
A 5k-vertex Kernel for P2-packing

Wenjun Li∗ Junjie Ye† Yixin Cao†

January 25, 2022

Abstract

The P2-packing problem asks whether a graph contains k vertex-disjoint (not necessarily
induced) paths each of length two. We continue the study of its kernelization algorithms,
and develop a 5k-vertex kernel.

1 Introduction

Packing problems make one of the most important family of problems in combinatorial opti-
mization. One example is H-packing for a fixed graph H, i.e., to find the maximum number of
vertex-disjoint copies of H from a graph G. It is trivial when H consists of a single vertex, and
it is the well-known maximum matching problem, which can be solved in polynomial time, when
H is an edge. The problem can be easily reduced to the maximum matching problem when each
component of H has at most two vertices. The smallest H on which the H-packing problem is
NP-complete is P2, the graph on three vertices and two edges [10]. The P2-packing problem
is thus a natural starting point of investigating H-packing problems in general, and has been
extensively studied [6, 9, 8, 11].

In the parameterized setting, the P2-packing problem asks whether a graph G contains k
vertex-disjoint P2’s. Recall that given an instance (G, k), a kernelization algorithm produces in
polynomial time an equivalent instance (G′, k′)—(G, k) is a yes-instance if and only if (G′, k′) is
a yes-instance—such that k′ ≤ k. The size of G′ is upper bounded by some function of k′, and
(G′, k′) is a polynomial kernel when the function is a polynomial function. Prieto and Sloper [12]
first developed a 15k-vertex kernel for the P2-packing problem, which were improved to 7k [13]
and then 6k [2]. We further improve it to 5k.

Theorem 1. The P2-packing problem has a 5k-vertex kernel.

Our improvement, although modest, is a solid step toward the ultimate goal of this line of
research, a kernel of only 3k vertices. Note that the problem remains NP-hard when G has
exactly 3k vertices. Indeed, what Kirkpatrick and Hell [10] proved is the NP-hardness of deciding
whether a graph can be partitioned into vertex-disjoint P2’s. The existence of a 3k-vertex kernel
for the P2-packing problem would indicate that it is morally equivalent to the P2-partition
problem. Moreover, our algorithm implies directly an approximation algorithm of ratio 5/3;

∗School of Computer and Communication Engineering, Changsha University of Science and Technology,
Changsha, China. liwenjun@csu.edu.cn. Supported by the National Natural Science Foundation of China
(NSFC) under grant 61872048.

†Department of Computing, Hong Kong Polytechnic University, Hong Kong, China. {junjie.ye,
yixin.cao}@polyu.edu.hk. Supported in part by the Hong Kong Research Grants Council (RGC) under
grants 15221420 and 15201317, and the National Natural Science Foundation of China (NSFC) under grant
61972330.

1

This is the Pre-Published Version.https://doi.org/10.1016/j.tcs.2022.01.032

© 2022. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/

a 4-vertex kernel, provided that it satisfies certain properties, would imply an approximation
algorithm of ratio 4/3, better than the best known ratio 4/3 + ε [3]. We remark that the problem
is MAX-SNP-hard [7], and remains so even on bipartite graphs with maximum degree three [11].
So if there would exist a 3k-vertex kernel, it had to use a different technique.

We also note that there are efforts on a simplified version of the problem: Chang et al. [1]
claimed a 5k-vertex kernel for the problem on net-free graphs, which however contains a critical
bug, according to Xiao and Kou [14].

A very natural tool for the problem is a generalization of the well-studied crown structure [4].
Prieto and Sloper [12] used it in the first kernel, and all later work follows suit. If we have a set
C of vertices such that (1) G[C] does not contain any P2, and (2) there are precisely |N(C)|
vertex-disjoint P2’s in the subgraph induced by N(C)∪C, then we may take these |N(C)| paths
and consider the subgraph G− (N(C)∪C). This remains our main reduction rule; the difficulty,
hence one of our contributions, is how to find such a structure if one exists.

As all the previous kernelization algorithms for the problem, we start from finding a maximal
P2-packing P in a greedy way. Let V (P) denote the vertices on paths in P, and we call other
vertices, i.e., V (G) \ V (P), extra vertices. Note that each component in G− V (P) contains at
most two vertices, and we may remove it from the graph if it is not adjacent to V (P). We may
assume henceforth that each component in G− V (P) is connected with V (P). By some classic
results from matching theory, a reducible structure can be identified as long as the number of
extra vertices, hence the number of components in G− V (P), is large enough. This leads to the
first kernel of 15k vertices [12], and is the starting point of all later results.

A similar scheme is employed in later work. It tries to find a P2-packing larger than P using
local search; once the local search gets stuck, a careful study of the configuration may reveal
new reducible structures. Observing that a pair of adjacent extra vertices is more helpful for
this approach than two nonadjacent ones, Wang et al. [13] used two simple exchange rules to
consolidate extra vertices. For example, if the two ends of a path on five vertices are extra
vertices (i.e., the three vertices in the middle are picked to be a path in P), they would change it
so that the two extra vertices are adjacent. The key idea of Chen et al. [2] is that extra vertices
adjacent to the ends of a path in P are usually more helpful than those adjacent to the middle
vertex of the path.

Our local search procedure is more systematic and comprehensive; it actually subsumes
observations from both Wang et al. [13] and Chen et al. [2]. After the standard opening step,
if we are not able to find reducible structure, we assign the extra vertices to paths in P such
that each path receives a small number of them. Each path, together with the assigned vertices,
defines a unit. Based on their local structures, we put units with at least five vertices into
two categories. We introduce several nontrivial exchange rules to migrate vertices from “large”
units to “small” units. Their applications may lead to (1) a larger P2-packing than P, or (2)
a reducible structure, whereupon we repeat the procedure with a larger number of units or a
smaller graph, respectively. After all of our rules have been exhaustively applied, a unit contains
at most six vertices, and the number of six-vertex units is upper bounded by the number of
small units with four or three vertices. The bound on the size of the kernel follows immediately.

2 Preliminaries

All graphs discussed in this paper are undirected and simple. The vertex set and edge set of a
graph G are denoted by V (G) and E(G) respectively. For a set U ⊆ V (G) of vertices, we denote
by G[U] the subgraph induced by U , whose vertex set is U and whose edge set comprises all
edges of G with both ends in U . We use G−U as a shorthand for G[V (G) \U], and it is further
simplified as G− v when U consists of only one vertex v. A component is a maximal connected

2

induced subgraph, and an edge component is a component on two vertices.

Reduction Rule 1. If a component C of G has at most 6 vertices, delete C and decrease k by
the maximum number of vertex-disjoint P2’s in C.

The following technical definition would be crucial for our main reduction rule.

Definition 2.1. Let C be a set of vertices and N(C) = {v1, v2, . . . , v`}. We say that C is a
reducible set of G if the maximum degree in G[C] is at most one and one of the following holds.

