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Quasi-polynomial Algorithms for List-coloring of Nearly

Intersecting Hypergraphs

Khaled Elbassioni
∗

Abstract

A hypergraph H on n vertices and m edges is said to be nearly-intersecting if every edge
of H intersects all but at most polylogarthmically many (in m and n) other edges. Given lists
of colors L(v), for each vertex v ∈ V , H is said to be L-(list) colorable, if each vertex can be
assigned a color from its list such that no edge in H is monochromatic. We show that list-
colorability for any nearly intersecting hypergraph, and lists drawn from a set of constant size,
can be checked in quasi-polynomial time in m and n.

1 Introduction

Hypergraph k-Coloring is the problem of checking whether the vertex-set of a given hypergraph
(family of sets) can be colored with at most k colors such that every edge receives at least two distinct
colors. It is a basic problem in theoretical computer science and discrete mathematics which has
received considerable attention (see, e.g. [BBTV08, BL02, DG13, DRS05, GHH+14, KS14, Vol02]).
The problem is NP-complete already for k = 2, and in fact, it is quasi-NP-hard1 to decide if a 2-

colorable hypergraph can be (properly) colored with 2(logn)Ω(1)

colors [GHH+14]. On the other hand,
the best positive result is polynomial time algorithms that can color an O(1)-colorable hypergraph
with nΩ(1) colors, where n is the number of vertices (see, e.g., [AKMH96, CF96, KNS01]). Several
generalizations of the problem have also been considered, for example, List-Coloring where every
vertex can take only colors from a given list of colors [ERT79, Viz76].

Given the intrinsic difficulty of the problem, it is natural to consider special classes of hyper-
graphs for which the problem is easier. Some better results exist for special classes, e.g., better
approximation algorithms for hypergraphs of low discrepancy and rainbow-colorable hypergraphs
[BGL15], polynomial time algorithms for bounded-degree linear hypergraphs [BL02, CR07], for
random 3-uniform 2-colorable hypergraphs [PS09], as well as for some special classes of graphs
[DFGK99, GKK02, JS97, dW97].

In this paper, we consider a special class of hypergraphs in which every edge intersects all but at
most c other edges (also considered for c = 0 in [SEY74]); we call such hypegraphs c-intersecting2

for any c ≥ 0, and nearly intersecting when c is polylogarithmic in the number of vertices and edges
(this is in contrast to [BL02] which considers nearly disjoint hypergraphs). While near-intersection
may seem as a strong restriction at a first thought, the problem is still actually highly non-trivial.
In fact, the case k = 2 and c = 0 is equivalent to the well-known Monotone Boolean Duality

Testing, which is the problem of checking for a given pair of CNF and DNF formulas if they
represent the same monotone Boolean function [EG95, SEY74]. Determining the exact complexity
of this duality testing problem is an outstanding open question, which has been referenced in a
number of complexity theory retrospectives, e.g., [Lov00, Pap97], and has been the subject of many
papers, see, e.g., [BI95, BM09, Dom97, Elb08, EG95, EGM02, EGM03, EMG06, FK96, Got04,
GK04, GM14, KS03, Tak02]. Fredman and Khachiyan [FK96] gave an algorithm for solving this

∗Khalifa University of Science and Technology, Abu Dhabi, UAE; (khaled.elbassioni@ku.ac.ae)
1More precisely, there is no polynomial time algorithm unless NP⊆ DTIME(2polylogn)
2It would have been more descriptive to call these hypergraphs c-avoiding, but we choose to call them c-intersecting

to emphasize the “intersection” property.
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problem with running time no(logn), where n is the size of the input, thus providing strong evidence
that this decision problem is unlikely to be NP-hard.

The reduction from Boolean Duality Testing to checking 2-colorability is essentially ob-
tained by a construction from [SEY74] which reduces the problem to checking if a monotone Boolean
function given by its CNF is self-dual. However, almost all the algorithms for solving Boolean du-
ality testing cannot work directly with the self-duality (and hence 2-colorabilty) problem, due to
their recursive nature which results in subproblems that do not involve checking self-duality. The
only algorithm we are aware of that works directly on the 2-colorability version is the one given in
[GK04], but it yields weaker bounds nO(logn) than those given in [FK96]. In this paper, we provide
bounds that match closely those given in [FK96] and show that those can be in fact extended to
any constant k on the more general class of c-intersecting hypergraphs and further for checking
list-colorability.

We remark that, while any 0-intersecting hypergraph is trivially 3-colorable, the question becomes
non-trivial for c > 0. In particular, it is easy to see that any c-intersecting hypergraph is a (3 + c)-
colorable, and thus the question of k-colorability becomes interesting for any k between 2 and 3+ c.
It is also worth mentioning that 1-intersecting hypergrpahs have been considered in [Pei08, Section
2.4.1], where it was shown that if such a hypergraph is 2-colorable then it is also list colorable for
any lists of size 2. It is not clear whether such result extends to the cases k > 2 or c > 1.

2 Basic Notation and Main Result

Let H ⊆ 2V be a hypegraph on a finite set V , k ≥ 2 be a positive integer, and L : V → 2[k] be
a mapping that assigns to each vertex v ∈ V a list of admissible colors L(v) ⊆ [k] := {1, . . . , k}.
An L-(list) coloring of H is an assignment χ : V → [k] of colors to the vertices of H such that
χ(v) ∈ L(v) for all v ∈ V . An L-coloring is said to be proper if it results in no monochromatic edges,
that is, if |χ(H)| ≥ 2, for all H ∈ H, where χ(H) := {χ(v) : v ∈ H}.

For a non-negative integer c, a hypergraph H is said to be c-intersecting if for all H ∈ H,

H ∩H ′ = ∅ for at most c edges H ′ ∈ H. (1)

A hypergraph is said to be nearly interesting if it is c-intersecting for c = polylog(m,n). In this
paper, we are interested in the following problem:

Proper-L-Coloring: Given a hypergraphH ⊆ 2V satisfying (1) and a mapping L : V → 2[k],
either find a proper L-coloring of H, or declare that no such coloring exists.

We denote by n := |V |, m := |H|, ν := minv∈V |L(v)|, ρ := maxv∈V |L(v)|, and κ := maxu,v∈V, u6=v |L(u)∩
L(v)|. We assume without loss of generality that ν ≥ 2.

For a set S ⊆ V , let HS := {H ∈ H : H ⊆ S} be the subhypergraph of H induced by set S,
HS = {H∩S : H ∈ H} be the projection (or trace) of H into S (this can be a multi-subhypergraph),
and H(S) := {H ∈ H : H ∩S 6= ∅}be the subhypergraph with edges having non-empty intersection
with S. We define further S̄ = V \ S, and for v ∈ V , degH(v) := |{H ∈ H : v ∈ H}|.

Our main result is that the problem can be solved in quasi-polynomial time3 for nearly inter-
secting hypergraphs and constant number of colors. In fact, we will prove the following stronger
result.

Theorem 1 Problem Proper-L-Coloring can be solved in quasi-poly(m,n) time if k = O(1)
and c = polylog(m,n), with an algorithm whose recursion-tree depth is polylog(m,n).

