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Abstract

A watchman path is a path such that a direct line of sight exists between each

point in some region and some point along the path. Here, we study the online

watchman path problem outside a convex polygon, i.e., in R
2 \ Ω, where Ω is

a convex polygon that is not known in advance. We present an algorithm for

the exploration of the region outside the polygon. We prove that the presented

algorithms guarantees a ≈ 22.77 competitive ratio compared to the optimal

offline watchman path.

1. Introduction

Exploring an unknown terrain or scanning a region of space are important

tasks for autonomous robots. Many situations require exploring an unknown

environment, or scanning a known environment for changes or intrusions. Some

autonomous units, such as the mars rover [4, 6] and other space exploration

vehicles are too far to control from earth, as the communication time is too long.

In other cases communication is impossible due to interference or environmental

conditions.

In this paper, we study the problem of scanning or exploring a region of the

plane, where a convex polygonal obstacle is blocking the view and motion of the

robot (see Fig. (1). We present an online algorithms guaranteeing a constant

competitive ratio compared to the optimal offline path. In the offline setting

the shape of the obstacle is known in advance, and an optimal path is desired,
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Figure 1: The scanning starts from a point O. We illustrates two paths: the optimal path
(for this specific case) is scanning along the edge OA and then along the edge AB where AB

is the reflection of AB′ along the line EA and AB is perpendicular to EB. The dotted path
shows an intuitive path where we go toward the object and scan along its perimeter, which
leads in narrow domain to a considerably longer path.

where this optimal path is the shortest path from which every point in the free

space (space outside the obstacle) is viewable (a direct line of sight exists). Our

main result is an algorithm for the online problem. In this case, the shape of the

obstacle is not known in advance, and the purpose of the robot is to scan the

region while studying the shape of the obstacle, where the goal is to minimize

the length of the motion path. The algorithm we present guarantees a constant

factor stretch of the motion path length, relative to the optimal solution of the

offline problem.

2. Related work

The watchman’s path problem [15, 3, 14, 12, 16, 9] is a well-known optimiza-

tion problem, where an algorithm for a watchman needs to be constructed so
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that he computes the shortest path to traverse a certain area, and from this path

he must observe the entire area, we assume he has 2 · π view to any distance

only bounded by obstacles. In the general case it has been shown to be an NP-

hard problem [13, 1, 5] (say if there are n obstacles). In an offline scenario the

guard is given a map of the area including its obstacles and needs to compute

the shortest path. Whereas, in the online case, the watchman has to explore

(i.e. discover unknown terrains in the offline case) or scan (i.e. canvas a known

terrain in the online case) the area it traverses without (or with limited) prior

knowledge of what lays ahead .

The watchman problem has been observed under various different constraints.

Online algorithms for touring the interior of a non-convex simple polygon have

been presented in [11, 10]. The traversing robot does not have a map, and is

only aware of what it has explored so far. They present a 5
4 -competitive algo-

rithm. This problem is similar to our online setting. However, in their case,

the polygon is simply connected, whereas in our case, the watchman tours the

outside of a polygon, which is not simply connected.

Czyzowicz et al [5] give an algorithm for many obstacles (again, the obstacles

may not be convex). However, even in a convex scenario, no constant compet-

itive ratio is obtained. In the exploration algorithm with unlimited vision, the

complexity of the path is O(P +D ·
√
k) where P is the total perimeter of the

terrain (including obstacle perimeter), D is the diameter of the convex hull of

the terrain and k is the number of obstacles. In [6] an algorithm for touring

a general polygon is discussed, a competitive ratio for touring the interior of a

polygon is shown to be less than 2016, and the existence for a an online com-

petitive algorithm for touring the exterior of a general polygon is also discussed,

with no details on the ratio.

Georges et al [8] give an algorithm for touring a polygon with holes, where

the holes are polygonal and are of different colors. Their algorithm is ≈ 600-

competitive in the case of one hole. Here, we give an improved competitive ratio

for a convex obstacle (hole) in R
2.
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3. Foundations Layout

Definition 3.1. A spiral logarithmic curve is a an infinite curve, defined by the
polar coordinates

r(θ̃) = ebθ̃ ,

where θ̃ ∈ (−∞,∞) and b is a constant (see Fig. 3).

