
ar
X

iv
:2

20
3.

12
53

4v
1

 [
cs

.F
L

]
 2

3
M

ar
 2

02
2

Ordering Regular Languages and Automata:

Complexity

Giovanna D’Agostino, Davide Martincigh, and Alberto Policriti

University of Udine, Italy

Abstract. Given an order of the underlying alphabet we can lift it to
the states of a finite deterministic automaton: to compare states we use
the order of the strings reaching them. When the order on strings is
the co-lexicographic one and this order turns out to be total, the DFA is
called Wheeler. This recently introduced class of automata—the Wheeler

automata—constitute an important data-structure for languages, since
it allows the design and implementation of a very efficient tool-set of
storage mechanisms for the transition function, supporting a large variety
of substring queries.
In this context it is natural to consider the class of regular languages
accepted by Wheeler automata, i.e. the Wheeler languages. An inspiring
result in this area is the following: it has been shown that, as opposed
to the general case, the classic determinization by powerset construction
is polynomial on Wheeler automata. As a consequence, most classical
problems, when considered on this class of automata, turn out to be
“easy”—that is, solvable in polynomial time.
In this paper we consider computational problems related to Wheeler-
ness, but starting from non-deterministic automata. We also consider
the case of reduced non-deterministic ones—a class of NFA where rec-
ognizing Wheelerness is still polynomial, as for DFA’s. Our collection of
results shows that moving towards non-determinism is, in most cases, a
dangerous path leading quickly to intractability.
Moreover, we start a study of “state complexity” related to Wheeler DFA
and languages, proving that the classic construction for the intersection
of languages turns out to be computationally simpler on Wheeler DFA
than in the general case. We also provide a construction for the minimum
Wheeler DFA recognizing a given Wheeler language.

Keywords: Regular languages · Finite Automata · Wheeler Automata
· Ordering Languages.

1 Introduction

A simple and natural way of efficiently storing and composing regular languages
presented by their accepting automata is by exploiting some kind of order im-
posed on their collection of states. After all, ordering a collection of objects is
very often a way to shed light on their internal structure and ease their manip-
ulation.

http://arxiv.org/abs/2203.12534v1

2 G. D’Agostino et al.

One way of ordering the states of a finite automaton is to consider their
incoming languages—that is, the set of strings reaching the given states—and
proposing a way to compare them. If we fix an order on the underlying alphabet
Σ and consider states as ending points of strings, we are naturally invited to
start from their last character (the final one on the path reaching the state) and
proceed backwards. This results in using the so-called co-lexicographic order over
Σ∗. Since incoming languages of different states of a deterministic automaton D
do not intersect, the co-lexicographic order can easily be lifted to the states of
D: q ≤D q′ if all strings of the incoming language of q are co-lexicographically
smaller than any string of the incoming language of q′. This order turns out to
be very useful, allowing to store D using a succint index, that is, a space-saving
data structure that supports fast matching queries [5]. It turns out that the
complexity of constructing such an index depends on the width of the order ≤D

(see [5]), the best possible case being the one where ≤D is a total order. In the
latter case D is called a Wheeler automaton, and in [1] it has been proved that
recognizing Wheelerness is an easy task over DFA’s.

When moving from DFA’s to NFA’s things become more complicate and two
possible approaches were considered:

– The first one consists in identifying some local properties of ≤D, used to
define a general notion of a co-lex (possibly partial) order over the states of
an NFA (see [2]). Turning back to DFA’s, one can easily prove that ≤D is the
maximum co-lex (partial) order over D. In general, co-lex orders over NFA’s
can still be used for indexing, with index-construction complexity parametric
on the width (i.e. the maximum length of an anti-chain in ≤D) of the co-lex
order. Unfortunately, co-lex orders are not as well behaving on NFA’s as they
are on DFA’s: over an NFA we cannot guarantee the existence of a maximum
co-lex order and also finding a maximal one turns out to be an NP-complete
problem [6]. To overcome such difficulties, in [2] a new class of automata was
introduced: the reduced NFA’s. On reduced NFA’s distinguished states have
different incoming languages. While allowing non-determinism, the reduced
NFA’s share with DFA’s the good behaviour of co-lex orders: any reduced
NFA possesses a polynomial time computable, maximum co-lex order, so that
recognizing Wheelerness is no longer an NP-complete problem over them.

