_i . By Lemma 2 we may assume that every Z_i is an independent set and is thus contained in the same set D_j . If $G[D_j]$ is $3P_1$ -free, then this implies that any Z_i that is contained in D_j has size 2. If $G[D_j]$ is a disjoint union of complete graphs, then each vertex of a Z_i that is contained in D_j belongs to a different connected component of D_j and $Z_i \cup \{v\}$ is connected for every vertex $v \notin D_j$. As at least one vertex $v \notin D_j$ is needed to make such a set Z_i connected, we may therefore assume that for a solution (S_1, \ldots, S_k) (if it exists), $S_i = Z_i \cup \{v\}$ for some $v \notin D_j$. The latter implies that we may assume without loss of generality that every such Z_i has size 2 as well.

If p = 1, then each connected component of G is $3P_1$ -free, and we are done. Hence, we assume that $p \ge 2$. In fact, since any two distinct sets D_i and D_j are complete to each other, the union of any two $3P_1$ -free graphs induces a $3P_1$ -free graph. Therefore we may assume without loss of generality that only $G[D_1]$ might be $3P_1$ -free, whereas $G[D_2], \ldots, G[D_p]$ are disjoint unions of complete graphs.

Recall that $Z_i = \{s_i, t_i\}$ for every $i \in \{1, ..., k\}$ and we search for a solution $(P^1, ..., P^k)$ where each P^i is a path from s_i to t_i . First suppose s_i and t_i belong to D_1 . Then P^i has length 2 or 3 and in the latter case, $V(P^i) \subseteq D_1$. Now suppose that s_i and t_i belong to D_h for some $h \in \{2, ..., k\}$. Then P^i has length exactly 2, and moreover, the middle (non-terminal) vertex of P^i does not belong to D_h .

We will now check if there is a solution $(P^1, ..., P^k)$ such that every P^i has length exactly 2. We call such a solution to be of *type 1*. In a solution of type 1, every $P^i = s_i ut_i$ for some non-terminal vertex u of G. If s_i and t_i belong to D_h for some $h \in \{2, ..., p\}$, then $u \in D_j$ for some $j \neq i$. If s_i and t_i belong to D_1 , then $u \in D_j$ for some $j \neq 1$ but also $u \in D_1$ is possible, namely when u is adjacent to both s_i and t_i .

Verifying the existence of a type 1 solution is equivalent to finding a perfect matching in a bipartite graph $G' = A \cup B$ that is defined as follows. The set A consists of one vertex v_i for each pair $\{s_i, t_i\}$. The set B consists of all non-terminal vertices u of G. For $\{s_i, t_i\} \subseteq D_1$, there exists an edge between u and v_i in G' if and only if in G it holds that $u \in D_h$ for some $h \in \{2, ..., p\}$ or $u \in D_1$ and u is adjacent to both s_i and t_i . For $\{s_i, t_i\} \subseteq D_h$ with $h \in \{2, ..., p\}$, there exists an edge between u and v_i in G' if and only if in G it holds that $u \in D_h$ for some u and v_i in G' if and only if in G it holds that $u \in D_h$ for some $i \in \{1, ..., p\}$ with $h \neq j$. We can find a perfect matching in G' in polynomial time by using the Hopcroft-Karp algorithm for bipartite graphs [11].

Suppose that we find that $(G, \{s_1, t_1\}, ..., \{s_k, t_k\})$ has no solution of type 1. As a solution can be assumed to be of type 1 if $G[D_1]$ is the disjoint union of complete graphs, we find that $G[D_1]$ is not of this form. Hence, $G[D_1]$ is $3P_1$ -free. Recall that $G[D_j]$ is the disjoint union of complete graphs for $2 \le i \le p$. It remains to check if there is a solution that is of *type 2* meaning a solution $(P^1, ..., P^k)$ in which at least one P^i , whose vertices all belong to D_1 , has length 3.

To find a type 2 solution (if it exists) we construct the following graph G^* . We let $V(G^*) = A_1 \cup A_2 \cup B_1 \cup B_2$, where

- A_1 consists of all terminal vertices from D_1 ;
- A_2 consists of all non-terminal vertices from D_1 ;
- B_1 consists of all terminal vertices from $D_2 \cup \cdots \cup D_p$; and
- B_2 consists of all non-terminal vertices from $D_2 \cup \cdots \cup D_p$.