As a corollary, we obtain the following result on the parallel complexity of the problem (in the
PRAM model).

Corollary 1 Problem Proper-L-Coloring can be solved in polylog(m,n) parallel time on quasi-poly(m,n)
number of processors, if k = O(1) and c = polylog(m,n).

3that is, the running time is bounded by 2polylog(N) on an instance of input size N .
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In the following, we will consider partial L-colorings χ : V → [0 : k] := {0, 1, . . . , k} of H,
where χ(v) = 0 is used to mean that the vertex v is not assigned any color yet; we say that such
coloring is proper if no (fully colored) edge is monochromatic. Given a proper partial L-coloring χ

of a hypergraph H ⊆ 2V , we will use the following notation: V0(χ) := {v ∈ V : χ(v) = 0} and
Hi(χ) := {H ∈ H : χ(H) = {0, i}} for i ∈ [0 : k], and shall simply write V0 and Hi when χ is
clear from the context; any extension of χ (obtained by coloring some vertices in V0) will be called
proper, if it results in no monochromatic edge (that is, when combined with χ, it yields a proper
partial L-coloring for H); H(χ) denotes the hypergraph H after deleting monochromatic edges, that
is, H(χ) := H\{H ∈ H : |χ(H)| ≥ 2}. For i ∈ [0 : k], we write H̄i :=

⋃
j 6=i Hj . For two (partial) L-

colorings χ : V → [0 : k] and χ′ : S → [k], where χ(S) = {0}, we denote by χ′′ := χ∪χ′ : V → [0 : k]
the partial L-coloring that assigns χ′′(v) := χ(v) for v ∈ V \ S and χ′′(v) := χ′(v) for v ∈ S. If
there is an H ∈ H such that |H | ≤ 1, we shall assume that H is not properly L-colorable for any
L : V → 2[k]. Also, by assumption, an empty hypergraph (that is, H = ∅) is properly L-colorable.

Given a proper partial L-coloring χ of H, we call χ0 : V0 → [k] a 0-simple (resp., i-simple, for
i ∈ [k]) assignment if it is obtained by choosing, for each H ∈ H0 (resp., for each H ∈ Hi), two
distinct vertices v, v′ ∈ H ∩ V0 and two distinct colors i ∈ L(v) and j ∈ L(v′) (resp., a vertex
v ∈ H ∩ V0 and a color for v among the colors in L(v) \ {i}). Such an assignment is proper, if the
coloring χ ∪ χ0 is a proper partial L-coloring for H. The number of 0-simple (resp., i-simple, for
i ∈ [k]) assignments is at most (|V0|ρ)2|H0| (resp., (|V0|ρ)|Hi|).

In the following two sections we give two algorithms for solving the problem. They are inspired
by the two corresponding algorithms in [FK96], for Monotone Boolean Duality Testing,
and can be thought of as generalizations. The first algorithm is simpler and exploits the idea of
the existence of a large degree vertex in any non-colorable instance. By considering all possible
admissible colorings of such a vertex we can remove a large fraction of the edges and recurse on
substantially smaller-size problems. Unfortunately, the degree of the high-degree vertex is only large
enough to guarantee a bound of O(mlog2 m) (assuming k and c are fixed). The second algorithm is
more complicated and considers both scenarios when there is a high-degree vertex and when there
are none (where now the threshold for ”high” is higher). If there is no high-degree vertex, then we
can find a ”balanced-set” which induces a constant number of edges. Then a decomposition can be
obtained based on this set.

3 Solving Proper-L-Coloring in Quasi-polynomial Time

We give two lemmas that show the existence of a large degree vertex, unless the hypergraph is easily
colorable.

Lemma 1 Let H ⊆ 2V be a given c-intersecting hypergraph, L : V → 2[k] be a mapping, and
χ : V → [0 : k] be a proper partial L-coloring of H such that |H0| > 2c. Then either

(i) there is a vertex v ∈ V0 with degH0
(v) > |H0|

2 logν(mκ) , or

(ii) an L-coloring χ0 : V0 → [k], such that χ ∪ χ0 is a proper L-coloring of H, can be found in
O(ρ|V0|m) time.

Proof Let Hmin be an edge in
⋃k

i=0 H
V0

i of minimum size. Assume, without loss of generality, that
|Hmin| ≥ 2. Pick a random L-coloring χ0 : V0 → [k] by assigning, independently for each v ∈ V0,
χ0(v) = i ∈ L(v) with probability 1

|L(v)| . Then, for an edge H ∈ H0,

Pr[H is monochromatic] = |
⋂

v∈H

L(v)| ·
∏

v∈H

1

|L(v)|
≤ κ ·

(
1

ν

)|H|

,

and for H ∈ Hi, i ∈ [k],

Pr[H is monochromatic] ≤
∏

v∈H∩V0

1

|L(v)|
≤

(
1

ν

)|H∩V0|

.
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It follows that

E[# monochromatic H ∈ H] =
∑

H∈H

Pr[H is monochromatic]

≤ κ
∑

H∈H0

(
1

ν

)|H|

+

k∑

i=1

∑

H∈Hi

(
1

ν

)|H∩V0|

≤ mκ

(
1

ν

)|Hmin|

.

Thus if mκ
(
1
ν

)|Hmin|
< 1, then there is a proper L-coloring χ′ := χ ∪ χ0 of H, which can be found

by the method of conditional expectations in time O(ρ|V0|m). Let us therefore assume for the rest
of this proof that |Hmin| ≤ logν(mκ).

Let vmax be a vertex maximizing degH0
(v) over v ∈ Hmin. Then (1) implies that

|H0| ≤

∣∣∣∣∣
⋃

v∈Hmin

{H ∈ H0 : v ∈ H}

∣∣∣∣∣+ c ≤
∑

v∈Hmin

|{H ∈ H0 : v ∈ H}|+ c

=
∑

v∈Hmin

degH0
(v) + c ≤ |Hmin| degH0

(vmax) + c.

Consequently, degH0
(vmax) ≥

|H0|−c

|Hmin|
>

|H0|
2 logν(mκ) . �

Lemma 2 Let H ⊆ 2V be a given hypergraph c-intersecting hypergraph, L : V → 2[k] be a mapping,
and χ : V → [0 : k] be a proper partial L-coloring of H such that |H0| = 0, and for all i ∈ [k], either
|Hi| = 0 or |Hi| > 2c. Then either

(i) there is a vertex v ∈ V0 and i, j ∈ [k], j 6= i, such that degHi
(v) > |Hi|

2 logν m
and degHj

(v) ≥ 1,
or

(ii) an L-coloring χ0 : V0 → [k], such that χ ∪ χ0 is a proper L-coloring of H, can be found in
O(ρ|V0|m) time.

