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Abstract

Sofic shifts are symbolic dynamical systems defined by the set of bi-infinite se-
quences on an edge-labeled directed graph, called a presentation. We study the com-
putational complexity of an array of natural decision problems about presentations
of sofic shifts, such as whether a given graph presents a shift of finite type, or an irre-
ducible shift; whether one graph presents a subshift of another; and whether a given
presentation is minimal, or has a synchronizing word. Leveraging connections to au-
tomata theory, we first observe that these problems are all decidable in polynomial
time when the given presentation is irreducible (strongly connected), via algorithms
both known and novel to this work. For the general (reducible) case, however, we
show they are allPSPACE-complete. All but one of these problems (subshift) remain
polynomial-time solvable when restricting to synchronizing deterministic presenta-
tions. We also study the size of synchronizing words and synchronizing deterministic
presentations.

Keywords: sofic shifts; symbolic dynamics; computational complexity; automata theory

1 Introduction

Symbolic dynamics in dimension one is the study of shift spaces, which are topological
dynamical systems given by “shifting” bi-infinite sequences of symbols. Sofic shifts are
shift spaces whose points are given by the label sequences for bi-infinite walks in a la-
beled graph, called a presentation. As they characterize the factors of subshifts of finite
type (SFTs), sofic shifts have fundamental importance in symbolic dynamics. They also
have an array of applications both within and outside of dynamical systems, including
billiards, ergodic theory, continuous dynamics, and information theory, automata theory,
and matrix theory [19]. In particular, one motivation for the present work is the set of
computational problems that arise in application to continuous maps via Conley index
theory [8, 15, 16].
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Problem Input Decision

IRREDUCIBILITY G Is XG irreducible?
EQUALITY G, H Is XG = XH?
SUBSHIFT G, H Is XG ⊆ XH?
SFT G Is XG an SFT?
∃SDP G Does XG have an SDP?
MINIMALITY G, k Does XG have a k-vertex deterministic presentation?
SYNCWORD G Does G have a synchronizing word?

Table 1: Natural decision problems for sofic shifts. We show that all are PSPACE-hard
in the general case; see Table 2 for an overview of our results. For the inputs to the
problems, G, H are deterministic presentations, and k is a positive integer.

Despite their fundamental importance, however, many basic questions about the com-
putational complexity of sofic shifts remain open. In Table 1, we give seven natural de-
cision problems, many of which also arise frequently in applications. For example, given
a labeled graph, does it present an SFT? Does a given reducible presentation actually
present an irreducible sofic shift? Do two given labeled graphs present the same shift?
For special cases, such when the given presentations are irreducible, some of these prob-
lems are known to be in P, i.e., they admit a polynomial-time algorithm. For the general
case, however, only the complexity of SYNCWORD is known: it is PSPACE-complete to
determine whether a given deterministic presentation has a synchronizing word [4].

In this work, we resolve the complexity of the remaining six problems, showing that
they are all PSPACE-complete in the general case. We also study two special cases, sofic
shifts given by deterministic presentations which are either irreducible or synchronizing.
For these cases, the problems are generally in P. In fact, the only exception is SUBSHIFT

for synchronizing deterministic presentations, which is again PSPACE-complete. Our
reductions also shed light on the size of the smallest synchronizing word and minimal
synchronizing deterministic presentation, namely that both can be exponentially large
in the given presentation. These results are significant for understanding sofic shifts in
their own right, as well as relevant for applications.

1.1 Relation to the literature

Conjugacy Absent from our list of problems is arguably the most important: deciding
whether two sofic shifts are isomorphic, or conjugate. In general, the decidability of this
conjugacy problem is open, even when restricting to the class of SFTs. Verifying the nat-
ural certificates of conjugacy, known as sliding block codes, is computable in polynomial
time for SFTs given by vertex shifts, and deciding if there is a certificate of a fixed size
is GI-hard, meaning there is a polynomial-time reduction from the graph isomorphism
problem to that problem [22]. One can partially decide nonconjugacy via conjugacy in-
variants, i.e., properties which isomorphic objects share. For dynamical systems, a set of
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invariants related to the connectivity of the state space are being (topologically) transi-
tive, mixing, and nonwandering. For shift spaces, topological transitivity is also known
as irreducibility. The class of SFTs is contained with the class of sofic shifts, and the class
of SFTs is closed under conjugacy; thus, for sofic shifts, being an SFT is a conjugacy in-
variant. Conen and Paul [6] show that all the above invariants are decidable. We show
that for sofic shifts given by deterministic presentations, deciding if they are irreducible
or an SFT is PSPACE-complete. The PSPACE-hardness of being mixing or nondwander-
ing also follows immediately from our reduction. Interestingly, it also follows from our
reduction that deciding conjugacy of sofic shifts is at least PSPACE-hard.

Automata theory Sofic shifts have a close relationship with automata theory. A finite
automaton (FA) roughly corresponds to an edge-labeled directed graph with a set of
initial and accepting states. 1 The language of an FA is the set of words labeled by a path
starting at an initial state and ending at an accepting state. The languages described by
finite automata are known as regular languages. Similarly, we define the language of a
shift space to be the set of finite words appearing in points of the shift space.

A basic result about shift spaces says that shift spaces are determined by their lan-
guages: two shift spaces are equal if and only if their languages are equal. Furthermore,
the languages of sofic shifts are regular in the above sense.2 More specifically, by inter-
preting a presentation of a sofic shift as an FA where every state is both initial and final,
then the language of a presentation (interpreted as an FA) is the same as the language
of the sofic shift it presents. These connections allows us to use automata-theoretic tools
to study sofic shifts.

A deterministic finite automaton (DFA) over an alphabet Σ is an FA with a single initial
state, such that at each state q and for each a � Σ, there is exactly one edge leaving
q labeled a. A deterministic presentation of a sofic shift, when thought of as an FA,
has a similar definition: a presentation is deterministic if for each a � Σ, there is at
most one edge leaving that state labeled a. Comparing the languages of two DFAs (i.e.
whether their languages are equal, or if one is a subset of the other) is computable in
polynomial time. However, for FAs in general, the same problem is PSPACE-complete
[18]. Comparing the languages of presentations in general is alsoPSPACE-complete, as a
corollary of results from Czeizler and Kari [7]. The question that remains is therefore the
complexity of comparing languages of deterministic presentations. It is likely known that
comparing languages of irreducible (i.e. strongly connected) deterministic presentations
is computable in polynomial time; in Section 3.2, we give an algorithm. For deterministic
presentations in general, we show in Section 4.1 that comparing languages (and thus
comparing the shift spaces they present) of this type of FA is PSPACE-complete.

1We define an FA the same way some authors define a nondeterminisc finite automaton (NFA); we use
“FA” to avoid confusion when we consider deterministic finite automata (DFAs) as a subset of FAs.

2The languages of sofic shifts are exactly the languages which are factorial, prolongable, and regular.
[17, Proposition 1.3.4]
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Minimization of presentations We say two FAs are equivalent if they have the same
language. Algorithms for minimizing a DFA, i.e. finding an equivalent DFA with fewer
states, have been well-studied. This minimization problem has nice properties: every DFA
has an unique minimal equivalent DFA which can be computed in polynomial time. For
FAs in general, minimization is not as nice: FAs do not necessarily have unique minimal
equivalent FA [2], and deciding if there is an FA with fewer states than a given FA is
PSPACE-complete [18].

As a class of FAs, irreducible deterministic presentations of sofic shifts have similar
minimality properties to DFAs: every irreducible deterministic presentation has a unique
minimal equivalent irreducible deterministic presentation which is computable in poly-
nomial time [17]. (Furthermore, the property characterizing a minimal irreducible de-
terministic presentation in a sense is exactly the same property as a minimal DFA.) This
observation leaves the question: do reducible deterministic presentations share the min-
imzation properties of the class of DFAs or of the class of FAs? The class of FAs arguably
closest to general deterministic presentations are the multiple-entry DFAs (mDFAs), which
are essentially DFAs with one source of nondeterminism: multiple initial states. A deter-
ministic presentation can be made into an equivalent mDFA by by adding a sink state,
thus “fully determinizing” every state, and then interpreting every state but the sink state
as an initial and final state (c.f. sink vertex graph in Section 3.1). As mDFAs share the
minimization properties of the class of FAs [10, 18], and general deterministic presenta-
tions do not have unique minimal equivalent deterministic presentations [12], one may
suspect that minimization of general deterministic presentations is PSPACE-complete.
Indeed, we show this result in Section 4.2.

Synchronizing words Another equivalent way of defining a DFA is by specifying a tran-
sition function; i.e., a function δ : Q×Σ→Q for some set of states Q and finite alphabet
Σ. The transition function then naturally extends to a function δ : Q × Σ∗ → Q from
the states and words over an alphabet. A synchronizing word (also called a reset word)
for a DFA is a word that transitions every state to a single state: w is synchronizing if
δ(p, w) = δ(q, w) for all states p and q. (Equivalently, the function q 7→ δ(q, w) is a
constant function.) A deterministic presentation can be seen as a DFA with a partially
defined transition function (a function whose domain is a subset of Q × Σ); call a DFA
with a partial transition function a partial DFA. There are multiple ways to generalize the
notion of a synchronizing word to partial DFAs, for example, a carefully synchronizing
word [24] and a exact synchronizing word [23, 25]. The former is a word whose transi-
tion is defined at all states and sends all states to a single state; the latter is a word whose
transition is defined at least one state and sends every state (where it is defined) to the
same state. Interpreting a deterministic presentation as a partial DFA, a synchronizing
word for a deterministic presentation of a sofic shift is defined as an exact synchronizing
word. Note that a DFA might be called synchronizing or synchronized if it has a synchro-
nizing word; for presentations of sofic shifts, our usage of a synchronizing presentation
corresponds to that of Jonoska [12]: for every state q �Q, there is a synchronizing word
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that sends every state to q.
For DFAs, one can decide if a synchronizing word exists (and find one) in polynomial

time via Eppstein’s algorithm [9]. Independently, Travers and Crutchfield [25] gave a
similar algorithm which can be used to determine if a synchronizing word exists in an
irreducible deterministic presentation. In Section 3.1, we describe an algorithm to find
a synchronizing word in an irreducible deterministic presentations (Algorithm 1) which
combines the techniques of the previously two mentioned algorithms. We extend these
techniques to subshift testing for irreducible deterministic presentations (Algorithm 2)
and then use synchronizing word algorithm and subshift testing algorithm together as
subprocedures for testing if a deterministic presentation is synchronizing. For determinis-
tic presentations in general, deciding if a synchronizing word exists is PSPACE-complete,
and the size of a minimum length synchronizing word may be exponentially large with re-
spect to the number of states. While both of these facts were already implied by Berlinkov
[4], for completeness we provide proofs in Sections 4.3 and 5.1, respectively.

Synchronizing deterministic presentations Jonoska [12] introduced synchronizing
deterministic presentations, as defined above: for every state q �Q, there is a synchroniz-
ing word that sends every state to q. The shift spaces given by synchronizing deterministic
presentations slightly generalize those given by irreducible deterministic presentations
while retaining serveral nice properties. For example, synchronizing deterministic pre-
sentations share the minimization properties of the class of DFAs: every synchronizing
deterministic presentation has a unique minimal equivalent synchronizing deterministic
presentation that is computable in polynomial time. For irreducible deterministic presen-
tations, it is known that EQUALITY and SFT are in P. We show that the algorithms for the
irreducible case generalize cleanly to the synchronizing case, implying that EQUALITY and
SFT are in P for synchronizing determinstic presentations (Sections 3.5 and 3.4). Inter-
estingly, although SUBSHIFT is in P for irreducible deterministic presentations, SUBSHIFT

is PSPACE-complete for synchronizing deterministic presentations (Remark 4.12).
Not all sofic shifts have synchronizing deterministic presentations. In fact, we show

that the problem of deciding whether a sofic shift has a synchronizing deterministic pre-
sentation, ∃SDP, is PSPACE-complete (Section 4.1). For irreducible sofic shifts, minimal
synchronizing deterministic presentations and minimal deterministic presentations are
the same. For reducible sofic shifts, however, these minimal presentations are not neces-
sarily the same. Indeed, we show that a minimal synchronizing deterministic one can be
exponentially larger than a minimal deterministic one (Section 5.2).