The point (θ̃, r(θ̃)) corresponds to the Euclidean coordinates x = r cos θ̃,

y = r sin θ̃. As the point is defined up to an addition of an integer multiple 2π

to θ̃, we will use the notation θ = (θ̃ mod 2π), where θ ∈ [0, 2π).

Notation 3.2. Denote the length of a spiral from the origin O to a distance R
(and an angle θ) by Ls(R).

By directly calculating the integral, one obtains that the length Ls(R) of the

spiral up to a radius R, is

Ls(R) =

√

1 +
1

b2
· R (1)

Theorem 3.3. [7] Let x = (θ, r) be a point and let (θ̃, R) be the first point
along the spiral such that x lies on the segment between the origin and (θ̃, R)
(i.e, R ≥ r and θ = θ̃ mod 2π). Then

Ls(R) ≤ e2πb
√

1 +
1

b2
r . (2)

A minimization of the expression (2) leads to the competitive ratio Ls ≤
17.2894 · r between the direct line to a point and the length of the spiral up to

the location on the infinite part of the ray from the origin to the point.

Lemma 3.4 ([2] p. 42, Theorems 7.11 and 7.12.). Given two convex domains
Ω1 and Ω2 with a respective perimeter |∂Ω1| and |∂Ω2|. If Ω1 ⊆ Ω2, then
|∂Ω1| ≤ |∂Ω2|.

4. Results

We begin by showing that no online algorithm can obtain an approximation

ratio better than 3.

Notation 4.1. Denote the length of the optimal path by Lopt and the length of
the online algorithm by Lon
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Figure 2: An illustration of a triangular obstacle with an optimal path and online path.

Theorem 4.2. For every ε > 0, every online algorithm has a triangular obstacle
for which its competitive ratio is at least

Lon

Lopt
> 3− ε .

Proof. For any given triangle the adversary may place the robot at any starting
point O. A bad possible option for the best possible online algorithm occurs
when the triangle has two fairly long edges eℓ1 and eℓ2 with length ℓ )(see Fig.
(2), and one very short edge denoted eε with length ε, the robot is placed by
the adversary adjacent to the middle one of the long edges of the obstacle. So
in this case Lopt = ℓ

2 + ε. An online algorithm may choose to go either left
or right, we assume the adversary will make it harder for any online algorithm
and ,therefore, the adversary knows how to place the triangle-obstacle in order
to challenge the online, so that the online (any online algorithm) makes an
approach to the opposite direction of what is best for it (it is oblivious). Thus,
producing a path of length: ℓ+ ℓ

2 , i.e,

Lon

Lopt
≤ ℓ+ ℓ

2
ℓ
2 + ε

= 3− ε̃

We describe a competitive online algorithm for touring the outside of an

open (i.e., excluding the boundary) convex polygon, Ω.

The proposed algorithm suggests that the watchman uses a spiral search

(See Fig. 4. Since the watchman cannot intersect the obstacle, in a case of

intersection between the obstacle and the spiral search, we need to define a

path which continues the exploration. Assume w.l.o.g that the watchman is

located at the origin and that the obstacle is contained in the upper half plane

(if it is not, the coordinates can be rotated such that it is).

Definition 4.3. Given a domain Ω which intersects the spiral search at a point
(

θ̃, r(θ̃)
)

. Let A be the set of entry points, i.e., the set of points,
(

θ̃, r(θ̃)
)

,
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Figure 3: A spiral search which starts at the origin for the same obstacle and leads to a
watchman path.

such that the spiral search intersects the boundary of the convex domain at a

point
(

θ̃, r(θ̃)
)

and
(

θ̃ − δ, r(θ̃ − δ)
)

(δ → 0+) are not contained in the convex

domain, denote these entry points by {xi}ni=1, xi ∈ A. In a similar way define

B as the set of exit points, i.e. the set of points,
(

θ̃, r(θ̃)
)

, such that
(

θ̃, r(θ̃)
)

is not contained in Ω and
(

θ̃ − δ, r(θ̃ − δ)
)

, δ → 0+ are contained in Ω. Denote

these exit points by {yi}ni=1

Notation 4.4. • Let l∂Ω(xi, yi) be the length of the shortest path avoiding
the convex polygon going clockwise along its boundary from the point xi to
the point yi.

