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Abstract

We consider the problem of designing succinct navigational oracles, i.e., succinct data structures
supporting basic navigational queries such as degree, adjacency and neighborhood efficiently for
intersection graphs on a circle, which include graph classes such as circle graphs, k-polygon-
circle graphs, circle-trapezoid graphs, trapezoid graphs. The degree query reports the number
of incident edges to a given vertex, the adjacency query asks if there is an edge between two
given vertices, and the neighborhood query enumerates all the neighbors of a given vertex. We
first prove a general lower bound for these intersection graph classes, and then present a uniform
approach that lets us obtain matching lower and upper bounds for representing each of these
graph classes. More specifically, our lower bound proofs use a unified technique to produce tight
bounds for all these classes, and this is followed by our data structures which are also obtained
from a unified representation method to achieve succinctness for each class. In addition, we
prove a lower bound of space for representing trapezoid graphs, and give a succinct navigational
oracle for this class of graphs.

Keywords: Intersection graph, succinct data structure, navigational query

1. Introduction

Intersection graphs of geometric objects are fascinating combinatorial objects from the point
of view of algorithmic graph theory as many hard (NP-complete in general) optimization prob-
lems become easy, i.e., polynomially solvable when restricted to various classes of intersection
graphs. Thus, they provide us with clues with respect to the line of demarcation between P
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and NP, if there exists such a line. Furthermore, they also have a broad range of practical ap-
plications [1, Chapter 16]. Perhaps the simplest and most widely studied such objects are the
interval graphs, intersection graphs of intervals on a line [2, 3, 4]. Several characterizations of
interval graphs [4] including their linear time recognition algorithms are already known in the
literature [5]. There exist many generalizations of interval graphs, and we focus particularly in
this work on some of these generalizations involving intersection of geometric objects bound to
a circle.

More specifically, we study circle graphs, k-polygon-circle graphs, circle-trapezoid graphs,
and trapezoid graphs in this article. A circle graph is defined as the intersection graph of chords in
a circle [6, 7]. Polygon-circle graphs [8] are the intersection graphs of convex polygons inscribed
into a circle, and the special case, when all the convex polygons have exactly k corners, we call
the intersection graph k-polygon-circle [9]. Circle-trapezoid graphs are the intersection graphs
of circle trapezoids on a common circle, where a circle trapezoid is defined as the convex hull
of two disjoint arcs on the circle [10]. Finally, trapezoid graphs are the intersection graphs of
trapezoids between two parallel lines which can be regarded as a circle with a sufficiently large
radius. These graphs are not only theoretically interesting to study but they also show up in
important practical application domains, e.g., in VLSI physical layout [1, 4]. In spite of having
such importance and being such basic geometric graphs, we are not aware of any study of these
aforementioned objects using the lens of succinct data structures [11] where we need to achieve
the following twofold tasks. The first goal is to bound from below the cardinality of a set T
consisting of combinatorial objects with certain property, and this is followed by storing any
arbitrary member x ∈ T using the information theoretic minimum of log(|T |) + o(log(|T |)) bits
(throughout this paper, log denotes the logarithm to the base 2) while still being able to support
the relevant set of queries efficiently on x, both the tasks we focus on here. We assume the usual
model of computation, namely a Θ(log n)-bit word RAM model where n is the size of the input.
This is a standard assumption that implies a vertex can be distinguished, in constant time, with
a label that fits within a word of the RAM. Finally all the graphs we deal with in this paper are
simple, undirected, unlabeled and unweighted.

1.1. Related Work

Succinct navigational oracles. There already exists a huge body of work on representing several
classes of graphs succinctly along with supporting basic navigational queries efficiently. A partial
list of such special graph classes would be arbitrary graphs [12], trees [13], planar graphs [14],
chordal graphs [15], graphs with bounded tree-width k (partial k-trees) [16], etc. Specially, one
can consider (i) circular-arc graphs (intersection graphs on the arcs on a circle), (ii) interval
graphs (a sub-class of circular-arc graphs), and (iii) permutation graphs (intersection graphs of
line segments between two parallel lines) as the special case of the intersection graphs on a circle.
For interval graphs and circular-arc graphs, Gavoille and Paul [17] (and independently, Acan et
al. [18]) showed that n log n − O(n log log n) bits are necessary for representing an interval or a
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circular-arc graph with n vertices. In [18], the authors also presented succinct navigation oracles
for both graph classes. Also for permutation graphs, a lower bound of (n log n−O(n log log)) bits
is known [19, 20].
Algorithmic graph-theoretic results. All the intersection graphs that we focus in this paper are
very well studied in the algorithmic graph theory literature. Circle graphs (which are essentially
same as overlap graphs1) can be recognized in polynomial time along with admitting polyno-
mial time algorithms for various optimization problems like feedback vertex set and independent
set (see [1] and references therein for more details). These graphs were first introduced in the
early 1970s, under the name alternance graphs, as a tool used for sorting permutations using
stacks [7]. The introduction of polygon-circle graphs (which are same as spider graphs [8]) was
motivated by the fact that this class of graphs is closed under taking induced minors. Even though
the problem of recognising polygon-circle and k-polygon-circle graphs is NP-complete [21, 22],
many optimization problems that are otherwise NP-Complete on general graphs can be solved in
polynomial time given a polygon-circle representation of a graph (see [1] for more details). Fel-
sner et al. [10] introduced circle-trapezoid graphs as an extension of trapezoid graphs and devised
polynomial time algorithms for maximum weighted clique and maximum weighted independent
set problems. We refer the reader to [3, 4, 1, 23] for more details on these graph classes and other
related problems.

1.2. Our Results

In this paper, we consider a graph class defined as the intersection graphs of objects on a
circle, where objects are generalized polygons, polygons whose corners are on the circle and
edges are either chords or arcs of the circle. This contains many graph classes including (1)
circular-arc graphs, (2) k-polygon-circle graphs, which are intersection graphs of polygons on a
circle, where every polygon has k chords, and (3) circle graphs (4) circle-trapezoid graphs.

Note that these example classes correspond to k-polygon circle graphs with a fixed k, while
our upper and lower bounds in fact apply to a more general case when the graph contains poly-
gons with different number of corners.

We first show a space lower bound for representing the above graph classes (Theorem 3.1).
For circle graphs, we show that the lower bound from Section 3.1 can be improved to n log n −
O(n) bits. Furthermore using a similar idea to prove Theorem 3.1, we also obtain a space lower
bound for representing trapezoid graphs. These lower bound results are summarized in Table 1.

Next, we consider data structures for representing families of intersection graphs on a circle
which support three basic navigation queries efficiently, which are defined as follows. Given a
graph G = (V, E) such that |V |= n and two vertices u, v ∈ V , (i) degree(v) query returns the
number of vertices that are adjacent to v in G, (ii) adjacent(u, v) query returns true if u and v are

1https://www.graphclasses.org/classes/gc˙913.html
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Table 1: Lower bounds of families of intersection graphs.