2 Background and Setting

2.1 Shift spaces and presentations

Here, we introduce basic notions about shift spaces, sofic shifts, and presentations. Def-
initions and notation follow Lind and Marcus [17].
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Let Σ be a finite set. We refer to a finite sequence as a word, and we denote by Σ∗

the set of words over Σ. A subset of Σ∗ is called a language. For w � Σ∗, we denote the
length of w as |w|. We denote the empty word as ε, and note that |ε|= 0 and ε � Σ∗. The
full Σ-shift is the set ΣZ of bi-infinite sequences over Σ. Let x � ΣZ. For i ≤ j, we denote
x[i, j] ¬ x i x i+1 . . . x j. We say a word w appears in x if there are i and j with x[i, j] = w. For
a collection of words F ⊆ Σ∗, we define XF ¬ { x � ΣZ : no word in F appears in x }. A
shift space is a subset X ⊆ ΣZ of the full Σ-shift such that there is a collection of words F
with X = XF . A shift of finite type (SFT) is a shift space X = XF for some finite set F .

For a subset X ⊆ ΣZ of the full Σ-shift, we define the language B(X ) of X to be the set
of words that appear in some x � X , i.e., B(X ) ¬ { x[i, j] : x � X , i ≤ j }. Shift spaces are
characterized by their languages: for every shift space X ⊆ ΣZ, one has that X = XΣ∗\B(X ).
Thus, for shift spaces X and Y , if B(X ) = B(Y ), then X = Y [17, Proposition 1.3.4].
Additionally, one can easily show inclusion is also respected: B(X ) ⊆ B(Y ) if and only if
X ⊆ Y . Finally, for u � Σ∗, we define the follower set of u as the set FX (u) ¬ {w � Σ∗ :
uw � B(X ) }.

To define sofic shifts, we will work with edge-labeled, directed multigraphs, where
self loops and multiple edges between vertices are permitted. Formally, a labeled graph G
consists of a finite set Q of vertices (or states), a finite set E of edges, functions i : E→Q and
t : E → Q, assigning each edge an initial and terminal vertex, and a function L: E → Σ,
assigning each edge a label. For a given graph G, the symbols QG, EG, iG, tG, and LG

will refer to the above sets and functions for the graph G. Additionally, we define the
alphabet of G as the set AG of labels appearing on edges in G (i.e. AG ¬ LG(EG)). When
the labels are irrelevant, we will sometimes call a labeled graph a graph.

If G is a labeled graph and P ⊆Q is a subset of vertices, then the subgraph induced by
P (in G) is the labeled graph H given by QH , EH , iH , tH ,LH , where: QH ¬ P; EH ¬ { e �
EG : iG(e) � P, tG(e) � P }; iH ,tH are iG, tG restricted to EH ; and LH is LG restricted to QH .

Let G be a labeled graph. A path in G is a finite sequence π = e1 . . . en of edges with
tG(ei) = iG(ei+1) for i = 1, . . . , n−1. We assign iG(π)¬ e1 and tG(π)¬ en, and sayπ starts
at iG(π) and ends at tG(π). Additionally, we assign LG(π) ¬ LG(e1) . . .LG(en), and say
LG(π) is the label of π. Similarly, a bi-infinite path in G is a bi-infinite sequence x � EZG of
edges with tG(x i) = iG(x i+1) for all i � Z. For a bi-infinite path x in G, we assign the label
of x as the bi-infinite sequence LG(x) �AZG with LG(x)i ¬ LG(x i). For a vertex, q we de-
fine the follower set of q in G as the set FG(q)¬ {LG(π) : π is a path in G starting at q }.3

We now have the necessary definitions to define sofic shifts. For a labeled graph G,
we assign it the shift space

XG ¬ {LG(x) : x is a bi-infinite path in G }.

A sofic shift is a shift space X such that X = XG for some labeled graph G, and we say G
is a presentation of X and that X is the sofic shift presented by G. For a proof that XG is
actually a shift space, see Lind and Marcus [17, Theorem 3.1.4].

3Under this definition, the empty path ε, i.e., the empty sequence of edges, is a valid path in G but one
where iG and tG are undefined. To rectify this omission, for every vertex q �QG , we declare εq to be a path
such that the length of εq is 0, εq starts and ends at q, and L(εq) = ε.
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Let G be a labeled graph. For a given path π in G, it could be the case that LG(π) is
not in the language of XG, as πmight not appear in a bi-infinite path. We say a vertex q in
G is stranded if there is no edge starting at q or if there is no edge ending at q. If no vertex
is stranded, then we say G is essential. When G is essential, every path appears in a bi-
infinite path, so LG(π) is always in the language of XG. If one removes a stranded vertex
from a presentation, the sofic shift presented by the resulting presentation is the same as
the one presented by the original presentation. Thus, every sofic shift has an essential
presentation, which can be obtained by iteratively removing stranded vertices until no
more exist [17, Proposition 2.2.10]. We therefore make the following convention: a
presentation refers to an essential labeled graph. We will still refer to labeled graphs as
being potentially nonessential; the distinction is needed for the algorithms in Section 3,
where we may call our algorithms on nonessential graphs (line 7 of Algorithm 3).

Let G be a labeled graph. We say G is deterministic (also called right-resolving) if for
every vertex q and every a � AG, there is at most one edge labeled a starting at q. If for
every vertex q and a � AG there is exactly one edge labeled a starting at q, we say G is
fully deterministic. If G is deterministic, one can show by induction that for every vertex
q and word w, if π is a path starting at a vertex q and LG(π) = w, then π is the unique
path starting at q with LG(π) = w. This observation motivates the following definition:
if there is some path π starting at q with LG(π) = w, we define q ·w¬ t(π), otherwise, if
there is no such π, we leave q · w undefined. We call · the transition action. Because of
determinism, the transition action is a well-defined partial operation between the vertices
of G and words over the alphabet of G, and q ·w is defined if and only if w � FG(q). The
transition action satisfies the following useful properties, for any state q �QG and words
u, v �A∗G:

(i) uv � FG(q) if and only if u � FG(q) and v � FG(q · u);
(ii) if uv � FG(q), then q · uv = (q · u) · v.

When G is fully deterministic, q ·w is defined for all q and w �A∗G, as then FG(q) =A∗G.
The transition action naturally extends to a total operation between subsets of vertices

of G and words over the alphabet of G: for each subset S ⊆ QG of vertices and word w,
we set S · w ¬ {q · w : q � S, w � FG(q) }. Every sofic shift therefore has a deterministic
presentation [17, Theorem 3.3.2], using the same idea as the subset construction from
automata theory [14]. By definition, the transition action on subsets is monotonic and
distributes over union: S ⊆ T implies S · w ⊆ T · w and (S ∪ T ) · w = (S · w)∪ (T · w) for
all S, T , and w.

2.2 Types of presentations

Let G be a deterministic labeled graph and let w be a word. We say w is synchronizing for
G if QG ·w= {r} for some vertex r �QG. In this case, we say w synchronizes to r (in G).
We say a vertex q is synchronizing if there is a word that synchronizes to q. We say G is
synchronizing if every vertex in G is synchronizing. Let X be a shift space. An intrinsically
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synchronizing word w for X is a word w � B(X ) such that whenever uw, wv � B(X ), then
uwv � B(X ). If w is synchronizing for G, then w is intrinsically synchronizing for XG, but
the converse need not hold; see Lemma 2.2.

Let X be a shift space. We say X is irreducible if for every u, v � B(X ), there is a word
w such that uwv � B(X ); if X is not irreducible, then we say X is reducible. For a graph G,
we say G is irreducible (or strongly connected) if for every pair of vertices p and q, there
is a path starting at p and ending at q. If G is not irreducible, we say G is reducible.
One can easily show that if G is irreducible, then XG is irreducible. However, XG may be
irreducible even if G is reducible. (See Figure 1.)

Let G be a graph, and let p and q be vertices in G. We say q is reachable from p
if there is a path starting at p and ending at q. Under the equivalence relation where
p ≈ q when q is reachable from p and q is reachable from q, the equivalence classes are
called irreducible components as the subgraphs induced by them are irreducible. We say
an irreducible component C is initial if whenever q is reachable from p and q � C , then
p � C . Dually, we say a irreducible component C is terminal if whenever if q is reachable
from p and p � C , then q � C .

Let G be a labeled graph. We say two vertices p and q in G are follower-equivalent if
FG(p) = FG(q), an equivalence relation ∼. We say G is follower-separated if no distinct
pair of vertices are follower equivalent. Given a labeled graph G, the follower-separation
of G is the the labeled graph G/∼ whose vertices are the follower-equivalence classes
of G and with exactly one edge labeled a between two classes C1 and C2 if and only if
there is an edge labeled a in G from a vertex in C1 to a vertex in C2. Informally, the
follower-separation of G collapses vertices in a given follower-equivalence class into a
single vertex. The follower-separation of G enjoys the following properties: we have G/∼
is follower-separated and XG = XG/∼; if G is deterministic, then G/∼ is deterministic; if
G is essential, then G/∼ is essential [17, Lemma 3.3.8]; if G is synchronizing, then G/∼
is synchronizing [12, Proposition 4.3]. In particular, every sofic shift has a follower-
separated, deterministic presentation.

The notion of follower-equivalence is similar to the notion of equivalent states in
deterministic finite automata (DFA; see Sections 1.1 and 4). In fact, one may reduce the
problem of computing follower-equivalence to computing equivalent states in DFA, as
follows. Add a “sink” state to G, and edges to the sink state to make G fully deterministic
(c.f. Section 3.1). Now consider the resulting graph as a DFA, with an arbitrary initial
state, and where every state but the sink state is an accepting state. One can show that
two states in G are follower-equivalent if and only if they are equivalent as states in the
constructed DFA. Therefore, one can use Hopcroft’s algorithm for state equivalence in
DFAs to compute follower-equivalences in polynomial time [11].

2.3 Basic results

In this section, we discuss several useful facts which we use throughout the paper. To
begin, the following statements about a deterministic presentation G establish basic re-

8



lationships between its transition action, follower sets FG and FXG
, the language B(XG),

and synchronizing words for G. 4 The statements follow immediatly from the definitions.

Proposition 2.1. Let G be a deterministic presentation. Then, we have

(i) w � B(XG) if and only if QG ·w 6=∅;

(ii) B(XG) =
⋃

q�Q FG(q);
(iii) FXG

(w) =
⋃

q�Q·w FG(q);
(iv) if w is synchronizes to r in G, then FXG

(w) = FG(r);
(v) if w is intrinsically synchronizing for XG and w � FXG

(u), then FXG
(uw) = FXG

(w).

Next, we review results of Jonoska [12] about synchronizing deterministic presen-
tations. First, we state a useful result about the correspondence between synchronizing
and intrinsically synchronizing words in synchronizing deterministic presentations. For
deterministic presentations in general, only the forward implication of this result holds.
The following is essentially Proposition 9.5 of Jonoska [12].

Lemma 2.2. Let G be a follower-separated, synchronizing deterministic presentation.
Then, w is synchronizing for G if and only if w is intrinsically synchronizing for XG. 5

Proof. Suppose w is synchronizing for G, and let uw, wv � B(XG). As w is synchronizing
for G, by Proposition 2.1(iv), it follows that there is a vertex r such that FXG

(uw) = FG(r)
and v � FG(r). Thus, we have v � FG(uw) so uwv � B(XG).

Conversely, suppose w is intrinsically synchronizing for XG. Let p and q be vertices
in G with w � FG(p) and w � FG(q). As G is synchronizing, let up and uq be words
synchronizing to p and q in G, respectively. We next show that FG(p · w) ⊆ FG(q · w).
Let v � FG(p · w), so that wv � B(XG). As uq synchronizes to q in G and w � FG(q), we
have uqw � B(XG). As w is intrinsically synchronizing for XG, we have uqwv � B(XG), i.e.
QG ·uqwv 6=∅. But as QG ·uqw= {q ·w}, we have v � FG(p ·w). Thus, FG(p ·w) ⊆ FG(q ·w);
moreover, the same argument swapping the roles of p and q gives FG(q · w) ⊆ FG(p · w)
and therefore FG(p ·w) = FG(q ·w). As G is follower-separated, we conclude p ·w= q ·w,
implying that w is synchronizing for G.

The following characterization of when a sofic shift has a synchronizing deterministic
presentation is slightly modified from Theorem 8.13 and Corollary 9.6 in Jonoska [12].

Theorem 2.3. Let X ⊆ ΣZ be a sofic shift. Then, X has a synchronizing deterministic
presentation if and only if for every u � B(X ) there is an intrinsically synchronizing word
w for X such that u � FX (w).

4Recall that a presentation refers to an essential labeled graph, a necessary condition here, as these
statements do not necessarily hold if G is nonessential.

5We remind the reader that our notion of synchronization is different from “careful” sychronization
from automata theory; see “Synchronizing words” in § 1.1.
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Proof. Let G be a synchronizing deterministic presentation for X , and let w � B(X ). By
Proposition 2.1(ii), there is a vertex q such that w � FG(q). As G is synchronizing, there
is a word u that synchronizes to q. By Proposition 2.1(iv), we have FX (u) = FG(q), so
w � FX (u). By Lemma 2.2, we also have that u is intrinsically synchronizing for X .