• Let Ci be the disk centered at the origin O with radius ri. C̃i the upper
half the disk.

• γ(x, y) is the path (curve) along the spiral which start at a point x and
end at a point y.

Lemma 4.5. Given a convex domain Ω and a spiral search which begins at a
given point O. If the spiral search intersects the boundary of the domain at a
point xi ∈ A, and let yi ∈ B s.t yi := (θi, Ri) be the appropriate exit point, the
arc length l∂Ω(xi, yi) ≤ (π + 2) · Ri.

Proof. We will define a convex domain whose boundary is

Pi := γ(xi, yi) ∪ ∂Ω(xi, yi) , 1 ≤ i ≤ n ,

where γ(xi, yi) is the curve along the spiral which starts at the point xi and
ends at the point yi (with the respective length of the spiral arc being ls(xi, yi))
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1. Rotate axes such that Ω in the upper half plane

2. E = {all edges seen from O}
3. Move along the logarithmic spiral, r = ebθ until a new edge e is found.

4. E = E ∪ {e}
5. If E is a closed polygon then stop

6. If the polygon is hit then move clockwise around the boundary until a
new point of the spiral is reached, then continue to step (3)

7. Continue until a watchman path was completed (i.e., when all edges
observed form a closed polygon).

Algorithm 1: Watchman path outside convex polygon

Figure 4: The path suggested by the algorithm. When the spiral search intersects the domain
at an entry point, it will move along the boundary of the domain clockwise until it reaches
the appropriate exit point of the spiral. Notice that some segments will be traversed more
then once.
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Figure 5: Bounding the length of the path along the polygon by the circumference of a
semicircle with radius R, defined by the intersection of the convex domain and the spiral.

and ∂Ω(xi, yi) is the curve going clockwise along the polygon which start at
the point xi and ends at the point yi (with the respective length l∂Ω(xi, yi)),
see Fig. 5. Since d(yi, O) = Ri (the Euclidean distance between the point
(θ,Ri) and the origin), the domain Pi is contained in the half C̃i with perimeter
2πRi

2 + 2 · Ri = (π + 2) ·Ri.

Since the domains Pi and C̃i are convex, by Lemma 3.4, then |∂Pi| ≤ |∂C̃i| =
(π + 2)Ri.

So we get that l∂Ω(xi, yi) ≤ |(Pi)| ≤ (π + 2)Ri.

Notation 4.6. Denote the length of the curve obtained by the algorithm which
ends at a point y = (θ,R) by Lalg(R).

Lemma 4.7. The ratio between the length of the path constructed by Algorithm 1
and the spiral path is given by

Lalg(R) ≤



1 +
(2 + π)

(e2π − 1)
√

1 + 1
b2



 · Ls(R) .

Proof. The algorithm starts a spiral search until it intersects the boundary of
the convex obstacle. The spiral intersects the convex domain during the ith lap
when the angle is at most θ̃ ≤ 2(i− 1)π for some i ∈ Z. The respective distance
from the origin is e(2i−1)bπ < R for every −∞ < i ≤ N . By Lemma (4.5) for
every intersection xi ∈ A ∧ yi ∈ B (i ≤ N) with a distance Ri :

l∂Ω(xi, yi)| < |Pi| ≤ (π + 2) ·Ri
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and the ratio is (assuming b ≥ 0)

Lalg < Ls(R) +

N
∑

i=−∞

(2 + π) ·Ri = L(R) +

N
∑

i=−∞

(2 + π) · e(2i−1)bπ

= Ls(R) + (2 + π)ebπ · e2πbN

e2πb − 1
≤



1 +
(2 + π)

(e2π − 1)
√

1 + 1
b2



 · Ls(R) .