Graph class Space lower bound (in bits) Reference (this paper)
circle n log n − O(n) Theorem 4.2

k-polygon-circle (k − 1)n log n − O(kn log log n) Theorem 3.1, k = polylog(n)
circle-trapezoid 3n log n − 4 log log n − O(n) Corollary 3.2

trapezoid 3n log n − 4 log log n − O(n) Lemma 5.1

adjacent in G, and false otherwise, and finally (iii) neighborhood(v) query returns all the vertices
that are adjacent to v in G.

We give a unified representation of families of intersection graphs of generalized polygons on
a circle where generalized polygon is define as a shape where every pair of consecutive corners
are connected by either an arc or a chord on a circle. From these results, we can obtain succinct
data structures which can support adjacent, degree, and neighborhood queries efficiently, for
all the graphs classes in Table 1, including interval and permutation graphs. Note that for the
graph classes in Table 1, these are the first succinct data structures.

Finally, for circle graphs and trapezoid graphs, we present alternative succinct data structures
which support faster degree queries (for vertices whose degree is Ω(log n/log log n)).

1.3. Paper Organization

After listing preliminary data structures that will be used throughout our paper in Section 2,
we move on to present the central contributions of our work. In Section 3, we prove the lower
bound of space to represent intersection graphs of generalized polygons on a circle, from which
the lower bound results in Table 1 for k-polygon-circle and circle-trapezoid graphs follow, and
present our general upper bound result (see Theorem 3.3) that provides succinct data structures
for all these graphs in a unified manner. In Section 4, we give a space lower bound for represent-
ing circle graphs which improves the lower bound obtained from Theorem 3.1, and also give an
alternative succinct representation for circle graphs. In Section 5, we give a space lower bound
for representing trapezoid graphs, and augment it with an alternative succinct representation for
trapezoid graphs. Finally, we conclude in Section 6 with some open problems.

2. Preliminaries

In this section, we introduce some data structures that will be used in the rest of the paper.
Rank, Select and Access queries. Let A[1 . . . , n] be an array of size n over an alphabet Σ =

{0, 1, . . . , σ − 1} of size σ. Then for 1 ≤ i ≤ n and α ∈ Σ, we define the rank, select and access
queries on A as follows.

• rankα(i, A) returns the number of occurrences of α in A[1 . . . i].
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• selectα(i, A) returns the position j where A[ j] is the i-th α in A.

• access(i, A) returns A[i].

Then, the following data structures are known for supporting the above queries.

Lemma 1 ([24]). Given a bit array B[1 . . . n] of size n, there exists an n + o(n)-bit data structure
which answers rankα, selectα for α = {0, 1}, and access queries on B in O(1) time.

Lemma 2 ([25]). Given an array A[1 . . . n] over Σ = {0, 1, . . . , σ − 1} for any σ > 1, there
exists an nH0 + o(n) · O(H0 + 1)-bit data structure that answers rankα and access queries in
O(1 + log logσ) time and selectα queries in O(1) time on S , for any α ∈ Σ, where H0 ≤ logσ is
the order-0 entropy of A.

Range minimum and maximum queries. Let A[1 . . . , n] be an array of size n over a totally
ordered set. Then for 1 ≤ i ≤ j ≤ n, we define the rmq, rMq queries on A as follows.

• rmq(A, i, j): returns the index m of A that attains the minimum value A[m] in A[i . . . j]. If
there is a tie, returns the leftmost one.

• rMq(A, i, j): returns the index m of A that attains the maximum value A[m] in A[i . . . j]. If
there is a tie, returns the leftmost one.

Lemma 3 ([26]). Given an array A[1 . . . n] of size n over a totally ordered set, there exists a
2n + o(n)-bit data structure which answers rmq(A, i, j) queries in O(1) time.

Note that the above structure does not access A at query time. Similarly, one can also obtain
a 2n + o(n)-bit data structure supporting range maximum queries in O(1) time.

3. Unified Lower and Upper Bounds

In this section, we give a unified representation of families of intersection graphs of general-
ized polygons on a circle. Here, we define a generalized polygon as a shape where every pair of
consecutive corners are connected by either an arc or a chord on the circle. We assume that two
arcs not adjacent, otherwise we can merge them into a single arc. Note that we define a single
chord (or an arc) as a polygon with two corners. Since there is no restriction on the number of
corners for each polygon, this graph is a generalization of circle, k-polygon-circle and circle-
trapezoid graphs. We note that a circular-arc graph can be represented by an intersection graph
of generalized polygons with one arc and one chord on a circle, because if a shape on a circle
intersects the chord, it always intersects the arc.
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3.1. General Lower Bounds

In this section, we prove the following theorem.

Theorem 3.1. Consider a class of intersection graphs on a circle consisting of n polygons, each
of which has at most k = polylog(n) chords or arcs. Let ni be the number of all polygons on the
circle with i corners, n̄ = (n2, n3, . . . , nk), and N =

∑k
i=2 i · ni. Let Pn,k,n̄ denote the total number

of such graphs. Then, the following holds:

log Pn,k,n̄ ≥

k∑
i=2

ni · i log
n
i
− n log n − O(N log log n).

Proof. We count the number of graphs in the class of intersection graphs on a circle consisting
of n polygons, each of which has at most k chords and no arcs. This gives a lower bound of Pn,k,n̄.

Suppose that the circle polygon graph is given as a polygon circle representation with n
polygons on the circle. We will consider partially-colored circle polygon graphs obtained from
the following construction. Take m ≤ n (to be determined) non-intersecting polygons A1, . . . , Am

and paint Ai with color i. Let the set of these m polygons be S . For each of the remaining n − m
polygons, we will choose a subset of S , and for each such subset X we will construct a polygon
with |X| corners such that distinct corners lie on distinct polygons from X. Note that each edge
of such a polygon intersects with exactly two colored polygons. This construction gives us a
polygon-circle graph with n vertices, where m of these vertices are colored and they form an
independent set. For 2 ≤ i ≤ k, let ni and mi (≤ ni) be the number of all polygons and colored
polygons on the circle with i corners respectively. Similarly, let N and M be the number of total
corners on the all polygons and colored polygons, respectively. From the definition, it is clear
that n =

∑k
i=2 ni, m =

∑k
i=2 mi, N =

∑k
i=2 i · ni, and M =

∑k
i=2 i · mi. Let n̄ = (n2, n3, . . . , nk)

and m̄ = (m2,m3, . . . ,mk). Let us denote by Cn,k,n̄,m̄ the number of such colored polygon-circle
graphs, and by Pn,k,n̄ the number of polygon-circle graphs for a given k and n̄.

We can first obtain an inequality
(

n2
m2

)(
n3
m3

)
. . .