Conversely, suppose for every u � B(X ) there is an intrinsically synchronizing word
w for X such that u � FX (w). Let C be the collection of the follower sets of intrinsically
synchronizing words for X , i.e.

C ¬ { FX (w) : w is intrinsically synchronizing for X }.

This collection is finite since the collection of all follower sets of a sofic shift is finite
[17, Theorem 3.2.10]. We will construct a synchronizing deterministic presentation G
whose vertex set is C. For each a � Σ and FX (w) � C, if a � FX (w), add an edge labeled
a from FX (w) to FX (wa). This definition is well-defined, i.e., does not depend on the
choice of w, by the following two facts, both assuming a � FX (w): if FX (w) = FX (w′),
then FX (wa) = FX (w′a), and wa is intrinsically synchronizing (so that FX (wa) � C). By
construction, G is deterministic. One can also establish the following properties of G: for
FX (u) � C, we have FG(FX (u)) = FX (u), and if w � FX (u), then FX (u) ·w= FX (uw).

We next show that G is synchronizing. Let FX (w) � C, so that w is intrinsicaly syn-
chronizing for X . We will show that w synchronizes to FX (w) in G. Let FX (u) � C, and
suppose w � FG(FX (u)). As w is intrinsically synchronizing and w � FX (u), by Proposition
2.1, we have that FX (uw) = FX (w). This implies that FX (u) ·w= FX (uw) = FX (w). Thus,
for any FX (u) � C with w � FG(FX (u)), we have FX (u) · w = FX (w), so w synchronizes to
FX (w) in G.

It remains to show X = XG. By construction, the follower set of a vertex in G is a
follower set of a word in X , so B(XG) ⊆ B(X ). Conversely, let u � B(X ). By our initial
assumption, there is an intrinsically synchronizing word w for X with u � FX (w). As
FG(FX (w)) = FX (w), we have u � FG(FX (w)), i.e., there is a vertex q in G such that
u � FG(q) ⊆ B(XG). Thus, we have B(X ) ⊆ B(XG) and consequently B(X ) = B(XG).

The next result says when the sofic shift presented by a (possibly reducible) deter-
ministic presentation is irreducible. The forward implication of this result follows from
Lemma 6.4 of Jonoska [12], and the reverse implication follows immediately from the
irreducibility of H.

Theorem 2.4. Let G be follower-separated, deterministic presentation. Let H be the
subgraph induced by the synchronizing vertices of G. Then, XG is irreducible if and only
if XG = XH and H is induced by a terminal irreducible component.

Finally, we state some facts about SFTs. The first is a characterization of when a shift
space is an SFT, and the second is a sufficient condition for when XG is an SFT for a
presentation G. Respectively, these correspond to Theorem 2.1.8 and Proposition 2.2.6
of Lind and Marcus [17].

Theorem 2.5. A shift space X is an SFT if and only if there exists an integer M ≥ 0 such
that every word w � B(X ) with |w| ≥ M is intrinsically synchronizing for X .
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Lemma 2.6. Let G be a presentation. If every edge in G is labeled uniquely, then XG is
an SFT.

3 Complexity Upper Bounds and Algorithms

In this section we detail polynomial-time algorithms for some problems in Table 1. In
particular, we give polynomial-time algorithms for SFT and EQUALITY for synchroniz-
ing deterministic presentations, and additionally for SYNCWORD and SUBSHIFT for irre-
ducible presentations. We also give a polynomial-time algorithm to test whether a given
deterministic presentation is synchronizing. Some algorithms follow from known results,
whereas others, to our knowledge, are novel to this work.

3.1 Finding synchronizing words

Eppstein [9] gives a polynomial-time algorithm for finding synchronizing words in fully
deterministic presentations. Here, we show the algorithm can be extended to irreducible
deterministic presentations, implying that SYNCWORD is in P for such presentations. As
we show in Theorem 4.16, SYNCWORD is PSPACE-complete for general presentations.

Theorem 3.1. Given an irreducible deterministic labeled graph G, Algorithm 1 returns
a synchronizing word for G if one exists, and nil otherwise.

To prove this result, we first introduce the notion of pair-synchronizing words. Let p
and q be vertices in a deterministic graph G. We say a word w is pair-synchronizing for p
and q if |{p, q} ·w|= 1, i.e., if there exists a vertex r �QG such that {p, q} ·w= {r}. This
condition breaks into the following three cases:

(i) w � FG(p) and w � FG(q);
(ii) w � FG(p) and w � FG(q);

(iii) w � FG(p)∩ FG(q) and p ·w= q ·w.

If X ⊆ QG is a subset of vertices with |X | ≥ 2 and w is pair-synchronizing for distinct
p, q � X , then we have |X | > |X · w| ≥ 1. This property motivates Algorithm 1. The
algorithm operates by iteratively building a word u and tracking a subset X of vertices,
maintaining the invariants that QG · u = X and |X | ≥ 1. On each iteration of the main
loop, the algorithm searches for a pair-synchronizing word w for some pair of distinct
vertices in X , and if one is found, then updates u to uw and X to X · w. The property
above ensures that the invariants of X and u are maintained. Since |X | must decrease by
at least 1 in each iteration, the algorithm returns after at most |QG| iterations.

Proof of Theorem 3.1. If Algorithm 1 returns a non-nil value, it must have exited at line 10,
which implies |X | ≤ 1. As the invariant that |X | ≥ 1 was maintained throughout the al-
gorithm, we must have |QG · u| = 1, so the word u that was returned is a synchronizing
word for G.

11



Conversely, if Algorithm 1 returned nil, it must have exited at line 9, which implies
that there are two distinct vertices such that there is no pair-synchronizing word for them.
Yet, as we show next, if G has a synchronizing word, then every pair of distinct vertices
has a pair-synchronizing word. Thus, G must not have a synchronizing word.

Let p and q be distinct vertices in G, and suppose w is a synchronizing word for G.
As w is synchronizing, there is some vertex s with w � FG(s). As G is irreducible, there
is a word u such that p · u = s, which implies that uw � FG(p). If uw � FG(q), then uw is
a pair-synchronizing for p and q under case (i) above. Otherwise, we have uw � FG(q).
As w is synchronizing, then p · uw = q · uw, so uw is still pair-synchronizing for p and q,
under case (iii).

Algorithm 1 Finding synchronizing words
Require: G is a deterministic graph

1: procedure SYNCHRONIZING-WORD(G)
2: X ←QG; u← ε
3: while |X | ≥ 2 do
4: choose distinct p, q � X
5: find a word w that is pair-synchronizing for p and q
6: if w exists then
7: X ← X ·w; u← uw
8: else
9: return nil

10: return u

To implement this Algorithm 1 in polynomial time (with respect to the size of its input
G), we need a method to compute a pair-synchronizing word for a given pair of vertices.
We give such a method using two auxillary graphs, the first of which encodes what words
are not within a follower set of a vertex, and the second of which encodes pairs of paths
sharing the same label.

If G is a labeled graph and Γ is an alphabet, the sink vertex graph of G with alphabet
Γ is the graph G0 constructed as follows. Start with the graph G, and add a new vertex 0
to G0. For every vertex q in G0 and ` � Γ , add an edge labeled ` from q to 0 if there is no
edge labeled ` starting at q. One can show that for w � Γ ∗ and q �QG, we have w � FG(q)
if and only if there is a path labeled w from q to 0 in G0.

If G and H are labeled graphs, then the label product graph of G and H is the graph
G ∗H whose vertices are QG ×QH and with an edge between (p1, p2) and (q1, q2) labeled
` if and only if there is an edge labeled ` from p1 to q1 in G and an edge labeled ` from
p2 to q2 in H. One can show that for w � (AG ∪AH)∗, there is a path labeled w from p1

to q1 in G and a path labeled w from p2 to q2 in G if and only if there is a path labeled w
from (p1, p2) to (q1, q2) in G ∗H.

Let G be a labeled graph, let G0 be the sink vertex graph of G with alphabet AG and
let G0 ∗ G0 be the label product graph of G0 and G0. With the properties of the auxillary
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graphs, one can show that the following conditions are equivalent to cases (i)-(iii) from
the pair-synchronizing definition.

(I) there is a path in G0 ∗ G0 from (p, q) to (r, 0) for some vertex r in G;

(II) there is a path in G0 ∗ G0 from (p, q) to (0, r) for some vertex r in G;

(III) there is a path in G0 ∗ G0 from (p, q) to (r, r) for some vertex r in G.

Using, say, a depth-first search, one can determine if there is a pair-synchronizing
word for a given pair of vertices by testing for the existence of a path satisfying one of
(I)-(III). The size of G0 ∗ G0 is O(|QG|2 · |AG|), so one can construct the graph and query
the existence of such path in polynomial time. Each iteration of Algorithm 1 therefore
takes polynomial time, and furthermore, as there are at most |QG| iterations, in total, the
algorithm will take polynomial time.

3.2 Testing for subshift

We now turn to the SUBSHIFT problem for deterministic presentations G and H where
G is irreducible. The key idea behind the algorithm is to try to find a word exhibiting
the fact that XG * XH . We say that w separates G from H if QG · w 6= ∅ while QH · w =
∅. When G and H are essential, the existence of such a word is equivalent to XG *
XH . Algorithm 2 adapts the algorithm for synchronizing words to find such separating
words, thus showing SUBSHIFT for G and H is in P when G is irreducible. We show in
Theorem 4.4 that the general problem is PSPACE-complete.

We state the correctness of Algorithm 2 for the more general case of labeled graphs,
which need not be essential, since we rely on that case for Theorem 3.3.

Theorem 3.2. Given deterministic labeled graphs G and H, where G is irreducible, Al-
gorithm 2 returns a word separating G from H if one exists, and returns nil otherwise.

Like in Algorithm 1, Algorithm 2 operates by iteratively building a word u. In addition,
the algorithm fixes a vertex p0 � QG, and maintains a vertex p � QG and subset X ⊆ QH

satisfying the invariants u � FG(p0), p0 · u = p, and QH · u = X . In each iteration of the
main loop, the algorithm searches for a word w such that w � FG(p) while w � FH(q) for
some q � X . If one is found, the algorithm updates u to uw, p to p · w, and X to X · w,
which maintains the invariants. As w � FH(q) and q � X , we have |X | > |X · w|, so the
algorithm again terminates in at most |QH | iterations.

Proof of Theorem 3.2. If Algorithm 2 returns a non-nil value, it must have exited at line 10,
so |X | = 0. The invariants give QH · u = X = ∅ and u � FG(p0), meaning QH · u = ∅ and
QG · u 6=∅. Thus, u separates G from H.

Conversely, if Algorithm 2 returns nil, it must have exited at line 9, which implies
there exist p �QG and q �QH such that there is no word w with w � FG(p) and w � FH(q).
We show below that, if some word separates G from H, then for every p′ �QG and q′ �QH ,
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there is a word w with w � FG(p′) and w � FH(q′). By contraposition, therefore, no word
separates G from H.

Suppose there is a word w separating G from H, so that we have QG · w 6= ∅ while
QH · w = ∅. Then, there is some vertex p∗ � QG such that w � FG(p∗) and w � FH(q′) for
every q′ � QH . Let p � QG and q � QH . As G is irreducible, there is some u � FG(p) such
that p · u = p∗, giving uw � FG(p). Let q′ ¬ q · u. By the above, w � FH(q′), and thus
uw � FH(q).

Algorithm 2 Subshift testing
Require: G is an irreducible deterministic labeled graph
Require: H is a deterministic labeled graph

1: procedure SEPARATING-WORD(G, H)
2: p0← any element in QG; p← p0; X ←QH ; u← ε
3: while |X |> 0 do
4: q← any element in X
5: find a word w such that w � FG(p) and w � FH(q)
6: if w exists then
7: p← p ·w; X ← X ·w; u← uw
8: else
9: return nil

10: return u

Analagously to Algorithm 1, we can implement Algorithm 2 in polynomial time by
noticing that the existence of a word w such that w � FG(p) and w � FH(p) is equivalent
to the existence of a path in G ∗H0 from (p, q) to (r, 0) for some vertex r in G, where H0

is the sink vertex graph of H with alphabet AG∪AH and G ∗H0 is the label product graph
of G and H0.

3.3 Testing for synchronizing presentations

With Algorithm 1 and Algorithm 2, we can now establish a polynomial-time algorithm for
checking if a given deterministic graph is synchronizing, given by Algorithm 3. The cor-
rectness of the algorithm is implied by the following characterization of a synchronizing
presentation.