Note that $V(G^*) = V(G)$. To obtain $E(G^*)$ from E(G) we add some edges (if they do not exist in *G* already) and also delete some edges (if these existed in *G*):

- (i) for each $\{s_i, t_i\} \subseteq B_1$, add all edges between s_i and vertices of B_2 , and delete any edges between t_i and vertices of B_2 ;
- (ii) add an edge between every two terminal vertices in B_1 that belong to different terminal pairs; and
- (iii) add an edge between every two vertices of B_2 .

We note that $G^*[D_1]$ is the same graph as $G[D_1]$ and thus $G^*[D_1]$ is $3P_1$ -free. Moreover, $G^*[B_1 \cup B_2]$ is $3P_1$ -free by part (i) of the construction. Hence, as there exists an edge between every vertex of $A_1 \cup A_2$ and every vertex of $B_1 \cup B_2$ in G and thus also in G^* , this means that G^* is $3P_1$ -free. It remains to prove that $(G, \{s_1, t_1\}, \ldots, \{s_k, t_k\})$ and $(G^*, \{s_1, t_1\}, \ldots, \{s_k, t_k\})$ are equivalent instances.

First suppose that $(G, \{s_1, t_1\}, \ldots, \{s_k, t_k\})$ has a solution (P^1, \ldots, P^k) . Assume that the number of paths of length 3 in this solution is minimum over all solutions for $(G, \{s_1, t_1\}, \ldots, \{s_k, t_k\})$. We note that (P^1, \ldots, P^k) is a solution for $(G^*, \{s_1, t_1\}, \ldots, \{s_k, t_k\})$ unless there exists some P^i that contains an edge of $E(G) \setminus E(G^*)$. Suppose this is indeed the case. As $G^*[D_1] = G[D_1]$ and every edge between a vertex of $A_1 \cup A_2$ and a vertex of $B_1 \cup B_2$ also exists in G^* , we find that the paths connecting terminals from pairs in D_1 are paths in G^* . Hence, s_i and t_i belong to D_h for some $h \in \{2, \ldots, p\}$ and thus $P^i = s_i ut_i$ where u is a vertex of D_j for some $j \in \{2, \ldots, p\}$ with $j \neq h$.

As we already found that $(G, \{s_1, t_1\}, \dots, \{s_k, t_k\})$ has no type 1 solution, there is at least one $P^{i'}$ with length 3, so $P^{i'} = s_{i'}vv't_{i'}$ is in $G[D_1]$. However, we can now obtain another solution for $(G, \{s_1, t_1\}, \dots, \{s_k, t_k\})$ by changing P^i into s_ivt_i and $P^{i'}$ into $s_{i'}ut_{i'}$, a contradiction, as the number of paths of length 3 in (P^1, \dots, P^k) was minimum. We conclude that every P^i only contains edges from $E(G) \cap E(G^*)$, and thus (P^1, \dots, P^k) is a solution for $(G^*, \{s_1, t_1\}, \dots, \{s_k, t_k\})$. Now suppose that $(G^*, \{s_1, t_1\}, \dots, \{s_k, t_k\})$ has a solution (P^1, \dots, P^k) . Consider a path P^i . First suppose that s_i and t_i

Now suppose that $(G^*, \{s_1, t_1\}, \dots, \{s_k, t_k\})$ has a solution (P^1, \dots, P^k) . Consider a path P^i . First suppose that s_i and t_i both belong to B_1 . Then we may assume without loss of generality that $P^i = s_i u t_i$ for some $u \in A_2$. As B_1 only contains terminals from pairs in $D_2 \cup \ldots \cup D_p$, the latter implies that P^i is a path in G as well. Now suppose that s_i and t_i both belong to A_1 . Then we may assume without loss of generality that $P^i = s_i u t_i$ for some non-terminal vertex of $V(G) = V(G^*)$ or $P^i = s_i u u' t_i$ for two vertices u, u' in $A_2 \subseteq D_1$. Hence, P^i is a path in G as well. We conclude that (P^1, \dots, P^k) is a solution for $(G, \{s_1, t_1\}, \dots, \{s_k, t_k\})$. This completes our proof. \Box

6. Exact algorithms

In this section, we briefly mention exact algorithms. Using Held-Karp type dynamic programming techniques [2,10], we can obtain exact algorithms for DISJOINT PATHS and DISJOINT CONNECTED SUBGRAPHS running in time $O(2^n n^2 k)$ and $O(3^n km)$, respectively.

Theorem 4. DISJOINT PATHS can be solved in $O(2^n n^2 k)$ time.