(
nk
mk

)
· m! ·Pn,k,n̄ ≥ Cn,k,n̄,m̄ since every graph

counted in Cn,k,n̄,m̄ can be obtained by choosing and coloring mi polygons from ni polygons
on its polygon circle representation of uncolored one for each 2 ≤ i ≤ k. Now we will find a
lower bound for Cn,k,n̄,m̄, which in turn will give a lower bound for Pn,k,n̄. Let us denote the col-
lection of i-subsets of S by S i. Hence |S i|=

(
m
i

)
. Also let S be a set of all possible (k − 1)-tuples

(Y2,Y3, . . . ,Yk) where Yi is a subset of S i with |Yi|= ni − mi. Then, |S|=
( (m

2)
n2−m2

)( (m
3)

n3−m3

)
. . .

( (m
k)

nk−mk

)
.

Now, the total number of graphs obtained by the above construction is at least |S| by the following
observations:

(i) Each element in S defines at least one colored graph with
∑k

i=2(ni −mi) = n−m uncolored
polygons (we might get more as the relative order of the corners of polygons within a
colored polygon matters).
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Figure 1: A realization of GT1 , where GT1 = {123, 235, 345}.

(ii) If T1 and T2 are elements of S and T1 6= T2, then the graphs corresponding to these
two elements will be different. Basically, in the graphs obtained from this construction,
uncolored n − m vertices are distinguishable by only looking at their colored neighbors.
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235

345

Figure 2: Another realization of GT1 . Note that the edge between the vertices 123 and 345 is missing in this case

Example. Let k = 3, m = 5, and n = 8. We consider triangle-circle graphs (the special case of
generalized 3-polygon circle graph when n3 = n, and n2 = 0.) with 8 vertices, of which 5 are col-
ored with 1, . . . , 5. Then S = {1, 2, 3, 4, 5} andS = {123, 124, 125, 134, 135, 145, 234, 235, 245, 345}.
Here we simply write xyz to denote the 2-tuple (∅, {x, y, z}) for 1 ≤ x, y, z ≤ 5. Any 3-element
subset of S will give us a graph. For instance, let T1 = {123, 235, 345} and T2 = {123, 235, 145}.
The graphs GT1 and GT2 corresponding to subsets T1 and T2, respectively, are different for the
following simple reason: GT1 has an uncolored vertex that has colored neighbors 3, 4, and 5
but GT2 does not have such a vertex. (Compare Figure 2 and 3.) On the other hand, more than
one graph might be possible corresponding to only one subset T1 as shown in the Figure 1 and
2. Both of them use the same T1 = {123, 235, 345}. The edges between colored vertices and
uncolored vertices are the same but the set of edges between the uncolored vertices are different.

Now we obtain the lower bound of log Pn,k,n̄ as follows. From the above arguments, we obtain
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Figure 3: Some realization of GT2 , where GT2 = {123, 235, 145}.

Cn,k,n̄,m̄ ≥
( (m

2)
n2−m2

)( (m
3)

n3−m3

)
. . .

( (m
k)

nk−mk

)
. Combining with the upper bound of Cn,k,n̄,m̄, we obtain

log Pn,k,n̄ ≥

k∑
i=2

log
( (

m
i

)
ni − mi

)
−

k∑
i=2

log
(
ni

mi

)
− log m!.

We set m = n
log n . For each term on the right-hand side, the following inequalities hold (using the

inequality
(

a
b

)
≥ (a/b)b).

k∑
i =2

log
( (

m
i

)
ni − mi

)
≥

k∑
i=2

log


(

m
i

)
ni − mi


ni−mi

=

k∑
i=2

(ni − mi) log
(
m
i

)
−

k∑
i=2

(ni − mi) log (ni − mi)

≥

k∑
i=2

(ni − mi)i log
m
i
− n log n

=

k∑
i=2

(ni − mi)i
(
log

n
i
− log log n

)
− n log n

=

k∑
i=2

ni · i log
n
i
−

k∑
i=2

mi · i log
n
i
− N log log n − n log n

≥

k∑
i=2

ni · i log
n
i
− M log n − N log log n − n log n

k∑
i=2

log
(
ni

mi

)
≤

k∑
i=2

mi log n = m log n ≤ n

Therefore,

log Pn,k,n̄ ≥

k∑
i=2

ni · i log
n
i
− M log n − N(log k + log log n) − n log n − O(n)
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To satisfy M ≤ N/log n, we choose (and color) m polygons as follows. For 1 ≤ j ≤ n, let
d j be the number of corners of j-th polygon in the representation. Without loss of generality,
we order the polygons to satisfy d1 ≤ d2 ≤ · · · ≤ dn. Now we claim that M ≤ N/log n if
we choose first m polygons to be colored. To prove the claim, suppose dm+1 ≥ N/n. Then∑n

j=m+1 d j ≥ (n − m) · N/n = N(1 − 1/log n), which implies M =
∑m

j=1 d j ≤ N/log n. Next,
suppose dm+1 < N/n. In this case, M ≤ N/n · m = N/log n, which proves the claim. From
the assumption k = polylog(n), N(log k + log log n) = O(N log log n). Thus, log Pn,k,n̄ ≥∑k

i=2 ni · i log n
i − n log n − O(N log log n).

Corollary 3.2. Space lower bounds for circle-trapezoid graphs and circular-arc graphs with n
vertices are 3n log n − O(n log log n) bits and n log n − O(n log log n) bits, respectively.

Proof. For circle-trapezoid graphs, in the proof of Theorem 3.1, we create m = n/log n colored
circle-trapezoids, consisting of two arcs and two chords, and place them on the circle so that they
do not overlap each other. Then we place n−m uncolored circle-trapezoids with two arcs and two
chords such that each chord intersects with exactly two colored circle-trapezoids. The theorem
gives a lower bound for the number of such graphs, which is a lower bound of the number of
circle-trapezoid graphs.

For circular-arc graphs, instead of a circle-trapezoid, we consider a 2-polygon with one arc
and one chord. Then we obtain the desired bound.

Note that to obtain a space lower bound for trapezoid graphs, we cannot use Theorem 3.1
because we cannot distinguish the upper line and the lower line. Another proof is given in
Section 5.1.

3.2. A Succinct Representation

Now we provide a succinct representation for generalized circle polygon graph G with n
generalized polygons on a circle. Let N be the total number of corners of the polygons.

Note that the recognition algorithm of general k-polygon-circle graphs, which is a sub-class
of the generalized circle polygon graphs, is NP-complete [22]. Thus we assume that G is given
as a polygon-circle representation with n polygons, which is defined (for a graph G = (V, E)) as
a mapping P of vertices in V to polygons inscribed into a circle such that (u, v) ∈ E if and only
if P(u) intersects P(v).