Theorem 3.3. Let G be a deterministic labeled graph with vertex set Q. Then, G is
synchronizing if and only if for each initial irreducible component C , there exists (i)
a synchronizing word for the subgraph induced by C and (ii) a word separating the
subgraph induced by C from the subgraph induced by Q \ C .

Proof. Suppose G is synchronizing. Let C be an initial component of G, and fix r � C . As
G is synchronizing, let w be a word that synchronizes to r in G. As w is synchronizing
for G, there is some vertex p �Q such that p ·w= r. Since r � C and C is initial, we must
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have p � C . Thus C · w = {r}, establishing (i). As C is initial and r � C , we cannot have
q ·w= r for any q � C . We conclude (Q \ C) ·w=∅. As C ·w= {r} 6=∅, we have (ii).

Conversely, suppose for each initial irreducible component C , (i) there is a synchro-
nizing word uC for the subgraph induced by C and (ii) there is a word wC separating
the subgraph induced by C from the subgraph induced by Q \ C . Let r be any vertex in
G. Let C be an initial irreducible component such that r is reachable from every vertex
in C . Condition (i) gives C · uC = {p} for some p � C . Condition (ii) gives some vertex
q � C with wC � FG(q) such that q · wC � C and (Q \ C) · wC = ∅. As C is an irreducible
component and p, q � C , then there is some word x such that p · x = q. As q ·wC � C and
r is reachable from every vertex in C , there is some word y such that (q · wC) · y = r.
Combining the above with a straightforward calculation for Q \ C , we have

C · uC xwC y = {p} · xwC y = {q} ·wC y = {q ·wC} · y = {r},
(Q \ C) · uC xwC y = ((Q \ C) · uC x) ·wC y ⊆ (Q \ C) ·wC y =∅ · y =∅.

Thus, Q · uC xwC y = (C · uC xwC y) ∪ ((Q \ C) · uC xwC y) = {r}. As r was arbitrary, G is
synchronizing.

Algorithm 3 Recognizing synchronizing presentations
Require: G is a deterministic labeled graph

1: procedure IS-SYNCHRONIZING(G)
2: C← initial irreducible components of G
3: for C � C do
4: G[C]← subgraph induced by C
5: G[C]← subgraph induced by QG \ C
6: u← SYNCHRONIZING-WORD(G[C])
7: v← SEPARATING-WORD(G[C], G[C])
8: if u is nil or v is nil then
9: return false

10: return true

3.4 SFT testing for synchronizing deterministic presentations

The proof of Theorem 3.4.17 of Lind and Marcus [17] implicitly describes a polynomial-
time algorithm to test whether an irreducible sofic shift, given as an irreducible deter-
ministic presentation, is an SFT, and Schrock [21] gives a similar algorithm explicitly. We
extend these algorithms to synchronizing deterministic presentations.

For a deterministic labeled graph G, we define the labeled graph Ĝ as the label prod-
uct graph G ∗ G (see Section 3.1) with the diagonal vertices removed, i.e., those of the
form (q, q). Given a follower-separated synchronizing deterministic presentation G, the
algorithm to recognize if XG is an SFT is to simply test if the graph Ĝ is acyclic. (A cycle
is a nonempty path that starts and ends at the same vertex, and we say a graph is acyclic
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if it has no cycle.) This algorithm runs in polynomial time, as the size of Ĝ is quadratic
with respect to the size of G, and it is well-known that one can test whether a directed
graph is acyclic in linear time.

To show the correctness of this algorithm, we first show that Ĝ characterizes the
nonsynchronizing words of G.

Lemma 3.4. Let G be a deterministic presentation and let w � B(XG). Then, there is a
path in Ĝ labeled w if and only if w is not synchronizing for G.

Proof. Suppose there is a path π in Ĝ labeled w, from (p, q) to (p′, q′). Then, we have
p 6= q and p′ 6= q′, and p · w = p′ and q · w = q′. Thus, QG · w ⊇ {p, q} · w = {p′, q′}. As
p′ 6= q′, we have |QG · w| ≥ 2 so w is not synchronizing for G. Conversely, if w was not
synchronizing for G, then |QG · w| ≥ 2. Let p′, q′ � QG · w be distinct. Let p, q � QG such
that p · w = p′ and q · w = q′. If for some factoring w = uv we had p · u = q · u, then
p′ = p ·w= (p · u) · v = (q · u) · v = q ·w= q′, a contradiction to p′ and q′ being distinct.
Thus, there is a path labeled w in G∗G from (p, q) to (p′, q′) which does not pass through
any diagonal vertices, meaning it is a labeled path in Ĝ.

Because of the correspondence of synchronizing and intrinsically synchronizing words
in follower-separated synchronizing deterministic presentations, we can use Ĝ to char-
acterize when XG is an SFT.

Theorem 3.5. Let G be a follower-separated synchronizing deterministic presentation.
Then, XG is an SFT if and only if Ĝ is acyclic.

Proof. Suppose Ĝ had a cycle. By Theorem 2.5, to show that XG is not an SFT, it suffices
to show that for every M ≥ 0, there exists a word w � B(XG) with |w| ≥ M that is not
intrinsically synchronizing for XG. Let M ≥ 0. Since Ĝ has a cycle, in particular it has
a path of any length. Let π be a path in Ĝ of length at least M , and let w be its label.
We have w � B(XG) and |w| ≥ M . By Lemma 3.4, w is not synchronizing for G, and by
Lemma 2.2, w is therefore not intrinsically synchronizing for XG.

Conversely, suppose Ĝ is acyclic, and let M ¬ |Q Ĝ|. By Theorem 2.5, to show XG

is an SFT, it suffices to show that every word w � B(XG) with |w| ≥ M is intrinsically
synchronizing for XG. Let w � B(XG) and suppose |w| ≥ M . Suppose for a contradiction
that w is not intrinsically synchronizing for XG. By Lemmas 2.2 and 3.4 once again, there
is a path in Ĝ labeled w, of length |w| ≥ M . As G is acyclic, however, every path in Ĝ must
have length strictly less than |Q Ĝ| = M , a contradiction. Thus, w must be intrinsically
synchronizing for XG.

Remark 3.6. Let X be a shift space and M ≥ 0. Say X is M-step if every word w � B(X )
with w ≥ M is intrinsically synchronizing for X . With this definition and rephrasing
Theorem 2.5, a shift space is an SFT if and only if it is M -step for some M ≥ 0. The
converse direction then implies that if Ĝ is acyclic, then it must be (|QG|2 − |QG|)-step,
as |Q Ĝ| = |QG|2 − |QG|. Thus, if G is a follower-separated synchronizing deterministic
presentation, then XG is an SFT if and only if it is (|QG|2 − |QG|)-step. (Cf. [17, Theorem
3.4.17].)
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3.5 Isomorphism and equality

A homomorphism between deterministic labeled graphs G and H is a mapping ϕ : QG →
QH that preserves the transition action: we have FG(q) = FH(ϕ(q)) andϕ(q·w) = ϕ(q)·w
for all q � QG and w � FG(q). An isomorphism is a bijective homomorphism. In gen-
eral, the problem of deciding isomorphism between deterministic labeled graphs is GI-
complete, meaning it has a polynomial-time many-one reduction to and from the graph
isomorphism problem on unlabeled graphs [5]. For follower-separated graphs, however,
the problem is in P. To show this, we need the following lemma, which states that
preserving the follower set of a vertex is sufficient for being a homomorphism onto a
follower-separated graph.

Lemma 3.7. Let G and H be deterministic labeled graphs, and ϕ : QG → QH a map
between their vertices. If H is follower-separated, then ϕ is a homomorphism if and only
if FG(q) = FH(ϕ(q)) for all q �QG.

Proof. That homomorphisms preserve follower sets follows directly from the definition.
For the converse, suppose FG(q) = FH(ϕ(q)) for all q � QG. Let q � QG and w � FG(q). As
H is follower-separated, it suffices to show that FH(ϕ(q ·w)) = FH(ϕ(q) ·w) to show that
ϕ(q ·w) = ϕ(q) ·w. For any u, we have

u � FH(ϕ(q ·w))
⇐⇒ u � FG(q ·w)
⇐⇒ wu � FG(q)

⇐⇒ wu � FH(ϕ(q))

⇐⇒ u � FH(ϕ(q) ·w).

Thus FH(ϕ(q ·w)) = FH(ϕ(q) ·w).

Now, given two follower-separated deterministic labeled graphs G and H, we can test
if they are isomorphic by taking the disjoint union graph G+H, computing the follower-
equivalences of G + H, and testing if all the follower-equivalence classes are pairs (i.e.
sets of size 2). As G and H are follower-separated, if two distinct vertices in G + H are
follower-equivalent, then one of them must be a vertex from G and the other from H.
Thus, if all the follower-equivalence classes are pairs, then a bijective map ϕ : QG → QH

that preserves the follower set of a vertex can be read off from the pairs. By Lemma 3.7,
this map is an isomorphism. Conversely, if ϕ : QG → QH is an isomorphism, then for
p �QG and q �QH with FG(p) = FH(q), then FH(ϕ(p)) = FH(q) and so ϕ(p) = q. In other
words, for any p � QG and any q � QH follower-equivalent to p, then ϕ(p) = q. This
implies that all the follower-equivalence classes of G +H are pairs.

Since the follower set of a vertex is preserved under an isomorphism, if G and H
are isomorphic deterministic presentations, then XG = XH . However, even for follower-
separated presentations, the converse is not necessarily true. (See Figure 1.) But Jonoska
[12, Corollary 5.4] proved that any two follower-separated synchronizing deterministic
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Figure 1: A reducible, follower-separated, deterministic presentation G. Let H be the
subgraph induced by q2 and q3, which is irreducible and follower-separated. Then, XG =
XH , but G and H are not isomorphic.

presentations of the same sofic shift are isomorphic, which implies that recognizing iso-
morphism is sufficient for recognizing if XG = XH when G and H are follower-separated
synchronizing deterministic presentations. Furthermore, this implies that EQUALITY is
in P for synchronizing deterministic presentations, as given synchronizing deterministic
presentations G and H, to determine if XG = XH , one can test if G/∼ and H/∼, the
follower-separations of G and H, are isomorphic.

4 Complexity Lower Bounds

In the following sections, we show all the decision problems in Table 1 are PSPACE-hard.
In Appendix A, we show all those decision problems are in PSPACE. As a result, we have
the following.

Theorem 4.1. Every problem in Table 1 is PSPACE-complete.

To establish the hardness of these decision problems, we will leverage hardness results
from the automata theory literature. To relate automata to sofic shifts, we will treat
automata as a type of labeled graph. Formally, we define a deterministic finite automaton
(DFA) to be a fully deterministic labeled graph M with a designated initial state s � QM

and set of accepting states F ⊆ QM . For DFAs, following convention from the automata
literature, we will write the transition action as a function δ(q, w)¬ q ·w. The language
of M is the set L(M) ¬ {w � A∗M : δ(s, w) � F }. Note that L(M) may differ from B(XM),
the language of the sofic shift presented by M . In fact, as DFAs are fully deterministic,
we always have B(XM) =A∗M , meaning XM is always the full shift.

We will reduce from the DFA intersection nonemptiness problem (DFAINT) and DFA
union universality problem (DFAUNION), both of which arePSPACE-complete. The DFAINT

problem asks whether, given n DFAs M1, . . . , Mn over a common input alphabet Σ, is
⋂n

i=1 L(Mi) 6=∅? Similarly, the DFAUNION problem asks whether, given n DFAs M1, . . . , Mn

over a common input alphabet Σ, is
⋃n

i=1 L(Mi) = Σ∗? Kozen [13] showed that DFAINT is
PSPACE-complete; one can see that DFAUNION is PSPACE-complete from the following
two facts: (i) the complement of DFAINT is PSPACE-complete, and (ii)

⋂n
i=1 L(Mi) =∅ if

and only if
⋃n

i=1 L(Mi) = Σ∗, where Mi is Mi with the accepting states being the comple-
ment of the accepting states of Mi. Within our reductions, for an instance M1, . . . , Mn of
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DFAUNION or DFAINT, we will let Q i, δi, si, and Fi denote the set of states, transition func-
tion, initial state, and set of accepting states for Mi. (The Q i are assumed to be pairwise
disjoint.)

4.1 Hardness of equality, containment, irreducibility, and SDP exis-
tence

In this section, we give a single polynomial-time reduction, which reduces DFAUNION

simultaneously to SUBSHIFT, EQUALITY, IRREDUCIBILITY, and ∃SDP, giving the following.

Theorem 4.2. SUBSHIFT, EQUALITY, IRREDUCIBILITY, and ∃SDP are PSPACE-hard.