Proof Let Hmin be an edge in
⋃k

i=1 H
V0

i of minimum size. Note that (1) implies:

∀H ∈ Hi : H ∩H ′ ∩ V0 6= ∅ for all but at most c edges H ′ ∈ H̄i, (2)

since {i} = χ(H \ V0) 6= χ(H ′ \ V0) = {j} for all H ∈ Hi and H ′ ∈ Hj , for i 6= j.
If there is an i ∈ [k] such that Hj = ∅ for all j ∈ [k] \ {i} then an L-coloring satisfying (ii) can be

found by choosing arbitrarily χ(v) ∈ L(v)\ {i} for v ∈ V0. Assume therefore that Hi 6= ∅ for at least
two distinct indices i ∈ [k]. Pick a random L-coloring χ0 : V0 → [k] by assigning, independently for
each v ∈ V0, χ(v) = i ∈ L(v) with probability 1

|L(v)| . Then

Pr[∃i ∈ [k], H ∈ Hi : χ(Hi) = {i}] ≤
k∑

i=1

∑

H∈Hi

Pr[χ(H) = {i}]

≤
k∑

i=1

∑

H∈Hi

∏

v∈H∩V0

1

|L(v)|
≤ m

(
1

ν

)|Hmin|

.

Thus ifm
(
1
ν

)|Hmin|
< 1, then there is an L-coloring satisfying (ii), which can be found by the method

of conditional expectations in time O(ρ|V0|m). Let us therefore assume for the rest of this proof
that |Hmin| ≤ logν m.

Let j be such that Hmin ∈ HV0

j , and vmax be a vertex maximizing degH̄j
(v) over v ∈ Hmin. Then

(2) implies that

|H̄j | =

∣∣∣∣∣
⋃

v∈Hmin

{H ∈ H̄j : v ∈ H}

∣∣∣∣∣+ c ≤
∑

v∈Hmin

|{H ∈ H̄j : v ∈ H}|+ c

=
∑

v∈Hmin

degH̄j
(v) + c ≤ |Hmin| degH̄j

(vmax) + c.
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Consequently,
∑

i6=j degHi
(vmax) = degH̄j

(vmax) ≥
|H̄j |−c

|Hmin|
≥ |H̄j|−c

logν m
=

∑
i6=j |Hi|−c

logν m
≥

∑
i6=j(|Hi|−c)

logν m
>

∑
i6=j |Hi|

2 logν m
, from which it follows that maxi6=j

degHi
(vmax)

|Hi|
≥

∑
i6=j degHi

(vmax)
∑

i6=j |Hi|
> 1

2 logν m
. �

Algorithm 1 Proper-L-Coloring-A(H,L, χ)

Input: A c-intersecting hypergraph H ⊆ 2V , a mapping L : V → 2[k], and a proper partial L-
coloring χ : V → [0 : k]

Output: A partial proper L-coloring χ : V → [k] of H
1: V0 := V0(χ); H := H(χ)
2: if |Hi| = 0 for all i ∈ [0 : k] then
3: stop /* A proper L-coloring has been found */

4: if |H0| > δ := max{2c, ρ2} then /* Phase I */
5: if there is v ∈ V0 satisfying condition (i) of Lemma 1 then
6: for each proper assignment χ0(v) ∈ L(v) do
7: call Proper-L-Coloring-A(H,L, χ ∪ χ0)

8: else
9: Let χ0 : V0 → [k] be a coloring computed as in (ii) of Lemma 1

10: Set χ := χ ∪ χ0; stop /* A proper L-coloring has been found */

11: else/* Phase II */
12: if there is i ∈ [0 : k] such that 1 ≤ |Hi| ≤ δ then
13: for and each proper i-simple assignment χ0 do /* Clean-up */
14: call Proper-L-Coloring-A(H,L, χ ∪ χ0)

15: Same as in steps 5-10 of Phase I (applying Lemma 2 instead)

16: return

The algorithm for solving Proper-L-Coloring is given as Algorithm 1, which is called initially
with χ ≡ 0. The algorithm terminates either with a proper L-coloring of H, or with a partial
L-coloring with some unassigned vertices, in which case we conclude that no proper L-coloring of H
exists.

The algorithm proceeds in at two phases. As long as the number of edges with no assigned
colors is a above a certain threshold δ, that is |H0| > δ, the algorithm is still in phase I; otherwise
it proceeds to phase II. In a general step of of phase I (resp., phase II), the algorithm picks a vertex
v satisfying condition (i) of Lemma 1 (resp., Lemma 2) and iterates over all feasible assignments of
colors to v, that result in no monochromatic edges (line 7); if no such v can be found, the algorithm
concludes with a proper L-coloring. In each iteration, any edge that becomes non-monochromatic
is removed and the algorithm recurses on the updated sets of hypergraphs. If none of the recursive
calls yields a feasible extension of the current proper partial L-coloring χ, we unassign vertex v and
return (line 16). At the beginning of each recursive call in phase II, we preform a ”clean-up” step
(lines 12-14) by trying all possible i-simple assignments for hypergrpahs Hi with |Hi| sufficiently
small. This allows us to start phase II with |H0| = 0 and to keep only hypergrpahs Hi whose size is
above the threshold δ.

To analyze the running time of the algorithm, let us measure the ”volume” of a subproblem with
input (H,L, χ), in phase I by µ1 = µ1(H, χ) := |H0(χ)|, and in phase II by

µ2 = µ2(H, χ) :=

k∏

i=0

max{|Hi(χ)|, 1}. (3)

The recursion stops when µ1(H, χ) = µ2(H, χ) = 0 (meaning that |Hi| = 0 for all i ∈ [0 : k], and
hence, the algorithm managed to completely color all vertices), an L-coloring satisfying condition
(i) of Lemmas 1 or 2 is found (in lines 10 or 15), or when no proper extension of the current partial
coloring X can be found (no proper assignment exists in lines 6, 13, or 15).

Lemma 3 Algorithm 1 solves problem Proper-L-Coloring in time (ρn)O((ρ2+c)k)(κm)h, where

h := O( log
2(ρ+c)+k log(ρ+c) logm+k2 log2 m

log ν
).
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Proof Let ǫ := 1
2 logν(κm) , α = 1

1−ǫ
and δ := max{2c, ρ2}. We may assume that ǫ ≤ 1

2 , since

otherwise m ≤ ρ, implying that the algorithm would terminate in O((ρn)2ρ) time after trying all
simple 0-assignments in lines 5-6. Note that this implies that δ ≥ α2 as ρ ≥ 2 ≥ 1

1−ǫ
= α.

Consider the recursion tree T of the algorithm. Let T1 (resp., T2) be the subtree (resp., sub-
forest) of T belonging to phase I (resp., phase II) of the algorithm. Note that T2 consists of maximal
sub-trees of T, each of which is rooted at a leaf in T1. For µ1 ≥ 0 (resp., µ2 ≥ 0 and t ∈ [0 : k]),
let use denote by A1(µ1) (resp., A2(µ2, t)) be the total number of nodes in T1 (resp., T2) that
result from a subproblem of volume µ1 (resp., µ2 with |{i ∈ [0 : k] : |Hi(χ)| ≥ 1}| = t) in phase I
(resp., phase II). For each recursive call of the algorithm, we obtain a recurrence on A1(µ1) (resp.,
A2(µ2, t)), as explained in the following. Naturally, we assume that A1(µ1) (resp., A2(µ2, t)) is
monotonically increasing in µ1(resp., in both µ2 and t). For simplicity and to avoid confusion, we
denote by Hi, µ1, µ2, t and H′

i, µ
′
1, µ

′
2, t

′ the hypergraphs, volumes and the number of non-empty
hypergraphs, in the current and next recursive calls, respectively. For the sake of the analysis,
without loss of generality, we assume throughout that the algorithm does not terminate on a “forced
stop” as in line 10.