Then, a corner-string of a polygon-circle representation is a string produced by starting at
any arbitrary location on the circle, and proceeding around the circle in clockwise order, adding
a label denoting the vertex represented by a polygon each time a corner of a polygon encoun-
tered (denoted by the array S in Figure 4). Note that a single polygon-circle representation has
many possible corner-strings, depending on the starting point. As the naive encoding of S uses
N

⌈
log n

⌉
bits, it is not succinct, and does not support efficient queries. Therefore we convert

S into another representation and add auxiliary data structures for efficient queries. First, we
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convert S into a bit array F of length N and another integer array S ′ of length N − n. The entry
F[i] is 1 if S [i] is the first occurrence of the value in S , and 0 otherwise. The array S ′ stores all
entries of S except for the first occurrence of each value in the same order as in S . We store F
using the data structure of Lemma 1, and S ′ using the data structure of Lemma 2. Then the space
becomes (N − n) log n + O(N log n/log log n)) bits, which is succinct. Using F and S ′, we show
how to support access(i, S ) and rankα(i, S ) in O(log log n) time and selectα(i, S ) in O(1) time.

• access(i, S ) =

rank1(i, F) (access(i, F) = 1)

access(rank0(i, F), S ′) (otherwise)

• rankα(i, S ) = rankα(rank0(i, F), S
′

) +

1 (rank1(i, F) ≥ S [i])

0 (otherwise)

• selectα(i, S ) =

select1(α, F) (i = 1)

select0(selectα(i − 1, S ′), F) (otherwise)

We can regard as if the array S were stored and access to S were done in O(log log n) time.
Now we show the space bound of the representation. We compress the corner-string S , in

which a character 2 ≤ i ≤ k appears ni times in S . The length of S is N =
∑k

i=2 ni · i. For each
character i, its first occurrence in S is encoded in a bit-vector of length N. Other characters are
stored in a string S ′ of length N − n. Each character i appears ni − 1 times in S ′. We compress
S ′ into its order-0 entropy. Then the total space is

k∑
i =2

ni(i − 1) log
N − n
i − 1

+ O(N) ≤
k∑

i=2

ni(i − 1) log
nk
i/2

+ O(N)

≤

k∑
i=2

ni · i log
n
i
− n log n + O(N log k).

If k = o(log n/log log n), the lower bound of Theorem 3.1 is

log Pn,k,n̄ ≥

k∑
i=2

ni · i log
n
i
− n log n − O(N log log n)

≥

k∑
i=2

ni · i log
n
i
− n log n − o(n log n).

On the other hand, the upper bound is

k∑
i =2

ni · i log
n
i
− n log n + O(N log k) ≤

k∑
i=2

ni · i log
n
i
− n log n + o(n log n).

Therefore this upper bound matches the lower bound, up to lower order terms.
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3.3. Query Algorithms

We now describe how to support navigation queries using the data structure of Section 3.2.
Consider a vertex u in G. Assume the vertex u corresponds to a k-polygon, which is repre-
sented by k many integers u in S . The polygon has k edges, for i-th edge (1 ≤ i ≤ k − 1),
we consider an interval of S between i-th occurrence of u and (i + 1)-st occurrence of u, that
is, [selectu(i, S ), selectu(i + 1, S )]. Let I(u, i) denote this interval. For k-th edge, the interval
becomes the union of [selectu(k, S ),N] and [1, selectu(1, S )].

Consider two polygons u and v. We check for each side e of u if e intersects with a side f of
v. Let I(u, i) = [`, r] be the interval of e and I(v, j) = [s, t] be the interval of f . There are four
cases. (1) e is a chord and f is a chord. Then e and f intersect iff [`, r] ∩ [s, t] 6= ∅, [s, t] 6⊂ [`, r],
and [`, r] 6⊂ [s, t]. (2) e is an arc and f is a chord. This case is the same as (1) in addition the case
when [s, t] ⊂ [`, r]. (3) e is a chord and f is an arc. This case is the same as (1) in addition to the
case when [`, r] ⊂ [s, t]. (4) e is an arc and f is an arc. Then e and f intersect iff [`, r]∩ [s, t] 6= ∅.

We add new data structures N, Na, Pa, Nc, Pc, and A defined as follows. Let I(u, i) = [`i, ri]
denote the i-th interval of S , defined above, and du be the number of corners of u. Then A is a bit
array of length N where A[`i] = 1 if and only if [`i, ri] corresponds to an arc of u. The arrays N,
Na, Pa, Nc, and Pc are defined as follows where u = S [i].

N[i] =

selectu(ranku(i, S ) + 1, S ) (if ranku(i, S ) < du)

∞ (otherwise)

Na[i] =


selectu(ranku(i, S ) + 1, S ) (if A[i] = 1 and ranku(i, S ) < du)

∞ (if A[i] = 1 and ranku(i, S ) = du)

0 (otherwise)

Pa[i] =


selectu(ranku(i, S ) − 1, S ) (if the side ending at S [i] is an arc and ranku(i, S ) > 1)

0 (if the side ending at S [i] is an arc and ranku(i, S ) = 1)

∞ (otherwise)

Nc[i] =

selectu(ranku(i, S ) + 1, S ) (if A[i] = 0 and ranku(i, S ) < du)

0 (otherwise)

Pc[i] =

selectu(ranku(i, S ) − 1, S ) (if the side ending at S [i] is a chord and ranku(i, S ) > 1)

∞ (otherwise)

The array Na[i] (Nc[i]) stores the other endpoint of an arc (a chord) starting from S [i]. Similarly,
the array Pa[i] (Pc[i]) stores the other endpoint of an arc (a chord) ending with S [i]. Finally,
the array N[i] stores the other endpoint of an arc or a chord starting from S [i]. The difference
between Na and Nc is that in Nc, we do not store the last side of a polygon. We do not store
these arrays explicitly; we store only the range maximum data structures for N, Na and Nc, and
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Na 0 8 4 0 0 11 0 10 0 13 0 ∞

1 2 3 3 3 4 2 1 1 2

1 2 3 4 5 6 7 8 9 10 11 12

3

2

1 3 4 2 1

13 14

6 0

Nc 9 0 0 5 0 0 12 0 0 0 0 00 14

𝐴 0 1 1 0

1 2

3 4

1 0 1 0 1 0 0 1 0 1

Pc ∞ ∞ ∞ ∞ ∞ ∞ ∞ 1 ∞ 8 ∞ 104 ∞

Pa 0 ∞ ∞ 3 5 ∞ 2 ∞ 7 ∞ 12 ∞∞ 9

N 9 8 4 5 ∞ 11 12 10 ∞ 13 ∞ ∞6 14

Figure 4: A circle-trapezoid graph with n = 4 given as polygon-circle representation (left), and graph form (top-right).
The array S encodes the corner-string starting from the marked location s on the circle. The arrays S ,Na, Pa,Nc, Pc are
not stored; we store only F, S ′, A, range max data structures for N,Na,Nc, and range min data structures for Pa, Pc. In
the figure we omit F and S ′.

the range minimum data structures for Pa and Pc. We can obtain any entry of these arrays in
O(log log n) time using the above formula.