(i) There are ` distinct edge components {C1, . . . , C`} in G[C] such that vi is adjacent to Ci

for 1 ≤ i ≤ `.

(ii) There are 2` distinct components {C1, . . . , C2`} in G[C] such that vi is adjacent to C2i−1
and C2i for 1 ≤ i ≤ `.

For readers familiar with previous work, a remark is worthwhile here. Our reducible set is
a generalization of the well-known crown decomposition [4]. Our definition (i) coincides with
the “fat crown” defined in [12]. Our definition (ii) coincides with the “double crown” defined
in [12] when each component of G[C] is a single vertex. In definition (ii), however, we allow a
mixture of single-vertex components and edge components. As a matter of fact, one may define
the reducible set in a way that an edge component is regarded as two single-vertex components.
This definition would work for our algorithm and might reveal more reducible sets. However, it
would slightly complicate our presentation without helping our analysis in the worst case, and
hence we choose to use the simpler one.

Reduction Rule 2. If there is a reducible set C, delete N(C) ∪ C and decrease k by |N(C)|.

The safeness of Rule 2 can be easily adapted from a similar proof of Prieto and Sloper [12].
For the sake of completeness, we include it here. We use opt(G) to denote the maximum number
of vertex-disjoint P2’s in graph G.

Lemma 2.2. If C is a reducible set of graph G, then opt(G) = opt(G− (N(C)∪C)) + |N(C)|.

Proof. Let A = N(C) and G′ = G − (A ∪ C). For each vertex v ∈ A, we can pick in G[C]
an edge component or two vertices from two components to form a P2. Thus we have |A|
vertex-disjoint P2’s using only vertices in A ∪ C. Together with a maximum P2-packing of G′,
we have opt(G) ≥ opt(G′) + |A|.

On the other hand, any P2-packing of G contains at most |A| vertex-disjoint P2’s involving
vertices in A. Hence opt(G) ≤ opt(G−A)+|A|. By definition, the maximum degree in G[C] is at
most one, and hence vertices of C participate in no P2 in G−A. Therefore, opt(G−A) = opt(G′)
and opt(G) ≤ opt(G′) + |A|.

To identify reducible sets, we will rely on tools from matching theory. In several steps of our
algorithm, we will construct an auxiliary bipartite graph B; to avoid confusion, we use nodes
to refer to elements in V (B). The two sides of B are denoted by L and R. We will use the
Hopcroft-Karp algorithm:

Lemma 2.3 ([5]). Given a bipartite graph B, we can find in polynomial time a matching
saturating L or a set L′ ⊆ L such that there is a matching between N(L′) and L′ that saturates
N(L′).

3

3 The unit partition

We first find a maximal P2-packing P of the input graph G, and use these paths as “bases” to
partition V (G) into |P| units. We may return a trivial true instance and terminate the algorithm
when |P| ≥ k. Henceforth we assume |P| < k. We then locally change the units so that they
satisfy certain properties. During the process, if we find (1) a P2-packing larger than P , or (2) a
reducible set, then we restart the procedure with a new P2-packing, or a new graph respectively.

Denote by V (P) the set of vertices in the paths in P. The maximality of P guarantees that
each component of the subgraph G− V (P) is either a single vertex or an edge. We construct an
auxiliary bipartite graph B1 as follows:

• for each component C of G− V (P), introduce a node uC into L;

• for each vertex v ∈ V (P), introduce two nodes v1, v2 into R; and

• add edges uCv
1 and uCv

2 if vertex v is adjacent to V (C) in G.

Lemma 3.1. If there is no matching of B1 saturating all nodes in L, then we can find in
polynomial time a reducible set.

Proof. By Lemma 2.3, we find in polynomial time a subset L′ ⊆ L such that there is a matching
of B1 between NB1(L′) and L′ that saturates all nodes in NB1(L′). Let C ′ be the vertices in the
components represented by nodes in L′, and let A′ be the set of vertices represented by nodes
in NB1(L′). We claim that C ′ is a reducible set. Note that for each vertex v ∈ V (P), the set
NB1(L′) contains either both or neither of {v1, v2}. For each v ∈ A′, the two components in
G[C ′], whose nodes are matched to v1 and v2, are adjacent to v. By the construction of B1,
G[C ′] has maximum degree at most one and N(C ′) = A′. Hence C ′ is a reducible set.

In the following, we may assume that we have a matching M of B1 saturating all nodes in
L. For a path P ∈ P on vertices u, v, w, we create a unit that contains u, v, w, and all vertices
in those components matched to nodes u1, u2, v1, v2, w1, w2 by M . Abusing the notation, we
also use unit to refer to the subgraph induced by it, which is always connected. The path P is
the base path of this unit. Since all nodes in L are matched in M , the collection of units is a
partition of the vertex set V (G). If each unit has five or fewer vertices, then |V (G)| < 5k and
we are done. By construction, a unit may contain at most six components (each of at most
two vertices) of G− V (P), hence up to 3 + 6 ∗ 2 = 15 vertices. There are a prohibitive number
of graphs on 15 vertices; the following exchange rule excludes most of them from our further
consideration.

Exchange Rule 1. If a unit contains two vertex-disjoint P2’s, then we find a larger maximal
P2-packing than P as follows. Let P 0 be the base path of the unit, and P 1 and P 2 the two
vertex-disjoint P2’s, then we take P \ {P 0} ∪ {P 1, P 2}.

It is easy to see that the partition produced by Exchange Rule 1 is valid: Vertices in different
parts are disjoint. Once Exchange Rule 1 is applied, we restart the procedure with a new
P2-packing and hence a new unit partition. In the following we may assume that a unit has
precisely one vertex-disjoint P2.

Let us motivate our main technical definitions with a simple example. The two graphs in
Figure 1 comprise the same pair of units, (one cycle and one star, both on five vertices,) but are
connected by different edges in between. The two units behave very differently: While the first
unit (cycle) is willing to sacrifice any pair of adjacent vertices, there is a vertex not affordable to
lose by the second unit (star).

4

(a) (b)

Figure 1: Each graph consists of two units on five vertices. In a unit, the three triangle vertices
and the thick edges make the base path. Other solid edges are inside the unit, while a dashed
edge crosses two units. We can find three vertex-disjoint P2’s from (a), but not (b).

We say that a unit is democratic if it contains one of the graphs in Figure 2 as a spanning
subgraph. We call a democratic unit a net-, pan-, C5-, or bull-unit if it contains net, pan, C5,
or bull but none of the previous ones as a subgraph. This order ensures, among others, that
a bull-unit has to be an induced bull: We can find a pan or a C5 if any additional edge is
added to a bull. (Indeed, only pan-unit can have extra edges, but we only need this property
for bull-units.) A bull-unit contains a unique vertex of degree 2, which we call the nose of the
bull-unit. It is easy to check that there remains a P2 in a democratic unit after any vertex
removed.