The idea behind the reduction is to create pre-initial states pi for each DFA Mi, and
chain these together in a loop, with special symbols Â into and Ã out of each DFA. We
then add a special state p∗ in its own initial irreducible component, whose follower set
contains {ÂwÃ : w � Σ∗ }. (See Figure 2 for a visualization.) Letting H be the whole
graph minus the special state p∗, we can therefore test whether the DFA languages union
to Σ∗ by asking whether XG = XH , i.e., whether p∗ was needed to cover all possible
strings w � Σ∗ between Â and Ã. Equivalently, we could test XG ⊆ XH , since the reverse
inclusion is immediate. As H is an irreducible presentation, we could also test whetherXG

is irreducible. Finally, the reduction to ∃SDP follows for the following reasons: first, H is
a synchronizing determinstic presentation (asÃ`i−1 synchronizes to pi for all i), so when
the langauges of the DFAs union toΣ∗, H is a synchronizing deterministic presentation for
XG; second, when there is a word w � Σ∗ not in the language of any of the DFAs, one can
show XG does not have a synchronizing deterministic presentation by invoking Theorem
2.3 and showing that any u such that uÂwÃ � B(XG) is not intrinisically synchronizing.

Reduction A. Let M1, . . . , Mn be an instance to the DFAUNION problem. Construct the
deterministic presentation G as follows. For each i = 1, . . . , n,

1. add a state pi (the ith pre-initial state) to G;

2. embed Mi into G;

3. add a self loop labeled ∗ on pi;

4. add an edge labeled Â from pi to the corresponding initial state si;

5. for each accepting state q � Fi, add an edge labeled Ã from q to p1;

6. for each state q �Q i, add an edge labeled ` from q to si.

Then, add two states p∗ and s∗, add a self loop labeled ∗ on p∗, add an edge labeled Â
from p∗ to s∗, and add an edge labeled Ã from s∗ to p1. For each a � Σ, add a self loop
labeled a on s∗. For each i = 1, . . . , n− 1, add an edge labeled ` from pi to pi+1. Finally,
add an edge labeled ` from pn to s∗. (See Figure 2.)

Let G be the deterministic presentation obtained from Reduction A on an instance
M1, . . . , Mn. Without loss of generality, for each i, we may assume that (I) Fi 6= ∅, as
otherwise, if Fi = ∅, then L(Mi) = ∅ so thus L(Mi) does not contribute to the union;
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Figure 2: Schematic of Reduction A. The edges labeled ` from each state q �Q i to si are
not pictured.

and (II) every state q �Q i is reachable from si, as when modifying Mi to M ′
i by removing

those unreachable states, we have L(Mi) = L(M ′
i ). Let H be the subgraph in G induced

by every vertex but p∗. The following lemma summarizes several useful properties of the
reduction.

Lemma 4.3. The following hold of Reduction A.

(i) H is synchronizing and irreducible, and G is essential;

(ii) Σ∗ ⊆ FG(q) for all q �
⋃n

i=1 Q i;

(iii) ÂwÃ � F(pi) if and only if w � L(Mi);
(iv) ÂwÃ � B(XH) if and only if w �

⋃n
i=1 L(Mi).

(v) If
⋃n

i=1 L(Mi) 6= Σ∗, there exists w � Σ∗ with ÂwÃ � B(XG) \B(XH).

Proof. For (i), by assumption (I), there exists a state in Q i with an edge labeled Ã to p1.
By assumption (II), every state is reachable from si, so there exists a path from si to p1.
Thus for any state in Q i, one can always find a way to p1 by returning to si via an ` edge,
and then finding a way to p1. As p1 can reach any other vertex in H, any state in Q i can
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reach any other vertex in H. From this, we can see that H is irreducible, and it follows
that G is essential. We have that H is synchronizing as QG ·Ã= {p1} and every vertex in
H is reachable from p1.

For the other statements, first note that each of the Mi are emulated by the transition
action of G in the following way: for q � Q i and w � Σ∗, we have w � FG(q) and q · w =
δi(q, w) and q � Fi if and only ifÃ � FG(q). Thus, (ii) follows. For (iii), note that pi ·Â= si

and wÃ � FG(si) if and only if w � L(Mi); thus, ÂwÃ � FG(pi) if and only if w � L(Mi). For
(iv), note that QH ·Â = {s1, . . . , sn}; thus, by the previous observations, ÂwÃ � B(XH) if
and only if w �

⋃n
i=1 L(Mi). Finally (v) follows from (iv) and the fact that ÂwÃ � B(XG)

for all w � Σ∗.

With these properties, we can establish the correctness of Reduction A. The first the-
orem shows that it reduces DFAUNION to SUBSHIFT.

Theorem 4.4.
⋃n

i=1 L(Mi) = Σ∗ if and only if XG ⊆ XH .

Proof. Suppose
⋃n

i=1 L(Mi) = Σ∗. To establish XG ⊆ XH , we only need to show FG(p∗) ⊆
B(XH). Let u � FG(p∗). If p∗ · u = p∗, then by construction, we have u = ∗m for some
m ≥ 0, and as u � FG(p1), then u � B(XH). Otherwise, if p∗ · u = s∗, then we can factor
u into u = ∗mÂw, where m ≥ 0 and w � Σ∗. Similarly, by Lemma 4.3(ii), we can find
u � FG(p1), so u � B(XH). Finally, if p∗ · u � {p∗, s∗}, then we can factor u into u = u1u2,
where u1 = ∗mÂwÃ for some m ≥ 0 and w � Σ∗, p∗ · u1 = p1, and u2 � FG(p1). As
⋃n

i=1 L(Mi) = Σ∗, Lemma 4.3(iii) implies ÂwÃ � B(XH), and in particular, there is some
i such that ÂwÃ � FG(pi). As pi ·ÂwÃ = pi · ∗mÂwÃ = pi · u1 = p1, we have u1 � FG(pi)
and u2 � FG(pi · u1). Thus u1u2 = u � FG(pi), and u � B(XH).

Conversely, Lemma 4.3(v) gives some w � Σ∗ with ÂwÃ � B(XG) \ B(XH). Hence,
B(XG) * B(XH), and thus XG * XH .

Immediately, as XH ⊆ XG, we have that DFAUNION reduces to EQUALITY.

Corollary 4.5.
⋃n

i=1 L(Mi) = Σ∗ if and only if XG = XH .

The reduction to IRREDUCIBILITY now follows as well.

Theorem 4.6.
⋃n

i=1 L(Mi) = Σ∗ if and only if XG is irreducible.

Proof. If
⋃n

i=1 L(Mi) = Σ∗, Corollary 4.5 implies XG = XH ; as XH is irreducible by
Lemma 4.3(i), so is XG. Conversely, Lemma 4.3(v) gives some w � Σ∗ with ÂwÃ �
B(XG)\B(XH). As Ã synchronizes to p1, for every u � FXG

(ÂwÃ), we have FXG
(ÂwÃu) =

FG(p1 · u). Furthermore, as p1 · u � QH , we have FG(p1 · u) ⊆ B(XH). Yet ÂwÃ � B(XH),
so we must have ÂwÃ � FG(p1 · u). Thus, for every u � FXG

(ÂwÃ), we have ÂwÃ �
FG(p1 · u) = FXG

(ÂwÃu). In other words, ÂwÃ � B(XG) but there is no word u such that
ÂwÃuÂwÃ � B(XG).

Remark 4.7. Let X be a shift space. Say X is mixing if for every u, v � B(X ), there is an
N such that for every n ≥ N , there is a word w with |w| = n and uwv � B(X ). Mixing
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implies irreducibility, so if XG is mixing, then XG is irreducible. Note that XH is mixing,
as given u, v � B(XH), one can find words w1, w2 such that uw1 synchronizes to p1 and
v � FG(p1 · w2), and as p1 · ∗m = p1 for every m, we have that uw1∗mw2v � B(XH) for
every m. Thus, XG is irreducible if and only if it is mixing, so deciding if the sofic shift
presented by a deterministic presentation is mixing is PSPACE-hard.

Similarly, say X is nonwandering if for every u � B(XG), there is a word w such that
uwu � B(X ). Irreducibility implies nonwandering, so if XG is irreducible, then XG is
nonwandering. Note that the proof of Theorem 4.6 shows that if

⋃n
i=1 L(Mi) 6= Σ∗, then

XG is not nonwandering. Thus, XG is irreducible if and only if it is nonwandering, so
deciding if the sofic shift presented by a deterministic presentation is nonwandering is
PSPACE-hard.

Finally, we show that Reduction A also reduces DFAUNION to ∃SDP.

Theorem 4.8.
⋃n

i=1 L(Mi) = Σ∗ if and only if XG has a synchronizing deterministic pre-
sentation.

Proof. If
⋃n

i=1 L(Mi) = Σ∗, then Corollary 4.5 implies XG = XH , and as Lemma 4.3(i) im-
plies H is synchronizing, then XG has a synchronizing deterministic presentation. Con-
versely, Lemma 4.3(v) gives some w � Σ∗ with ÂwÃ � B(XG) \ B(XH). Suppose for a
contradiction that XG has a synchronizing deterministic presentation. By Theorem 2.3,
there must be some u � B(XG) such that u is intrinsically synchronizing for XG and
ÂwÃ � FXG

(u). As ÂwÃ � B(XH), the only vertex in G with ÂwÃ in its follower set
is p∗. Therefore, ÂwÃ � FXG

(u) implies p∗ �QG · u. By construction, the only such u take
the form u = ∗k for some k ≥ 0. However, ∗k is not intrinsically synchronizing for XG:
we have Ã∗k � B(XG) and ∗kÂwÃ � B(XG) but as ÂwÃ � B(XH) and Ã∗k synchronizes
to a vertex in H, it must be the case that Ã ∗k ÂwÃ � B(XG). Thus, u= ∗k is not intrinsi-
cally synchronizing, a contradiction. We conclude that XG does not have a synchronizing
deterministic presentation.

4.2 Hardness of SFT Testing and Minimization

We now give a similar polynomial-time reduction, which reduces DFAUNION simultane-
ously to SFT and MINIMALITY, giving the following.

Theorem 4.9. The problems SFT and MINIMALITY are PSPACE-hard.

The reduction is similar in spirit to Reduction A. We still add edges labeled Ã out
of each DFA into a terminal state, but instead of adding edges labeled Â into the DFAs
from new pre-initial states, we instead add these edges from within the DFAs to their
corresponding initial states. We also add self loops on each DFA state labeled `. We
then add a special state s∗ in its own initial component, whose follower set contains
{wÃ : w � (Σ∪ {`})∗}. See Figure 3 for a visualization. The first observation we make is
that, if and only if the DFA languages union to Σ∗, the shift XG is presented by the graph
H in Figure 4. Since H presents an SFT, to show that we reduce to the SFT problem, we
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Figure 3: Schematic of Reduction B.

q1 q2Â,`,Σ ?
Ã

Figure 4: The graph H. As in Figure 3, the Σ above the self loop on q2 represents a self
loop labeled a for each a � Σ.

need only argue that XG is not an SFT when there is some word w not in the language of
any DFA. Because the ` self loops arbitrarily delay the DFA decision to accept or reject,
they prevent XG from having a finite list of forbidden words, or equivalently, from being
M -step for any finite M . Finally, to show we reduce to MINIMALITY, we show that XG

does not have a 2-vertex presentation when the DFA languages do not union to Σ∗.

Reduction B. Let M1, . . . , Mn be an instance to the DFAUNION problem. Construct the
deterministic presentation G as follows. Add a state t (the terminal state), and add a self
loop labeled ? on t. Add a state s∗, and add self loops on s∗ labeled by each symbol in
Σ∪ {`}. Add an edge labeled Ã from s∗ to t. Finally, for each i = 1, . . . , n,

1. embed Mi into G;

2. for each state q �Q i, add an edge labeled Â from q to si

3. for each accepting state q � Fi, add an edge labeled Ã from q to t;
4. for each state q �Q i, add a self loop labeled ` on q.
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See Figure 3 for a visualization.

We once again summarize the salient properties of the reduction. First, we define
a notation that will be used multiple times: for a word w, we let h`(w) denote w with
all the `’s removed. (That is, h` is the string homomorphism such that h`(`) = ε and
h(a) = a for a 6= `.)

Lemma 4.10. The following hold of Reduction B and the graph H from Figure 4.

(i) XG ⊆ XH ;

(ii) (Σ∪ {`,Â})∗,⊆ FG(q) for all q �
⋃n

i=1 Q i;

(iii) for w � Σ∗, wÃ � F(si) if and only if w � L(Mi);
(iv) for w � Σ∗, ÂwÃ � B(XG) if and only if w �

⋃n
i=1 L(Mi).