Claim 1 A1(µ1) ≤ µ
logα ρ
1 .

Proof Let v ∈ V be the vertex chosen in line 5. Since v is a large-degree vertex (with respect to
H0) which receives a color, |H′

0| ≤
(
1 − 1

2 logν(mκ)

)
|H0|. Thus, for a non-leaf node of T1, we have

the recurrence:
A1(µ1) ≤ ρ ·A1((1− ǫ)µ1) + 1. (4)

At leaves we have µ1 ≤ δ. It follows that the depth d(µ1) of the recursion subtree of a node (in
T1) of volume µ1 is at most logα

µ1

δ
+ 1, where µ1 = |H0| is the initial volume, and hence the total

number A1(µ1) of nodes is bounded by ρd(µ1)+1−1
ρ−1 ≤ ρ2

(
µ1

δ

)logα ρ

≤ µ
logα ρ
1 (as ρ ≥ α and δ ≥ ρ2).

�

Claim 2 A2(µ2, t) ≤ (ρn)2δ·(t+1)µ
logα µ2

2 .

Proof There are two possible locations in which a recursive call can be initiated in phase II:

Line 14: Since t′ ≤ t−1, as we remove at least one hypergraph Hi by trying all i-simple assignments
whose number is at most (|V0|ρ)

2|Hi|, where |Hi| ≤ δ, we get the recurrence

A2(µ2, t) ≤ (ρn)2δA2(µ2, t− 1) + 1. (5)

Line 15 (the part corresponding to line 7): Let v ∈ V be the vertex chosen before the recursive call
(as in line 5), that is, v satisfies condition (i) of Lemma 2, and let i, j ∈ [k] be such that i 6= j,
degHi

(v) ≥ 1
2 logν m

|Hi| and degHj
(v) ≥ 1. There are |L(v)| recursive calls that will be initiated from

this point, corresponding to ℓ ∈ L(v); consider the ℓth recursive call. If ℓ 6= i then setting χ(v) = ℓ

will result in deleting all the edges containing v from Hi. Thus, µ′
2 ≤ (1 − 1

2 logν m
)µ2 if |H′

i| > 0

and µ′
2 ≤ µ2

δ
, t′ ≤ t− 1 if |H′

i| = 0. In both cases, we get µ′
2 ≤ (1− ǫ)µ2 (as 1

δ
< 1

2 ≤ 1− ǫ). On the
other hand, if ℓ = i, then at least one edge in Hj will be deleted, yielding µ′

2 ≤ µ2 − 1, or µ′
2 ≤ µ2

δ

and t′ ≤ t− 1, depending on whether |H′
j | > 0 or |H′

j | = 0. Again in both cases, for µ2 > δ, wet get

µ′
2 ≤ µ2 − 1 (as 1

δ
< 1− 1

δ
< 1− 1

µ2
). Consequently, for µ2 > δ, we get the recurrence:

A2(µ2, t) ≤ (ρ− 1) · A2((1 − ǫ)µ2, t) +A2(µ2 − 1, t) + 1. (6)

By definition, A2(µ2, 0) = 1, for µ2 ≥ 0. We will prove by induction on t = 1, . . . , k and µ2 ≥ 1 that

A2(µ, t) ≤ Pt+1µ
logα µ2

2 , (7)

where Pt+1 := Rt+1−1
R−1 and R := (ρn)2δ. We consider 2 cases:

6



Case 1. 1 ≤ µ2 ≤ δ: Then |Hi(χ)| ≤ δ for all i ∈ [0 : k], and recurrence (5) applies iteratively until
we get t = 0. By the recurrence, A2(µ2, 1) ≤ R+1 ≤ P2µ

logα µ, giving the base case (t = 1), and by
induction on t,

A2(µ2, t) ≤ R
(
Ptµ

logα µ2

2

)
+ 1 ≤ µ

logα µ2

2 (RPt + 1) = Pt+1µ
logα µ2

2 .

Case 2. µ2 > δ: If the recurrence in (5) applies then the same induction proof (on t) in case 1 gives
the required bound. Consider, thus, the recurrence in (6) and apply induction on µ2:

A2(µ2, t) ≤ (ρ− 1)Pt+1 ((1− ǫ)µ2)
logα((1−ǫ)µ2) + Pt+1(µ2 − 1)logα(µ2−1) + 1

≤ Pt+1
ρ− 1

(1− ǫ)µ2
·
1

µ2
· µ

logα µ2

2 + Pt+1(µ2 − 1)logα µ2 + 1

< Pt+1µ
logα µ2

2

(
1

µ2
+

(
1−

1

µ2

)logα µ2

+
1

Pt+1µ
logα µ2

2

)
(∵ µ2 ≥ δ and ǫ ≤

1

2
).

≤ Pt+1µ
logα µ2

2

(
1

µ2
+

(
1−

1

µ2

)2

+
1

µ2
2

)
(∵ µ2 ≥ δ ≥ α2 and hence logα µ2 ≥ 2 )

≤ Pt+1µ
logα µ2

2 (∵ µ2 ≥ δ > 2).

�

Using the bounds µ1 ≤ m, and

µ2 ≤
k∏

i=0

|Hi| ≤ δ ·

(∑k
i=1 |Hi|

k

)k

≤ δ ·
(m
k

)k
,

we get A1(µ1) = mO(log ρ·logν(mκ)) and A2(µ2, k+1) = (ρn)2δ·(k+1)
(
δ
(
m
k

)k)O
(
log
(
δ(m

k )
k
)
·logν(mκ)

)
.

Putting Claims 1 and 2 together, and noting that at internal nodes the running time is O(ρnm),
and that the roots of the maximal sub-trees in T2 are the leaves of T1, the lemma follows. �

4 A More Efficient Algorithm

When k = O(1) and c = O(1), the algorithm presented in the previous section for Proper-L-

Coloring has running time nO(1)mO(log2 m). Moreover, the recursion tree can have depth Ω(m).
In this section, we give an algorithm with running time (nm)o(logm) and recursion-tree depth
polylog(m,n) (for k = O(1) and c = polylog(m,n)), thus proving Theorem 1. The speedup comes
from the fact that the algorithm may assign one color to a complete set of vertices in one time step,
rather than to a single vertex as in the previous algorithm. In fact, as we shall see below, the algo-
rithm may “probe” a color assignment on a certain set (the set V0 \ S in Lemmas 4 and 5); if such
an assignment cannot be completed to a proper coloring for the whole hypergraph, the information
gained from such a “failure” turns out to be useful for restricting the set of color assignments the
algorithm should try next. In general, such a probing strategy may be expensive, but as we shall
see below, we can use a set S satisfying some “balancing” condition (see Lemmas 6 and 7) to ensure
that the increase in the running time from probing is offset by the amount of information gained.