(a) net (b) pan (c) C5

v

(d) bull

Figure 2: Four subgraphs characterizing democratic units. A pan-unit may contain extra edges
not shown here, while the other three cannot. The vertex v in (d) is the nose of the bull-unit.

A unit that has more than four vertices but is not democratic is called despotic. For example,
the second unit in Figure 1(a) is despotic. In that example, even though the only degree-four
vertex in it cannot be removed from the unit, all the other four vertices are dispensable. For
such a unit, it does not make much sense to distinguish the two vertices in the base path and
the other two vertices: We may take any P2 from this unit as the base path, but it clearly has
to contain the degree-4 vertex.

Each graph F in Figure 3 has a special vertex v (the square vertex at the bottom) such that
its removal leaves a graph of maximum degree at most one. In other words, each component of
F − v is an edge or an isolated vertex; we call them a twig and a leaf respectively. We label
F by a pair (a, b), which are the numbers of, respectively, twigs and leaves of F . We say that
a despotic unit is an (a, b)-unit if it can be made, by deleting edges, graph (a, b) but not any
graph (a′, b′) with a′ > a. A consequence of enforcing this order (of maximizing twigs) is that
there cannot be any edge between two leaves in any unit: For example, if an edge is added to
connect the two leaves of graph (2, 2), then it also contains graph (3, 0) as a subgraph. For a
unit U , we also use d1(U) and d2(U) to denote the numbers of, respectively, twigs and leaves;
i.e., d1(U) = a and d2(U) = b when U is an (a, b)-unit. The special vertex is the core, while all
other vertices (including twigs and leaves) the peripheral, of the unit. It would be clear that
there exists still a P2 in a despotic unit after we delete a twig or leaf from it.

In passing we should mention that although we draw only one edge between the core and
a twig, both vertices in the twig can be adjacent to the core. For our algorithm, we always
consider a twig as a whole.

We are left with the small units (of three or four vertices), which turn out to be singular in

5

(a) (4, 0) (b) (3, 1) (c) (3, 0) (d) (2, 2) (e) (2, 1) (f) (2, 0)

(g) (1, 4) (h) (1, 3) (i) (1, 2) (j) (0, 4)

Figure 3: Ten subgraphs characterizing despotic units. The square vertices are the core vertices,
while the round vertices make the peripheral. Each edge component of the peripheral is a twig,
and each single-vertex component is a leaf. Each unit in the first row has at least two twigs,
while the second row has at most one. For the units with the same number of twigs, they are
ordered by the number of leaves (hence the total number of vertices). Note that a despotic unit
may contain extra edges not shown here.

our algorithm. Although they are the smallest units, great care is needed to deal with them.
Recall that our aim is to bound the number of vertices by summing all units in the final unit
partition of the final graph; hence we would like to maximize the number of small units. In this
sense, the role of a small unit as an “exporter” would be marginal, if possible, and hence we
do not categorize them into many types. We abuse the notation to denote them in a similar
way as despotic units. A four-vertex unit is a (0, 3)-unit if it has precisely three edges and all
of them share a common end, and a (0, 1)-unit otherwise. A three-vertex unit is a (0, 0)-unit,
disregarding whether it has two or three edges. See Figure 4 for an illustration of small units.
Note that (0, 1)-unit and (0, 0)-unit are special in the sense that they have three core vertices.1

(a) (0, 3) (b) (0, 1) (c) (0, 0)

Figure 4: Three subgraphs characterizing small units. The square vertices are the core vertices,
while the round vertices make the peripheral. Note that a (0, 3)-unit cannot contain extra edges,
while the other two can.

The following is straightforward from Exchange Rule 1 and the definitions of despotic and
small units.

Proposition 3.2. Let U be an (a, b)-unit. If Exchange Rule 1 is not applicable to U , then there
is no edge between different twigs or leaves of U .

Proof. This is very obvious for small units: It is by definition for (0, 3)-units; and there are at
most one leaf and no twig in (0, 1)- and (0, 0)-units. Suppose for contradiction that there exists
an edge e between different twigs or leaves of an (a, b)-unit U . By the definition of (a, b)-units, at
least one end of e comes from a twig, hence a ≥ 1. If U is a (1, 3)-unit or contains at least seven
vertices, then U contains two vertex-disjoint P2’s, contradicting the assumption. Thus, U has to

1It seems to make more sense to use type (0, 2) instead of (0, 1) for Figure 4(b), because both ends of the
path can be “sacrificed.” The reason is that we want to avoid edges between leafs from the same unit; see
Proposition 3.2. Of course, we may introduce a new type of C4-units, but that would complicate our analysis
with no direct benefit.

6

be a (2, 1)-, (2, 0)- or (1, 2)-unit. If U is a (2, 1)-unit with an extra edge but does not contain
two vertex-disjoint P2’s, then it has to be a net, hence a net-unit; see Figure 5(a). Likewise, if
U is a (2, 0)- or (1, 2)-unit with an extra edge, then it is a democratic unit; see Figure 5(b,c).
Therefore, we always end with a contradiction, and this concludes the proof.

(a) (2, 1) (b) (2, 0) (c) (1, 2)

Figure 5: Demonstration that a (2, 1)-, (2, 0)- or (1, 2)-unit cannot have an extra edge between
different twigs or leaves. We either end with a democratic unit, or two disjoint P2’s, shown as
thick edges. Note that there cannot be an edge between the two leaves of a (1, 2)-unit because it
should otherwise have been classified as a (2, 0)-unit.

An exhaustive case analysis will convince us that we have covered all possible units on which
Exchange Rule 1 is not applicable. We should point out that a (1, 4)-unit cannot be part of a
unit partition produced as above; they can only be introduced by exchange rules to be presented
in the next section.

Proposition 3.3. Let U be a unit in a unit partition produced from a maximal P2-packing P.
If Exchange Rule 1 is not applicable to U , then it must be a democratic, despotic, or a small
unit. Moreover, it cannot be a (1, 4)-unit.

Proof. Let U be a unit and P its base path. We can find two vertex-disjoint P2’s in the unit if
(1) an edge component is matched to one end of P and one component is matched to another
vertex of P ; or (2) two components are matched to one end of P and one component is matched
to another vertex of P . Disregarding these cases, if Exchange Rule 1 is not applicable, each unit
falls into one of the cases in Table 1. We can check that (1) each unit on five or more vertices is
a democratic/despotic unit, but not a (1, 4)-unit; (2) other units are small units.

Recall that we always assign vertices of a component of G − V (P) to the same unit. As
a result, if an edge is crossing two units, then at least one end of this edge is on a base path.
However, we do not have a similar property on core vertices and peripheral vertices: There can
be an edge between two peripheral vertices in different units, and an edge between a peripheral
vertex and a democratic unit. We now apply the following operations to partially restore it,
whose correctness is straightforward: Note that (1) a despotic/small unit can sacrifice a twig or
leaf; and (2) for every vertex of a democratic unit (except the nose of a bull-unit), we can pick
an adjacent vertex such that the unit still contains a P2 after removing the two vertices. Since
at most three units are involved, this rule can be applied in polynomial time.

