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Abstract

Gödel’s Dialectica interpretation was conceived as a tool to obtain the
consistency of Peano arithmetic via a proof of consistency of Heyting arith-
metic in the 40s. In recent years, several proof theoretic transformations,
based on Gödel’s Dialectica interpretation, have been used systematically
to extract new content from classical proofs, following a suggestion of
Kreisel. Thus, the interpretation has found new relevant applications in
several areas of mathematics and computer science. Several authors have
explained the Dialectica interpretation in categorical terms. In particular,
de Paiva introduced the notion of a Dialectica category as an internal ver-
sion of Gödel’s Dialectica Interpretation in her doctoral work. This was
generalised by Hyland and Hofstra, who considered the interpretation in
terms of fibrations. In our previous work, we introduced an intrinsic pre-
sentation of the Dialectica construction via a generalisation of Hofstra’s
work, using the notion of Gödel fibration and its proof-irrelevant version,
a Gödel doctrine. The key idea is that Gödel fibrations (and doctrines)
can be thought of as fibrations generated by some basic elements playing
the role of quantifier-free elements. This categorification of quantifier-free
elements is crucial not only to show that our notion of Gödel fibration
is equivalent to Hofstra’s Dialectica fibration in the appropriate way, but
also to show how Gödel doctrines embody the main logical features of the
Dialectica Interpretation. To show that, we derive the soundness of the
interpretation of the implication connective, as expounded by Troelstra, in
the categorical model. This requires extra logical principles, going beyond
intuitionistic logic, namely Markov Principle (MP) and the Independence
of Premise (IP) principle, as well as some choice. We show how these prin-
ciples are satisfied in the categorical setting, establishing a tight (internal
language) correspondence between the logical system and the categorical
framework. This tight correspondence should come handy not only when
discussing the traditional applications of the Dialectica, but also when
dealing with some newer uses of the interpretation, as in modelling games
or concurrency theory. Finally, to complete our analysis, we characterise
categories obtained as results of the tripos-to-topos of Hyland, Johnstone
and Pitts applied to Gödel doctrines.

∗Research supported by the project MIUR PRIN 2017FTXR IT-MaTTerS (Trotta) and
by a School of Mathematics EPSRC Doctoral Studentship (Spadetto)
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1 Introduction

Gödel is known, amongst many other things, by his Platonistic views of Mathe-
matics. This is not what the ‘Gödel doctrines’ in our title are about. Doctrines
in our title are meant in Lawvere’s sense of ‘hyperdoctrines’, a special kind of
functor in Category Theory [20]. Gödel doctrines then refer to Gödel because of
his Dialectica Interpretation [10], a modified form of Hilbert’s program, which
shows consistency of logical systems by interpreting these systems into collec-
tions of “computable functionals”. First and most importantly, by showing
consistency of Heyting arithmetic using his system T of functionals.

In recent years, proof theoretic transformations (also called proof interpreta-
tions) based on Gödel’s Dialectica interpretation [10] have been used systemati-
cally by Kohlenbach and others [17] to extract new content from proofs, follow-
ing Kreisel’s suggestion. Thus, the Dialectica interpretation has found relevant
applications in several areas of mathematics and computer science. Meanwhile,
several authors have explained the Dialectica interpretation in categorical terms.
In particular, de Paiva [5] introduced the notion of a Dialectica category as an
internal version of Gödel’s Dialectica Interpretation. The idea is to construct a
category Dial(C)(C) from a category C with finite limits. The main focus in de
Paiva’s original work is on the categorical structure of the category obtained,
as this notion of Dialectica category turns out to be also a model of Girard’s
Linear Logic [9].

This construction was first generalised by Hyland, who investigated the Di-
alectica construction associated to a fibred preorder [15]. Later, Biering in her
PhD work [2] studied the Dialectica construction for an arbitrary cloven fibra-
tion. Hofstra [14] then wrote an exposition and interpretation of the Dialectica
construction from a modern categorical perspective, emphasising its universal
properties. His work gives centre stage to the well-known concepts of pseudo-
monads, simple products and co-products.

Taking advantage of the abstract presentation of Hofstra, in previous works
[34, 35] we introduced an intrinsic presentation of the Dialectica construction
via the notion of Gödel fibration and its proof-irrelevant version, namely Gödel
doctrines. The key idea is that Gödel fibrations (and doctrines) can be thought
of as fibrations generated by some basic elements playing the role of quantifier-
free elements. This categorification of quantifier-free elements is crucial not only
to show that the notions of Gödel fibrations introduced in [34] and Dialectica fi-
brations (as presented in [14]) are mathematically equivalent in the appropriate
way, but also to show how Gödel doctrines embody the main logical features
of the Dialectica Interpretation [35, 36]. While in [34] we presented a recon-
struction of where the categorification of concepts came from, in [36] we showed
that this categorification worked not only for rules as in [35], but also for the
logical principles themselves, which is always more exciting for logicians than

2



for category theorists.
The main purpose of the work here is to provide a self-contained and com-

plete study of Gödel doctrines, presenting in detail the results developed in
[35, 36], their connections with [34], and carrying on the analysis of these doc-
trines. In this paper, we present in detail the notion of doctrine and its logical
meaning first, and then we discuss the Dialectica interpretation of the impli-
cational connective and the logical principles involved in the categorical inter-
pretation of this connective. Moreover, in order to present our results with a
notation familiar to both logicians and category theorists, we will employ the
internal language of a doctrine [29].

As far as the notion of doctrine is concerned, we follow the notation and
the definitions presented in [23, 24], where the authors introduce primary, el-
ementary and existential doctrines as generalisations of the original notion of
Lawvere’s hyperdoctrine [20].

After recalling the main categorical tools involved, we are going to present
a (hyper)doctrine characterisation of the Dialectica interpretation which corre-
sponds exactly to its logical description. The soundness of the interpretation
of the implication connective, as expounded on by Spector and Troelstra [30],
in the categorical models will follow as a direct consequence of this tight corre-
spondence. In particular, recall that such an interpretation is motivated by the
equivalence:

(∃u.∀x.ψD(u, x) → ∃v.∀y.φD(v, y)) ↔
↔ ∃f0, f1.∀u, y.(ψD(u, f1(u, y)) → φD(f0(u), y))

where ψD and φD are quantifier-free formulae. Showing this equivalence requires
extra logical principles, going beyond intuitionistic logic, specifically Markov
Principle (MP) and the Independence of Premise (IP) principle, as well as some
choice. While the traditional categorical approach takes this equivalence as the
starting point for defining categorical models, for example Dialectica categories
[5], our approach focuses instead on abstracting in the setting of doctrines the
key logical features that allow us to conclude such an equivalence.

We show how these key logical features are satisfied in the categorical set-
ting, establishing a tight correspondence between the logical system and the
categorical framework. Our results are built on the categorical presentation of
existential and universal-free elements we introduced first in the context of fibra-
tions in [34], and then in the language of doctrines [35]. Having a categorification
of such notions is fundamental to properly state logical principles in categorical
terms, since both (IP) and (MP) involve quantifier-free formulae. Finally, to
complete our analysis of Gödel (hyper)doctrines, we characterise categories ob-
tained as results of the tripos-to-topos construction of Hyland, Johnstone and
Pitts [16] applied to these doctrines. After recalling the notions and the con-
struction of the category of predicates associated to a hyperdoctrine from [23],
and of exact completion of a lex category [4], we present an explicit characteri-
sation of the tripos-to-topos construction associated to a Gödel hyperdoctrine.
In particular, combining our results with the characterisation of exact comple-
tions presented in [32], we show that every category obtained as tripos-to-topos
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of a Gödel hyperdoctrine can be equivalently presented as the exact completion
of the category of predicates associated to the hyperdoctrine itself. We then
conclude with a very brief discussion of other work we envisaged following from
our characterisation.

2 Doctrines

One of the most relevant notions of categorical logic which enabled the study of
logic from a pure algebraic perspective is that of a hyperdoctrine, introduced in a
series of seminal papers by F.W. Lawvere to synthesise the structural properties
of logical systems [18, 19, 20]. Lawvere’s crucial intuition was to consider logical
languages and theories as fibrations to study their 2-categorical properties, so
that e.g. connectives, quantifiers and equality are determined by structural
adjunctions. If theories and models can be viewed as objects and morphisms
of a suitable category, i.e. the category of hyperdoctrines, this is in particular
a 2-category, where 2-cells represent morphisms of models. So, having a 2-
categorical structure allows us not only to compare theories (objects) via models
(1-cells), but also to compare models (1-cells) via the 2-cells that represent
morphisms of models.

Recall from [29] that a first-order hyperdoctrine is a contravariant func-
tor:

P : Cop −→ Hey

from a cartesian category C to the category of Heyting algebras Hey satisfying:

for every arrowA
f
−→ B in C, the homomorphism Pf : P (B) −→ P (A) of Heyting

algebras, where Pf denotes the action of the functor P on the arrow f , has a
left adjoint ∃f and a right adjoint ∀f . These adjoints satisfy the Beck-Chevalley
conditions (BC), i.e. for any pullback square:

D

h

��

k // C

g

��
A

f
// B

it is the case that the squares:

PD
∃k // PC

PA

Ph

OO

∃f

// PB

Pg

OO and PD
∀k // PC

PA

Ph

OO

∀f

// PB

Pg

OO

commute, i.e. the equalities:
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∃kPh = Pg∃f and ∀kPh = Pg∀f

hold.
Observe that in fact the pointwise inequalities ∃kPh ≤ Pg∃f and ∀kPh ≥

Pg∀k always hold from the adjunctions definitions. The purpose of the Beck-
Chevalley conditions is to guarantee that substitution commutes with quantifi-
cation, appropriately, thus BC forces the equality in both diagrams.