Proof. We devise a Held-Karp type [10,2] dynamic programming algorithm. Given a set $S \subseteq V(G)$, a vertex $v \in S$, and an integer $i \in \{1, ..., k\}$, let D[S, v, i] be true if and only if S can be partitioned into vertex-disjoint paths $P^1, ..., P^i$ such that P^i starts in s_i and ends in v and P^j is an s_j - t_j path for each $j \in \{1, ..., i-1\}$. Then we set D[S, v, 1] to true if and only if S is equal to the vertex set of an s_1 -v path. The correctness of the base case is immediate from the definition. Beyond the base case, we set $D[S, s_i, i] = D[S \setminus \{s_i\}, t_{i-1}, i-1]$ and for all $v \neq s_i$, D[S, v, i] is set to true if and only if there is a neighbour $w \in S$ of v for which $D[S \setminus \{v\}, w, i]$ is true. Indeed, if S can be partitioned into vertex-disjoint paths $P^1, ..., P^i$ such that P^i starts in s_i and ends in v and P^j is an s_j - t_j path for each $j \in \{1, ..., i-1\}$, then

- if $v = s_i$, then P^i is a single-vertex path and thus $S \setminus \{s_i\}$ can be partitioned into vertex-disjoint paths P^1, \ldots, P^{i-1} such that P^j is an s_j - t_j path for each $j \in \{1, \ldots, i-1\}$, and thus $D[S \setminus \{s_i\}, t_{i-1}, i-1]$ is true;
- otherwise, let w be the vertex preceding v on P^i , and thus $S \setminus \{v\}$ can be partitioned into vertex-disjoint paths $P^1, \ldots, P^{i-1}, Q^i$ such that Q^i starts in s_i and ends in w (Q^i is the part of P^i from s_i to w) and P^j is an s_j - t_j path for each $j \in \{1, \ldots, i-1\}$, and thus $D[S \setminus \{v\}, w, i]$ is true.

Conversely, if $v = s_i$ and $D[S \setminus \{s_i\}, t_{i-1}, i-1]$ is true, then $S \setminus \{s_i\}$ can be partitioned into vertex-disjoint paths P^1, \ldots, P^{i-1} such that P^j is an s_j - t_j path for each $j \in \{1, \ldots, i-1\}$, and thus S can be partitioned into vertex-disjoint paths P^1, \ldots, P^i such that P^i starts and ends in s_i and P^j is an s_j - t_j path for each $j \in \{1, \ldots, i-1\}$. Hence, $D[S, s_i, i]$ is true. If $v \neq s_i$ and

there is a neighbour $w \in S$ of v for which $D[S \setminus \{v\}, w, i]$ is true, meaning that $S \setminus \{v\}$ can be partitioned into vertex-disjoint paths P^1, \ldots, P^i such that P^i starts in s_i and ends in w and P^j is an s_j - t_j path for each $j \in \{1, \ldots, i-1\}$, then S can be partitioned into vertex-disjoint paths $P^1, \ldots, P^{i-1}, Q^i$ such that Q^i starts in s_i , follows P^i and ends in v, and P^j is an s_j - t_j path for each $j \in \{1, \ldots, i-1\}$. Hence, D[S, v, i] is true.

Finally, the given instance of DISJOINT PATHS is a yes-instance if and only if there is a set $S \subseteq V(G)$ for which $D[S, t_k, k]$ is true. The correctness follows by definition.

It is immediate that the running time of the algorithm is $O(2^n n^2 k)$, as there are $2^n nk$ table entries that each require at most O(n) time to fill. \Box

Theorem 5. DISJOINT CONNECTED SUBGRAPHS can be solved in $O(3^n km)$ time.

Proof. We propose a similar, but slightly more crude algorithm as the one before. Given a set $S \subseteq V(G)$ and an integer $i \in \{1, ..., k\}$, let D[S, i] be true if and only if S can be partitioned into vertex-disjoint set $S_1, ..., S_i$ such that S_j is connected and $Z_j \subseteq S_j$ for each $j \in \{1, ..., i\}$. We set D[S, 1] to true if and only if $Z_1 \subseteq S$ and S is connected. Beyond the base case, we set D[S, i] to true if and only if there is a set $S' \subset S$ for which $Z_i \subseteq S'$, S' is connected, and $D[S \setminus S', i-1]$ is true. Finally, the given instance of DISJOINT CONNECTED SUBGRAPHS is a yes-instance if and only if there is a set $S \subseteq V(G)$ for which D[S, k] is true. The proof of correctness is similar (but simpler) to the proof of Theorem 4.