For a hypergraph H ⊆ 2V and a positive number ǫ ∈ (0, 1), denote by T (H, ǫ) the subset
{v ∈ V : degH(v) > ǫ|H|} of ”high” degree vertices in H. Given ǫ′, ǫ′′ ∈ (0, 1), ǫ′ < ǫ′′, let us call
an (ǫ′, ǫ′′)-balanced set with respect to H, any set S ⊆ V such that ǫ′|H| ≤ |HS | ≤ ǫ′′|H|.

Proposition 1 ([Elb08]) Let ǫ1, ǫ2 ∈ (0, 1) be two given numbers such that, ǫ1 < ǫ2 and T =
T (H, ǫ1) satisfies |HT | ≤ (1− ǫ2)|H|. Then there exists a (1 − ǫ2, 1 − (ǫ2 − ǫ1))-balanced set S ⊇ T

with respect to H. Such a set S can be found in O(nm) time.
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Proof Let {v1, . . . , vl} be an arbitrary order of the vertices of T̄ and find the index j ∈ [l− 1], such
that

|HV r{v1,...,vj}| > (1− ǫ2)|H| and |HVr{v1,...,vj+1}| ≤ (1 − ǫ2)|H|. (8)

The existence of such j is guaranteed by the facts that degH(v1) ≤ ǫ1|H| < ǫ2|H| ≤ |H(T̄ )|. Finally,
we let S = V r{v1, . . . , vj}. Since degH(vj+1) ≤ ǫ1|H|, it follows from (8) that |HS | < (ǫ1+1−ǫ2)|H|,
implying that S is indeed a balanced superset of T . �

Lemma 4 Let H ⊆ 2V be a c-intersecting hypergraph, L : V → 2[k] be a mapping, χ : V → [0 : k]
be a proper partial L-coloring of H, and S ⊆ V0 be a given set of vertices such that HV \S = ∅
(equivalently, ∅ 6∈ HS). Fix an arbitrary (proper) coloring χp : V0 \ S → [k] and let χ̂ := χ ∪ χp.
Then, χ is extendable to a proper L-coloring of H if and only if either

(i) χ is extendable to a proper L-coloring χ′ for H, with χ′(V0 \ S) = χp, or

(ii) ∃H ∈ H \ (H0)S : |χ̂(H \ S)| = 1, χ is extendable to a proper L-coloring χ′ for H such that
χ′(H ∩ S) = χ̂(H \ S).

Proof First note that χp does not introduce any monochromatic edges as HV \S = ∅. Suppose that
χ is extendable to a proper L-coloring χ′ for H. The fact that (i) is not satisfied means that there
is an H ∈ H \ (H0)S , such that (in any proper extension χ′ of χ), χ′ assigns a single color to all the
vertices in H ∩ S, which is exactly the color assigned by χ ∪ χp to all vertices in H \ S, and hence
(ii) is satisfied.

Conversely, if (i) or (ii) hold, then trivially, there is an L-coloring extension χ′ of χ that properly
colors H. �

Lemma 5 Let H ⊆ 2V be a c-intersecting hypergraph, L : V → 2[k] be a mapping, χ : V → [0 : k]
be a proper partial L-coloring of H, and S ⊆ V0 be a given set of vertices such that, for some i ∈ [k],
∅ 6∈ H̄S

i (equivalently, (Hj)V \S = ∅ for all j 6= i). Fix χp : V0 \ S → [k] by setting χp(v) ∈ L(v) \ {i}
arbitrarily for v ∈ V0 \ S, and let χ̂ := χ ∪ χp. Then χ is extendable to a proper L-coloring of H if
and only if either

(i) χ is extendable to a proper L-coloring χ′ for H, with χ′(V0 \ S) = χp, or

(ii) ∃H ∈ H \ Hi : |χ̂(H \ S)| = 1, χ is extendable to a proper L-coloring χ′ for H such that
χ′(H ∩ S) = χ̂(H \ S).

Proof First note that χp does not introduce any monochromatic edges as H ∩ S 6= ∅ for all
H ∈ H\Hi. Suppose that χ is extendable to a proper L-coloring χ′ for H. If (i) is not satisfied then
there is an H ∈ Hj for some j 6= i, such that χ′ assigns a single color to all the vertices in H ∩ S,
which is exactly the color assigned by χ ∪ χp to all vertices in H \ S, and hence (ii) is satisfied.

Conversely, if (i) or (ii) hold, then trivially, there is an L-coloring extension χ′ of χ that properly
colors H. �

Lemma 6 Let H ⊆ 2V be a c-intersecting hypergraph, L : V → 2[k] be a mapping, χ : V → [0 : k] be
a proper partial L-coloring of H such that |H0| > 0, T (H0, ǫ1) = ∅, and ǫ1, ǫ2 ∈ (0, 1) be two given
numbers satisfying ǫ1 < ǫ2

1+c
. Then there is a (1 − ǫ2, 1− (ǫ2 − (1 + c)ǫ1))-balanced set S ⊆ V0 with

respect to H0 such that HV \S = ∅.

Proof We start with a (1 − ǫ2, 1 − (ǫ2 − ǫ1))-balanced set S′ ⊆ V0, guaranteed by Proposition 1.
Since (H0)S′ 6= ∅, by (1) we have |HV \S′ | ≤ c. Let S be the set obtained by appending to S′ a single

vertex from each edge (if any) in H
V0\S
V \S′ (that is, vertices are added from V0 \ S′). Then, since the

degree of each appended vertex is no more than ǫ1|H0| (as S′ ⊇ T (H0, ǫ1)), we get

(1− ǫ2)|H0| ≤ |(H0)S′ | ≤ |(H0)S | ≤ |(H0)S′ |+ c · ǫ1|H0| ≤
(
1− (ǫ2 − ǫ1) + c · ǫ1

)
|H0|.

�
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Lemma 7 Let H ⊆ 2V be a c-intersecting hypergraph, L : V → 2[k] be a mapping, χ : V → [0 : k] be
a proper partial L-coloring of H such that |Hi| > 2c for at least two i’s, and ǫ1, ǫ2 ∈ (0, 1

2 ] be two given
numbers satisfying ǫ1 < ǫ2. Then either (i) there is v ∈ V0 and i 6= j such that degHi

(v) ≥ ǫ1|Hi|
and degHj

(v) ≥ ǫ1|Hj |, or (ii) there is a (1− ǫ2, 1− (ǫ2− (1+ c)ǫ1))-balanced set S ⊆ V0 with respect

to HV0

i for some i ∈ [k], such that (Hj)V \S = ∅ for all j 6= i.

Proof For any i 6= j such that |Hi| > 2c and |Hj | > 2c, let Ti := T (HV0

i , ǫ1) and Tj := T (HV0

j , ǫ1).
If Ti ∩ Tj 6= ∅ then any v in this intersection will satisfy (i). Otherwise, (1) implies that either

|(HV0

i )Ti
| ≤ c ≤ (1− ǫ2)|H

V0

i | or |(HV0

j )Tj
| ≤ c ≤ (1− ǫ2)|H

V0

j | (as any H ∈ Hi and H ′ ∈ Hj cannot

intersect outside V0), in which case a (1 − ǫ2, 1 − (ǫ2 − ǫ1))-balanced set S′ with respect to HV0

i or

HV0

j , respectively, can be obtained by Proposition 1. Suppose S′ was obtained w.r.t. HV0

i but there

are some edges in H̄V0

i that are induced by V0 \ S′. Let S be the set obtained by appending to S′ a
single vertex from each such edge (that is, vertices are added from V0 \S′). Then, since the number
of such edges is at most c (by (1)) and the degree of each appended vertex is no more than ǫ1|H

V0

i |

(as S′ ⊇ T (HV0

i , ǫ1)), we get

(1− ǫ2)|H
V0

i | ≤ |(HV0

i )S′ | ≤ |(HV0

i )S | ≤ |(HV0

i )S′ |+ c · ǫ1|H
V0

i | ≤
(
1− (ǫ2 − ǫ1) + c · ǫ1

)
|HV0

i |.