Lemma 4. If generalized polygons u and v intersect, there exists a side e of u with interval [`, r]
and a side f of v with interval [s, t] satisfying at least one of the following.

(1) Both e and f are chords, neither e or f is the last side, and (` < s < r and r < t(= Nc[s]))
or (` < t < r and ` > s(= Pc[t])).

(2) e is an arc and f is a chord, f is not the last side, and ` < t(= Na[s]) < r or ` < s(=
Pa[t]) < r.

(3) e is a chord and f is an arc, e is not the last side, and s < r < t(= Na[s]) or s(= Pa[t]) <
` < t.

(4) Both e and f are arcs, and s < r and ` < t(= Na[s]).

Note that for an arc e that is the last side of u, the interval is divided into two. We regard as
if e is divided into two arcs and apply the lemma to each of them.

Figure 4 shows an example of our representation. For a chord of polygon 2 whose interval is
[8, 12], polygons 1 and 4 intersect with the chord because Nc[10] = 14 > 12 and Pc[9] = 1 < 8.
For a chord of polygon 3 whose interval is [5, 6], polygon 2 intersects with the chord because
Na[2] = 8 > 6. For an arc of polygon 1 whose interval is [9, 10], polygons 4 intersects with the
arc because Na[7] = 11 > 9.

12



Using this idea, we obtain an algorithm for adjacent query.
adjacent(u, v) query: Consider the intervals I(u, 1), I(u, 2), . . ., I(u, du) and I(v, 1), I(v, 2), . . .,
I(v, dv). We scan these intervals in the clockwise order on the circle, and for each endpoint of
an interval, we check the condition of Lemma 4. For each interval, checking this condition takes
O(log log n) time, and since we need to check at most du + dv intervals, the time complexity is
O(k log log n).

Next we consider neighborhood(u) query. For each side (chord or arc) of u, we want to
enumerate all generalized polygons v satisfying the conditions of Lemma 4. For each chord e of
u, we can find all chords which intersects with u as follows. Let [`, r] be the interval of e. First
we obtain m = rMq(Nc, `, r). If Nc[m] ≤ r, all entries of Nc in [`, r] are less than r, and there
are no polygons intersecting e. Therefore we stop enumeration. If Nc[m] > r, the polygon S [m]
intersects with u. To check if there is another such polygon, we recursively search for [`,m − 1]
and [m+1, r]. The time complexity is O(d log log n) where d is the number of entries m such that
Nc[m] > r. We also process Pc analogously.

For an arc e of u, we can enumerate all chords of the other generalized polygons which
intersects with e is obtained by finding all S [m] such that ` < m < r. Such distinct m can be
obtained by finding all m such that (i) ` < m < r, and (ii) ` < Nc[m] or Pc[m] < r using the range
maximum data structure.

For a chord e of u, we can enumerate all arcs of other generalized polygons which intersects
with e is obtained by finding all S [m] such that 1 ≤ m < r and Na[m] > r, or ` < m ≤ N and
Pa[m] < `.

For an arc e of u, we can enumerate all arcs of other generalized polygons which intersects
with e is obtained by finding all S [m] such that 1 ≤ m < r and Na[m] > `, or ` < m ≤ N and
Pa[m] < r.
neighborhood(u) query: For each interval I(u, i) = [`, r], we output all polygons S [m] sat-
isfying one of the above conditions. However there may exist duplicates. To avoid outputting
the same polygon twice, we use a bit array D[1 . . . , n] to mark which polygon is already output.
The bit array is initialized by 0 when we create the data structure. At a query process, before
outputting a polygon v, we check if D[v] = 1. If it is, v is already output and we do not output
again. If not, we output v and set D[v] = 1. After processing all intervals of u, we have to clean
D. To do so, we run the same algorithm again. But this time we output nothing and set D[v] = 0
for all v found by the algorithm. The time complexity is O(|degree(v)|·k log log n) where k is the
maximum number of sides in each generalized polygon.
degree(v) query: The degree(v) can be answered by returning the size of the output of the
neighborhood(u) query, in O(|degree(v)|·k log log n) time. Note that by adding an integer array
of length n storing the degree of each vertex explicitly, degree(v) can be supported in O(1) time.
The whole data structure is still succinct if k = ω(1), but it is not if k = O(1).

Finally, we show how one can represent various classes of intersection graphs by our repre-
sentation. Generalized polygons in each class are represented as follows.
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• k-polygon-circle: set all A[i] = 0 for all i (all sides are chords).

• circle-trapezoid: the number of sides is 4 and arcs and chords appear alternately.

• trapezoid: we split a circle in half equally (upper and lower part), and both upper and lower
part have 2 corners. Now arcs and chords appear alternately, from the arcs on the upper
part.

• circle and permutation: the number of sides is 2 and all sides are chords.

• circular-arc and interval: the number of sides is 2 and there are an arc and a chord. Set
all the entries of Nc to be 0 and Pc to be ∞ so that the query algorithms do not output any
chord.

Thus, we obtain the following result.

Theorem 3.3. Consider an intersection graph of n (generalized) polygons on a circle. Let ni

be the number of all polygons on the circle with i corners (2 ≤ i ≤ k), where k is the maximum
number of corners among the polygons on a circle, and N be the total number of corners of the
polygons. There exist a

(∑k
i=2 ni · i log n

i − n log n + O(N log k)
)
-bit representation of the graph

that can support adjacent(u, v) query in O(k log log n) time, and neighborhood(v) and degree(v)
queries in O(k|degree(v)|· log log n) time. Also, the representation is succinct (i.e., matches the
lower bound of Theorem 3.1 to within lower order terms) when k = o(log n/log log n).

Corollary 3.4. For an intersection graph of n (generalized) polygons with at most k corners on
a circle, let N be the total number of corners of the polygons. There exist an ((N − n) log n +

O(N log k))-bit representation of the graph. For any k-polygon-circle graph, there exists a ((k −
1)n log n + O(nk log k))-bit representation.

4. Circle graphs

In this section, we first show that for circle graphs, the lower bound of Theorem 3.1 can be
improved to n log n − O(n) bits. Next, we give an alternative succinct representation of circle
graphs, which can answer degree(v) queries independent of |degree(v)|, but takes more time for
the other two queries compared to the representation of Theorem 3.3.