Exchange Rule 2. If any of the following holds true, we produce a larger P2-packing than P.

(i) There is an edge between a vertex u1 of a democratic unit and a vertex u2 of another unit
where u1 is not a nose and u2 is not a core vertex.

(ii) There is an edge between the nose of a bull-unit and a twig of a despotic unit.

(iii) There is an edge between a twig of a despotic unit and a peripheral vertex of another unit.

7

Table 1: The configurations of units that contain exactly one P2. The three triangle vertices
make the base path P2, while others (round vertices) make components matched to them. We
only present the edges between a component and the vertex on the base path to which it is
matched. We enumerate first units without edge components, then units with edge components;
both of which are ordered by the number of vertices.

(0, 0) (0, 1) (0, 3), (0, 1)
pan, bull, (2, 0),

(1, 2)
pan, bull, (2, 0) pan, bull, (1, 2)

pan, (2, 0), (1, 2),
(0, 4)

net, (2, 1) (2, 1), (1, 3) (2, 2)

pan, C5, bull,
(2, 0)

pan, bull, (2, 0),
(1, 2)

net, (2, 1) (2, 1), (1, 3) net, (2, 1) (3, 0), (2, 2)

(3, 0) (3, 0) (3, 0), (2, 2) (3, 1) (3, 1) (4, 0)

In Exchange Rule 2, conditions (i) and (ii) are concerned with edges crossing democratic units,
while (iii) with edges connecting peripheral vertices (of different units). The following proposition
characterizes all edges crossing different units when Exchange Rule 2 is not applicable.

Proposition 3.4. Let U be a unit partition on which neither of Exchange Rule 1 and 2 is
applicable, and let u1u2 be an edge between two different units U1 and U2. If neither u1 nor u2
is a core vertex, then for both i = 1, 2, the vertex ui is either a leaf or the nose of a bull-unit.

Proof. Suppose for contradiction that u1 is neither a leaf nor a nose. We consider the type of
U1. Note that u2 is not a core of U2. If U1 is a democratic unit, then u1 is a non-nose vertex,
and condition (i) of Exchange Rule 2 holds true. Otherwise, U1 is a despotic unit, of which u1 is
a vertex of a twig, and then one of conditions (i)–(iii) of Exchange Rule 2 holds true.

We introduce two more exchange rules to deal with crossing edges between noses of bull-units
and leaves of despotic/small units, or edges between two leaves of different units. One tries to
transform a bull-unit to a net-unit, while the other tries to consolidate leaves to make a twig.

Exchange Rule 3. If there is an edge between the nose u1 of a bull-unit U1 and a leaf u2 of a
despotic/small unit U2, move u2 from U2 to U1.

Exchange Rule 4. Let u1u2 be an edge between two leaves from two units U1 and U2 with
|U1| ≥ |U2|.

• If U2 is not a (1, 4)-unit, move u1 from U1 to U2.

• If U2 is a (1, 4)-unit, move u2 from U2 to U1.

8

Note that Exchange Rule 4 is only well defined when there exists no edges between two
leaves of two (1, 4)-units; otherwise it would end with a unit with an undefined type. We say
that a unit partition is general if (1) each unit in it is one of the types represented by the graphs
in Figures 2–4; and (2) there is no edge connecting leaves from two different (1, 4)-units. We
need to make sure that the unit partition remains general after each application of the exchange
rules.

Proposition 3.5. If U is a general unit partition, then after applying Exchange Rule 3 or 4, we
end with a unit with two vertex-disjoint P2’s, or a general unit partition.

Proof. The proposition is obvious for Exchange Rule 3: removing a leaf from any despotic/small
unit leaves a defined unit. Now we consider Exchange Rule 4. Note that U2 is not a (1, 4)-
unit, and removing a leaf from it leaves a defined unit. On the one hand, U1 becomes a
(d1(U1), d2(U1)− 1)-unit when |U1| ≥ 6, or a small unit otherwise. On the other hand, if U2 is a
(0, 1)-unit or (0, 3)-unit, then it becomes a pan-, C5-, bull-, or (2, 0)-unit; otherwise, it becomes
a (d1(U2) + 1, d2(U2)− 1)-unit. It is always a defined unit and not a (1, 4)-unit. Since no new
(1, 4)-units are introduced in this step, and since the edges between other units are not impacted,
condition (2) of the definition of general unit partition remains satisfied. Therefore, the new
unit partition is general.

We conclude the preparation phase by introducing reduced unit partitions. A reduced unit
partition is a general unit partition, on which neither Reduction Rule 1 nor Exchange Rules 1–4
are applicable. The following lemma summarizes the properties of reduced unit partitions.

Lemma 3.6. Let uv be an edge crossing two units in a reduced unit partition. Either both u
and v are noses of bull-units, or one of them is a core vertex of some despotic or small unit.

Proof. Note that a vertex is either a core vertex, or a peripheral vertex, or a vertex in a
democratic unit. If both u and v are peripheral vertices, then condition (iii) of Exchange Rule 2
and Exchange Rule 4 are applicable. On the other hand, an edge between a peripheral vertex
and a democratic unit would trigger Exchange Rule 2(i)–(ii) or Exchange Rule 3. We are thus
left with edges between two democratic units or with one end as a core vertex. Since Exchange
Rule 2(i) is not applicable, when both u and v are from democratic units, they have to be noses
of bull-units.

4 Main rules

This section presents our main exchange rules on the reduced unit partition. The first two try
to move twigs and leaves from a larger unit to a smaller unit through a sequence of intermediary
units. Their purpose is to eliminate all the units with more than six vertices. In particular, one
deals with (4, 0)-, (3, 1)-, (3, 0)- and (2, 2)-units; while the other deals with (1, 4)-, (1, 3)- and
(0, 4)-units. Note that after applying these two rules, one or more of Exchange Rules 1–4 may
become applicable again. The last exchange rule and the last reduction rule are concerned with
units with six vertices; if there are too many of them, we can find either a larger P2-packing
than P or a reducible set.

We start with those units U with d1(U) ≥ 2, and the idea is to “cut” a twig from such a unit
and “graft” it onto a smaller unit. See Figure 6 for illustration. We say that t1v2t2 · · · v` is a
twig-alternating path if (1) vi is a core vertex of Ui for 2 ≤ i ≤ `; (2) tj is a twig of Uj adjacent
to vj+1 for 1 ≤ j ≤ ` − 1; and (3) Ui 6= Uj when i 6= j. Note that if d1(U1) > 2, then U1 is a
(4, 0)-, (3, 1)-, or (3, 0)-unit.