It is immediate that the running time is $O(3^n km)$. Each table entry D[S, i] requires $O(2^{|S|}m)$ time to fill. Hence, the running time to fill all table entries where *S* has size ℓ is $k\binom{n}{\ell}2^\ell m$. This means that the total running time is $\sum_{\ell=0}^n {n \choose \ell}2^\ell mk = O(3^n km)$, where the latter equality follows from the Binomial Theorem. \Box

7. Conclusions

We first gave a dichotomy for DISJOINT *k*-CONNECTED SUBGRAPHS in Theorem 2: for every *k*, the problem is polynomialtime solvable on *H*-free graphs if $H \subseteq_i sP_1 + P_4$ for some $s \ge 0$ and otherwise it is NP-complete even for k = 2. Two vertices *u* and *v* are a P_4 -suitable pair if $(G - \{u, v\}, N(u), N(v))$ is a yes-instance of 2-DISJOINT CONNECTED SUBGRAPHS. Recall that a graph *G* can be contracted to P_4 if and only if *G* has a P_4 -suitable pair. Deciding if a pair $\{u, v\}$ is a suitable pair is polynomial-time solvable for *H*-free graphs if *H* is an induced subgraph of $P_2 + P_4$, $P_1 + P_2 + P_3$, $P_1 + P_5$ or $sP_1 + P_4$ for some $s \ge 0$; otherwise it is NP-complete [15]. Hence, we conclude from our new result that the presence of the two vertices *u* and *v* that are connected to the sets $Z_1 = N(u)$ and $Z_2 = N(v)$, respectively, yield exactly three additional polynomial-time solvable cases.

We also classified, in Theorem 3, the complexity of DISJOINT PATHS and DISJOINT CONNECTED SUBGRAPHS for *H*-free graphs. Due to Propositions 1 and 2, there are three non-equivalent open cases left and we ask the following:

Open Problem 1. Determine the computational complexity of DISJOINT PATHS on *H*-free graph for $H \in \{3P_1, 2P_1 + P_2\}$ and the computational complexity of DISJOINT CONNECTED SUBGRAPHS on *H*-free graphs for $H = 2P_1 + P_2$.

The three open cases seem challenging. We were able to prove the following positive result for a subclass of $3P_1$ -free graphs, namely cobipartite graphs, or equivalently, $(3P_1, C_5, \overline{C_7}, \overline{C_9}, \ldots)$ -free graphs.

Theorem 6. DISJOINT PATHS is polynomial-time solvable for cobipartite graphs.

Proof. Let $G = (A \cup B, E)$, with cliques A and B, be the given cobipartite graph. If s_i and t_i are adjacent in G, then use the direct edge between them as the path P^i . We can then reduce the instance by removing s_i and t_i . We now assume the instance has thus been reduced and (by abuse of notation) all terminal pairs are nonadjacent in G.

We now construct a bipartite graph G' by removing each edge within the cliques A and B as well as any edge $s_i t_j$ both of whose endpoints are terminals. We then obtain a new graph G'' by deleting each terminal vertex and adding for each terminal pair (s_i, t_i) , a new vertex x_i whose neighbourhood is the union of the neighbourhoods of s_i and t_i in G'. We claim that G contains the required k disjoint paths $P^1 \dots P^k$ if and only if G'' contains a matching of size at least k. We can check the latter in polynomial time by using the Hopcroft-Karp algorithm for bipartite graphs [11].

We first assume that *G* contains the disjoint paths $P^1 ldots P^k$. Note that, since *G* is $3P_1$ -free, we may assume each path has length at most 3. A matching *M* of size *k* is obtained as follows. For each i = 1 ldots k, if P^i has length 2 we add the edge $x_i v_i$ to *M* where v_i is the interior vertex of P^i . If P^i has length 3 then we add its interior edge $u_i v_i$ to *M*.

Next assume G'' contains a matching M of size k. For each edge of M which includes a vertex x_i corresponding to a terminal pair (s_i, t_i) we set P^i to be $s_i v_i t_i$ where v_i is the vertex matched to x_i . Note that any edge uv in G which contains no terminal vertex and has one endpoint in each of A and B lies on a path of length 3 between any two terminal vertices. Therefore, for each i such that the vertex x_i is not matched in M, we can choose a distinct edge u_iv_i in M to obtain the path $s_i u_i v_i t_i$ in G. \Box

Finally, in Section 6 we obtained exact algorithms for DISJOINT PATHS and DISJOINT CONNECTED SUBGRAPHS running in time $O(2^n n^2 m)$ and $O(3^n km)$, respectively. Faster exact algorithms are known for *k*-DISJOINT CONNECTED SUBGRAPHS for k = 2 and k = 3 [4,21,1], but we are unaware if there exist faster algorithms for general graphs.