4.1. Lower bound

In this section we show that log Cn ≥ n log n − O(n) as n → ∞, where Cn is the number of
unlabeled circle graphs with n vertices. We first take a circle with 2n equally spaced points on it,
and label the points 1 to 2n clockwise such that the first n points lie on the upper semicircle and
the rest lie on the lower semicircle. These 2n points will be the endpoints of n disjoint chords.
First, on each semicircle, we take k chords, each of which determines an arc with ` points on
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Figure 5: A1, . . . , Ak+1, . . . , A2k when k = 5 and ` = 4

it, excluding the endpoints of the chord. So the first chord on the upper semicircle will connect
the points 1 and ` + 2, the next chord will connect the points ` + 3 and 2` + 4, and etc. We will
call these chords special chords. Now color these special chords with the colors 1 through 2k in
the canonical order, i.e., in the order we see them when we traverse the circle clockwise starting
from point 1. So far, we have used 4k out of 2n points, and the remaining 2n−4k points lie on 2k
arcs determined by the 2k special chords. Let these arcs be A1, . . . , Ak (for the upper semicircle)
and Ak+1, . . . , A2k (for the lower semicircle) (see Figure 5 for an example). Since we want ` to
satisfy 2k` + 4k = 2n, ` is defined to n−2k

k . From now on we will assume k and ` are integers
where 2k` + 4k = 2n. (When they are not integers, we can easily modify the proof by taking
appropriate ceilings and/or floors.)

Now what we want is to match the unused k` points on the upper semicircle with the k`
unused points on the lower semicircle. The number of such matchings is (k`)!. For each pair in
the matching, if we draw the chord connecting the points in the pair, we get n chords which gives
a colored circle graph. (Each chord corresponds to a vertex.) The 2k vertices corresponding to
the special 2k chords are colored 1 through 2k (in the same canonical order), and the other n− 2k
vertices are uncolored.

Let M be a matching from ∪k
i=1Ai to ∪2k

j=k+1A j. We call M a bad matching if it contains a
triple of pairs ((x1, y1), (x2, y2), (x3, y3)) such that x1, x2, x3 lie on Ai for some i ≤ k and y1, y2, y3

lie on Ak+ j for some j ≤ k. Otherwise we call it a good matching (denoted by M). Then, the
following lemma shows that when n→ ∞, almost all matchings are good.

Lemma 4.1. Let k = n3/4+ε for some fixed small ε > 0. For a random matching M, the expected
number of triples of pairs ((x1, y1), (x2, y2), (x3, y3)) in bad matching tends to 0 as n → ∞. i.e,
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Figure 6: Two different diagrams with the same graphs. (Suppose the unmatched points in the two diagrams are matched
in the same way.)

|M|

(k`)! = 1 − o(1) as n→ ∞. Consequently, almost all matchings are good.

Proof. Let k and M be as above and let X denote the number of triplets ((x1, y1), (x2, y2), (x3, y3))
in M such that x1, x2, x3 lie on Ai for some i ≤ k and y1, y2, y3 lie on some arc Ak+ j for some
1 ≤ j ≤ k. Let Xi, j denote the number of triplets from Ai to Ak+ j for 1 ≤ i, j ≤ k. Hence we have
X =

∑k
i=1

∑k
j=1 Xi, j. Also Letting µ = E [X] and µi, j = E

[
Xi, j

]
, we have, by the linearity of the

expectation, µ =
∑k

i=1
∑k

j=1 µi, j.
In order to compute µi, j, we take three points from each of Ai and Ak+ j in

(
`
3

)(
`
3

)
ways, and

multiply this number by the probability that the first set of three points are matched to the second
set of three points, which is 3!

(k`)(k`−1)(k`−2) . Hence

µi, j =

(
`

3

)(
`

3

)
(k` − 3)! 3!

(k`)!
= O

(
`3

k3

)
.

Since there are k2 summands in the double sum, we get

µ =

k∑
i=1

k∑
j=1

µi, j = k2O
(
`3

k3

)
= O(`3/k) = O(n3/k4)→ 0.

By Markov’s inequality, we have P (X > 0) = P (X ≥ 1) ≤ E [X] = µ = o(1). Hence |M|

(k`)! =

P (X = 0) = 1 − P (X ≥ 1) ≥ 1 − o(1), as desired.

Now we prove log Cn ≥ n log n−O(n), as n→ ∞. Let k = n3/4+ε. By the previous lemma, we
have |M|= (1− o(1))(k`)!. The nice thing about a good matching is that it can be recovered from
its (colored) circle graph. (In other words, there is a one to one matching between the set of good
matchings and their corresponding graphs. Figure 6 shows that for bad matchings, this property
does not hold) To see this, we first note that each colored vertex is unique; if we see a color i on a
vertex, that vertex corresponds to the i-th special chord. Next, each uncolored vertex has exactly
two colored neighbors, which gives us the ability to determine the two arcs its endpoints lie on;
if these two neighbors are colored i and j, then the arcs containing the endpoints of the chord are
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Ai and A j. Finally, suppose two uncolored vertices u and v have a common neighbor with color
i. Then one endpoint of each of the chords corresponding to u and v lie on Ai, and the relative
order of these endpoints is determined by whether the vertices u and v are adjacent or not. Hence

Cn

(
n
2k

)
(2k)! ≥ number of circle graphs with 2k colored vertices

≥ number of circle graphs obtained from the construction above

≥ |M|= (1 − o(1))(k`)! = (1 − o(1))(n − 2k)! ,

where the last inequality follows from the fact that there is a one to one matching between the
set of good matchings and their corresponding graphs. Using

(
n
2k

)
(2k)!≤ n2k, we can write the

above inequality as Cnn2k ≥ (1 − o(1))(n − 2k)!. Taking the logarithms and using the Stirling’s
approximation gives log Cn = n log n − O(n).

We summarize the result in the following theorem.

Theorem 4.2. For unlabeled circle graph G with n vertices. Then at least n log n−O(n) bits are
necessary to represent G.

4.2. Alternative succinct representation

In this section, we give alternative succinct representation of circle graphs. Before describing
the representation, we first introduce the orthogonal range queries on grids which defined as
follows. Given a set P of n points on an n × n 2-dimensional grid, the orthogonal range queries
on grids are consist of the following queries:

• count(P,R) : returns the number of points of P within the rectangular range R.

• report(P,R) : reports the points of P within the rectangular range R

The following lemma shows that there exists a succinct representation to support these queries
efficiently, which we used in our representation.

Lemma 5 ([27]). Given a set of n points P on an n × n grid, there exists an n log n + o(n log n)-
bit data structure, such that for any (x, y) ∈ P and the rectangular range R, one can answer (i)
count(P,R) queries in O(log n/log log n) time, and (ii) report(P,R) queries in O(k log n/log log n)
time, where k is the size of the output.