9

Exchange Rule 5. Let U be a reduced unit partition. If there is a twig-alternating path
t1v2t2 · · · v` such that

(i) d1(U1) > 2 or U1 is a (2, 2)-unit; and

(ii) d1(U`) = 0,

then for i = 1, . . . , `− 1, move twig ti from unit Ui to unit Ui+1.

U1 U2 U3 U4

⇒

U ′1 U ′2 U ′3 U ′4

Figure 6: Illustration for Exchange Rule 5. The left is the original graph and the right the graph
after applying the exchange rule. The first unit loses a twig (denoted by two thick edges in the
left), the last unit gains a twig (denoted by two thick edges in the right), while the type of all
the intermediary units remain unchanged. In a sense, after a chain of operations, “a twig is
moved from the first unit to the last one.”

Let U ′` be the new unit obtained by adding t`−1 to U`. Note that if U` is a (0, 4)-unit, then
U ′` will be a (1, 4)-unit. Indeed, Exchange Rule 5 is the only rule that can introduce (1, 4)-units.
After applying Exchange Rule 5, we may need to apply Exchange Rule 3 or 4, so we need to
make sure that the resulting unit partition is still general.

Proposition 4.1. After applying Exchange Rule 5 for a twig-alternating path P = t1v2t2 · · ·x`,
the following hold.

(i) U1 becomes a (d1(U1)− 1, d2(U1))-unit.

(ii) For 2 ≤ i ≤ `− 1, both d1(Ui) and d2(Ui) remain unchanged.

(iii) If |U ′`| > 6 and d2(U`) ≥ 2, then d1(U
′
`) = 1 and d2(U

′
`) = d2(U`).

(iv) Either U ′` contains two vertex-disjoint P2’s, or the resulting unit partition is still general.

Proof. The first three assertions are immediate from the rule. Note that if U` was a (0, 1)-unit,
then it may happen that the new unit contains two vertex-disjoint P2’s. We now argue that if this
does not happen, then the resulting unit partition is still general. Note that U` is (0, 4)-, (0, 3)-,
(0, 1)- or (0, 0)-unit. All the ` units are still well defined, in particular, U ′` is a democratic unit
or a despotic unit of type (1, 2), (1, 3), (1, 4), (2, 0), or (2, 1). In the case that it is a (1, 4)-unit,
U` was a (0, 4)-unit. Because the unit partition was reduced before we apply Exchange Rule 5,
there cannot be an edge between leaves of U` and leaves from another (1, 4)-unit by Lemma 3.6.
Hence the unit partition remains general.

If some unit has at least six vertices and at least two twigs, but we cannot move any twig
away from it with Exchange Rule 5, then we can find a reducible set. For this purpose, we build
an auxiliary bipartite graph:

• for each core vertex, introduce a node into L;

• for each twig, introduce a node into R; and

10

• add an edge between a node x ∈ L and a node y ∈ R if the core vertex represented by x is
adjacent to the twig represented by y.

Lemma 4.2. Let U be a reduced unit partition. If there exists a unit U in U with d1(U) =
d2(U) = 2 or d1(U) > 2, but Exchange Rule 5 is not applicable, then we can find a reducible set
in polynomial time.

Proof. We take all the twig-alternating paths with t1, the first twig, from U , and let C denote
the set of vertices in the twigs in them. By Proposition 3.2 and Lemma 3.6, G[C] consists of edge
components and all vertices in N(C) are core vertices. Since Exchange Rule 5 is not applicable,
for each core vertex in N(C), the unit containing it has at least one twig. Hence C is a reducible
set.

We next migrate leaves in a similar way as Exchange Rule 5. We say that t1v2t2 · · · v` is a
leaf-alternating path if (1) vi is the core vertex of Ui for 2 ≤ i ≤ `; (2) tj is a leaf of Uj adjacent
to vj+1 for 1 ≤ j ≤ `− 1; and (3) Ui 6= Uj when i 6= j.

Exchange Rule 6. In a reduced unit partition without (4, 0)-, (3, 1)-, (3, 0)-, or (2, 2)-units, if
there is a leaf-alternating path t1v2t2 · · · v` where

(i) U1 is not a (0, 3)-unit and d2(U1) ≥ 3; and

(ii) d2(U`) ≤ 1.

then for i = 1, . . . , `− 1, move leaf ti from unit Ui to unit Ui+1.

Let U ′` be the new unit obtained by adding t`−1 to U`. Again, we need to make sure that the
resulting unit partition is still general.

Proposition 4.3. After applying Exchange Rule 6 for a leaf-alternating path P = t1v2t2 · · · v`,
the following hold.

(i) U1 becomes a (d1(U1), d2(U1)− 1)-unit.

(ii) For 2 ≤ i ≤ `− 1, both d1(Ui) and d2(Ui) remain unchanged.

(iii) If |U`| > 4, then d1(U
′
`) = d1(U`) and d2(U

′
`) = d2(U`) + 1.

(iv) The resulting unit partition is still general.

Proof. The first two assertions are immediate from the rule. Note that Exchange Rule 6 is only
applied on a unit partition with d1(U) ≤ 3 for all units U . If |U`| > 4, then U` has to be a (2, 1)-
or (2, 0)-unit, and U ′` is a (2, 2)- or (2, 1)-unit respectively. We are then left with the case U`

being a small unit, i.e., |U`| ≤ 4. This proves assertion (iii). Note that Exchange Rule 6 may
introduce new edges between leaves, by making core vertices of (0, 1)- or (0, 0)-units peripheral.
If U` is a (0, 0)-unit, then U ′` is a small unit on four vertices. If U` is a (0, 1)-unit, then U ′` may
be a (2, 0)-, (1, 2)-, pan-, or bull-unit. Noting that no (1, 4)-unit is produced or impacted during
this operation, we can conclude that the resulting unit partition remains general. This concludes
the proof.

A lemma similar to Lemma 4.2 holds for Exchange Rule 6. We build an auxiliary bipartite
graph:

• for each core vertex, introduce a node into L;

• for each leaf, introduce a node into R; and

11

• add an edge between a node x ∈ L and a node y ∈ R if the core vertex represented by x is
adjacent to the leaf represented by y.

Lemma 4.4. Let U be a reduced unit partition without (4, 0)-, (3, 1)-, or (3, 0)-units. If there
exists in U a unit U with (i) d2(U) > 3, or (ii) d1(U) > 0 and d2(U) = 3, but Exchange Rule 6
is not applicable, then we can find a reducible set in polynomial time.

Proof. We take all the leaf-alternating paths with t1, the first leaf, from U , and let C denote
the set of leaves in them. By Proposition 3.2 and Lemmas 3.6, G[C] consists of isolated vertices
and all vertices in N(C) are core vertices. Since Exchange Rule 6 is not applicable, for each core
vertex in N(C), the unit containing it has at least two leaves. Hence C is a reducible set.