(v) for w � (Σ∪ {`})∗, Âh`(w)Ã � B(XG) if and only if ÂwÃ � B(XG);

Proof. For (i), let w � B(XG). If w does not contain Ã, then either w � (Σ ∪ {`,Â})∗

or w = ?m for some m ≥ 0; if w � (Σ ∪ {`,Â})∗, then w � FH(q1); if w = ?m for some
m≥ 0, then w � FH(q2). Otherwise, if w contains Ã, then we can factor w into w= uÃ?m

where u � (Σ∪ {`,Â})∗ and m ≥ 0, for which it follows that w � FH(q1). Thus, for every
w � B(XG), we have w � B(XH).

For the other statements, first note that each of the Mi are emulated by the transition
action of G in the following way: for q � Q i and w � Σ∗, we have w � FG(q) and q ·
w = δi(q, w) and q � Fi if and only if Ã � FG(q). Thus, (ii) follows from the emulation
observation and the fact that ` � FG(q) and q · ` = q and Â � FG(q) and q ·Â = si for
all q � Q i. Statement (iii) follows immediately from the emulation observation as well.
Note that QG · Â = {s1, . . . , sn}, so (iv) follows from (iii). Finally, for (v), as q · ` = q
for q �

⋃n
i=1 Q i, by induction on the number of `’s in w, one can show that QG ·Âw =

QG ·Âh`(w); thus, we have QG ·Âh`(w)Ã=QG ·ÂwÃ, which implies QG ·Âh`(w)Ã 6=∅
if and only if QG ·ÂwÃ 6=∅.

To show the correctness of Reduction A, we first give an alternate reduction to SUB-
SHIFT.

Theorem 4.11.
⋃n

i=1 L(Mi) = Σ∗ if and only if XH ⊆ XG.

Proof. First suppose B(XH) ⊆ B(XG). For every word w � Σ∗, we have ÂwÃ � B(XH),
giving ÂwÃ � B(XG). Lemma 4.10(iv) now implies

⋃n
i=1 L(Mi) = Σ∗. For the converse,

suppose
⋃n

i=1 L(Mi) = Σ∗, and let u � B(XH). There are two cases: either u � FH(q1) or
u � FH(q2). If u � FH(q2), then u = ?m for some m ≥ 0, which implies that u � FG(t),
and so u � B(XG). Thus, to complete the proof we need to show that if u � FH(q1), then
u � B(XG).

Suppose u � FH(q1). We further break this case into the possible values of q1 · u. If
q1 · u = q1, then u � (Σ ∪ {`,Â})∗, so u � FG(s1) and thus u � B(XG). If q1 · u = q2, then
u = vÃ?m for some m ≥ 0 and v � (Σ ∪ {`,Â})∗. If v does not contain the symbol Â,
then v � (Σ ∪ {`})∗, which implies vÃ?m = u � FG(s∗) and thus u � B(XG). Otherwise,
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if v contains the symbol Â, then we can factor v into v = xÂw where w contains no Â;
i.e. w � (Σ ∪ {`})∗. Then, we have that h`(w) � Σ∗, and as

⋃n
i=1 L(Mi) = Σ∗, we have

Âh`(w)Ã � B(XG). By Lemma 4.10(v), we have ÂwÃ � B(XG), and by Lemma 4.10(iii),
we have wÃ � FG(si) for some si. Collecting facts, we have xÂ � FG(si) and si · xÂ = si

and si ·wÃ= t and ∗m � FG(t). Combining those facts gives us that xÂwÃ?m = u � FG(si),
so u � B(XG).

Remark 4.12. Interestingly, Theorem 4.11 gives us another proof that SUBSHIFT isPSPACE-
hard. However, we can easily extend Theorem 4.11 to a stronger hardness result.6 Specif-
ically, we can show that SUBSHIFT is PSPACE-hard even when both input instances are
synchronizing deterministic presentations. Note that H is synchronizing while G is not.
Construct the presentation G′ as follows: construct G, and let S ¬ {s1, . . . , sn, s∗}. For
each q � S, add a self loop labeled `q on q.

For each vertex in q � S, we have that `q synchronizes to q in G′. Note that every
vertex is reachable from a vertex in S, so this implies that G′ is synchronizing. Here,
we note that XH ⊆ XG if and only if XH ⊆ XG′: the forward direction follows from the
fact that XG ⊆ XG′ , and the reverse direction follows from the fact that if w � B(XH) and
w � B(XG′), then w does not contain the new labels {`s1

, . . . ,`sn
,`s∗} added in G′, so it must

be the case that w � B(XG). This establishes the claim that SUBSHIFT is PSPACE-hard
even when both instances are synchronizing deterministic presentations.

As XG ⊆ XH by Lemma 4.10(i), we have the following.

Corollary 4.13.
⋃n

i=1 L(Mi) = Σ∗ if and only if XH = XG.

We new show that Reduction B reduces DFAUNION to SFT.

Theorem 4.14.
⋃n

i=1 L(Mi) = Σ∗ if and only if XG is an SFT.

Proof. The edges in H are labeled uniquely, so by Lemma 2.6, XH is an SFT. Thus, if we
have

⋃n
i=1 L(Mi) = Σ∗, then by Corollary 4.13, XG = XH is an SFT.

Conversely, suppose XG is an SFT. By Theorem 2.5, there is an M such that whenever
uv, vw � B(XG) and |v| ≥ M , then uvw � B(XG). Let w � Σ∗. We can find Âw`M � FG(s1)
and w`MÃ � FG(s∗), so we haveÂw`M , w`MÃ � B(XG) and and thusÂw`MÃ � B(XG). As
h`(w`M) = w, Lemma 4.10(v) implies that ÂwÃ � B(XG). It follows that w �

⋃n
i=1 L(Mi)

by Lemma 4.10(iv).

Along with Corollary 4.13, the following shows that Reduction B also reduces DFAU-
NION to MINIMALITY.

Theorem 4.15.
⋃n

i=1 L(Mi) = Σ∗ if and only if XG has a deterministic presentation with
2 vertices.

6In fact, there is another hardness result proved by the previous theorem: SUBSHIFT is PSPACE-hard
even when the first argument is fixed. That is, for each deterministic presentation H, it is PSPACE-hard
to decide when given a deterministic presentation G whether XH ⊆ XG .
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Proof. If
⋃n

i=1 L(Mi) = Σ∗, then XH = XG by Corollary 4.13, so H is a 2-vertex presentra-
tion of XG. Conversely, suppose H ′ is a deterministic presentation of XG with 2 vertices.
Here, we’ll show that H ′ is isomorphic to H, which implies XH ′ = XH and thus XH = XG,
so by Corollary 4.13, we have

⋃n
i=1 L(Mi) = Σ∗.

As Ã � FG(s∗), there must be an edge eÃ labeled Ã in H ′. If eÃ were a self loop,
then ÃÃ � B(XG), a contradiction. Thus, the vertices q′1 ¬ i(eÃ) and q′2 ¬ t(eÃ) must
be distinct, and QH ′ = {q′1, q′2}. Moreover, eÃ must be the unique edge labeled Ã, as
in all other cases H ′ either fails to be deterministic or we again have ÃÃ � B(XG), a
contradiction.

As aÃ � B(XG), for each a � Σ ∪ {`}, we have an edge ea labeled a ending at q′1.
For a � Σ ∪ {`}, any edge labeled a must start at q′1: if such an edge started at q′2, then
Ãa � B(XG), a contradiction. Thus, ea is a self loop and by determinism, ea is the unique
edge labeled a in H ′.

As Ã? � B(XG), there must be an edge e? labeled ? starting at q′2. If e? ends at q′1, then
?Ã � B(XG), a contradiction, so e? is a self loop. Any edge labeled ? must start at q′2: if
such an edge started at q′1, then `? � B(XG), a contradiction. Thus, by determinism, e? is
the unique edge labeled ? in H ′.

Finally, as Â` � B(XG), there must be some edge eÂ labeled Â ending at q′1. Any edge
labeled Â must start at q′1: if such an edge start at q′2, then ÃÂ � B(XG), a contradiction.
Thus, eÂ is a self loop and is the unique edge labeled Â in H ′. All of the above implies
that the map q′i 7→ qi is an isomorphism between H ′ and H.

4.3 Hardness of Existence of Synchronizing Words

Berlinkov [4] showed SYNCWORD was PSPACE-hard via reduction from the PSPACE-
complete problem of subset synchronizability: given a DFA M and a subset S ⊆ QM ,
is there a word w such that |S · w| = 1? For completeness, we show the hardness of
SYNCWORD via Reduction C from the “complement” of DFAUNION, DFAINT.

Theorem 4.16. SYNCWORD is PSPACE-hard.

For the reduction, we again create pre-initial states pi for each DFA Mi, with special
symbolsÂ into andÃ out of each DFA, and include them in parallel as in Reduction B. The
edges out of accepting states all go to the same shared succes state t. We also add edges
labeledÃ from each nonaccepting state in Mi to an individual fail state ri. By completing
this construction appropriately, we ensure that a word is synchronizing if and only if it is
synchronizing to t, i.e., if and only if every DFA accepts the subword between Â and Ã.

Reduction C. Let M1, . . . , Mn be an instance to the DFAINT problem, and without loss of
generality, assume n ≥ 2. We will construct a essential, deterministic presentation G as
follows. First, add a state t (the success state), and add a self loop labeled Ã on t. Then,
for each i = 1, . . . , n,

1. add a state pi (the ith pre-initial state);
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Figure 5: Schematic of Reduction C.

2. add a state ri (the ith fail state);

3. add self loops labeled Ã on pi and ri;

4. for each a � Σ, add a self loop labeled a on pi;

5. embed Mi into G;

6. add an edge from pi labeled Â to the corresponding initial state si of Mi;

7. for each accepting state q in Mi, add an edge labeled Ã from q to t;
8. for each nonaccepting state q in Mi, add an edge labeled Ã from q to ri.

See Figure 5 for a visualization.

To show the correctness of the reduction, we characterize the synchronizing words of
G.

Theorem 4.17. Let G be the deterministic presentation obtained from Reduction C on
an instance M1, . . . , Mn. A word u � (Σ ∪ {Â,Ã})∗ is synchronizing for G if and only if
there is some v � (Σ∪ {Ã})∗, k ≥ 1, and w �

⋂n
i=1 L(Mi) such that u= vÂwÃk.

Proof. As usual, the transition action of G emulates the behavior of the Mi: for w � Σ∗,
we have w � L(Mi) if and only if pi ·ÂwÃ= t, and w � L(Mi) if and only if pi ·ÂwÃ= ri.

Suppose u is a synchronizing word for G. Then, u must contain at least one Â;
otherwise u � (Σ ∪ {Ã})∗, and thus pi · u = pi for each i, giving |QG · u| ≥ n ≥ 2.
We can therefore write u = u1Âu2. By construction, u contains at most one Â, so
u1, u2 � (Σ ∪ {Ã})∗. Moreover, we must have u2 = wÃk for some w � Σ∗ and k ≥ 0.
Since QG · u1Âw = {p1 · Âw, . . . , pn · Âw} and the Q i are pairwise disjoint, we have
|QG · u1Âw| = n ≥ 2. Since u is synchronizing, we therefore must have k ≥ 1. Now
since Ã � FG(q) for q �

⋃n
i=1 Q i, if there are i 6= j such that pi ·ÂwÃ and p j ·ÂwÃ are
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not both t, then |QG · u| ≥ 2. As u is synchronizing, we conclude pi ·ÂwÃ = t for all i.
By the above, w �

⋂n
i=1 L(Mi). Hence, we have u= u1ÂwÃk with u1 � (Σ∪ {Ã})∗, k ≥ 1,

and w �
⋂n

i=1 L(Mi).
Conversely, let v � (Σ∪ {Ã})∗, k ≥ 1, and w �

⋂n
i=1 L(Mi). Thus, pi ·ÂwÃ = t for all

i, which implies QG · vÂwÃk = {t}.

Corollary 4.18.
⋂n

i=1 L(Mi) 6=∅ if and only if G has a synchronizing word.

As Reduction C therefore reduces DFAINT to SYNCWORD, Theorem 4.16 follows.

5 Size of Synchronizing Words and SDPs

Our reductions also shed light on the size of synchronizing words and presentations.
In particular, given a presentation with n vertices, the size of its smallest synchronizing
word can be exponentially large in n. Similarly, the size of the smallest synchronizing
deterministic presentation can also be exponentially large.

5.1 Shortest synchronizing word size

If NP 6= PSPACE, there cannot be a polynomial upper bound with respect to the number
of vertices for the length of the shortest synchronizing word, as SYNCWORD is PSPACE-
hard. Berlinkov [4] show an unconditional exponential lower bound on maximum length
of the shortest synchronizing word, which implies there cannot be a polynomial upper
bound for the length of the shortest synchronizing word. Here, we give a simpler con-
struction that achieves roughly the same bound.