A first-order hyperdoctrine determines an appropriate categorical structure
to abstract a first-order theory and its corresponding Tarski semantics. Se-
mantically, a first-order hyperdoctrine is essentially a generalisation of the con-
travariant powerset functor on the category of sets:

P : Setop −→ Hey

sending a set A into the Heyting algebra P(A) of its subsets (ordered by in-

clusion), and a set-theoretic function A
f
−→ B to the inverse image functor

PB
Pf=f−1

−−−−−→ PA. In this case, the adjoints ∀f and ∃f must be evaluated, on
a subset D of A, respectively as the subsets ∃f (D) = {a ∈ B | ∃a ∈ A. (b =
f(a) ∧ a ∈ D)} and ∀f (D) = {a ∈ B | ∀a ∈ A. (b = f(a) ⇒ a ∈ D)}.

From a syntactic point of view, a first-order hyperdoctrine can be seen as
a generalisation of the Lindenbaum-Tarski algebra of well-formed formulae of a
first order theory. In particular, given a first-order theory T in a many-sorted
first-order language L, one can consider the functor:

LT : Vop −→ Hey

whose base category V is the syntactic category of L, i.e. the one whose objects
are (α-equivalence classes of) finite lists −→x := [x1 : X1, . . . , xn : Xn] of typed
variables and whose morphisms are lists of substitutions, while the elements
of LT(−→x ) are given by equivalence classes (with respect to provable reciprocal
consequence ⊣⊢) of well-formed formulae in the context −→x , and order is given by
the provable consequences, according to the fixed theory T. In this case, the left
adjoint to the weakening functor LTπ is computed by existentially quantifying
the variables that are not involved in the substitution induced by the projection
(dually the right adjoint is computed by quantifying universally).

2.1 Existential and universal doctrines

Recently, several generalisations of the notion of a Lawvere hyperdoctrine were
considered, and we refer for example to [22, 23, 24] or to [28, 16] for higher-
order versions. For further insights and applications to higher-order logic or
realisability, we refer to [16, 37, 28].

In this work we consider a natural generalisation of the notion of first-order
hyperdoctrine, and we call it simply a doctrine.

Definition 2.1. A doctrine is a contravariant functor:

P : Cop −→ Pos
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where the category C has finite products and Pos is the category of posets.

Now we recall from [22, 23, 31] the notions of existential and universal doc-
trines.

Definition 2.2. A doctrine P : Cop −→ Pos is existential (resp. universal)

if, for every A1 and A2 in C and every projection A1 ×A2
πi−→ Ai, i = 1, 2, the

functor:

PAi

Pπi−−→ P (A1 × A2)

has a left adjoint ∃πi
(resp. a right adjoint ∀πi

), and these satisfy the Beck-
Chevalley condition BC: for any pullback diagram:

X ′ π′

//

f ′

��

A′

f

��
X π

// A

where π and π′ are projections, and for any β in P (X) the equality:

∃π′Pf ′β = Pf∃πβ ( resp. ∀π′Pf ′β = Pf∀πβ )

holds.

Observe that the inequality ∃π′Pf ′β ≤ Pf∃πβ ( resp. ∀π′Pf ′β ≥ Pf∀πβ ) of BC
in Definition 2.2 always holds.

We conclude the current subsection recalling from [22, 23, 24] that doctrines
form a 2-category Doc where:

• a 1-cell is a pair (F, b):

Cop

P

''PP
PP

PP
PP

PP
PP

P

F op

��

Pos

Dop

R

77♥♥♥♥♥♥♥♥♥♥♥♥♥

b

��

such that C
F
−→ D is a finite product preserving functor between doctrines

P,R, and:

P
b
−→ RF op

is a natural transformation;

• a 2-cell (F, b)
θ
−→ (G, c) is a natural transformation F

θ
−→ G such that for

every A in C and every α in P (A), we have:

bA(α) ≤ RθA(cA(α)).
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We denote as ExD the 2-full subcategory of Doc whose elements are existential
doctrines, and whose 1-cells are those 1-cells of Doc which preserve the exis-
tential structure. Similarly, we denote by UnD the 2-full subcategory of Doc
whose elements are universal doctrines, and whose 1-cells are those 1-cells of
Doc which preserve the universal structure.

From a logical perspective, the intuition is that a 1-cell between doctrines is
a generalisation of the notion of set-theoretic model, whereas 2-cells represent
morphisms of models.

2.2 Internal language of doctrines

Over the years, category theory and categorical logic have evolved a charac-
teristic form of proof by diagram chasing to establish properties expressible in
category theoretic terms. However, in complex cases such arguments can be
difficult to construct and hard to follow because of the rather limited forms of
expression of a purely category-theoretic language.

Categorical logic enables the use of richer and more familiar forms of ex-
pression meant to establish properties of particular kinds of categories. Indeed,
one can define a suitable notion of internal language, naming the relevant con-
stituents of the category and then applying a categorical semantics to turn
assertions of this language (according to a suitable logic) into categorical state-
ments. Such a procedure has become highly developed in the theory of toposes
where the internal language of a topos coupled with the semantics of intuition-
istic higher order logic in toposes enables one to reason about the objects and
morphisms of a topos as if they were sets and functions. The notion of internal
language is not just a useful instrument to simplify the notation, but it is a
powerful instrument that allows us to formally prove a categorical equivalence
between doctrines and logical theories.

First, we briefly recall that theories in a given (possibly many-sorted) lan-
guage over a fragment of first-order logic induce doctrines. Let us assume that
we are given a fragment F of first-order logic. Whenever L is a (possibly) many
sorted F -language and T is an L-theory, we can define a doctrine LT over the
syntactic category V associated to L, as described in Section 2. Whenever P is
a doctrine over some category C, then P can host models of T according to a
natural generalisation of Tarski’s semantics, which is sound and complete (for it
admits the syntactic model) and is formally defined as classic Tarski’s semantics
for (a fragment of) first-order logic. In fact, a L-structure S in P consists of:

• an object of C for every L-sort;

• an arrow of C (between the appropriate S-interpretations of the sorts) for
any L-function symbol;

• for every L-predicate symbol in some context, an element of the P -fibre
of the S-interpretation of that context.
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Then (terms and) formulas are inductively interpreted in S as usual (formally
as for traditional Tarski’s semantics) and we say that S models some L-sequent
φ ⊢ ψ in some given context when it is the case that:

φS ≤ ψS

in the P -fibre of the S-interpretation of the given context (here αS denotes the
S-interpretation of some formula α). According to this notion of semantics, it is
the case that the P -models of T, together with the model morphisms between
them, are bijectively (equivalently) induced by the 1-cells LT → P of Doc and
the 2-cells between them, respectively. Thus, the identity over LT induces the
syntactic model of T.

Conversely, a language can be defined for a given doctrine P : Cop −→ Pos.
One can associate to each doctrine P : Cop −→ Pos a language LP having a
sort A for each object A of the base category C, an n-ary function symbol

A1, . . . , An
f
−→ A for every morphism A1 × · · · ×An

f
−→ A of C and an n-relation

symbol R : A1, . . . , An for each element of P (A1 × · · · ×An), all of this for each
finite list of objects A1, . . . , An of C and every object A of C. The language LP is
called the internal language of the doctrine P . Let TP be the theory whose
sequents φ ⊢ ψ in some context A are precisely those ones such that φ ≤ ψ
in P (A). The doctrine LPTP is equivalent to P in Doc and the assignment
P 7→ (LP ,TP ) extends to a pseudo 2-inverse to the 2-functor (L,T) 7→ LT,
in such a way that Doc is equivalent to the theories in some language over F
together with the models (of one of them into the other one) and the model
morphisms (between them).

Whenever P : Cop −→ Pos is a doctrine, we know that LPTP is equivalent to
P in Doc. Therefore, the doctrine P , together with the equivalence LPTP → P ,
constitutes the syntactic model of its own theoryTP in its own internal language
LP . This fact means that, whenever φ and ψ are elements of P (A), for some
object A of C, it is the case that φ ≤ ψ precisely when φ ⊢ ψ is a sequent of TP in
context A. This is precisely why we can deduce properties of P through a purely
syntactical procedure: every LP -sequent corresponds to a categorical statement
or a condition involving P , and this is true precisely when that sequent belongs
to TP .

Taking advantage of these equivalent ways of reasoning about doctrines and
logic, we define the following notation for this logical syntax, which we use
extensively in this paper. We write in the internal language of a doctrine:

a1 : A1, . . . , an : An | φ(a1, . . . , an) ⊢ ψ(a1, . . . , an)

instead of:
φ ≤ ψ

in the fibre P (A1 × · · · ×An). Similarly, we write:

a : A | φ(a) ⊢ ∃b : B.ψ(a, b) and a : A | φ(a) ⊢ ∀b : B.ψ(a, b)

in place of:
φ ≤ ∃πA

ψ and φ ≤ ∀πA
ψ
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in the fibre P (A), where πA is the projection A×B → A. In fact, if a doctrine
P : Cop −→ Pos is existential and α ∈ P (A×B) is a formula-in-context:

a : A, b : B | α(a, b)

then ∃πA
α ∈ PA represents the formula a : A | ∃b : B.α(a, b) in context A. Anal-

ogously, if the doctrine P is universal, then ∀πA
α ∈ PA represents the formula

a : A | ∀b : B.α(a, b) in context A. This interpretation is sound and complete
for the usual reasons: this is how usual Tarski semantics can be characterised
in terms of categorical properties of the powerset functor P : Setop −→ Pos.

Also, we write a : A | φ ⊣⊢ ψ to abbreviate a : A | φ ⊢ ψ and a : A | ψ ⊢ φ
and when the type of a quantified variable is clear from the context, we will
omit that type for sake of readability. Finally, substitutions via given terms
(i.e. reindexings and weakenings) are modelled by pulling back along those
given terms. Applications of propositional connectives are interpreted by using
the corresponding operations in the fibres of the given doctrine.

3 Quantifier-free elements and Gödel doctrines

One of the fundamental notions of logic and proof theory is the notion of
quantifier-free formula, and there are countless results built on the possibil-
ity of detecting quantifier-free formulae in the literature. For example, in the
Dialectica interpretation, this notion is present at every stage, and we could say
the entire translation depends on the fact that, syntactically, we can identify
and distinguish formulae with no occurrences of quantifiers.