After application of Exchange Rule 5 or 6, a core vertex of a (0, 1)-unit or (0, 0)-unit may
become a peripheral vertex, thereby turning a reduced unit partition back to a general unit
partition. Therefore we may need to reapply Exchange Rules 1–4. Moreover, Exchange Rule 6
may turn a (2, 1)-unit into a (2, 2)-unit, and hence trigger the application of Exchange Rule 5.
We are able to show that these two exchange rules can be applied a polynomial number of times;
we defer the issue of the running time to the next section.

If neither Reduction Rule 1 nor Exchange Rules 1–6 is applicable, then the only despotic
units that can exist in a general unit partition are (2, 1)-, (2, 0)- and (1, 2)-units. Therefore, of
all units, only net-units and (2, 1)-units have more than five vertices. We now try to bound the
number of these two type of units by the number of other smaller units. We use snet, span, sC5

and sbull to denote the number of, respectively, net-, pan-, C5- and bull-units, and use sa,b to
denote the number of (a, b)-units.

We construct an auxiliary bipartite graph B4:

• for each net-unit and each twig of a despotic unit, add a node into L;

• for each vertex not in any net-unit or twig, add a node into R; and

• for two nodes x ∈ L and y ∈ R, add an edge xy if the vertex represented by y is adjacent
to the net-unit or twig represented by x in G.

Informally speaking, we are here viewing a net-unit as “a unit with a removable twig.” Note
that there is no isolated node in L (as otherwise Reduction Rule 1 should be applicable), and
each node in N(L) represents a core vertex.

Exchange Rule 7. Let U be a reduced unit partition in which all despotic units are (2, 1)-,
(2, 0)-, and (1, 2)-units. If snet + s2,1 + s2,0 > s0,3 + s0,1 + s0,0 and there is a matching M of B4

that saturates L, then find a larger P2-packing than U as follows.

(i) For each net-unit U , introduce two P2’s from G[U ∪ {v}], where v is the vertex represented
by the node matched to U in M .

(ii) For each twig t, introduce a P2 together with the vertex v represented by the node matched
to t in M .

(iii) From each other unit not involved in M , take an arbitrary P2.

Lemma 4.5. Exchange Rule 7 is correct: (1) The P2’s can be found; (2) they are vertex-disjoint;
and (3) the number is larger than |U|.

12

Proof. Assertion (1) is straightforward. The vertices v matched to different net-units and twigs
are different. Hence, no vertex is shared by two P2’s in (i) and (ii). On the other hand, the P2’s
found in (iii) use vertices not involved in those of (i) and (ii). This verifies assertion (2). Since
the matching M saturates L, we have introduced two P2’s for each net-, (2, 1)-, and (2, 0)-unit,
and one P2 for each (1, 2)-unit. On the other hand, by Lemma 3.6, the vertex v in both (i) and
(ii) has to be a core vertex. In other words, no pan-, C5-, and bull-units are involved in M .
Therefore, the total number of P2’s we can find is at least

2(snet + s2,1 + s2,0) + s1,2 + (span + sC5 + sbull)

>(snet + s2,1 + s2,0) + (s0,3 + s0,1 + s0,0) + s1,2 + span + sC5 + sbull

=(snet + span + sC5 + sbull) + (s2,1 + s2,0 + s1,2) + (s0,3 + s0,1 + s0,0)

=|U|.

Note that the last equality is true because the only despotic units in U are (2, 1)-, (2, 0)-, and
(1, 2)-units.

If no matching in B4 saturates L, then we can use Lemma 2.3 to find in polynomial time
a subset L′ ⊆ L and a matching of B4 between N(L′) and L′ that saturates N(L′). Now we
apply our second non-trivial reduction rule, where the “reducible set” contains net-units and
edge components. Each net-unit contributes a P2 and an extra edge.

Reduction Rule 3. For a node set L′ ⊆ L of B4, let s′net be the number of net-units represented
by L′, and X be the set of vertices in the net-units or twigs represented by L′. If there exists a
matching of B4 between N(L′) and L′ that saturates N(L′), then remove X ∪N(X) and decrease
k by s′net + |N(X)|.

Lemma 4.6. Reduction rule 3 is safe: opt(G) = opt(G− (X ∪N(X))) + s′net + |N(X)|.

Proof. Let G′ = G− (X ∪N(X)). Note that N(X) is precisely the set of vertices represented
by N(L′). Let v be a vertex in N(X). If its representing node is matched to a twig, then v
and the twig together make a P2. Otherwise, it is matched to a net-unit U ; i.e., U is adjacent
to v. We can find two adjacent vertices in U such that they together with v make another P2,
and their removal from U leaves a P2. Thus the number of P2’s we can find in G[X ∪N(X)] is
|N(X)|+ s′net. Therefore, opt(G) ≥ opt(G− (X ∪N(X))) + s′net + |N(X)|.

Any P2-packing of G contains at most |N(X)| vertex-disjoint P2’s involving vertices in N(X),
hence opt(G) ≤ opt(G − N(X)) + |N(X)|. Each component in the subgraph of G − N(X)
induced on X is either a net-unit or a twig represented by a node in L′. Thus opt(G−N(X)) =
opt(G− (X ∪N(X))) + s′net, and opt(G) ≤ opt(G− (X ∪N(X))) + s′net + |N(X)|.

Corollary 4.7. Let U be a reduced unit partition where (2, 1)-, (2, 0)- and (1, 2)-units are the
only despotic units. If snet + s2,1 + s2,0 > s0,3 + s0,1 + s0,0, then at least one of Exchange Rule 7
and Reduction Rule 3 is applicable.

5 The algorithm

We now summarize the kernelization algorithm in Figure 7 and use it to prove Theorem 1, for
which we need to show its correctness and analyze its running time.

In general, we apply the exchange and reduction rules in the order they are presented; more
specifically, we apply a high numbered rule only when no previous rule is applicable. But the
application of a later rule may enable a previous one. As a consequence, the analysis of running

13

Input: a graph G and an integer k.
Output: a graph G′ with |V (G′)| ≤ 5k and an integer k′.

1. if k ≤ 0 then return a trivial yes-instance.
2. if |V (G)| ≤ 5k then return (G, k).
3. Apply Reduction Rule 1 exhaustively.
4. Set P to be an arbitrary maximal P2-packing.
5. if |P| ≥ k then return a trivial yes-instance.
6. if the condition of Lemma 3.1 is true then

apply Reduction Rule 2; goto 1.
7. else build a unit partition U ;
8. if Exchange Rule 1 or 2 is applicable then

apply it; goto 5.
9. if Exchange Rule 3 or 4 is applicable then

apply it; goto 8.
\\ Now the unit partition is reduced.
10. if there is a (4, 0)-, (3, 1)-, (3, 0)- or (2, 2)-unit then

if Exchange Rule 5 is applicable then
apply it; goto 8.

else apply Reduction Rule 2 (Lemma 4.2); goto 1;
11. if there is a (1, 4)-, (1, 3)- or (0, 4)-unit then

if Exchange Rule 6 is applicable, then
apply it; goto 8.

else apply Reduction Rule 2 (Lemma 4.4); goto 1.
12. if the number of net-, (2, 1)-, (2, 0)-units > the number of small units then

if Exchange Rule 7 is applicable then
apply it; goto 5.

else apply Reduction Rule 3 (Corollary 4.7); goto 1.
13. return (G, k).