First we observe the following property of Reduction B.

Lemma 5.1. Let G be a presentation obtained from Reduction B on some input M1, . . . , Mn.
If
⋂n

i=1 L(Mi) 6= ∅, then the minimum length of a synchronizing word for G is 2 more
than the minimum length of a word in

⋂n
i=1 L(Mi).

Proof. From Theorem 4.17, a word u is synchronizing for G if and only if it has the form
u = vÂwÃk for any v � (Σ ∪ {Ã})∗, w �

⋂n
i=1 L(Mi), and k ≥ 1. A minimum-length

synchronizing word u∗ for G therefore has v = ε and k = 1, and takes w = w∗ to be a
word of minimum length in

⋂n
i=1 L(Mi). Thus |u∗|= |Âw∗Ã|= 2+ |w∗|.

Therefore, to find a presentation of a sofic shift with a large shortest synchronizing
word, it suffices to apply Reduction B to DFAs that have a large shortest word in the
intersection of their languages. In Appendix B, we adapt a construction from Ang [1]
of a family of DFAs Mi,k such that each Mi,k has 3 states and and the shortest word in
⋂k

i=0 L(Mi,k) is 2k. Using this family of DFAs, if we let Gk denote Reduction B applied to
M0,k, M1,k, . . . Mk,k, then by Lemma 5.1, the shortest synchronizing word for Gk has length
2k + 2. The number of vertices in Gk is 2(k+ 1) + 1 auxillary vertices plus 3(k+ 1) from
the DFAs, giving use 5k+6 total vertices. We may then define a family of graphs G(n) on
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n vertices, which take Gk where k ¬
�

n−6
5

�

and add n− k vertices without affecting the
shortest synchronizing word (e.g., by adding a self loops labeled with every a � Σ∪ {Â}
and adding an edge labeledÃ to t). As k = Ω(n), this family exhibits the following lower
bound.

Theorem 5.2. There is a family of deterministic presentaions {G(n)} such that for suffi-
ciently large n, each G(n) has n vertices and the minimum length of a synchronizing word
for G(n) is 2Ω(n).

Remark 5.3. Černý’s conjecture states that if a n-state DFA has a synchronizing word, then
there is one of length at most (n−1)2 [26]. The previous theorem is a counterexample to
the generalization of the Černý’s conjecture to deterministic presentations of sofic shifts.

5.2 Minimal Synchronizing Deterministic Presentation Size

Throughout this subsection, we will abbreviate “synchronizing deterministic presenta-
tion” to SDP. Let X be a sofic shift. A minimal SDP of X is a SDP of X possessing the
fewest number of vertices among all SDPs of X . Similarly, a minimal deterministic presen-
tation of X is a deterministic presentation of X possessing the fewest number of vertices
among all deterministic presentations of X . For a given sofic shift X , minimal SDPs of X
are unique up to isomorphism, while minimal deterministic presentations are not necces-
sarily unique if X is reducible [12]. For irreducible sofic shifts, minimal SDPs are minimal
derterministic presentations and vice versa. For reducible sofic shifts, minimal SDPs are
minimal deterministic presentations are not necessarily the same.

In fact, we show that the minimal SDP can be exponential larger than a minimal
deterministic presentation. The proof relies on multiple-entry DFAs, which are FAs whose
only nondeterminism is the fact that there are multiple possible initial states. Formally,
a k-entry DFA N is a fully deterministic labeled graph along with k states s1, . . . , sk � QN

and a set of final states F ⊆ QN . The language of N is defined as L(N) ¬
⋃k

i=1{w � A
∗
N :

δ(si, w) � F}. By Holzer et al. [10, Lemma 3], there exists a family {Ck} of multiple-entry
DFAs, where Ck is a k-entry DFA with k states, and and the minimal DFA for L(Ck) has
∑k

i=1

�k
i

�

= 2k − 1 states. In other words, even if automata have deterministic transition
relations, passing from multiple start states to a single start state can incur an exponential
increase in size. We emulate this construction when passing from a nonsynchronizing
presentation to a synchronizing presentation.

Given a k-entry DFA N , we construct a sofic shift XG with deterministic presentation
G as follows. First, embed N into G, add a state t (the terminal state), and add a self
loop labeled ? on t. Then, for each i = 1, . . . , k,

1. add a state pi (the ith pre-initial state);

2. add a self loop labeled ∗ on pi;

3. add an edge from pi labeled Â to the corresponding state si of N ;

4. for each accepting state q � F , add an edge labeled Ã from q to t
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p1 s1 . . .

p2 s2 . . .

pk sk . . .
N

t ?
Ã

Â

Â

Â

∗

∗

∗

Figure 6: Schematic of the construction from Theorem 5.4.

See Figure 6 for a visualization.

Theorem 5.4. Let N be a k-entry DFA, and let G be the deterministic presentation ob-
tained from the above construction applied to N . Let M be the minimal DFA of L(N).
Interpreting M as a 1-entry DFA, let H be the deterministic presentation obtained from
the construction applied to M . Then, H is the minimal SDP for XG.

Proof. The proof that XG = XH is similar to the proof of Theorem 4.11. To show H is
the minimal SDP for XG, by Jonoska [12, Theorem 5.5], it suffices to show H is follower-
separated. For distinct p, q � QM , as M is a minimal DFA, either there is some word
δ(p, w) � F with δ(q, w) � F or there is some word δ(p, w) � F with δ(q, w) � F . Without
loss of generality, we may assume the former, as we can swap the roles of p and q for the
latter case. Then, wÃ � FH(p) while wÃ � FH(q), so p and q have distinct follower sets.
For distinct p, q � QH where one of p or q is the pre-initial state or the terminal state,
follower-separation follows from the presence of ∗ or ?.

Thus, the size of the minimal SDP for XG is determined by the size of the minimal
DFA for L(N). Applying this construction to Ck gives us a deterministic presentation with
2k+1 vertices whose minimal synchronizing deterministic presentation with (2k−1)+2=
2k + 1 vertices. The following theorem follows easily from this observation.

Theorem 5.5. There is a family of sofic shifts {Xn} such that for sufficiently large n,
the minimal deterministic presentation of Xn has at most n vertices and the minimal
synchronizing deterministic presentation of Xn has 2Ω(n) vertices.

Proof. Let n be sufficiently large. If we apply the construction to Cn′ where n′ ¬
�

n−1
2

�

, we
get a presentation G with at most n vertices such that the minimal SDP for XG has 2n′+1
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Automata Sofic Shifts
Problem DFA FA IDP SDP DP P

UNIVERSALITY P PSP-c P P P PSP-c [7]
EQUALITY P PSP-c P P PSP-c PSP-c
SUBSHIFT P PSP-c P PSP-c PSP-c PSP-c
MINIMALITY P PSP-c P [17] P [12] PSP-c PSP-c
SYNCWORD P [9] P PSP-c [4] PSP-c

IRREDUCIBILITY P PSP-c PSP-c
SFT P [17] P PSP-c PSP-c
∃SDP PSP-c PSP-c

Table 2: An overview of our results and comparison to related automata theory results.
The classes sofic shifts are as follows: IDP = irreducible deterministic presentation, SDP
= synchronizing deterministic presentation, DP = (general) deterministic presentation,
and P = (general) presentation. The complexity classes are P = solvable in polynomial
time and PSP-c = PSPACE-complete. For FAs, SUBSHIFT means “is L(M) ⊆ L(N)?”
Entries of the table corresponding to results we prove (or re-prove) have hyperlinks to
their respective proofs.

vertices. Thus, since G has at most n vertices, then a minimal deterministic presentation
for XG must have at most n vertices, and as n′ = Ω(n), the minimal SDP for XG has 2Ω(n)

vertices.

6 Discussion

We first overview our results, together with a discussion of related problems and a com-
parison to results from automata theory. We conclude with open problems.

6.1 Overview of results

We summarize our results in Table 2. The table includes complexity results from the au-
tomata theory literature for analagous problems for DFAs and FAs. One conclusion from
this table is that, from a computational complexity standpoint, irreducible presentations
behave like DFAs, as do synchronizing deterministic presentations with the exception of
SUBSHIFT. On the other hand, non-deterministic presentations behave like NFAs, as do
general deterministic presentations, with the exception of UNIVERSALITY.

The remainder of this subsection is devoted to entries of the table which were not
discussed in the previous sections. To begin, the problem of UNIVERSALITY asks whether
a given deterministic presentation G satisfies XG =AZG. Clearly, we have XG ⊆AZG for any
G, so the problem reduces to deciding whether AZG ⊆ XG. This condition can be decided
in polynomial time, as there is an irreducible deterministic presentation of AZG which is
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a single vertex and a self loop on that vertex labeled a for each a � AG, so one may use
Algorithm 2 to decide whether AZG ⊆ XG. However, for nondeterministic presentations,
universality is PSPACE-complete [7]. UNIVERSALITY is equivalent to MINIMALITY for
k = 1, i.e. deciding if the sofic shift presented by a determinstic presentation has a 1-
vertex presentation, as XG = AZG exactly when XG has a 1-vertex presentation. Thus,
MINIMALITY for k = 1 is in P, and our results show that MINIMALITY for k ≥ 2 is PSPACE-
complete. (Our reduction shows hardness for k = 2; simple modifications give k > 2.)

Given a synchronizing determinstic presentation, SYNCWORD is trivial, as a synchro-
nizing word always exists. To actually find a synchronizing word in this case, however,
Algorithm 1 is not sufficient: for reducible presentations, the algorithm can fail when
there are two vertices with the same follower set but no word sending them to the same
vertex (e.g. r1 and r2 in Reduction C). Fortunately, the proof of Theorem 3.3 gives a
method of constructing a word that synchronizes to any vertex: find a synchronizing
word for an initial irreducible component, a word that separates it from the rest of the
graph, and finally a word leading to the desired vertex. This procedure can be imple-
mented using Algorithm 1 and Algorithm 2 using only polynomial time.

Similarly, IRREDUCIBILITY is trivial for irreducible deterministic presentations, as the
shift is guaranteed to be irreducible. For a synchronizing deterministic presentation G,
IRREDUCIBILITY can be decided by testing whether G is irreducible. In particular, if XG is
irreducible, then by Theorem 2.4, the subgraph induced by all the synchronizing vertices
is irreducible; as every vertex is synchronizing, G is therefore irreducible.

The problem ∃SDP is also trivial for irreducible deterministic presentations, since ev-
ery irreducible sofic shift has a synchronizing deterministic presentation by Theorem 2.4.
One can compute this synchronizing deterministic presentation in polynomial time by
simply computing the follower-separation G/∼. The presentation G/∼ is irreducible as
G is, so every vertex in G/∼ is reachable from every other vertex. As every follower-
separated deterministic presentation has a synchronizing word, by irreducibility, one can
extend this word to one that synchronizes to any other vertex.

For deterministic presentations in general, all the problems in Table 2, with the ex-
ception of SYNCWORD, remain PSPACE-complete when restricted to follower-separated
instances. The reason is those problems ask a question about the sofic shift a given input
presents, and follower-separation of an input is a polynomial-time operation that pre-
serves the sofic shift it presents. For example, given presentations G and H, deciding if
XG = XH is equivalent to deciding if XG/∼ = XH/∼, as XG = XG/∼ and XH = XH/∼.

6.2 Open problems

Aside from long-standing open problems like the decidability of conjugacy for sofic shifts,
our work suggests several interesting open questions pertaining to the size of various
objects. For deterministic presentations in general, the shortest synchronizing word in a
presentation can be exponentially large. However, for follower-separated determinsitic
presentations, the shortest synchronizing word has at most cubic length with respect
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to the number of vertices; for a follower-separated input to Algorithm 1, the algorithm
always finds a synchronizing word, and one can easily see that the word returned must
be at most cubic length. Actually, by Exercise 3.4.10 of Lind and Marcus [17], one can
see that upper bound can be improved to n(n− 1), where n is the number of vertices in
the presentation. To our knowledge, it is open whether this bound is tight.