However, while from a syntactic perspective it is effortless and natural to
speak of quantifier-free formulae, abstracting this notion algebraically is not
so obvious. The main problem is that the property of being quantifier-free is
totally syntactic, not involving any other entity different from the formula itself
we are considering. It does not depend, for example, on the fact that we are
working in classical, constructive or intuitionistic logic. It only depends on how
a formula is written in a given formal language.

Therefore, if we want to provide a complete categorical presentation of the
Dialectica interpretation, capable of representing all its logical details, we have
to deal with the problem of representing quantifier-free formulae and find a
suitable universal property to represent predicates that are quantifier-free cat-
egorically. Notice that quantifier-free elements may satisfy different properties
depending on the logical system we are considering, hence if we want to repre-
sent these elements via universal properties, we have to relativise this notion to
a give system, that is the Dialectica interpretation in our case.

3.1 Existential and universal free elements

We discuss a notion to identify those predicates of an existential doctrine:

P : Cop −→ Pos
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which are free from left-adjoints ∃π, and then dualise this notion to define
those predicates that are free from right-adjoints ∀π. This idea was originally
introduced by Trotta and Maietti [32] and, independently, by Frey in [8]. It was
further developed and generalised to the fibrational setting in [34].

Definition 3.1. Let P : Cop −→ Pos be an existential doctrine and let A be
an object of C. A predicate α of the fibre P (A) is said to be an existential

splitting if it satisfies the following weak universal property: for every predicate
β ∈ P (A × B) such that α(a) ⊢ ∃b : B.β(a, b) (i.e. α ≤ ∃πA

(β) in category-

theoretic notation, where A × B
πA−−→ A is a product projection of C), there

exists an arrow A
g
−→ B such that:

α(a) ⊢ β(a, g(a)) ( i.e. α ≤ P〈1A,g〉(β) in category-theoretic notation ).

Existential splittings stable under re-indexing are called existential-free ele-
ments. Thus we introduce the following definition:

Definition 3.2. Let P : Cop −→ Pos be an existential doctrine and let I be an
object of C. A predicate α of the fibre P (I) is said to be existential-free if

Pf (α) is an existential splitting for every morphism A
f
−→ I.

Employing the presentation of doctrines via internal language, we say that
i : I | α(i) is free from the existential quantifier if, whenever a : A | α(f(a)) ⊢
∃b : B.β(a, b) for some term a : A | f(a) : I, then there is a term a : A | g(a) : B
such that a : A | α(f(a)) ⊢ β(a, g(a)).

Observe that we always have that a : A | β(a, g(a)) ⊢ ∃b : B.β(a, b), in
other words P〈1A,g〉β ≤ ∃πA

β. In fact, it is the case that β ≤ PπA
∃πA

β (as this
arrow of P (A×B) is nothing but the unit of the adjunction ∃πA

⊣ PπA
), hence

a re-indexing by the term 〈1A, g〉 yields the desired inequality. Therefore, the
property that we require for i : I | α(i) turns out to be the following: whenever
there are proofs of ∃b : B.β(a, b) from α(f(a)), at least one of them factors
through the canonical proof of ∃b : B.β(a, b) from β(a, g(a)) for some term
a : A | g(a) : B.

Requiring the stability under substitution as in Definition 3.2 is motivated by
the fact that, in logic, if a formula is existential-free, and we apply a substitution
to this formula, then we obtain again an existential-free formula.

Definition 3.3. Let P : Cop −→ Pos be an existential doctrine. Then we
indicate by P ∃-free : Cop −→ Pos the subdoctrine of P whose elements of the
fibres P ∃-free(A) are existential-free elements of P (A).

Dualising the previous Definitions 3.1 and 3.2 we get the corresponding ones
for the universal quantifier.

Definition 3.4. Let P : Cop −→ Pos be a universal doctrine and let A be
an object of C. A predicate α of the fibre P (A) is said to be a universal

splitting if it satisfies the following weak universal property: for every predicate

β ∈ P (A × B) such that ∀b : B.β(a, b) ⊢ α(a), there exists an arrow A
g
−→ B

such that:
β(a, g(a)) ⊢ α(a).
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Definition 3.5. Let P : Cop −→ Pos be a universal doctrine and let I be an
object of C. A predicate α of the fibre P (I) is said to be universal-free if

Pf (α) is a universal splitting for every morphism A
f
−→ I.

Again, employing the presentation of a doctrine via its internal language,
the property we require of the formula i : I | α(i), so that it is free from
universal quantifiers, is that, whenever a : A | ∀b : B.β(a, b) ⊢ α(f(a)) for
some term a : A | f(a) : I, then there is a term a : A | g(a) : B such that
a : A | β(a, g(a)) ⊢ α(f(a)).

Definition 3.6. Let P : Cop −→ Pos be an existential doctrine. We say that P
has enough existential-free predicates if, for every object I of C and every
predicate α ∈ P (I), there exist an object A and an existential-free object β in
P (I ×A) such that α(i) ⊣⊢ ∃i : I.β(i, a) (i.e. α = ∃πI

β).

Analogously, we have the following definition for universal doctrines.

Definition 3.7. Let P : Cop −→ Pos be a universal doctrine. We say that P
has enough universal-free predicates if, for every object I of C and every
predicate α ∈ PI, there exist an object A and a universal-free object β in
P (I ×A) such that α(i) ⊣⊢ ∀i : I.β(i, a).

Definition 3.8. Let P : Cop −→ Pos be an universal doctrine. Then we indicate
by P ∀-free : Cop −→ Pos the subdoctrine of P whose elements of the fibres
P ∀-free(A) are universal-free element of P (A).

3.2 Skolem and Gödel doctrines

Building over the notions corresponding to quantifier-free elements in doctrines
we introduced in the previous section, we now define two particular kinds of
doctrines, called Skolem doctrines and Gödel doctrines.

The Skolem doctrine are so called because these doctrines satisfy a version of
the traditional principle of Skolemisation, namely ∀u∃xα(u, x) → ∃f∀uα(u, fu).
The name Gödel doctrine is chosen because we will prove that these doctrines
encapsulates in a pure form the basic mathematical features of the Dialectica
interpretation.

Definition 3.9. A doctrine P : Cop −→ Pos is called a Skolem doctrine if:

(i) the category C is cartesian closed;

(ii) the doctrine P is existential and universal;

(iii) the doctrine P has enough existential-free predicates;

(iv) the existential-free objects of P are stable under universal quantification,
i.e. if α ∈ P (A) is existential-free, then ∀π(α) is existential-free for every
projection π from A.

11



Remark 3.10. The last point (iv) of Definition 3.9 implies that, given a Skolem
doctrine P : Cop −→ Pos, the sub-doctrine P ∃-free : Cop −→ Pos of existential-
free predicates of P as defined in 3.3 is a universal doctrine. From a purely
logical perspective, requiring existential-free elements to be stable under uni-
versal quantification is quite natural since this can be also read as if α(x) is an
existential-free formula, then ∀x.α(x) is again an existential-free formula.

Proposition 3.11 (Skolemisation). Every Skolem doctrine P : Cop −→ Pos

validates the Skolemisation principle:

a : A | ∀b : B.∃c : C.α(a, b, c) ⊣⊢ ∃f : CB.∀b : B.α(a, b, ev(f, b))

where α is any predicate in P (A×B × C).

Proof. Let us assume that a : A | γ(a) ⊢ ∀b.∃c.α(a, b, c) for some predicate
γ ∈ P (A). By point (iv) of Definition 3.9, we assume without loss of generality
that γ(a) is existential-free: otherwise there is an existential-free predicate γ′

covering γ(a) and we get back to our hypothesis by using that P is existential.
Since P is universal, it is the case that a : A, b : B | γ(a) ⊢ ∃c.α(a, b, c) and,

being γ(a) existential-free:

a : A, b : B | γ(a) ⊢ α(a, b, g(a, b))

for some term in context a : A, b : B | g(a, b) : C. Being C cartesian closed, there
is a context f : CB together with a term in context f : CB, b : B | ev(f, b) : C
such that there is a unique term in context a : A | h(a) : CB satisfying a : A, b :
B | g(a, b) = ev(h(a), b) : C. Hence:

a : A, b : B | γ(a) ⊢ α(a, b, ev(h(a), b))

and P being universal, it is the case that:

a : A | γ(a) ⊢ ∀b.α(a, b, ev(h(a), b)).

Finally, since:

a : A | ∀b.α(a, b, ev(h(a), b)) ⊢ ∃f.∀b.α(a, b, ev(f, b))

(this holds for any predicate δ(a,−) in place of the predicate ∀b.α(a, b, ev(−, b)))
we conclude that:

a : A | γ(a) ⊢ ∃f.∀b.α(a, b, ev(f, b)).

We are done by taking ∀b.∃c.α(a, b, c) as the predicate γ(a).

Definition 3.12. A doctrine P : Cop −→ Pos is called a Gödel doctrine if:

(i) P is a Skolem doctrine;

(ii) the sub-doctrine P ∃-free : Cop −→ Pos of the existential-free predicates of
P has enough universal-free predicates.

12



Now we have all the tools needed to introduce the notion of quantifier-free
predicate in the categorical setting of Gödel doctrines.

Definition 3.13. An element α of a fibre P (A) of a Gödel doctrine P that
is both an existential-free predicate of P and a universal-free predicate in the
sub-doctrine P ∃-free of existential-free elements of P is called a quantifier-free

predicate of P . The sub-doctrine of quantifier-free elements is denoted by
P ∃∀-free : Cop −→ Pos.

Therefore, given a Gödel doctrine P : Cop −→ Pos, we have the following
canonical inclusions of doctrines:

P ∃∀-free �
� ι1 // P ∃-free �

� ι2 // P

where P ∃∀-free �
� ι1 // P ∃-free is a morphism of doctrines, while P ∃-free �

� ι2 // P
is a morphism of universal doctrines.

Remark 3.14. Notice that a universal-free element of the sub-doctrine P ∃-free

of a given Gödel doctrine P , may not be a universal-free element in the whole
doctrine P , because the universal property of being universal-free is relative
only to the elements of P ∃-free. Therefore, the quantifier-free elements of P as
established in Definition 3.13 are not the existential and universal free elements
of P .