�

Algorithm 2 Proper-L-Coloring-B(H,L, χ)

Input: A c-intersecting hypergraph H ⊆ 2V , a mapping L : V → 2[k], and a proper partial L-coloring
χ : V → [0 : k]

Output: A partial proper L-coloring χ : V → [k] of H
1: V0 := V0(χ); H := H(χ); µ1 := µ1(H, χ); µ2 := µ2(H, χ)
2: if |Hi| = 0 for all i ∈ [0 : k] then
3: stop /* A proper L-coloring has been found */

4: if |H0| > δ(m) then /* Phase I */
5: if there is v ∈ V0 such that deg

H0
(v) ≥ ǫ1(µ1)|H0| then

6: for each proper assignment χ0(v) ∈ L(v) do
7: call Proper-L-Coloring-B(H,L, χ ∪ χ0)

8: else

9: Let S be a (1− ǫ2(µ1), 1− (ǫ2(µ1)− (1 + c)ǫ1(µ1)))-balanced set computed as in Lemma 6 w.r.t.
H0

10: for each v ∈ V0 \ S do set χp(v) ∈ L(v) arbtitrarily

11: call Proper-L-Coloring-B(H,L, χ ∪ χp) /* Probe */
12: for each H ∈ H \ (H0)S such that |χ ∪ χp(H \ S)| = 1, and proper assignment χ0(H ∩ S) :=

χ ∪ χp(H \ S) do
13: call Proper-L-Coloring-B(H,L, χ ∪ χ0)

14: else/* Phase II */
15: if there is i ∈ [0 : k] such that 1 ≤ |Hi| ≤ δ(mk) then
16: for and each proper i-simple assignment χ0 do /* Clean-up */
17: call Proper-L-Coloring-B(H,L, χ ∪ χ0)

18: if there is v ∈ V0 and i 6= j such that degHi
(v) ≥ ǫ1(µ2)|Hi| and degHj

(v) ≥ ǫ1|Hj | then
19: Same as in steps 6-7 of Phase I
20: else

21: Let S be a (1− ǫ2(µ2), 1− (ǫ2(µ2)− (1 + c)ǫ1(µ2)))-balanced set computed as in Lemma 7 w.r.t.
HV0

i for some i ∈ [k]
22: for each v ∈ V0 \ S do set χp(v) ∈ L(v) \ {i} arbtitrarily

23: call Proper-L-Coloring-B(H,L, χ ∪ χp) /* Probe */
24: for each j 6= i, H ∈ Hj and proper assignment χ0(H ∩ S) := {j} do

25: call Proper-L-Coloring-B(H,L, χ ∪ χ0)

26: return

Again, the algorithm proceeds in two phases. As long as there is still a good number of edges
with no assigned colors, the algorithm is still in phase I; otherwise it proceeds to phase II. In a
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general step of phase I (resp., phase II), the algorithm tries, in line 5 (resp., line 18), to find a
vertex v of large degree in H0 (resp., in Hi and Hj for some i 6= j) and iterates over all feasible
assignments of colors to v, that result in no monochromatic edges; if no such v can be found then
Lemma 6 (resp., Lemma 7) guarantees the existence of a (1 − ǫ2, 1 − (ǫ2 − (1 + c)ǫ1))-balanced set
with respect to H0 (resp., with respect to some HV0

i , i ∈ [k]), which is found in line 9 (resp, 21).
Lemma 4 (resp., Lemma 5) then reduces the problem in the latter case to checking conditions (i)
and (ii) of the lemma, which is done in lines 10-13 (resp., 22-25). If none of the recursive calls yields
a feasible extension of the current proper partial L-coloring χ, we unassign all the vertices colored
in this call and return (line 26). At the beginning of each recursive call in phase II, we preform a
”clean-up” step (lines 15-17) by trying all possible i-simple assignments for hypergrpahs Hi with
|Hi| sufficiently small. This allows us to start phase II with |H0| = 0 and to keep only hypergrpahs
Hi whose size is above the prescribed threshold δ.

As in the previous section, to analyze the running time of the algorithm, we measure the volume
of a subproblem in phase I by µ1 = µ1(H, χ) = |H0(χ)|, and in phase II by µ2 = µ2(H, χ) given by
(3). The recursion stops when |Hi(χ)| = 0 for all i ∈ [0 : k], or no proper extension of the current
partial coloring X can be found.

Given a subproblem of volume µ, let ǫ(µ) := 4(c+1) ln(2ρ)
ξ(µ) , where ξ(µ) is the unique positive root

of the equation: (
1

ǫ(µ)

)ξ(µ)

= 2µ. (9)

Note that ξ(µ) > 4(c+ 1) ln(2ρ) > 1, and hence ǫ(µ) < 1, for µ ≥ 1, and that (for constant ρ and c)

ξ(µ) ≈ O
(

logµ
log logµ

)
. We use in the algorithm:

δ(µ) :=
2(c+ 1)

ǫ(µ)
, ǫ1(µ) :=

ǫ(µ)

4(c+ 1)
, and ǫ2(µ) :=

ǫ(µ)

2
. (10)

Lemma 8 Algorithm 2 solves problem Proper-L-Coloring in time (ρmn)h where h := O( k2 logH m

logH logH m
)

and H := 4(c+ 1) ln(2ρ).

Proof Consider the recursion tree T of the algorithm. Let T1 (resp., T2) be the subtree (resp.,
sub-forest) of T belonging to phase I (resp., phase II) of the algorithm. For µ1 ≥ 0 (resp., µ2 ≥ 0
and t ∈ [0 : k]), let use denote by B1(µ1) (resp., B2(µ2, t)) be the total number of nodes in T1 (resp.,
T2) that result from a subproblem of volume µ1 (resp., µ2 with |{i ∈ [0 : k] : |Hi(χ)| ≥ 1}| = t) in
phase I (resp., phase II). For each recursive call of the algorithm, we obtain a recurrence on B1(µ1)
(resp., B2(µ2, t)), as explained in the following. Again, we assume that B1(µ1) (resp., B2(µ2, t)) is
monotonically increasing in µ1(resp., in both µ2 and t). Also, as before, we denote by Hi, µ1, µ2, t

andH′
i, µ

′
1, µ

′
2, t

′ the hypergraphs, volumes and the number of non-empty hypergraphs, in the current
and next recursive calls, respectively.

Claim 3 B1(µ1) ≤ µ
ξ(µ1)
1 .