Now, we are ready to find the desired competitive ratio between Lalg and

Lopt (our algorithm vs the optimal).

In order to compare the algorithm’s performance to the optimal off-line

algorithm, we notice that every watchman path necessarily visits (at least one

point of) each half-plane in R
2 \ Ω that is formed by an edge of Ω. Thus, the

length of the optimal offline watchman path is at least h = maxi |hi| where hi is

the shortest path to the half plane defined by edge i of Ω that does not intersect

Ω (i.e. lies outside Ω). We use γalg(p1, p2) to denote the path of the algorithm

between the points p1 and p2.

Lemma 4.8. Let Hi be the external half plane defined by the ith edge of Ω,
such that O /∈ Hi, and let hi be the shortest path between O and Hi in R

2 \ Ω.
Let

N =

⌈

ln |hi|
2πb

⌉

, (3)

Then γalg

((

θ̃ = 2πN, r = ebθ̃
)

,
(

θ̃ = 2πN + π, r = ebθ̃
))

visits Hi.

Proof. Let pi be the point in Hi which is closest to O in R
2 \ Ω.

Now, assume that the shortest path to pi goes counter clockwise relative to Ω.

Let S be the infinite ray fromO towards pi. The spiral γ
(

(θ̃ = 2πN, r = ebθ̃), (θ̃′ = 2πN + π, r = ebθ̃
′

)
)

intersects S at some point p. We claim that the path γ((θ̃ = 2πN, r = ebθ̃), p)
does not intersect Ω. Indeed, if Ω is entirely contained in the cone with angles be-

tween the angle of S and π then the spiral segment γ
(

(θ̃ = 2πN, r = ebθ̃), (θ̃′ = 2πN + π, r = ebθ̃
′

)
)

cannot intersect Ω. Otherwise, assume that γ
(

(θ̃ = 2πN, r = ebθ̃), (θ̃′ = 2πN + π, r = ebθ̃
′

)
)

intersects Ω. Let q be the point of intersection. Let C be the convex region
whose boundary is hi ∪ Opi, and let s ∈ Ω ∩ C be a point in the intersection.
The segment qs has both endpoints in Ω, but intersects S, in contradiction to
convexity. Since O /∈ Hi and since Hi is convex, it follows that p is in S ∩Hi

and thus in Hi.
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Now suppose the shortest path to pi goes clockwise relative to Ω. let S be the

infinite ray fromO towards pi. the spiral γ
(

(θ̃ = 2πN, r = ebθ̃), (θ̃′ = 2πN + π, r = ebθ̃
′

)
)

intersects S at some point p. We claim that p lies outside Ω and thus also lies

on Lalg

(

(θ̃ = 2πN, r = ebθ̃), (θ̃′ = 2πN + π, r = ebθ̃
′

)
)

. Indeed, if Ω is fully con-

tained in the cone between the angle 0 and the angle of S, then clearly the ray
S is in free space. If S intersects Ω, then let q ∈ S ∩ Ω be a point then q ∈ Ω.
Assume that p ∈ Ω then pi ∈ pq, but pi /∈ Ω in contradiction to convexity.
Again, we have p ∈ Hi.

Thus we have,

Theorem 4.9. Let

N =

⌈

lnh

2πb

⌉

. (4)

The path of the algorithm which stats at a point O and end at a point
(

θ̃ = 2πN + π, r = ebθ̃
)

visits all half planes defined by edges of Ω, and thus is a watchman path.

Proof. By Lemma 4.8 the path visits each of the half planes at an appropriate
radius, and thus is a watchman path.

Theorem 4.10. The algorithm has a competitive ratio of 24.35 . . . compared to
the optimal offline watchman path.