In order to simplify the notation, but also to make clear the connection
with the logical presentation in the Dialectica interpretation, for a given Gödel
doctrine P : Cop −→ Pos we will use the notation αD to indicate an element α
of P ∃∀-free, i.e. a quantifier-free predicate.

Theorem 3.15. Let P : Cop −→ Pos be a Gödel doctrine, and let α be an
element of P (A). Then there exists a quantifier-free predicate αD of P (I×U×X)
such that:

i : I | α(i) ⊣⊢ ∃u : U.∀x : X.αD(i, u, x).

Proof. By definition of a Gödel doctrine, in particular since P has enough-
existential free objects, there exists an existential-free element β ∈ P (A × U)
such that i : I | α(i) ⊣⊢ ∃u : U.β(i, u). Then, since the subdoctrine of
existential-free elements has enough-universal free elements, we can conclude
that there exists a quantifier-free predicate αD of P (I × U × X) such that
i : I | α(i) ⊣⊢ ∃u : U.∀x : X.αD(i, u, x).

Theorem 3.15 shows that in a Gödel doctrine every formula admits a pre-
sentation of the precise form used in the Dialectica translation.

The next result establishes the precise connection between Gödel doctrines
and the Dialectica interpretation. Employing the properties of a Gödel doc-
trine, we can provide a complete categorical description and presentation of the
chain of equivalences involved in the Dialectica interpretation of implicational
formulae. In particular, we show that the crucial steps where (IP) and (MP) are
applied are represented categorically via the notions of existential-free element
and universal-free element.
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Theorem 3.16. Let P : Cop −→ Pos be a Gödel doctrine. Then for every
ψD ∈ P (I × U ×X) and φD ∈ P (I × V × Y ) quantifier-free predicates of P we
have that:

i : I | ∃u.∀x.ψD(i, u, x) ⊢ ∃v.∀y.φD(i, v, y)

if and only if there exist I × U
f0
−→ V and I × U × Y

f1
−→ X such that:

i : I, u : U, y : Y | ψD(i, u, f1(i, u, y)) ⊢ φD(i, f0(i, u), y).

Proof. Let us consider two quantifier-free predicates ψD ∈ P (I × U ×X) and
φD ∈ P (I × V × Y ) of the Gödel doctrine P . The following equivalence follows
by definition of left adjoint functor (for sake of readability we omit the types of
quantified variables):

i : I | ∃u.∀x.ψD(i, u, x) ⊢ ∃v.∀y.φD(i, v, y) ⇐⇒

i : I, u : U | ∀x.ψD(i, u, x) ⊢ ∃v.∀y.φD(i, v, y)

Now we employ the fact that the predicate ∀x.ψD(i, u, x) is existential-free in

the Gödel doctrine, obtaining that there exists an arrow I×U
f0
−→ V , such that:

i : I, u : U | ∀x.ψD(i, u, x) ⊢ ∃v.∀y.φD(i, v, y) ⇐⇒

i : I, u : U | ∀x.ψD(i, u, x) ⊢ ∀y.φD(i, f0(i, u), y)

Then, since the universal quantifier is right adjoint to the weakening functor,
we have that:

i : I, u : U | ∀x.ψD(i, u, x) ⊢ ∀y.φD(i, f0(i, u), y) ⇐⇒

i : I, u : U, y : Y | ∀x.ψD(i, u, x) ⊢ φD(i, f0(i, u), y).

Now we employ the fact that φD(i, f0(u), y) is universal-free in the subdoctrine
of existential-free elements of P . Notice that since ψD(i, u, x) is a quantifier-
free element of the Gödel doctrine, we have that ∀x.ψD(i, u, x) is existential free.
Recall that this follows from the fact that in every Gödel doctrine, existential-
free elements are stable under universal quantification (this is the last point of
Definition 3.12). Therefore, we can conclude that there exists an arrow I ×U ×

Y
f1
−→ X of C such that:

i : I, u : U, y : Y | ∀x.ψD(i, u, x) ⊢ φD(i, f0(i, u), y) ⇐⇒

i : I, u : U, y : Y | ψD(i, u, f1(i, u, y)) ⊢ φD(i, f0(i, u), y)

Then, combining the first and the last equivalences, we obtain the following
equivalence:

i : I | ∃u.∀x.ψD(i, u, x) ⊢ ∃v.∀y.φD(i, v, y) ⇐⇒ there exist (f0, f1) s.t.
i : I, u : U, y : Y | ψD(i, u, f1(i, u, y)) ⊢ φD(i, f0(i, u), y).
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Notice that in Theorem 3.16, the arrow I × U
f0
−→ V represents the witness

function, i.e. it assigns to every witness u of the hypothesis a witness f0(i, u)

of the thesis, while the arrow I × U × Y
f1
−→ X represents the counterexample

function. While the witness function f0(i, u) depends on the witness u of the
hypothesis, the counterexample function f1(i, u, y) depends on a witness of the
hypothesis and on a counterexample of the thesis. This is a natural fact because,
under the constructive point of view, a counterexample has to be relative to a
witness validating the thesis.

Therefore, Theorem 3.16 shows that the notion of Gödel doctrine encap-
sulates in a pure form the basic mathematical feature of the Dialectica inter-
pretation, namely its interpretation of implication, which corresponds to the
existence of functionals of types f0 : I × U → V and f1 : I × U × Y → X as
described. One should think of this as saying that a proof of a formula of the
form ∃u.∀x.ψD(i, u, x) → ∃v.∀y.φD(i, v, y) is obtained by transforming it to:

∀u.∃v.∀y.∃x.(ψD(i, u, x) → φD(i, v, y))

by means of the Principle of Independence of Premises and Markov Principle,
and then Skolemising twice.

Therefore, combining Theorems 3.11, 3.15 and 3.16 we obtain strong evi-
dence that the notion of Gödel doctrine really provides the categorical abstrac-
tion of the main concepts involved in the Dialectica translation. We discus this
in more details in the next subsection.

4 A characterisation of Dialectica doctrines

The concept of Dialectica category was originally introduced by de Paiva [5],
and it was generalised to the fibrational setting by Hofstra [14].

Let us briefly recall the notion of a Dialectica category Dial(C) associated
to a finitely complete category C (see [5] for further details):

• An object of Dial(C) is a triple (U,X, α), where α is a subobject of X×U
in C. We think of such a triple as a formula ∃u.∀x.α(u, x).

• An arrow from ∃u.∀x.α(u, x) to ∃v.∀y.β(v, y), for two objects (U,X, α)

and (V, Y, β) in Dial(C) is a pair (U
F
−→ V, U × Y

f
−→ X) of arrows of C,

i.e. a pair:
(u : U | F (u) : V, u : U, y : Y | f(u, y) : X)

of terms in context (as usual, we are thinking of C as the category of
contexts associated to some type theory), satisfying the condition:

α(u, f(u, y)) ≤ β(F (u), y)
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between the reindexed subobjects, where the squares:

α(u, f(u, y)) //

��

α

��
U × Y

〈πU ,f〉
// U ×X

β(F (u), y) //

��

β

��
U × Y

F×1Y

// V × Y

are pullbacks.

Our notation is motivated by the notion of internal language of a doctrine
(see Section 2.2). In fact, a finitely complete category C is nothing but an
instance of a doctrine, if we look at C itself as a category of contexts associated
to some type theory and at the subobjects α of a given object X of C as the
predicates α(x) in context x : X .

The notions of object and arrow of Dial(C) are motivated by Gödel’s notion
of Dialectica interpretation (see [11]), and in particular by its action on formulas
in the language of arithmetic of the form A → B. In detail, we recall that one
can define a many-sorted language L together with an inductive notion of a
formula AD of L, whenever A is a given formula in the language of arithmetic.
The formula AD is in prenex normal form:

∃~u.∀~x.AD(~u, ~x)

for some inductively defined quantifier-free formula AD of L. Finally, there
exists an L-theory T, called System T, that enjoys the quantifier-elimination
property and that allows the interpretation (−)D to satisfy the following:

Theorem 4.1 (Gödel 1958, Soundness). Let A be a formula in the language
of arithmetic. Whenever HA ⊢ A, where HA is Heyting’s Arithmetic, then
T ⊢ AD by means of an application of the rules of introduction of quantifiers to
AD, that is:

T ⊢ AD(~t, ~x)

for some (finite sequence of) closed terms ~t.

in such a way that a result of relative consistency of HA holds: Heyting’s
Arithmetic is consistent, provided that the System T (which is quantifier-free
in L) is.

We conclude the present subsection by recalling what (A→ B)D looks like,
so that the notion of Dial(C) is justified, and refer the reader to [11, 30] for
further details. If A and B are formulas in the language of arithmetic, then
(A→ B)D is the formula:

∃F.∃f.∀u.∀y.( AD(u, f(u, y)) → BD(F (u), y) )

of L. Hence our notion of arrow of Dial(C) is nothing but a categorical way of
expressing the action of (−)D on A→ B.
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As we anticipated, the notion of Dialectica category was generalised to an
arbitrary fibration/doctrine by Hyland [15], Biering [2] and Hofstra [14], for both
a proof-irrelevant and a proof-relevant predicative settings. Here we consider
the proof-irrelevant version of this construction, associating a doctrine Dial(P )
called a dialectica doctrine to a given doctrine P .

4.1 Dialectica doctrines

The notions of Dialectica category and Dialectica fibration are introduced in
terms of instances of a free construction called the Dialectica construction, i.e.
a category is called a Dialectica category if it is the output of the Dialectica
construction.

From a modern categorical perspective, Dialectica categories or Dialectica
fibrations are the free algebras of the Dialectica pseudo-monad Dial(−), de-
scribed by Hofstra [14]. Here we will deal with the proof-irrelevant version of
such construction:

Dialectica construction. Let P : Cop −→ Pos be a doctrine whose base
category C is cartesian closed. The dialectica doctrine Dial(P ) : Cop −→ Pos

is defined as the functor sending:

• an object I into the poset Dial(P )(I) defined as follows:

– objects are quadruples (I, U,X, α) where I, U and X are objects of
the base category C and α ∈ P (I × U ×X);

– partial order: we stipulate that (I, U,X, α) ≤ (I, V, Y, β) if there

exists a pair (f0, f1), where I × U
f0
−→ V and I × U × Y

f1
−→ X are

morphisms of C such that:

α(i, u, f1(i, u, y)) ≤ β(i, f0(i, u), y).