Proof There are two possible locations in which a recursive call can be initiated in phase I:

Line 7: In this case, there is a vertex v ∈ V0 such that degH0
(v) ≥ ǫ1(µ1)|H0|, and we get |H′

0| ≤
(1− ǫ1(µ1)), and consequently the recurrence:

B1(µ1) ≤ ρ · B1((1 − ǫ1(µ1))µ1) + 1

= ρ · B1

((
1−

ǫ(µ1)

4(c+ 1)

)
µ1

)
+ 1, (11)

since the recursion in line 7 will exclude all the edges containing v from H′
0.

Lines 11 and 13: In this case, no large-degree vertex can be found. Then Lemma 6 implies that there
is a (1 − ǫ2(µ1), 1 − (ǫ2(µ1)− (1 + c)ǫ1(µ1)))-balanced set S, with respect to H0, which is found in
line 9. Then we apply Lemma 4 which reduces the problem to one recursive call on the hypergraph
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H in line 11, but after fixing the colors of all vertices in V0 \ S, and at most |H \ (H0)S | recursive
calls (in lines 12-13) on the hypergraphs obtained by fixing the color of one set H ∩ S, for some
H ∈ H\(H0)S . Note that S satisfies: (1−ǫ2(µ1))|H0| ≤ |(H0)S | ≤ (1−(ǫ2(µ1)−(1+c)ǫ1(µ1)))|H0|.
In particular, there is are at least (ǫ2(µ1)−(1+c)ǫ1(µ1))|H0| edges H ∈ H0 such that H \S 6= ∅, and
hence all of these edges will be removed fromH′

0 in line 11 giving µ′
1 ≤ µ1

(
1−(ǫ2(µ1)−(1+c)ǫ1(µ1))

)
.

Moreover, in line 13, we will have |H′
0| ≤ |H0\(H0)S |+c, as (by (1)) all but at most c edges in (H0)S

have non-empty intersections with the set H ∩ S, in the current iteration of the loop in line 12, all
vertices of which are assigned the color χ ∪ χp(H \ S). Since |H0 \ (H0)S | ≤ ǫ2(µ1)|H0|, we get the
following recurrence for |H0| > δ(m) ≥ δ(µ1):

B1(µ1) ≤ B1((1− (ǫ2(µ1)− (1 + c)ǫ1(µ1))µ1) + ǫ2(µ1)µ1 ·B1

((
ǫ2(µ1) +

c

δ(µ1)

)
µ1

)
+ 1

≤ B1

((
1−

ǫ(µ1)

4

)
µ1

)
+

ǫ(µ1)

2
µ1 · B1

(
ǫ(µ1)µ1

)
, (12)

where we used the definitions of δ(µ1), ǫ1(µ1), and ǫ2(µ1) in (10). By the termination condition of
phase I (in line 4), we have B1(µ1) = 1 for µ1 ≤ δ(m). We will prove by induction on µ1 ≥ 1 that

B1(µ1) ≤ µ
ξ(µ1)
1 .

Let us assume that µ1 > δ(m) and consider first recurrence (11). Applying induction we get

B1(µ1) ≤ ρ ·
((

1−
ǫ(µ1)

4(c+ 1)

)
µ1

)ξ(µ1)

+ 1 = ρ ·
((

1−
ln(2ρ)

ξ(µ1)

)
µ1

)ξ(µ1)

+ 1

≤ µ
ξ(µ1)
1

(
ρe− ln(2ρ) +

1

µ
ξ(µ1)
1

)
( ∵ 1 + x ≤ ex for all x)

< µ
ξ(µ1)
1

(
1

2
+

1

2

)
= µ

ξ(µ1)
1 ( ∵ ξ(µ1) > 1 for µ1 > δ(m) > 2).

Let us consider next recurrence (12) and apply induction:

B1(µ1) ≤
((

1−
ǫ(µ1)

4

)
µ1

)ξ(µ1)

+
ǫ(µ1)

2
µ1(ǫ(µ1)µ1)

ξ(µ1) + 1

= µ
ξ(µ1)
1

((
1−

(c+ 1) ln(2ρ)

ξ(µ1)

)ξ(µ1)

+
1

2
µ1ǫ(µ1)

ξ(µ1)+1 +
1

µ
ξ(µ1)
1

)

≤ µ
ξ(µ1)
1

(
e−(c+1) ln(2ρ) +

1

4
+

1

µ
ξ(µ1)
1

)
(∵ ǫ(µ1)

ξ(µ1) =
1

2µ1
by (9))

< µ
ξ(µ1)
1

(
1

2ρ
+

1

4
+

1

2

)
≤ µ

ξ(µ1)
1 ( ∵ ξ(µ1) > 1 for µ1 ≥ δ(m) > 2 and ρ ≥ 2).

�

Claim 4 B2(µ2, t) ≤ (nρ)2δ(m
k)·(t+1)µ

ξ(µ2)
2 .

Proof There are three possible locations in which a recursive call can be initiated in phase II:

Line 17: Since t′ ≤ t−1, as we remove at least one hypergraph Hi by trying all i-simple assignments
whose number is at most (|V0|ρ)2|Hi|, where |Hi| ≤ δ(m) ≤ δ(mk) for i = 0 and |Hi| ≤ δ(mk) for
i ∈ [k], we get the recurrence

B2(µ2, t) ≤ (ρn)2δ(m
k)B2(µ2, t− 1) + 1. (13)

Line 19: In this case, there are v ∈ V0 and i 6= j such that degHi
(v) ≥ ǫ1(µ2)|Hi| and degHj

(v) ≥
ǫ1(µ2)|Hj | then the algorithm proceeds similar to lines 6-7, and we get the recurrence:

B2(µ2, t) ≤ ρ · B2((1 − ǫ1(µ2))µ2, t) + 1

≤ ρ · B2

((
1−

ǫ(µ2)

4(c+ 1)

)
µ2, t

)
+ 1, (14)
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since we recurse (in the line similar to line 7) on a hypergraph H′ that excludes either all the edges
containing v from H′

i, if we set the color of v to j, or all those containing v from H′
j if we set the

color of v to i (or both, if we set the color of v to ℓ 6∈ {i, j}). Note that, in both cases, if |H′| = 0,
then µ′

2 ≤ µ2

δ(mk)
and hence µ′

2 ≤ (1− ǫ1(µ2))µ2 (as 1
δ(mk)

< 1
2 ≤ 1− ǫ1(µ2)).

Lines 23 and 25: In this case, there is no large-degree vertex. Then Lemma 7 implies that there is a
(1− ǫ2(µ2), 1− (ǫ2(µ2)− (1 + c)ǫ1(µ2)))-balanced set S, with respect to some Hi, which is found in
line 22. Then we apply Lemma 5 which reduces the problem to one recursive call on the hypergraphH
in line 23, but after fixing the colors of all vertices in V0\S, and at most

∑
j 6=i |Hj | ≤ µ2 recursive calls

(in lines 24-25) on the hypergraphs obtained by fixing the color of one setH∩S, for someH ∈ Hj and
j 6= i. Note that S satisfies: (1 − ǫ2(µ2))|Hi| ≤ |(Hi)S∪(V \V0)| ≤ (1− (ǫ2(µ2)− (1 + c)ǫ1(µ2)))|Hi|.