Figure 7: A summary of our algorithm. A trivial yes-instance can be an empty graph and k = 0.
Note that if the condition of step 8 is satisfied, we will execute it, and then go back to step 5. It
is similar for steps 9–12. In particular, we will never execute two of steps 9–12 consecutively.

time is focused on the maximum number of times they are applied. The first two reduction rules
and the first two exchange rules will not concern us, because they either remove vertices from
the graph or increase the size of the P2-partition P: Note that the size of P never decreases,
and the algorithm is terminated when it reaches k. For the same reason, Exchange Rule 7 and
Reduction Rule 3 can be applied at most k and n times respectively.

The following invariant is immediate from the definitions of our exchange rules: A net-unit
can only be changed by the reduction rules or Exchange Rules 1, 2, and 7. Since each application
of Exchange Rule 3 introduces a new net-unit, it cannot be applied more than k times without
triggering previous rules.

We are thus left with Exchange Rules 4–6, which are our main trouble. If the transformation
among the units is acyclic (under the condition that both G and P are unchanged), then we can
find an invariant similar as above. This is unfortunately not this case. For example, Exchange
Rule 4 may turn a (1, 2)-unit into a (0, 1)-unit, but Exchange Rule 6 may change it back. The
way we surmount the obstacle is to define a measure that can only decrease when G or P is
changed. Since its value increases when any of Exchange Rules 4–6 is applied, but it never
exceeds O(k), we bound the number of times they can be applied.

Let sdemocratic, s≥1,∗, s∗,≥1, and s∗,≥2 denote the numbers of, respectively, democratic units,

14

units with d1(U) ≥ 1, units with d2(U) ≥ 1, and units with d2(U) ≥ 2, and let stwig denote the
total number of twigs among all despotic units. We define a measure

s = 51sdemocratic + 6stwig + (s≥1,∗ + s∗,≥2 + s∗,≥1) + 4s0,1.

Note that a unit may contribute more than one term to this measure. For example, a (1, 2)-unit
contributes to the four terms stwig, s≥1,∗, s∗,≥2, and s∗,≥1. See Table 2 for the contributions to s
of different units.

Table 2: Total contributions of despotic and small units to the measure s.

(4, 0) (3, 1) (3, 0) (2, 2) (2, 1) (2, 0) (1, 4) (1, 3) (1, 2) (0, 4) (0, 3) (0, 1) (0, 0)

25 20 19 15 14 13 9 9 9 2 2 5 0

Lemma 5.1. After each application of Exchange Rules 4–6, either a unit with two vertex-disjoint
P2’s is produced, or s increases.

Proof. Since an application of Exchange Rules 4–6 changes the types of two units, s can decrease
by at most 25 ∗ 2 = 50. If the number of democratic units increases, then s increases. Hence, we
may assume that no democratic unit is introduced during this application.

Let U− and U+ denote respectively the two units losing and gaining vertices in this operation.
If they do not become democratic, and P does not increase, then they become despotic or small
units after the operation. Note that when U− is a (0, 1)-unit before applying Exchange Rule 4,
U+ has to be a (0, 1)- or (0, 3)-unit as well. Therefore, it is immediate from Table 3 that the
increment is always strictly larger than the decrement. In other words, s always increases with
this operation.

Table 3: The change of measure incurred by applying Exchange Rules 4–6; e.g., the measure
decreases by one if a vertex is moved out of a (3, 1)-unit by Rule 4, while it increases by five
if a vertex is moved into a (3, 1)-unit by Rule 4. A ⊥ means that this type of units cannot
participate in this operation in the specific role; e.g., we are not allowed to move any vertex out
of a (3, 0)-unit using Rule 4. Note that in none of the rules, U− can be a (0, 0)-unit, or U+ a
(4, 0)-, (3, 0)- or (1, 4)-unit.

U− (4, 0) (3, 1) (3, 0) (2, 2) (2, 1) (2, 0) (1, 4) (1, 3) (1, 2) (0, 4) (0, 3) (0, 1)

Rule 4 ⊥ −1 ⊥ −1 ⊥ 0 −4 0 −2 −5

Rule 5 −6 ⊥
Rule 6 ⊥ 0 ⊥ 0 ⊥
U+ (3, 1) (2, 2) (2, 1) (2, 0) (1, 4) (1, 3) (1, 2) (0, 4) (0, 3) (0, 1) (0, 0)

Rule 4 +5 ⊥ +6 +5 +7 +8 ⊥
Rule 5 ⊥ +7 +9 +9/+13

Rule 6 ⊥ +1 ⊥ +4/+8 +2/+5

Putting them together, we are now ready to prove our main theorem.

Proof of Theorem 1. We demonstrate the correctness first. Most of the steps are straightforward,
except steps 10–12, for which we need to show that the unit partition is reduced when any of
there steps 10–12 is executed. Let U be the unit partition before the execution of one of steps
10–12. By the algorithm, neither Reduction Rule 1 nor Exchange Rules 1–4 are applicable on U :
Note that Reduction Rule 1 can become applicable again after another reduction rule, and we

15

check immediately for each of them (steps 6, 10, 11, 12). It hence remains to verify that U is a
general unit partition.

After exhaustive executions of step 8, the unit partition created by step 7 becomes general,
and contains no (1, 4)-units by Proposition 3.3. By Propositions 3.5, 4.1, and 4.3, the unit
partition U remains general.

We then calculate the size of the kernel returned by our algorithm and show |V (G)| ≤ 5k.
We have nothing to worry if it is from step 1, 2, or 5. In the rest the kernel is returned from
step 13. It is accompanied with a reduced unit partition in which (1) all non-democratic units
satisfies d1(U) ≤ 2 and d1(U) + d2(U) ≤ 3; and (2) snet + s2,1 + s2,0 ≤ s0,3 + s0,1 + s0,0. The
number of vertices in the resulting graph is

6snet + 5(span + sC5 + sbull) + 6s2,1 + 5(s2,0 + s1,2) + 4(s0,3 + s0,1) + 3s0,0

≤5(snet + s2,1 + span + sC5 + sbull + s2,0 + s1,2) + (snet + s2,1) + 4(s0,3 + s0,1 + s0,0)

≤5(sdemocratic + s2,1 + s2,0 + s1,2) + (s0,3 + s0,1 + s0,0) + 4(s0,3 + s0,1 + s0,0)

=5(sdemocratic + s2,1 + s2,0 + s1,2 + s0,3 + s0,1 + s0,0)

<5k.