Remark. When there exists no two points p1, p2 ∈ P where p1 = (x, y1) and p2 = (x, y2) with
some 1 ≤ x ≤ n and 1 ≤ y1, y2 ≤ n, we define the query Y(x, P) as report(P, [x, x]× [1, n]). Since
the size of report(P, [x, x] × [1, n]) is at most 1 for all 1 ≤ x ≤ n in this case, Y(x, P) returns the
value y which satisfies (x, y) ∈ P if such (x, y) exists in P. Also, Y(x, P) query can be answered
in O(log n/log log n) time using the data structure of Lemma 5. Similarly, if no two input points
have the same y-coordinate, then we can define the query X(y, P) = report(P, [1, n] × [y, y]),
which can be answered in O(log n/log log n) time.
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Figure 7: A circle graph G with n = 5 vertices (left), circular representation of G (middle), its corresponding overlap
graph G′ (right top), and S and P for the representation of G.

Now we describe the alternative succinct representation for circle graphs. Suppose G = (V, E)
is an intersection graph of the set of chords C = {c1 = (p1, q1), c2 = (p2, q2) . . . , cn = (pn, qn)} of
the circle C where all the points in the set P = {p1, p2, . . . pn} ∪ {q1, q2, . . . , qn} on C are distinct.
Note that when G is given, we can find the corresponding C in O(n2) time [28]. Next, consider a
bijective map f from P to {1, 2, . . . , 2n} where for any v ∈ P, f (v) = v′ if and only if v is the v′-th
point from p1 according to the clock-wise direction (we define f (p1) = 1). Then for 1 ≤ i ≤ n,
f maps the chord ci to the interval Ii = [si, ei] ⊂ [1, 2n], where si = min ( f (pi), f (qi)), and ei =

max ( f (pi), f (qi)). Note that since all the points in P are disjoint, { f (p) | p ∈ P} = {1, 2, . . . , 2n}.
Now using the set of intervals I = {I1, I2, . . . , In}, we define an overlap graph G′ = (V ′, E′) as
follows:

• V ′ = {1, 2, . . . , n}, where for 1 ≤ i ≤ n, the vertex i corresponds to the interval Ii.

• For any vertices i, j ∈ G′, (i, j) ∈ E′ if and only if Ii and I j are overlap, i.e., Ii ∩ I j 6= ∅,
Ii 6⊂ I j, and I j 6⊂ Ii.

It is well-known that G and G′ are equal graphs (in general, any graph is a circle graph if and
only if it is an overlap graph) [29]. In the rest of this section, we refer to G as the overlap graph
G′. Now in what follows we describe our data structure for representing G.

1. Let S [1 . . . 2n] be a bit array of size 2n where for 1 ≤ i ≤ 2n, S [i] = 0 (resp. S [i] = 1) if
i ∈ {s1, s2, . . . , sn} (resp. i ∈ {e1, e2, . . . , en}). We maintain the data structure of Lemma 1
on S using 2n + o(n) bits to support rank and select queries in O(1) time.

2. For 1 ≤ i ≤ n, let e′i = rank1(S , ei). Since {e′1, e
′
2 . . . , e

′
n} = {1, 2, . . . , n}, we can consider

the set of n points P = {(1, e′1), (2, e′2), . . . (n, e′n)} on the n × n grid. We maintain n log n +

o(n log n)-bit data structure of Lemma 5, to answer count(P,R), and Y(x, P) queries in
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O(log n/log log n) time and report(P,R) queries in O(k log n/log log n) time for any 1 ≤
x ≤ n and rectangular range R, where k is the number of points in P on R.

See Figure 7 for an example. The total space of the above substructures takes n log n +

o(n log n) bits, and for vertex v ∈ V , we can compute the corresponding interval Iv = [sv, ev] in
O(log n/log log n) time by sv = select0(v, S ), and ev = select1(Y(v, P), S ). Now for any two ver-
tices u, v ∈ G, we show how to support degree(v) and adjacent(u, v) query in O(log n/log log n)
time and neighborhood query in O(|degree(v)|log n/log log n) time using our representation.

degree(v) query: To answer degree(v) query, we first compute the corresponding interval
Iv in O(log n/log log n) time, and count the number of intervals overlap with Iv, which is the
sum of (i) the number of intervals Ip where sp < sv and sv < ep < ev, and (ii) the num-
ber of intervals Ip where sv < sp < ev and ep > ev. By the definition of the set P, the
number of intervals in (i) is same as the answer of count(P,R1) which can be computed in
O(log n/log log n) time, where R1 = [1, rank0(sv, S )− 1]× [rank1(sv, S ) + 1, rank1(ev, S )]. Simi-
larly we can count the number of intervals in (ii) by returning count(P,R2) in O(log n/log log n)
time, where R2 = [v+1, rank0(ev, S )]× [rank1(ev, S )+1, n] (note that R1 and R2 can be computed
in O(1) time when Iv = [sv, ev] is given). Thus by Lemma 5, we can answer degree(v) query in
O(log n/log log n) time in total.
adjacent(u, v) query: To answer adjacent(u, v) query, it is enough to check whether the corre-
sponding intervals Iu and Iv are overlap or not. Since we can compute Iu and Iv in O(log n/log log n)
time, adjacent(u, v) query can be answered in O(log n/log log n) time.
neighborhood(v) query: To answer neighborhood(v) query, we simply report all the intervals
in (i) and (ii) which are mentioned in the degree(v) query. Thus, we can answer neighborhood(v)
query in O(|degree(v)|log n/log log n) time by returning the first coordinates of the answer of
report(P,R1) and report(P,R2) queries, where R1 and R2 are rectangular ranges in the grid which
are defined same as the above.

We summarize our result in the following theorem

Theorem 4.3. Let G be an unlabeled circle graph with n vertices. Then there exists an (n log n +

o(n log n))-bit data structure representing G that supports degree(v) and adjacent(u, v) queries
in O(log n/log log n) time, and neighborhood(v) queries in O(|degree(v)|· log n/log log n) time.

5. Trapezoid graphs

In this section, we give the lower bound on space for representing trapezoid graphs, which im-
plies that the representation of Theorem 3.3 gives a succinct representation of trapezoid graphs.
Also we give an alternative succinct representation of trapezoid graphs, which uses the similar
idea as Theorem 4.3 to answer degree(v) queries independent of |degree(v)| (and again, it takes
more time for the other two queries compared to the representation of Theorem 3.3).
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Figure 8: A trapezoid graph (top) and its corresponding intersection graph (bottom).

5.1. Lower bound

We can obtain a lower bound on the number of trapezoid graphs, intersection graphs of
trapezoids where their corners are on two parallel lines.

Theorem 5.1. Consider a family of intersection graphs made from n trapezoids on two parallel
lines. Let Pn denotes the total number of such graphs. Then the following holds:

log Pn ≥ 3n log n − 4n log log n − O(n).