• an arrow J
g
−→ I into the poset morphism Dial(P )(I) → Dial(P )(J) send-

ing a predicate (I, U,X, α) to the predicate:

(J, U,X, α(g(j), u, x)).

Remark 4.2. Let P : Cop −→ Pos be a doctrine and let I be any object of C.
Then the poset Dial(P )(I) is isomorphic to the poset reflection of the dialectica
category associated to some category.

4.2 Dialectica doctrines via quantifier completions

This subsection is devoted to providing a categorical presentation of the notion
of Dialectica doctrine. Our aim is to connect the notion of Dialectica construc-
tion to the one of a Gödel doctrine and show that, under certain hypotheses,
these notions are equivalent. In order to show this, we ask ourselves when is it
the case that a doctrine is an instance of a dialectica construction and, in this
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case, which doctrine do we need to complete in order to go back to the one we
started from.

The main result we need is the following statement. (Here Q∀ and Q∃ denote
the universal and the existential completions of any doctrine Q. We are going
to recap these notions later.)

Proposition 4.3 (Hofstra [14]). If P : Cop −→ Pos is a doctrine, then there is
an isomorphism:

Dial(P ) ∼= (P ∀)∃

which is natural in P .

We briefly recall the notion of existential completion of a doctrine, see [31]
for more details:

Existential completion. Let P : Cop −→ Pos be a pos-doctrine. The exis-

tential completion P ∃ : Cop −→ Pos of P is the doctrine such that, for every
object A of C, the poset P ∃(A) is defined as follows:

• objects: triples (A,B, α), where A and B are objects of C and α is a
predicate in P (A×B).

• order: (A,B, α) ≤ (A,C, β) if there exists an arrow A×B
f
−→ C of C such

that:
α(a, b) ⊢ β(a, f(a, b)) ( i.e. α ≤ P〈πA,f〉(β) )

in P (A×B) (here A×B
πA−−→ A is the projection on A).

Whenever f is an arrow A → C of C, the functor P ∃(C)
P∃

f
−−→ P ∃(A) sends an

object (C,D, γ) of P ∃(C) to the object:

(A,D, γ(f(a), d)) ( i.e. (A,D, P〈fπA,πD〉(γ)) )

of P ∃(A) (here πA, πD are the projections from A×D).

We think of a triple (A,B, α) in P ∃(A) as the predicate (∃b : B)α(a, b). This
construction provides a free completion, i.e. it extends to a 2-functor which is left
adjoint to the corresponding forgetful functor. We remind that the associated
monad happens to be lax-idempotent. Analogously, let us remind the notion of
universal completion of a doctrine:

Universal completion. Let P : Cop −→ Pos be a pos-doctrine. The uni-

versal completion P ∀ : Cop −→ Pos of P is the doctrine such that, for every
object A of C, the poset P ∀(A) is defined as follows:

• objects: triples (A,B, α), where A and B are objects of C and α is a
predicate in P (A×B).

• order: (A,B, α) ≤ (A,C, β) if there exists an arrow A×C
g
−→ B of C such

that:
α(a, g(a, c)) ⊢ β(a, c)

in P (A× C).
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Again, if f is an arrow A → C of C, the functor P ∀(C)
P∀

f

−−→ P ∀(A) sends an
object (C,D, γ) of P ∀(C) to the object (A,D, γ(f(a), d)) of P ∀(A).

We think of a triple (A,B, α) in P ∀(A) as the predicate (∀b : B)α(a, b).
Finally, this construction provides a free completion, i.e. it extends to a 2-
functor which is right adjoint to the obvious forgetful functor inducing a colax-
idempotent monad. The universal and the existential completions of a given
doctrine P are related by the following natural isomorphism:

P ∀ ∼= (−)op((−)opP )∃ (1)

where (−)op is the functor Pos → Pos which inverts the order of any poset (see
[33]).

We recall that the existential and universal completions are really well-
behaved, in the sense that the instances of such a completion can be internally
characterised without referring to a further doctrine that the doctrine we are
given is a completion of. That is what we talk about in the following statements,
contained in Proposition 4.4 (we refer to [31, 32] for a proof of this statement and
to [34] for its extension to its proof-relevant version), where the latter follows
from the former by means of the natural isomorphism (1):

Proposition 4.4. Let P : Cop −→ Pos be a doctrine. Assume that P is exis-
tential. Then P is an existential completion of some other doctrine P ′ precisely
when it has enough existential-free predicates, i.e. when, for every predicate
a : A | α(a) of P , there is an existential-free predicate:

a : A, b : B | β(a, b)

of P such that α(a) ∼= (∃b : B)β(a, b) in P (A). In this case, such a doctrine P ′

is the full sub-doctrine P ∃-free of P whose predicates are the existential-free ones
of P .

Analogously, if P is a universal doctrine, then P is a universal completion
of some doctrine P ′ precisely when it has enough universal-free predicates, i.e.
when, for every predicate a : A | α(a) of P , there is a universal-free predicate:

a : A, b : B | β(a, b)

of P such that α(a) ∼= (∀b : B)β(a, b) in P (A). In this case, such a doctrine
P ′ is the full sub-doctrine P ∀-free of P whose predicates are the universal-free
predicates of P .

By means of the Proposition 4.4 above, the following result follows. This
provides a characterisation of the free-algebras of the monad Dial(−).

Theorem 4.5. Let us assume that the category C is cartesian closed. Then
the doctrines P : Cop −→ Pos that are dialectica completions of some doctrine
P ′ are precisely those that are Gödel doctrines. Moreover, in this case, such a
doctrine P ′ is the full sub-doctrine P ∃∀-free of the quantifier-free predicates of
P .
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We end the current session with the following:

Remark 4.6. The existential completion of a universal doctrine whose base
is cartesian closed happens to be universal as well (see [14] for more details).
Therefore, by Theorem 4.5, it is the case that Gödel doctrines happen to be
both existential and universal.

Complementing this description, one can also look at the dialectica com-
pletion as a procedure to add the existential and the universal quantifications
to the predicative part of a type theory containing at least the simply typed
lambda calculus. Trotta and Spadetto [33] analyse which logical structure, that
we might assume to be already present in the predicative part of our type theory,
is preserved –or at least maintained– by this procedure.

5 Logical principles in Gödel doctrines

Gödel doctrines provide a categorical framework that generalises the princi-
pal concepts underlying the Dialectica translation, such as the existence of
witness and counterexample functions, whenever we have an implication i :
I | ∃u.∀x.ψD(u, x, i) ⊢ ∃v.∀y.φD(v, y, i). The key idea is that, intuitively, the
notion of existential-quantifier-free objects can be seen as a reformulation of
the principle of independence of premises, while product-quantifier-free objects
can be seen as a reformulation of Markov principle. Notice that in the proof
of Theorem 3.16 existential and universal free elements play the same role that
(IP) and (MP) have in the Dialectica interpretation of implicational formulae.

The main goal of this section is to formalise this intuition, showing the
exact connection between the principles (IP) and (MP) and Gödel first-order
hyperdoctrines.

Notation. to denote the rule-version of the logical principles we consider, we
will add R- to the name of principles. For example we will denote by (R-IP)
the rule:

⊤ ⊢ θ → ∃u.η(u) implies ⊤ ⊢ ∃u.(θ → η(u))

corresponding to the principle of independence of premise (IP):

⊤ ⊢ (θ → ∃u.η(u)) → ∃u.(θ → η(u))

and similarly we will use (R-MP) for Markov rule.

5.1 Dialectica interpretation of implication

Gödel’s Dialectica interpretation [11, 10] associates to each formula φ in the
language of arithmetic its Dialectica interpretation φD, i.e. a formula of the
form:

φD = ∃u.∀x.φD

where φD is a quantifier-free formula in the language of system T, trying to
be as constructive as possible. The associations (−)D and (−)D are defined
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inductively on the structure of the formulae, and we refer to [11, 10] for a
complete description. The most complicated clause of the translation (and, in
Gödel’s words, “the most important one”) is the definition of the translation of
the implication connective (ψ → φ)D. This involves two logical principles which
are usually not acceptable from an intuitionistic point of view, namely a form of
the Principle of Independence of Premise (IP) and a generalisation of Markov
Principle (MP). The interpretation is given by:

(ψ → φ)D = ∃V,X.∀u, y.(ψD(u,X(u, y)) → φD(V (u), y)).

The motivation provided in the collected works of Gödel for this translation is
that given a witness u for the hypothesis ψD one should be able to obtain a
witness for the conclusion φD, i.e. there exists a function V assigning a witness
V (u) of φD to every witness u of ψD. Moreover, this assignment has to be
such that from a counterexample y of the conclusion φD we should be able to
find a counterexample X(u, y) to the hypothesis ψD. This transformation of
counterexamples of the conclusion into counterexamples for the hypothesis is
what gives Dialectica its essential bidirectional character.

We first recall the technical details behind the translation of (ψ → φ)D ([10])
showing the precise points in which we have to employ the non-intuitionistic
principles (MP) and (IP). First notice that ψD → φD, that is:

∃u.∀x.ψD(u, x) → ∃v.∀y.φD(v, y) (2)

is equivalent to:
∀u.(∀x.ψD(u, x) → ∃v.∀y.φD(v, y)). (3)

If we apply a special case of the Principle of Independence of Premise,
namely:

(∀x.θ(x) → ∃v.∀y.η(v, y)) → ∃v.(∀x.θ(x) → ∀y.η(v, y)) (IP*)

we obtain that (3) is equivalent to:

∀u.∃v.(∀x.ψD(u, x) → ∀y.φD(v, y)). (4)

Moreover, we can see that this is equivalent to:

∀u.∃v.∀y.(∀x.ψD(u, x) → φD(v, y)). (5)

The next equivalence is motivated by a generalisation of Markov’s Principle,
namely:

¬∀x.θ(u, x) → ∃x.¬θ(u, x). (MP)

By applying (MP) we obtain that (5) is equivalent to:

∀u.∃v.∀y.∃x.(ψD(u, x) → φD(v, y)). (6)

To conclude that ψD → φD = (ψ → φ)D we have to apply the Axiom of

Choice (or Skolemisation), i.e.:

∀y.∃x.θ(y, x) → ∃V.∀y.θ(y, V (y)) (AC)
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twice, obtaining that (6) is equivalent to:

∃V,X.∀u, y.(ψD(u,X(u, y)) → φD(V (u), y)).