It remains to show that the algorithm terminates in polynomial time.
There are three destinations for the goto statements in the algorithms, namely steps 1, 5,

and 8. Note that before going back to step 1, from step 6, 10, 11, or 12, one of Reduction Rules 2
and 3 is applied; in other words, each execution of step 1 is with a decreased k. Since k never
increases during the algorithm, the algorithm can execute step 1 at most k times. Steps 2–5 are
run in sequence after step 1, unless an exit condition is satisfied and the algorithm is terminated
(step 2 or 5). Each application of Reduction Rule 1 removes at least one vertex from the graph.
Hence, it can be checked n+ k times and applied n times.

The algorithm may go back to step 5 from step 8 or 12; in either case, we have a strictly
larger P2-packing P . Since the algorithm terminates when the cardinality of P reaches k, it can
reach step 5 at most k times without executing step 1 (by a goto statement). In total, step 5
can be run at most k2 times. The total times that step 6 or 8 are reached with the condition
satisfied, hence going back to step 1 or 5 respectively, have been bounded. Otherwise, they run
in sequel till step 9.

Since each application of Exchange Rule 3 introduces a new net-unit, it cannot be applied
more than k times without triggering previous rules, hence going back to step 1 or 5.

According to Lemma 5.1, if the algorithm goes back to step 8 from any of step 9–12, either
Exchange Rule 1 becomes applicable (hence we apply it and go back to step 5), or the measure is
increased. Since the measure is O(k), the four steps (9–12) cannot be run more than O(k) times
without reaching step 1 or 5. Therefore, the total number of times they can be run is O(k3).

If the condition of step 12 is true, then the algorithm goes back to either step 5 or step 1.
Hence it can be run at most k + k + k2 = O(k2) times.

Therefore, each rule is checked and applied O(n + k3) times. Since each of them can be
checked and applied in polynomial time, the total running time is polynomial on n and k. This
concludes the analysis of running time and the proof.

References

[1] Maw-Shang Chang, Li-Hsuan Chen, and Ling-Ju Hung. A 5k kernel for P2-packing in net-free graphs.
In 2014 International Computer Science and Engineering Conference (ICSEC), pages 12–17, 2014.
doi:10.1109/ICSEC.2014.6978121.

16

https://doi.org/10.1109/ICSEC.2014.6978121

[2] Jianer Chen, Henning Fernau, Peter Shaw, Jianxin Wang, and Zhibiao Yang. Kernels for packing
and covering problems. Theoretical Computer Science, 790:152–166, 2019. doi:10.1016/j.tcs.

2019.04.018.

[3] Marek Cygan. Improved approximation for 3-dimensional matching via bounded pathwidth local
search. In Proceedings of the 54th Annual IEEE Symposium on Foundations of Computer Science,
pages 509–518. IEEE Computer Society, 2013. doi:10.1109/FOCS.2013.61.

[4] Michael R. Fellows. Blow-ups, win/win’s, and crown rules: Some new directions in FPT. In
Hans L. Bodlaender, editor, Proceedings of the 29th International Workshop on Graph-Theoretic
Concepts in Computer Science, WG 2003, volume 2880 of LNCS, pages 1–12. Springer, 2003.
doi:10.1007/978-3-540-39890-5_1.

[5] John E. Hopcroft and Richard M. Karp. An n5/2 algorithm for maximum matchings in bipartite
graphs. SIAM Journal on Computing, 2(4):225–231, 1973. doi:10.1137/0202019.

[6] Atsushi Kaneko, Alexander K. Kelmans, and Tsuyoshi Nishimura. On packing 3-vertex paths in
a graph. Journal of Graph Theory, 36(4):175–197, 2001. doi:10.1002/1097-0118(200104)36:

4<175::AID-JGT1005>3.0.CO;2-T.

[7] Viggo Kann. Maximum bounded H-matching is MAX SNP-complete. Information Processing Letters,
49(6):309–318, 1994. doi:10.1016/0020-0190(94)90105-8.

[8] Alexander K. Kelmans. Packing 3-vertex paths in claw-free graphs and related topics. Discrete
Applied Mathematics, 159(2-3):112–127, 2011. doi:10.1016/j.dam.2010.05.001.

[9] Alexander K. Kelmans and Dhruv Mubayi. How many disjoint 2-edge paths must a cubic graph
have? Journal of Graph Theory, 45(1):57–79, 2004. doi:10.1002/jgt.10136.

[10] David G. Kirkpatrick and Pavol Hell. On the complexity of general graph factor problems. SIAM
Journal on Computing, 12(3):601–609, 1983. doi:10.1137/0212040.

[11] Jérôme Monnot and Sophie Toulouse. The path partition problem and related problems in bipartite
graphs. Operations Research Letters, 35(5):677–684, 2007. doi:10.1016/j.orl.2006.12.004.

[12] Elena Prieto and Christian Sloper. Looking at the stars. Theoretical Computer Science, 351(3):437–
445, 2006. doi:10.1016/j.tcs.2005.10.009.

[13] Jianxin Wang, Dan Ning, Qilong Feng, and Jianer Chen. An improved kernelization for P2-packing.
Information Processing Letters, 110(5):188–192, 2010. doi:10.1016/j.ipl.2009.12.002.

[14] Mingyu Xiao and Shaowei Kou. Kernelization and parameterized algorithms for 3-path vertex cover.
In T. V. Gopal, Gerhard Jäger, and Silvia Steila, editors, Theory and Applications of Models of
Computation, volume 10185 of LNCS, pages 654–668, 2017. doi:10.1007/978-3-319-55911-7_47.

17

https://doi.org/10.1016/j.tcs.2019.04.018
https://doi.org/10.1016/j.tcs.2019.04.018
https://doi.org/10.1109/FOCS.2013.61
https://doi.org/10.1007/978-3-540-39890-5_1
https://doi.org/10.1137/0202019
https://doi.org/10.1002/1097-0118(200104)36:4<175::AID-JGT1005>3.0.CO;2-T
https://doi.org/10.1002/1097-0118(200104)36:4<175::AID-JGT1005>3.0.CO;2-T
https://doi.org/10.1016/0020-0190(94)90105-8
https://doi.org/10.1016/j.dam.2010.05.001
https://doi.org/10.1002/jgt.10136
https://doi.org/10.1137/0212040
https://doi.org/10.1016/j.orl.2006.12.004
https://doi.org/10.1016/j.tcs.2005.10.009
https://doi.org/10.1016/j.ipl.2009.12.002
https://doi.org/10.1007/978-3-319-55911-7_47

	Introduction
	Preliminaries
	The unit partition
	Main rules
	The algorithm