Proof. Let m = n
log n . We first consider partially-colored trapezoids with 4m colored trapezoids

and n − 4m uncolored ones. We represent each colored trapezoid with a line, which could be
thought as a thin trapezoid. To construct our diagrams, we divide the upper and lower lines into
six pieces, U1, . . . ,U6 and L1, . . . , L6, respectively, from left to right. From each of the pairs
(U1, L3), (U2, L2), (U6, L4), and (U5, L5), we get m colored parallel lines. Then, we draw n − 4m
uncolored trapezoids, each of which has exactly one corner from each of the segments U2, L3, L4,
and U5. We also make sure that two uncolored trapezoids do not intersect exactly the same set
of colored lines. (See Figure 8.) Note that, in the graph corresponding to a diagram, the colored
neighbors of an uncolored vertex gives us where the corners of the trapezoid corresponding to
that vertex are located. There are (m + 1)4 possible uncolored trapezoids, and hence there are(

(m+1)4

n−4m

)
different colored intersection graphs coming from this construction. The claim follows

from similar arguments used in previous lemmas.

5.2. Alternative succinct representation

Our representation of trapezoid graphs uses the similar idea as the representation of Sec-
tion 4.2 which uses orthogonal range queries. Suppose G = (V, E) is given as the representation
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of n trapezoids T1,T2, . . . ,Tn on two lines L1 and L2 in the two-dimensional space which are
parallel to the x-axis as follows. For 1 ≤ i ≤ n, Ti is the trapezoid corresponding to the vertex
i ∈ G, which has two points ai and bi from L1 and other two points ci and di from L2 where ai

is the i-th leftmost point on L1 among {a1, a2, . . . , an}. We interchangeably use names of points
and their x-coordinates. Also without loss of generality, we assume that ai < bi, ci < di, and
there is no point p ∈ {a1, a2, . . . , an} ∪ {b1, b2, . . . , bn} and q ∈ {c1, c2, . . . , cn} ∪ {d1, d2, . . . , dn}

such that the line pq is not perpendicular to neither L1 nor L2. Note that one can obtain such
representation from G in O(n(n + m)) time, where m is the number of edges in G [30]. We denote
four sets V0, V1, V2, and V3 as {a1, a2, . . . , an}, {b1, b2, . . . , bn}, {c1, c2, . . . , cn}, and {d1, d2, . . . , dn}

respectively. Now the following shows our representation of G.

1. Consider an imaginary line L3 parallel to L1 and L2. We project all the points in V0 ∪ V1 ∪

V2∪V3 orthogonally onto L3, and denote the set of theses 4n points as P′. Now we consider
an array S [1, 2, . . . , 4n] of size 4n over an alphabet {0, 1, 2, 3} where for 1 ≤ i ≤ 4n,
S [i] = j if i-th leftmost point in P′ is the point from V j. We maintain the data structure of
Lemma 2 on S using 4n + o(n) bits to support rank and select queries in O(1) time.

2. for 1 ≤ i ≤ n, let b′i = rank1(S , bi), c′i = rank2(S , ci), and d′i = rank3(S , di). Then
we can consider three sets of n distinct points P1 = {(1, b′1), (2, b′2), . . . (n, b′n)}, P2 =

{(1, c′1), (2, c′2), . . . (n, c′n)}, and P3 = {(b′1, d
′
1), (b′2, d

′
2), . . . (b′n, d

′
n)} on the n × n grid. We

maintain 3n log n + o(n log n)-bit data structure of Lemma 5, to answer count, and Y , and
report queries on P1, P2, and P3 efficiently.

The total space of the above substructures takes 3n log n + o(n log n) bits, which is succinct
by Theorem 5.1. Also for vertex v ∈ V , we can compute the corresponding points (v, b′v) ∈ P1,
(v, c′v) ∈ P2, and (b′v, d

′
v) ∈ P3 in O(log n/log log n) time by b′v = Y(v, P1), , c′v = Y(v, P2),

and d′v = Y(b2, P3). Now for any two vertices u, v ∈ G, we show how to support degree(v) and
adjacent(u, v) query in O(log n/log log n) time and neighborhood query in O(|degree(v)|log n/log log n)
time using our representation.

adjacent(u, v) query: To answer adjacent(u, v) query, it is enough to check whether the corre-
sponding Trapezoids Tu and Tv are intersect or not, and it is clear that Tu and Tv are not intersect
if and only if (i) max (b′u, d

′
u) < min (a′v, c

′
v) , or (ii) min (a′u, c

′
u) > max (b′v, d

′
v). Since we can

compute all these eight values in O(log n/log log n) time, adjacent(u, v) query can be answered
in the same time.
degree(v) query: To answer degree(v) query, we count the number of vertices in G which is
not adjacent to v, which is a total size of disjoint union of two sets of trapezoids satisfying the
above conditions (i) and (ii) respectively. To count the number of trapezoids satisfying the con-
dition (i), let p1 = (p1

x, p1
y) where p1

x = (rank0(S ,max (b′v, d
′
v)) and p1

y = rank2(S ,max (b′v, d
′
v)).

Then we can count the number of such trapezoids in O(log n/log log n) time by count(P2,R1)
where R1 = [p1

x, n] × [p1
y , n]. Similarly, let p2 = (p2

x, p2
y) where p1

x = (rank1(S ,min(a′v, c
′
v)) and
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p2
y = rank3(S ,min (a′v, c

′
v)). Then we can count the number of trapezoids satisfying the condition

(ii) in O(log n/log log n) by count(P3,R2) where R2 = [1, p2
x] × [1, p2

y].
neighborhood(v) query: To answer neighborhood(v) query, we simply report all the trape-
zoids not in (i) and (ii) which are mentioned in the degree(v) query. Thus, we can answer
neighborhood(v) query in O(|degree(v)|log n/log log n) time by computing the first coordinates
of the answer of report(P2,R1

1), report(P2,R2
1), report(P3,R1

2), and report(P3,R2
2) queries, where

R1
1 = [1, p1

x − 1] × [1, n], R2
1 = [p1

x, n] × [1, p1
y − 1], R1

2 = [1, n] × [p2
y + 1, n], and R2

2 =

[p2
x + 1, n] × [1, p2

y]. Next, we return all the trapezoids corresponding to these coordinates by
simply returning such coordinates (for the case of the queries on P2), or by returning the corre-
sponding answers of X query on P1 (for the case of the queries on P3). Note that we return the
same trapezoids at most 2 times, but it does not affect the query time asymptotically.

We summarize or result in the following theorem.

Theorem 5.2. Let G be an unlabeled trapezoid graph with n vertices. Then there exists a
(3n log n + o(n log n))-bit data structure representing G such that degree(v) and adjacent(u, v)
query can be answered in O(log n/log log n) time, and neighborhood(v) query can be reported
in O(|degree(v)|· log n/log log n) time.

6. Conclusion and Final Remarks

In this article we proved a unified space lower bound for several classes of intersection graphs
on a circle. Subsequently, we designed succinct navigational oracles for these classes of graphs
in a uniform manner, along with efficient support for queries such as degree, adjacency and
neighborhood. We conclude with the following open problem: can we improve the query times
of our data structures, possibly to constant time?
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