This analysis (from Gödel’s Collected Works, page 231) highlights the key role
the principles (IP), (MP) and (AC) play in the Dialectica interpretation of
implicational formulae. The role of the axiom of choice (AC) has been discussed
from a categorical perspective both by Hofstra [14] and in our previous work
[34]. We re-examine the two principles (IP) and (MP) in the next subsections,
following what we discussed in [34].

5.2 Independence of Premise

In logic and proof theory, the Principle of Independence of Premise states
that:

(θ → ∃u.η(u)) → ∃u.(θ → η(u))

where u is not a free variable of θ. While this principle is valid in classical logic
(it follows from the law of the excluded middle), it does not hold in intuition-
istic logic, and it is not generally accepted constructively [1]. The reason why
the principle (IP) is not generally accepted constructively is that, from a con-
structive perspective, turning any proof of the premise φ into a proof of ∃u.η(u)
means turning a proof of θ into a proof of η(t) where t is a witness for the
existential quantifier depending on the proof of θ. In particular, the choice of
the witness depends on the proof of the premise θ, while the (IP) principle tell
us, constructively, that the witness can be chosen independently of any proof of
the premise θ.

In the Dialectica translation we only need a particular version of the (IP)
principle:

(∀y.θ(y) → ∃u.∀v.η(u, v)) → ∃u.(∀y.θ(y) → ∀v.η(u, v)) (IP*)

which means that we are asking (IP) to hold not for every formula, but only
for those formulas of the form ∀y.θ(y) with θ quantifier-free. We recall a useful
generalisation of the (IP*) principle, namely:

(θ → ∃u.η(u)) → ∃u.(θ → η(u)) (IP)

where θ is ∃-free, i.e. θ contains neither existential quantifiers nor disjunctions
(of course, it is also assumed that u is not a free variable of θ). Therefore,
the condition that (IP) holds for every formula of the form ∀y.θ(y) with θ(y)
quantifier-free is replaced by asking that it holds for every formula free from the
existential quantifier.

5.3 Markov Principle

Markov Principle is a statement that originated in the Russian school of
constructive mathematics. Formally, Markov principle is usually presented as
the statement:

¬¬∃x.φ(x) → ∃x.φ(x)
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where φ is a quantifier-free formula. Thus, MP in the Dialectica interpretation,
namely:

¬∀x.φ(x) → ∃x.¬φ(x) (MP)

with φ(x) a quantifier-free formula, can be thought of as a generalisation of the
Markov Principle above. As remarked in [1], the reason why MP is not generally
accepted in constructive mathematics is that in general there is no reasonable
way to choose constructively a witness x for ¬φ(x) from a proof that ∀x.φ(x)
leads to a contradiction. However, in the context of Heyting Arithmetic, i.e.
when x ranges over the natural numbers, one can prove that these two formula-
tions of Markov Principle are equivalent. More details about the computational
interpretation of Markov Principle can be found in [25].

A natural generalisation of (MP) is given by the following principle, that we
call Modified Markov principle: i.e. whenever βD ∈ P (A) is a quantifier-
free predicate and α ∈ P (A × B) is an existential-free predicate, it is the case
that:

(∀x.φ(x) → ψ(y)) → ∃x.(φ(x) → ψ(y)) (MMP)

where ψ(y) is quantifier free, α(x) is existential-free and the variable x does not
occur free in ψ(y). Notice that (MP) is obtained by (MMP) by replacying ψ(y)
with ⊥.

5.4 Gödel hyperdoctrines

The main purpose of this subsection is to show in which sense the principles (IP)
and (MP) are satisfied in a Gödel hyperdoctrine. In this subsection we deal with
their rule versions. First we have to equip Gödel doctrines with the appropriate
Heyting structure in the fibres in order to be able to formally express these
principles. Therefore, we have to consider Gödel hyperdoctrines.

Definition 5.1. A hyperdoctrine P : Cop −→ Hey is said a Gödel hyperdoc-

trine when P is a Gödel doctrine.

Notice that from a logical perspective, one might want the quantifier-free
predicates to be closed with respect to all the propositional connectives, since
this is what happens in logic. However, for sake of generality, we start requiring
just the Heyting structures of the fibres and studying the logical principles.

Theorem 5.2. Every Gödel first-order hyperdoctrine P : Cop −→ Hey satisfies
the Rule of Independence of Premise, i.e. whenever β ∈ P (A × B) and
α ∈ P (A) is a existential-free predicate, it is the case that:

a : A | ⊤ ⊢ α(a) → ∃b.β(a, b) implies that a : A | ⊤ ⊢ ∃b.(α(a) → β(a, b)).

Proof. Let us assume that a : A | ⊤ ⊢ α(a) → ∃b.β(a, b). Then it is the case
that a : A | α(a) ⊢ ∃b.β(a, b). Since α(a) is free from the existential quantifier,
it is the case that there is a term in context a : A | t(a) : B such that:

a : A | ⊤ ⊢ α(a) → β(a, t(a)).
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Therefore, since:

a : A | α(a) → β(a, t(a)) ⊢ ∃b.(α(a) → β(a, b))

(as this holds for any predicate γ(a,−) in place of the predicate αD(a) →
β(a,−)) we conclude that:

a : A | ⊤ ⊢ ∃b.(α(a) → β(a, b)).

Similarly we can prove the following result.

Theorem 5.3. Every Gödel first-order hyperdoctrine P : Cop −→ Hey satis-
fies the following Modified Markov Rule, i.e. whenever βD ∈ P (A) is a
quantifier-free predicate and α ∈ P (A×B) is an existential-free predicate, it is
the case that:

a : A | ⊤ ⊢ (∀b.α(a, b)) → βD(a) implies that a : A | ⊤ ⊢ ∃b.(α(a, b) → βD(a)).

Proof. Let us assume that a : A | ⊤ ⊢ (∀b.α(a, b)) → βD(a). Then it is the case
that a : A | (∀b.α(a, b)) ⊢ βD(a). Hence, since βD is quantifier-free and α is
existential-free, there exists a term in context a : A | t(a) : B such that:

a : A | ⊤ ⊢ α(a, t(a)) → βD(a)

therefore, since:

a : A | α(a, t(a)) → β(a) ⊢ ∃b.(α(a, b) → βD(a))

we can conclude that:

a : A | ⊤ ⊢ ∃b.(α(a, b) → βD(a)).

To obtain Markov rule from Theorem 5.3 we have to require the bottom
element to be quantifier-free.

Corollary 5.4. Every Gödel first-order hyperdoctrine P : Cop −→ Hey such
that ⊥ is a quantifier-free predicate satisfies Markov Rule, i.e. for every
quantifier-free element αD ∈ P (A×B) it is the case that:

b : B | ⊤ ⊢ ¬∀a.αD(a, b) implies that b : B | ⊤ ⊢ ∃a.¬αD(a, b).

Proof. It follows by Theorem 5.3 just by replacing βD with ⊥, that is quantifier-
free by hypothesis.
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In Theorems 5.3 and 5.2 we proved that the universal properties of exis-
tential and universal free elements allow us to prove that a Gödel first-order
hyperdoctrine satisfies Modified Markov Rule and the Rule of Independence of
Premise.

From a logical perspective, the intuition behind Theorem,5.2 is that the
existential-free elements of a Gödel first-order hyperdoctrine correspond to for-
mulae satisfying (R-IP). Similarly, we have that the elements of a Gödel doctrine
that are quantifier-free, are exactly those satisfying a (R-MMP) by Theorem 5.3.

Notice also that applying the definitions of existential-free and universal-
free elements, we immediately obtain the following presentation of the Rule of
Choice, see [22] (also called explicit definability in [27]) and the Counterexample
Property, previously defined in [33].

Corollary 5.5. Every Gödel first-order hyperdoctrine P : Cop −→ Hey such
that ⊥ is a quantifier-free object satisfies the Counterexample Property,
that is, whenever:

a : A | ∀b.α(a, b) ⊢ ⊥

for some predicate α(a, b) ∈ P (A×B), then it is the case that:

a : A | α(a, g(a)) ⊢ ⊥

for some term in context a : A | g(a) : B.

Corollary 5.6. Every Gödel first-order hyperdoctrine P : Cop −→ Hey such
that ⊤ is existential-free satisfies the Rule of Choice, that is, whenever:

a : A | ⊤ ⊢ ∃b.α(a, b)

for some existential-free predicate α ∈ P (A×B), then it is the case that:

a : A | ⊤ ⊢ α(a, g(a))

for some term in context a : A | g(a) : B.

5.5 Logical principles

In the previous results, we have seen which rules hold in Gödel first-order hy-
perdoctrines. This subsection is devoted to the analysis of the respective logical
principles in Gödel first-order hyperdoctrines. In detail, we look for the right
hypotheses that allow us to produce models of the stronger formulation of the
rules as principles. The following theorem is the first of this series of results and
involves the Independence of Premise:

Theorem 5.7. Every Gödel first-order hyperdoctrine P : Cop −→ Hey such that
existential-free elements are closed with respect to finite conjunctions satisfies
the Principle of Independence of Premise, i.e. whenever β ∈ P (A × B)
and α ∈ P (A) is an existential-free predicate, it is the case that:

a : A | ⊤ ⊢ (α(a) → ∃b.β(a, b)) → ∃b.(α(a) → β(a, b)).
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Proof. First, since every Gödel doctrine has enough existential-free elements,
there exists an existential-free element γ(a, c) ∈ P (A× C) such that:

a : A | ∃c.γ(a, c) ⊣⊢ α(a) → ∃b.β(a, b).