Proof. Since a watchman path must visit every half plane, the length of the
optimal watchman path is at least h. By (4) and Lemma (4.7), taking another
lap of the spiral ensure thats watchman path is obtained. Thus

Lalg

(

e(2πN+π)b
)

≤ C · Ls

(

e(2πN+π)b
)

,

where C = 1 + (2+π)

(e2π−1)
√

1+ 1

b2

. By (4), we have

N =

⌈

lnh

2πb

⌉

≤ lnh+ 1

2πb
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If Lopt(R) is the optimal path then

Lalg(R) ≤ Lalg

(

e(2πN+π)b
)

≤



1 +
(2 + π)

(e2π − 1) ·
√

1 + 1
b2



 · Ls

(

e(2πN+π)b
)

≤



1 +
(2 + π)

(e2π − 1)
√

1 + 1
b2





√

1 +
1

b2
· e(1+lnh)+πb

=

(

√

1 +
1

b2
+

2 + π

e2π − 1

)

eπb+1 · h

≤
(

√

1 +
1

b2
+

2 + π

e2π − 1

)

eπb+1 · Lopt (5)

minimization by b leads to b = 0.29 and Lalg . 24.3504 · Lopt.

5. Further Results

Since spiral search encircles the origin, the last algorithm can be improved

by touring only along the parts of the spiral that have 0 < θ̃ mod 2π < π and

replacing the bottom parts of the spiral by straight line segments (see Fig.6).

The arc length of the spiral can be computed by the formula

Ls(R) =

∫ R1

R0

√

1 + r2
(

dθ

dr

)2

dr=

√

1 +
1

b2
(R1 −R0) (6)

The arcs between the points (π+2πi,R) and (2π+2πi,R) where i ≤ N , which

will be replaced by the length |(O,R(π + 2πi)|+ |(O,R(2π + 2πi)| (where O is

the origin). So the length of this semi-spiral is

N
∑

i=−∞

(

√

1 +
1

b2

(

eb(2π+2πi) − eb(π+2πi)
)

−
(

eb(π+2πi) + eb(2π+2πi)
)

)

=

(

√

1 +
1

b2
(

e2πb − eπb
)

−
(

e2πb + eπb
)

)

·
(

e2πbN

e2πb − 1

)

. (7)

This progression by a semi-spiral reduces the length of the path produced

by the new algorithm. This length will be denoted by Lalg
2
.
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Figure 6: The path generated by the second proposed algorithm. In this case in every lap the
lower half of the spiral is replaced by line segments, with the respective segments in this case
being {AB, SD,EF,GH, . . . } etc.

Theorem 5.1. Lalg
2
gives a 22.77 . . . competitive ratio respective to the optimal

algorithm

Proof.

Lalg
2
(R) ≤

(

√

1 +
1

b2
+

2 + π

e2π − 1

)

eπb+1 · h−
(

√

1 +
1

b2
(

e2πb − eπb
)

−
(

e2πb + eπb
)

)

·
(

e2πbN

1− e−2πb

)

=

(

√

1 +
1

b2
+

2 + π

e2π − 1

)

eπb+1 · h−





(

e2πb − eπb
)

− e2πb + eπb
√

1 + 1
b2



 ·
√

1 +
1

b2

(

e2πbN

1− e−2πb

)

=

(

√

1 +
1

b2
+

2 + π

e2π − 1

)

eπb+1 · h−





(

e2πb − eπb
)

− e2πb + eπb
√

1 + 1
b2



 ·
(

γ(2πN)

1− e−2πb

)

≤
(

√

1 +
1

b2
+

2 + π

e2π − 1

)

eπb+1 · h−





(

e2πb − eπb
)

− e2πb + eπb
√

1 + 1
b2



 ·
(

h

1− e−2πb

)

≤





(

√

1 +
1

b2
+

2 + π

e2π − 1

)

eπb+1 −





(

e2πb − eπb
)

− e2πb + eπb
√

1 + 1
b2



 ·
(

1

1− e−2πb

)



 · Lopt (8)

a minimum is obtained at the point b = 0.2929150042 giving Lalg
2
(R) ≤ 22.7749·

Lopt.
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