For a shift space X , define the minimum step of X to be the minimum M such that
X is M -step. By Jonoska [12], every SFT X has a synchronizing deterministic presen-
tation. Let s(X ) denote the number of vertices the minimal synchronizing deterministic
presentation of X . What is the relationship between s(X ) and the minimum step of X?
By Remark 3.6, we know that the minimum step of an SFT X is O(s(X )2). To our knowl-
edge, it is also open whether this bound it tight. One lower bound arises from the family
of run-length limited shifts {Xn}, which have minimum step Ω(s(Xn)). We can repeat the
same question for the size of a minimal deterministic presentation. Let sd(X ) denote the
number of vertices in a minimal deterministic presentation of X . What is the relationship
between sd(X ) and the minimum step of X? In Appendix A, we generalize Remark 3.6 to
deterministic presentations in general as Proposition A.1: for a determinstic presentation
G, XG is an SFT if and only if it is 22|QG |-step, which implies that the minimum step of an
SFT X is 2O(sd (X )). Again, it is open whether this bound is tight.
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Appendix A Problems in PSPACE

Here, we show that all the problems in Table 1 are in PSPACE. We will rely heavily
on Savitch’s theorem: if there is a nondeterministic polynomial-space algorithm for a
decision problem, then there is a (deterministic) polynomial-space algorithm for it as
well [3].

Let G be a deterministic presentation. In general, for the decision problems we work
with, given a word w, we usually want to know the value of QG ·w. In particular, we have
the correspondence QG · w 6= ∅ if and only if w � B(XG). In fact, q � QG · w if and only if
there is path labeled w ending at that q. Note the asymmetry of information here: the set
of vertices in G such that there is a path labeled w starting at that vertex is not encoded
in QG ·w. A situation arises because of this asymmetry when designing polynomial-space
algorithms for ∃SDP and SFT when only using the transition action: one must deduce
QG · uw given only QG ·w and u, but not w, a problem which is generally ill-posed.

To fix this asymmetry, we introduce the action of a word. The action of a word w in G
is a binary relation ¹wºG on the vertices of G such that (p, q) � ¹wºG if and only if there
is a path labeled w from p to q. In other words,

¹wºG ¬ { (p, q) �Q2 : w � FG(p) and p ·w= q }.

Note that QG · w = {q � Q : ∃p � Q, (p, q) � ¹wºG}, so the action of a word still encodes
the transition action, but also includes more information. In particular, there is a path
labled w ending at q if and only if there is a vertex p with (p, q) � ¹wºG, and there is a
path labeled w starting at p if and only if there is a vertex q with (p, q) � ¹wºG. In fact,
we have ¹wºG 6=∅ if and only if w � B(XG). Observe that ¹εºG = {(q, q) : q �QG}.

Just as the transition action had a nice algebraic behvaior via the equation S · uv =
(S · u) · v, there is an analagous equation for actions involving the relational composi-
tion operation. For binary relations R, S ⊆ Q2, define the relational composition R ; S
(pronounced R then S) as

R ; S ¬ { (p, r) �Q2 : ∃q �Q, (p, q) � R and (q, r) � S }.
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One can verify that (p, q) � ¹uºG ;¹vºG if and only if there is a path labeled uv from p to
q. This implies that for all u, v �A∗G, we have ¹uvºG = ¹uºG ;¹vºG. For example, we can
deduce that ¹εºG acts as an identity: ¹wºG ; ¹εºG = ¹wεºG = ¹wºG. Algebraically, we
can summarize that ¹·ºG is a semigroup morphism from A∗G that recognizes B(XG) [20].

We first show that SUBSHIFT is PSPACE by giving a nondeterministic polynomial-time
algorithm for the complement. Given a deterministic presentations G and H, deciding
XG * XH is equivalent to deciding if there exists a word w with w � B(XG) and w �
B(XH). Using ¹·ºG, this is equivalent to deciding if there exists a word w with ¹wºG 6=∅
and ¹wºH = ∅. The following nondeterministic algorithm decides the latter predicate:
initialize a relation R to ¹εºG and a relation S to ¹εºH , and then repeat the following
forever: if R 6= ∅ and S = ∅, then return true; otherwise, nondeterministically choose
some a �AG ∪AH and update R to R ; ¹aºG and S to S ; ¹aºH .

The size of R and S are polynomial with respect to the size of G, so the algorithm is a
nondeterminstic polynomial-space algorithm. 7 Thus, by Savitch’s theorem, SUBSHIFT is
in PSPACE. Membership of EQUALITY in PSPACE follows, by testing both XG ⊆ XH and
XH ⊆ XG, using the polynomial-space algorithm for SUBSHIFT twice.

Next, we have that MINIMALITY is in PSPACE: given a deterministic presentation
G and a positive integer k, when |QG| ≤ k, we can always admit a presentation of XG

with k vertices by adding superfluous vertices to G. In the case of |QG| > k, we can
nondeterministically guess a presentation with k vertices (whose size is polynomially
bounded as |QG|> k) and use the polynomial-space algorithm for EQUALITY to determine
if our guess is a presentation of XG.

We also have that IRREDUCIBILITY is in PSPACE: given a follower-separated deter-
ministic presentation G, using the polynomial-space algorithm for EQUALITY, we can test
if any terminal irreducible component presents XG. By Theorem 2.4, such a terminal
irreducible component exists if and only if XG is irreducible.

The argument for ∃SDP is more complex. We will break the algorithm into nonde-
terministic subprocedures, which each perform a particular test. We can determinize all
three with Savitch’s theorem, allowing us to use them in further subprocedures. Let G
be a deterministic presentation, and let R ⊆Q2

G be a binary relation.

• We say R is an action if there is a word w with ¹wºG = R. We denote the set of
actions as ¹A∗Gº. A simple nondeterministic polynomial-space procedure to test if
R is an action can be implemented by initializing a relation S as ¹εºG, and in a loop
forever: if S = R, then return true; otherwise, nondeterminically choose a � AG

and update S to S ; ¹aºG.
• We say R is intrinsically synchronizing if for every S, T � ¹A∗Gº, S ; R 6= ∅ and

R ; T 6= ∅ imply S ; R ; T 6= ∅. One can verify that for a word w � B(XG), w is
intrinsically synchronizing for XG if and only if ¹wºG is intrinsically synchronizing.
A nondeterministic polynomial-space procedure to test if R is not intrinsically syn-
chronizing can be implemented by nondeterministically choosing S, T ⊆ Q2, and

7This algorithm does not halt, but in principle, any space-bounded algorithm can be modified to halt
with a logarithmic overhead.
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testing the following four predicates: (i) S and T are actions, (ii) S ; R 6= ∅, (iii)
R ; T 6=∅, and (iv) S ; R ; T =∅. If all the tests were true, then return true.

• We say R is preceded by an intrinsically synchronizing word if there is some S �
¹A∗Gº that is intrinsically synchronizing and S;R 6=∅. One can verify that for a word
w, there is a word u that is intrinsically synchronizing for XG with w � FXG

(u) if and
only if ¹wºG is preceded by an intrinsically synchronizing word. A nondeterministic
polynomial-space procedure to test if R is preceded by an intrinsically synchronizing
word can be implemented by nondeterministically choose S ⊆Q2, and testing three
predicates: (i) S is an action, (ii) S is intrinsically synchronizing, and (iii) S ;R 6=∅.
If all the tests were true, then return true.

With these definitions and by Theorem 2.3, one can verify that XG has a synchronizing
determinsitic presentation if and only if for every R � ¹A∗Gº with R 6= ∅, R is preceded
by an intrinsically synchronizing word. Using our subprocedures, a nondeterministic
polynomial-space procedure to test if XG does not have a synchronizing deterministic
presentation can be implemented by nondeterministically choosing R ⊆ Q2 and testing
whether (i) R is an action, (ii) R 6= ∅, and (iii) R is not preceded by an intrinsically
synchronizing word.

Finally, we show SFT is in PSPACE. Recall from Remark 3.6 that for a follower-
separated synchronizing deterministic presentation G, XG is an SFT if and only if it is
(|QG|2−|QG|)-step. To decide SFT in polynomial space, we first generalize this character-
ization to when G is not necessarily follower-separated and synchronizing.

Proposition A.1. Let G be a deterministic presentation. Then, XG is an SFT if and only
if it is 22|QG |-step.

Proof. If XG is 22|QG |-step, then it is an SFT. Conversely, suppose XG is an SFT. Then, by
Jonoska [12, Corollary 5.4, Proposition 6.2], XG has a follower-separated synchronizing
deterministic presentation, and it has at most 2|QG | vertices. Thus, by Remark 3.6, XG is
M -step for some M ≤ (2|QG |)2−(2|QG |). Since any shift space that is M -step is also M ′-step
for every M ′ ≥ M , then XG must be 22|QG |-step.

A nondeterministic polynomial-space procedure to test if XG is not 22|QG |-step can be
implemented by initializing a counter with 2|QG| bits to 0 and initializing a relation R to
¹εºG. Then, use the counter to repeat the following 22|QG | times: nondeterministically
choose a � AG and update R to R ; ¹aºG. After the loop, nondeterministically choose
S ⊆Q2 and test the following three predicates: (i) S is an action, (ii) R ; S 6= ∅, and (iii)
R ; S is not intrinsically synchronizing. If all the tests were true, then return true.

Appendix B Intersection Construction

To prove Theorem 5.2, we adapt the construction from Ang [1]. We construct a family
of DFAs Mi,k and show that they satisfy the following.
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Theorem B.1. For every k ≥ 0, the language
⋂k

i=0 L(Mi,k) is nonempty and the minimum

length of a word in
⋂k

i=0 L(Mi,k) is 2k.

We will define Mi,k for i ≥ 0 and k ≥ 0. Each Mi,k has the state set Q ¬ {q0, q1, q∗}
and are defined over the alphabet {0,1, . . . , k}. The transition function of Mi,k is denoted
δi,k and is defined as δi restricted to the domain Q× {0, 1, . . . , k}, where δi : Q×N→ Q
is defined as follows. For j ≥ 0, we define

δ0(q0, j)¬

¨

q1 if j = 0

q∗ otherwise
δ0(q1, j)¬

¨

q1 if j 6= 0

q∗ otherwise
δ0(q

∗, j)¬ q∗

For i ≥ 1 and j ≥ 0, we define

δi(q0, j)¬











q0 if j > i

q1 if j < i

q∗ otherwise

δi(q1, j)¬











q0 if j = i

q1 if j > i

q∗ otherwise

δi(q
∗, j)¬ q∗

We set the initial state of Mi,k to q0 for every i ≥ 0 and k ≥ 0. We set the final state of
M0,k to just q1, and for i ≥ 1, we set the final state of Mi,k to just q0. Figure 7 depicts
an example of the construction. Essentially, for i ≥ 1, we have that δi acts on Q in the
following way: q∗ is a sink state, so no word that under that action of δi that visits the
sink state will be in the language of Mi,k; for j > i, we have that q 7→ δi(q, j) is the
identity function; for j ≤ i, the only transition out of q0 that does not lead to q∗ is when
j 6= i, and conversely, the only transition out of q1 that does not lead to q∗ is when j = i.

Define hk : {0, 1, . . . , k}∗→ {0,1, . . . , k}∗ to be the the string homomorphism hk : j 7→
jk that inserts the symbol k after every symbol from the input. Define w0 ¬ 0 and
wk+1 ¬ hk+1(wk) for k ≥ 0. Once can show by induction for k ≥ 0 that wk �

⋂k
i=0 L(Mi,k)

and that |wk| = 2k. Thus, the minimum length of a word in
⋂k

i=0 L(Mi,k) is at most 2k.

In fact, as we show next, any word in
⋂k

i=0 L(Mi,k) must have length at least 2k, so wk

achieves the minimal length.

Proposition B.2. For all k ≥ 0, if w �
⋂k

i=0 L(Mi,k), then |w| ≥ 2k.

Proof. We show this by induction. For k = 0, any word in L(M0,0) must have length at
least 1= 20, so the proposition holds for k = 0.

Now, suppose the proposition holds at a given k ≥ 0. Let w �
⋂k+1

i=1 L(Mi,k+1). Note
that when i ≤ k, then δi,k+1(q, k + 1) = q for all q � Q. Thus, if we let w′ denote
the word with every occurance of k + 1 in w removed, then for i � {0,1, . . . , k}, we
have δi,k+1(q, w′) = δi,k+1(q, w), which implies that w′ �

⋂k
i=1 L(Mi,k+1). In fact, as

w′ � {0,1, . . . , k}∗ and as δi,k+1(q, j) = δi,k(q, j) when j � {0,1, . . . , k}, we have w′ �
⋂k

i=0 L(Mi,k). By our induction hypothesis, we have that |w′| ≥ 2k.
Note that as w � L(Mk+1,k+1), then w must alternate between some symbol in {0,1, . . . , k}

and k+1, which implies number of k+1’s in w must equal the number of {0, 1, . . . , k}’s.
Thus, as |w′|measures the number of {0,1, . . . , k}’s in w, the number of k+1’s in w must
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Figure 7: Mi,k for i � {0, 1,2, 3} and k = 3. The transitions to q∗ are not depicted.

be at least 2k. Putting this together, we have |w| ≥ 2 ·2k = 2k+1, so the proposition holds
at k+ 1.
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