In particular, we have that a : A, c : C | γ(a, c) ⊢ α(a) → ∃b.β(a, b). Then we
have that:

a : A, c : C | γ(a, c) ∧ α(a) ⊢ ∃b.β(a, b)

and γ(a, c)∧α(a) is an existential-free elements, since both γ(a, c) and α(a) are
existential-free elements and existential-free elements are closed with respect
finite conjunction by hypethesis. Therefore, we can conclude that there exists
a term a : A, c : C | t(a, c) : B such that:

a : A, c : C | γ(a, c) ∧ α(a) ⊢ β(a, t(a, c)).

Hence we have:

a : A, c : C | γ(a, c) ⊢ α(a) → β(a, t(a, c))

and since α(a) → β(a, t(a, c) is exaclty (α(a) → β(a, b))[t(a, c)/b] and it always
holds that:

a : A, c : C | (α(a) → β(a, b))[t(a, c)/b] ⊢ ∃b.(α(a) → β(a, b))

we can conclude that:

a : A, c : C | γ(a, c) ⊢ ∃b.(α(a) → β(a, b)).

Therefore we get that:

a : A | ∃c.γ(a, c) ⊢ ∃b.(α(a) → β(a, b)).

and, since a : A | ∃c.γ(a, c) ⊣⊢ α(a) → ∃b.β(a, b), it is the case that:

a : A | ⊤ ⊢ (α(a) → ∃b.β(a, b)) → ∃b.(α(a) → β(a, b)).

As a corollary of the previous result, we obtain the following presentation
of the principle (IP*) introduced in Section 5.2 in terms of Gödel first-order
hyperdoctrines. We recall that (IP*) is precisely the form of the Priciple of
Independece of Premise we need in the Dialectica interpretation.

Corollary 5.8. Every Gödel first-order hyperdoctrine P : Cop −→ Hey such
that the existential-free elements are closed with respect to finite conjunction
satisfies (IP*), i.e. whenever β ∈ P (C × B) and αD ∈ P (A) is an quantifier-
free predicate, it is the case that:

−| ⊤ ⊢ (∀a.αD(a) → ∃b.∀c.β(c, b)) → ∃b.(∀a.αD(a) → ∀c.β(c, b)).
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Proof. It follows from Theorem 5.7 and from the fact that if αD is quantifier-free
then ∀a.αD is existential-free.

Similarly, we can prove the following result for Markov principle.

Theorem 5.9. Every Gödel first-order hyperdoctrine P : Cop −→ Hey such that
existential-free elements are closed with respect to implication satisfies the fol-
lowing Modified Markov principle, i.e. whenever βD ∈ P (A) is a quantifier-
free predicate and α ∈ P (A × B) is an existential-free predicate, it is the case
that:

a : A | ⊤ ⊢ (∀b.α(a, b) → βD(a)) → ∃b.(α(a, b) → βD(a)).

Proof. Since α is an existential-free predicate and βD is quantifier-free we have
that ∀b.α(a, b) → βD(a) is an element of P ∃-free(A). Thus, since P ∃-free has
enough quantifier-free elements by defintion of Gödel doctrine, there exists
an universal-free predicate of P ∃-free, i.e. a quantifier-free predicate σD ∈
P ∃-free(×C) such that a : A | ∀c.σD(a, c) ⊣⊢ ∀b.α(a, b) → βD(a). In par-
ticular, we have that a : A | ∀c.σD(a, c) ∧ ∀b.α(a, b) ⊢ βD(a), and hence
a : A | ∀c.∀b.(σD(a, c) ∧ α(a, b)) ⊢ βD(a). Now, since βD is quantifier-free,
i.e. it is universal-free in P ∃-free, there exist two terms a : A | t(a) : B and
a : A | t′(a) : C such that:

a : A | σD(a, t′(a)) ∧ α(a, t(a)) ⊢ βD(a).

Therefore we have that a : A | σD(a, t′(a)) ⊢ (α(a, b) → βD(a))[t(a)/b]. Now,
since we always have that a : A | ∀c.σD(a, c) ⊢ σD(a, t′(a)) and a : A | (α(a, b) →
βD(a))[t(a)/b] ⊢ ∃b.(α(a, b) → βD(a)), we can conclude that:

a : A | ⊤ ⊢ (∀b.α(a, b) → βD(a)) → ∃b.(α(a, b) → βD(a)).

To obtain the usual presentation of Markov Principle as corollary of Theorem
5.9, we simply have to require the bottom element ⊥ of a Gödel first-order
hyperdoctrine to be quantifier-free.

Corollary 5.10. Every Gödel first-order hyperdoctrine P : Cop −→ Hey such
that existential-free elements are closed with respect to implication and ⊥ is a
quantifier-free predicate satisfies Markov Principle, i.e. for every quantifier-
free element αD ∈ P (A×B) it is the case that:

b : B | ⊤ ⊢ ¬∀a.αD(a, b) → ∃a.¬αD(a, b).

Proof. It follows by Theorem 5.9 just by replacing βD with ⊥, that is quantifier-
free by hypothesis.

We have proved that under suitable hypotheses, a Gödel first-order hyper-
doctrine satisfies (IP), (MP), (GMP) and the principle of Skolemisation.

Therefore, combining Theorem 5.7, Theorem 5.9 (and Corollary 5.10), and
Proposition 3.11, we can repeat the chain of equivalences we provided in Section
5.1, and obtain the following main result.
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Theorem 5.11. Let P : Cop −→ Hey be a Gödel first-order hyperdoctrine such
that:

• existential-free elements are closed with respect to implication and finite
conjunction;

• falsehood ⊥ is a quantifier-free predicate.

Then for every ψD in P (I ×U ×X) and φD in P (I ×V ×Y ) quantifier-free
predicates of P we have that the formula:

i : I | ∃u.∀x.ψD(i, u, x) → ∃v.∀y.φD(i, v, y)

is provably equivalent to:

i : I | ∃f0, f1.∀u, y.(ψD(i, u, f1(i, u, y)) → φD(i, f0(i, u), y)).

Theorem 5.11 fully represents a categorical version of the translation of the
implication connective in the Dialectica interpretation. In particular, it shows
that the equivalence (ψ → φ)D ↔ (ψD → φD) presented in Section 5.1 is
perfectly modelled by a Gödel first-order hyperdoctrine satisfying the natural
additional closure properties of Theorem 5.11.

Remark 5.12. Observe that Theorem 5.11 can be considered a stronger version
of Theorem 3.16. Hence, once more, it converts the rule stated in the latter
theorem into an actual principle.

In detail, by the thesis of Theorem 5.11, it is enough to observe that the first
sequent of the statement of Theorem 3.16 is equivalent to the sequent:

i : I | ⊤ ⊢ ∃u.∀x.ψD(i, u, x) → ∃v.∀y.φD(i, v, y)

by the elimination and introduction rules for the implication, and that the
second one is equivalent to the following:

i : I | ⊤ ⊢ ∃f0, f1.∀u, y.(ψD(i, u, f1(i, u, y)) → φD(i, f0(i, u), y)).

For this second equivalence one applies the implicational elimination and intro-
duction to convert the second sequent of 3.16 into:

i : I, u : U, y : Y | ⊤ ⊢ ψD(i, u, f1(i, u, y)) → φD(i, f0(i, u), y)

which is actually equivalent to i : I | ⊤ ⊢ ∃f0, f1.∀u, y.(ψD(i, u, f1(i, u, y)) →
φD(i, f0(i, u), y)), by Corollary 5.6 and being the formula:

i : I | ∀u, y.(ψD(i, u, f1(i, u, y)) → φD(i, f0(i, u), y))

existential-free.
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Theorem 5.11 follows as a consequence of the fragment of first-order logic
under which the internal language of a Gödel first-order hyperdoctrine is closed.
Observe that this fragment contains at least the whole intuitionistic first-order
logic together with the Principle of Independence of Premise, the Modified
Markov Principle and the Principle of Skolemisation. These principles, together
with the rules of intuitionistic first-order logic are precisely what is needed to get
the equivalence (ψ → φ)D ↔ (ψD → φD) in a Gödel first-order hyperdoctrine.

Clearly any boolean doctrine satisfies these principles as well, as it models
every inference rule of classic first-order logic. However, in general they are
not satisfied by a usual hyperdoctrine, because they are not necessarily true in
intuitionistic first-order logic. It turns out that the fragment of first-order logic
modelled by a Gödel hyperdoctrine is right in-between the intuitionistic first-
order logic and the classical first-order logic: it is powerful enough to guarantee
the equivalences in Section 5.1 that justify the Dialectica interpretation of the
implication.

6 Tripos-to-topos and Gödel doctrines

The tripos-to-topos construction was originally introduced in [28, 16] as a gen-
eralisation of the construction of the category of sheaves of a locale. Recently,
this construction has been proved to be an instance of the exact completion of
an elementary existential doctrine, we refer to [24, 22] for all the details. Let us
briefly recall it.

Tripos-to-topos. Given a first-order hyperdoctrine P : Cop −→ Hey, the cat-
egory TP consists of:

• objects: are pairs (A, ρ) where ρ ∈ P (A×A) satisfies:

– symmetry: a1, a2 : A | ρ(a1, a2) ⊢ ρ(a2, a1);

– transitivity: a1, a2, a3 : A | ρ(a1, a2) ∧ ρ(a2, a3) ⊢ ρ(a1, a3).

• arrows (A, ρ)
φ
−→ (B, σ): are objects φ ∈ P (A×B) such that:

1. a : A, b : B | φ(a, b) ∧ ρ(a, a) ⊢ σ(b, b);

2. a1, a2 : A, b : B | ρ(a1, a2) ∧ φ(a1, b) ⊢ φ(a2, b);

3. a : A, b1, b2 : B | σ(b1, b2) ∧ φ(a, b1) ⊢ φ(a, b2);

4. a : A, b1, b2 : B | φ(a, b1) ∧ φ(a, b2) ⊢ σ(b1, b2);

5. a : A | ρ(a, a) ⊢ ∃b.φ(a, b).