In particular, |Hi(V0 \ S)| ≥
(
(ǫ2(µ2) − (1 + c)ǫ1(µ2))

)
|Hi|. Since, in line 23, we recurse on the

hypergraph H′
i := Hi \ Hi(V0 \ S), since any H ∈ Hi with H ∩ (V0 \ S) 6= ∅ will receive at least one

color different from i, we get µ′
2 ≤ µ2(1− (ǫ2(µ2)− (1+ c)ǫ1(µ2))). Moreover, in line 25, we will have

|H′
i| ≤ |Hi \ (Hi)S∪(V \V0)| + c, as (by (1)) all but at most c edges in (Hi)S∪(V \V0) have non-empty

intersections with the set H ∩ S, in the current iteration of the loop in line 24, all vertices of which
are assigned the color j 6= i. Since |Hi \ (Hi)S∪(V \V0)| ≤ ǫ2(µ2)|Hi|, we get the following recurrence

for |Hi| > δ(mk) ≥ δ(µ2):

B2(µ2, t) ≤ B2((1− (ǫ2(µ2)− (1 + c)ǫ1(µ2))µ2, t) + µ2 ·B2

((
ǫ2(µ2) +

c

δ(µ2)

)
µ2, t

)
+ 1

≤ B2

((
1−

ǫ(µ2)

4

)
µ2, t

)
+ µ2 ·B2

(
ǫ(µ2)µ2, t

)
+ 1. (15)

(Note that, if |H′
i| = 0, then µ′

2 ≤ µ2

δ(mk) and hence µ′
2 ≤

(
1− ǫ(µ2)

4

)
µ2, as

1
δ(mk) <

1
2 < 1− ǫ(µ2)

4 .)

By definition, B2(µ2, 0) = 1, for µ2 ≥ 0. We will prove by induction on t = 1, . . . , k and µ2 ≥ 1

that B2(µ2, t) ≤ Pt+1µ
ξ(µ2)
2 , where Pt+1 := Rt+1−1

R−1 and R := (ρn)2δ(m
k). We consider 2 cases:

Case 1. 1 ≤ µ2 ≤ δ(mk): Then |Hi(χ)| ≤ δ(mk) for all i ∈ [0 : k], and recurrence (13) applies
iteratively until we get t = 0. By the recurrence, B2(µ2, 1) ≤ R+1 ≤ P2µ

logα µ, giving the base case
(t = 1), and by induction on t,

B2(µ2, t) ≤ R
(
Ptµ

logα µ2

2

)
+ 1 ≤ µ

logα µ2

2 (RPt + 1) = Pt+1µ
logα µ2

2 .

Case 2. µ2 > δ(mk): Let us note first that if the recurrence in (13) applies then the same induction
proof (on t) in case 1 gives the required bound. Let us note next that recurrence (14) is identical
to (11), but with B1(µ1) replaced by B2(µ2, t) and µ1 replaced by µ2. Thus, essentially, the same

inductive proof in Claim 3 gives that B2(µ2, t) ≤ Pt+1µ
ξ(µ2)
2 in this case (as Pt+1 > 1).

Finally, let us consider next recurrence (15) and apply induction (on µ2):

B2(µ2, t) ≤ Pt+1

((
1−

ǫ(µ2)

4

)
µ2

)ξ(µ2)

+ µ2Pt+1(ǫ(µ2)µ2)
ξ(µ2) + 1

= Pt+1µ
ξ(µ2)
2

((
1−

(c+ 1) ln(2ρ)

ξ(µ2)

)ξ(µ2)

+ µ2ǫ(µ2)
ξ(µ2) +

1

Pt+1µ
ξ(µ2)
2

)

≤ Pt+1µ
ξ(µ2)
2

(
e−(c+1) ln(2ρ) +

1

2
+

1

Pt+1µ
ξ(µ2)
2

)
(∵ ǫ(µ1)

ξ(µ2) =
1

2µ2
by (9))

≤ Pt+1µ
ξ(µ2)
2

(
1

2ρ
+

1

2
+

1

8

)
< Pt+1µ

ξ(µ2)
2 ( ∵ ξ(µ2) > 1, Pt+1 ≥ 4 for µ2 ≥ δ(mk) > 2 and ρ ≥ 2).

�

Using the bounds µ1 ≤ m, µ2 ≤ δ(mk)
(
m
k

)k
, and ξ(mk) ≤ k · ξ(m), we get B1(µ1) ≤ mξ(m) and

B2(µ2, k + 1) ≤ (ρn)
2k(k+1)ξ(m)

ln(2ρ)

(
ξ(m)
ln(2ρ)

mk

kk−1

)kξ(m)

. Putting these bounds together, and noting that

ξ(m) ≈ logH (2m)
logH logH(2m) , where H = 4(c+ 1) ln(2ρ), the lemma follows. �
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Lemma 9 The depth of the recursion tree is O(h logm
log(2ρ) ), where h := O( k2 logH m

logH logH m
) and H := 4(c+

1) ln(2ρ).

Proof Let d1(µ1) (resp., d2(µ2, t)) denote the depth of the recursion subtree (resp., sub-forest)
in phase I (resp., phase II), when the volume of the subproblem is µ1 (resp., µ2 and |{i ∈ [0 :
k] : |Hi(χ)| ≥ 1}| = t). Then, corresponding to recurrences (11), (12), (13), (14) and (15), we have
the following recurrences on the depth:

d1(µ1) ≤ d1

((
1−

ǫ(µ1)

4(c+ 1)

)
µ1

)
+ 1, (16)

d1(µ1) ≤ d1

(
max

{(
1−

ǫ(µ1)

4

)
µ1, ǫ(µ1)µ1

})
+ 1, (17)

d2(µ2, t) ≤ d2(µ2, t− 1) + 1, (18)

d2(µ2, t) ≤ d2

((
1−

ǫ(µ2)

4(c+ 1)

)
µ2, t

)
+ 1, (19)

d2(µ2, t) ≤ d2

(
max

{(
1−

ǫ(µ2)

4

)
µ2, ǫ(µ2)µ2

}
, t
)
+ 1. (20)

Once µ1 (resp., µ2) drops to δ(m) (resp., δ(mk)), phase I ends (resp., phase II ends after at most
k + 1 more recursive calls). Thus, the above recurrences imply that d(µ1) ≤ logα

µ1

δ(m) + 1 (resp.,

d(µ2, k + 1) ≤ logα
µ2

δ(mk) + k + 1), where α = 1

1−
ǫ(µ1)

4(c+1)

(resp., α = 1

1−
ǫ(µ2)

4(c+1)

). It follows that the

overall depth of the recursion tree is O(k
2ξ(m) logm

log(2ρ) ). �

Remark 1 If we do not insist on a recursion tree with polylogarithmic depth, then Algorithm 2 can
be simplified by using S := V0 \ {v} for a low-degree vertex v ∈ V0 in lines 9 and 21. It can be seen
from the analysis above that a weaker recurrence will be obtained with the first term in (12) and (15)
replaced by B1(µ1− δ) and B2(µ2− δ, t), respectively. The resulting solution will still be (nm)o(logm)

(assuming all other parameters are fixed), but the depth of the recursion tree can be linear in m.
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