Open Problem 2. Is there an exact algorithm for DISJOINT PATHS or DISJOINT CONNECTED SUBGRAPHS on general graphs where the exponential factor is $(2 - \epsilon)^n$ or $(3 - \epsilon)^n$, respectively, for some $\epsilon > 0$?

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

References

- [1] A. Agrawal, F.V. Fomin, D. Lokshtanov, S. Saurabh, P. Tale, Path contraction faster than 2ⁿ, SIAM J. Discrete Math. 34 (2020) 1302–1325.
- [2] R. Bellman, Dynamic programming treatment of the travelling salesman problem, J. ACM 9 (1962) 61-63.
- [3] D.G. Corneil, H. Lerchs, L.S. Burlingham, Complement reducible graphs, Discrete Appl. Math. 3 (1981) 163-174.
- [4] M. Cygan, M. Pilipczuk, M. Pilipczuk, J.O. Wojtaszczyk, Solving the 2-disjoint connected subgraphs problem faster than 2ⁿ, Algorithmica 70 (2014) 195–207.
- [5] S. Even, A. Itai, A. Shamir, On the complexity of timetable and multicommodity flow problems, SIAM J. Comput. 5 (1976) 691-703.
- [6] S. Földes, P.L. Hammer, Split graphs, Congr. Numer. XIX (1977) 311–315.
- [7] C. Gray, F. Kammer, M. Löffler, R.I. Silveira, Removing local extrema from imprecise terrains, Comput. Geom. Theory Appl. 45 (2012) 334-349.
- [8] F. Gurski, E. Wanke, Vertex disjoint paths on clique-width bounded graphs, Theor. Comput. Sci. 359 (2006) 188-199.
- [9] P. Heggernes, P. van 't Hof, E.J. van Leeuwen, R. Saei, Finding disjoint paths in split graphs, Theory Comput. Syst. 57 (2015) 140-159.
- [10] M. Held, R.M. Karp, A dynamic programming approach to sequencing problems, J. Soc. Ind. Appl. Math. 10 (1962) 196-210.
- [11] J.E. Hopcroft, R.M. Karp, An $n^{5/2}$ algorithm for maximum matchings in bipartite graphs, SIAM J. Comput. 2 (1973) 225–231.
- [12] R.M. Karp, On the complexity of combinatorial problems, Networks 5 (1975) 45-68.
- [13] K. Kawarabayashi, Y. Kobayashi, B.A. Reed, The disjoint paths problem in quadratic time, J. Comb. Theory, Ser. B 102 (2012) 424-435.
- [14] W. Kern, B. Martin, D. Paulusma, S. Smith, E.J. van Leeuwen, Disjoint paths and connected subgraphs for *H*-free graphs, in: Proc. IWOCA 2021, in: LNCS, vol. 12757, 2021, pp. 414–427.
- [15] W. Kern, D. Paulusma, Contracting to a longest path in H-free graphs, in: Proc. ISAAC 2020, in: LIPIcs, vol. 181, 2020, pp. 22:1-22:18.
- [16] S. Natarajan, A.P. Sprague, Disjoint paths in circular arc graphs, Nord. J. Comput. 3 (1996) 256-270.
- [17] S. Olariu, Paw-free graphs, Inf. Process. Lett. 28 (1988) 53-54.
- [18] D. Paulusma, J.M.M. van Rooij, On partitioning a graph into two connected subgraphs, Theor. Comput. Sci. 412 (48) (2011) 6761–6769.
- [19] N. Robertson, P.D. Seymour, Graph minors. XIII. The disjoint paths problem, J. Comb. Theory, Ser. B 63 (1995) 65-110.
- [20] Y. Shiloach, A polynomial solution to the undirected two paths problem, J. ACM 27 (1980) 445-456.
- [21] J.A. Telle, Y. Villanger, Connecting terminals and 2-disjoint connected subgraphs, in: Proc. WG 2013, in: LNCS, vol. 8165, 2013, pp. 418-428.
- [22] E.J. van Leeuwen, Optimization and Approximation on Systems of Geometric Objects, PhD Thesis, University of Amsterdam, 2009.
- [23] P. van 't Hof, D. Paulusma, G.J. Woeginger, Partitioning graphs into connected parts, Theor. Comput. Sci. 410 (2009) 4834–4843.