Then the following holds:

Theorem 6.1. Let P : Cop −→ Hey be a hyperdoctrine. Then TP is an exact
category.
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The construction of the category TP can be presented in the more general
context of elementary and existential doctrines, and it is also called the exact

completion of the elementary existential doctrine P , since it lifts to an ad-
junction between the 2-category of exact categories and that of elementary and
existential doctrine. We refer to [24, Cor. 3.4] for a complete description of the
construction in the general case.

6.1 Tripos-to-topos and exact completions

We recall from [32] a useful characterisation of the tripos-to-topos construction
of a first-order hyperdoctrine arising as an existential completion. Again, in the
present work we present the results for hyperdoctrines, but the characterisation
presented in [32] works for an arbitrary elementary and existential doctrine.

To properly present such a characterisation we first need to recall from
[22, 24, 23] the construction of the category of predicates of a first-order hy-
perdoctrine. The construction of this category is related to the comprehension
and comprehensive diagonal completion.

Definition 6.2. Given a first-order hyperdoctrine P : Cop −→ Hey we define
the comprehension completion Pc : G

op
P −→ Hey of P as follows:

• an object of GP is a pair (A,α) where A is a set and α ∈ P (A);

• an arrow (A,α)
f
−→ (B, β) is an arrow A

f
−→ B such that:

a : A | α(a) ⊢ β(f(a)).

The fibres Pc(A,α) are given by those elements γ of P (A) such that a : A | γ(a) ⊢
α(a) (i.e. γ ≤ α). Moreover, the action of Pc on a morphism f : (B, β) →
(A,α) is defined as Pc(f)(γ) = Pf (γ) ∧ β i.e. the predicate:

b : B | γ(f(b)) ∧ β(b)

where γ ∈ P (A) is such that γ ≤ α.

Similarly, the construction which freely adds comprehensive diagonal is pro-
vided by the extensional reflection. We denote δA := ∃∆(⊤A). According to the
internal language of a given doctrine P , the element δA ∈ P (A×A) corresponds
to the predicate:

a1 : A, a2 : A | a1 = a2.

Definition 6.3. Given an elementary doctrine P : Cop −→ Hey we can define
extensional reflection Px : X

op
P −→ Pos of P as follows: the base category

XP is the quotient category of C with respect to the equivalence relation where
f ∼ g when:

⊤ ⊢ f(a) = g(a) ( i.e. ⊤A ≤ P〈f,g〉(δB) in category-theoretic notation )

in context a : A, for two parallel arrows f, g : A → B. The equivalence class of
a morphism f of C, i.e. an arrow of XP , is denoted by [f ].
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Finally, we denoted by Pred(P ) the category of predicates of a doctrine
P , i.e. the category defined as:

Pred(P ) := XPc

where Pc is the comprehension completion of P . Again, we refer to [22, 24, 23] for
a complete description of these constructions. Now we have all the instruments
to recall the characterisation of tripos-to-topos of existential completions from
[32]. Such a characterisation essentially shows that every tripos-to-topos of an
existential completion is an instance of (−)ex/lex completion, namely the exact
completion of a lex category in the sense of [4, 3].

Theorem 6.4. Let P : Cop −→ Hey be a first-order hyperdoctrine. Then we
have the equivalence:

TP∃ ≡ Pred(P )ex/lex

of exact categories.

6.2 Tripos-to-topos for Gödel first-order hyperdoctrines

We recall that a Gödel first-order hyperdoctrine is in particular the existential
completion of its subdoctrine of existential-free elements by Theorem 4.5 and
Proposition 4.4. Therefore, we are able (i.e. have the necessary conditions for)
to apply Theorem 6.4 and can conclude the following characterisation of the
tripos-to-topos construction of Gödel first-order hyperdoctrines:

Theorem 6.5. Let P : Cop −→ Hey be a Gödel first-order hyperdoctrine. The
the equivalence of exact categories:

TP ≡ Pred(P ∃-free)ex/lex

holds.

We recall from [28, 16] that when a doctrine is a tripos, then its tripos-to-
topos is a topos. Hence, we have the following corollary for Gödel first-order
hyperdoctrines:

Corollary 6.6. Let P : Cop −→ Hey be a Gödel first-order hyperdoctrine. If P
is a tripos, then Pred(P ∃-free)ex/lex is a topos.

Given this corollary we might be tempted to call these toposes Dialectica
toposes. These are however different from Biering’s Dialectica toposes.

Remark 6.7. The notion of Dialectica topos was introduced in [2] as the tripos-
to-topos of a suitable tripos called dialectica tripos. In [13] Hofstra characterises
triposes arising in terms of ordered PCAs equipped with a filter. This character-
isation includes Effective Topos-like triposes, but also the triposes for relative,
modified and extensional realisability and the dialectica tripos. Therefore, the
dialectica tripos can been seen as a tripos araising from a suitable ordered PCA.
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Triposes given by PCAs are known to be instances of a general completion that
freely adds left adjoints along arbitrary maps. Hofstra was the first to obserce
this fact, see [13, 12], but later in [8] and [32] it is proved that the construction
identified by Hofstra is a particular case of the full existential completion of a
primary doctrine.

In this paper we have proposed a different approach to the definition of
doctrines related to dialectica interpretation, focusing on the logical principles
and rules we need to properly translate the implication connective as in the Di-
alectica. Therefore, we could say that our approach is more syntactic, and not
related to realisability in general. The Dialectica tripos introduced in [2] is not
a Gödel doctrine in general, since Gödel doctrines are given by an existential
completion just along projections (and by a universal completion), while the
Dialectica tripos is an instance of the full existential completion. Therefore the
Dialectica tripos satisfies different structural properties with respect to an arbi-
trary Gödel doctrine. For example, the Dialectica tripos has left adjoints along
every arrow, satisfying Beck Chevalley conditions, while in an arbitrary Gödel
doctrine the Beck Chevalley conditions are not satisfied along arbitrary maps.
Employing the universal properties of the existential and universal completions,
one can show that the Dialectica tripos just contains a Gödel doctrine, but it is
not equivalent to such a doctrine.

We can also relate this work to Maietti’s work on Joyal’s arithmetic uni-
verses.

Remark 6.8. Observe that categories arising as tripos-to-topos results of Gödel
first-order hyperdoctrines have the same abstract presentation as the so called
Joyal-arithmetic universes introduced by Maietti in [21]. Recall that a Joyal-
arithmetic universe is defined as the exact completion Pred(S)ex/lex of the cat-
egory of predicates of a Skolem theory S as defined in [21, Def. 2.2], namely a
cartesian category with a parameterised natural numbers object where all the
objects are finite products of the natural numbers object.

7 Conclusion

This article is the culmination of various intertwined investigations begun in
[34] and [35]. Inspired by Hofstra [14] and Hyland [15], as well as by the work
of Maietti and Trotta [32], itself inspired by Trotta [31], we embarked in the
programme of expanding the characterisation of the categorical version of the
Dialectica Interpretation, to complete the work in Hofstra as far as the charac-
terisation of the Dialectica is concerned and to make sure that all the logical
principles involved in the interpretation are represented in the categorical mod-
els obtained.

Since the work on the fibrational setting seemed too abstract and hard to
grasp, especially for the logic audience we intended to communicate with, we
opted for descriptions on the level of hyperdoctrines in [35] and [36], where
the doctrines are the poset reflections of the fibrations used early on. This
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crystallised our understanding of the issue of quantifier-free formulae in the cat-
egorical setting, but also made clear the import of non-intuitionistic principles
such as Independence of Premise and the Markov Principle, that had been dis-
cussed by logicians, but not in categorical terms, as far as we are aware. Our
investigation is, so far, restricted to the environment of the Dialectica interpreta-
tion, but it has wider reach, helping to complete the program of categorification
of logic, as originally suggested by Lawvere.

We hope to carry on exploring other side issues of this investigation. We
started connecting this work to the work on categorical realisability and com-
putability, as described by Pitt’s tripos theory and the tripos to topos construc-
tion [28] in the final section of this article, but much remains to be done. A
different direction that we have not even started to explore is the extension
of our work to generalised versions of the Dialectica interpretation, as already
hinted in the text, to dependent type theory [26]. Finally the work in the original
Dialectica category model [6] has had several applications to computer science
problems like concurrency theory, in the shape of Petri Nets [7] and others [38].
We plan to investigate if these and other applications can be improved by our
doctrinal version of the models.
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ternational Symposium on Mathematical Foundations of Computer Science
(2021), volume 202 of LIPIcs, pages 87:1–87:16, 2021.

[35] D. Trotta, M. Spadetto, and V. de Paiva. Dialectica logical principles.
In S. Artemov and A. Nerode, editors, Logical Foundations of Computer
Science, pages 346–363, Cham, 2022. Springer International Publishing.

[36] D. Trotta, M. Spadetto, and V. de Paiva. Dialectica logical principles, not
only rules. Manuscript (submitted), 2022.

[37] J. van Oosten. Realizability: An Introduction to its Categorical Side. ISSN.
Elsevier Science, 2008.

[38] G. Winskel. Making concurrency functional. arXiv, 2202.13910, 2022.

35


	1 Introduction
	2 Doctrines
	2.1 Existential and universal doctrines
	2.2 Internal language of doctrines

	3 Quantifier-free elements and Gödel doctrines
	3.1 Existential and universal free elements
	3.2 Skolem and Gödel doctrines

	4 A characterisation of Dialectica doctrines
	4.1 Dialectica doctrines
	4.2 Dialectica doctrines via quantifier completions

	5 Logical principles in Gödel doctrines
	5.1 Dialectica interpretation of implication
	5.2 Independence of Premise
	5.3 Markov Principle
	5.4 Gödel hyperdoctrines
	5.5 Logical principles

	6 Tripos-to-topos and Gödel doctrines
	6.1 Tripos-to-topos and exact completions
	6.2 Tripos-to-topos for Gödel first-order hyperdoctrines

	7 Conclusion