– The second approach consists in generalizing the definition of ≤D over NFA’s
states, by defining an order depending directly on the incoming languages.
Such generalization must now take care of the fact that incoming languages
may intersect. Actually, since in an NFA A there could be different states
with the same incoming language, when lifting the order to the state of A
we must be careful not to identify states with the same incoming languages.

As far as the first approach is concerned, in this paper we prove that deciding
whether a language is Wheeler, i.e. whether it is recognized by an NFA with a
total co-lex order, is PSPACE-complete. This remains the case even if we restrict
to reduced NFA’s. Note that the same problem using a recognizing DFA was
proved to be easy (polynomially computable) in [1].

Ordering Regular Languages and Automata: Complexity 3

Regarding the second approach, even though the proposed partial order was
shown to be useful for indexing [4], we first need to compute it. In this paper
we prove that the task of computing ≤A is difficult over NFA’s, even on the
class of reduced NFA’s. Actually, as a corollary of this fact we also see that
recognizing reduced-ness is a difficult task. The proof relies on the fact that the
universality problem is PSPACE-complete over reduced NFA (as for the whole
class of non-deterministic automata).

In the last part of the paper we go back to DFA’s and tackle the problem of
establishing the state complexity of the intersection of two Wheeler automata.
We prove that equipping the input automata with an order on their collection
of states allows us to do much better than in the general case: the standard
procedure now turns out of a complexity proportional to the sum the sizes of
the input automata. Our final result regards the (difficult) problem of computing
the minimum-size Wheeler automaton, starting from the minimum automaton
accepting a given Wheeler language.

1.1 Preliminaries

First of all, we fix some notation. Given a total order (Z,<) we say that a subset
I ⊆ Z is an interval if, for any x, y, z ∈ Z with x < y < z, if x, z ∈ I then y ∈ I.
Let Σ denote a finite alphabet endowed with a total order (Σ,≺). We denote by
Σ∗ the set of finite strings over Σ, with ε being the empty string. We extend the
order ≺ over Σ to the co-lexicographic order (Σ∗,≺), where α ≺ β if and only
the reverse of α, i.e. α read from the right to the left, precedes lexicographically
the reverse of β. Given two strings α, β ∈ Σ∗, we denote by α ⊣ β the property
that α is a suffix of β. For a language L ⊆ Σ∗, we denote by Pref(L) the set
of prefixes of strings in L. We denote by A = (Q, q0, δ, F,Σ) a finite automaton
(NFA), with Q as set of states, q0 initial state, δ : Q × Σ → 2Q transition
function, and F ⊆ Q final states. The size of A, denoted by |A|, is defined to
be |Q|. An automaton is deterministic (DFA) if |δ(q, a)| ≤ 1, for all q ∈ Q and
a ∈ Σ. As customary, we extend δ to operate on strings as follows: for all q ∈ Q,
a ∈ Σ and α ∈ Σ∗

δ(q, ε) = {q}, δ(q, αa) =
⋃

v∈δ(q,α)

δ(v, a).

We denote by L(A) = {α ∈ Σ∗ : δ(q0, α)∩F 6= ∅} the language accepted by the
automaton A. We assume that every automaton is trimmed, that is, every state
is reachable from the initial state and every state can reach at least one final
state. Note that this assumption is not restrictive, since removing every state
not reachable from q0 and every state from which is impossible to reach a final
state from an NFA, can be done in linear time and does not change the accepted
language. It immediately follows that:

– there might be only one state without incoming edges, namely q0;
– every string that can be read starting from q0 belongs to Pref(L).

4 G. D’Agostino et al.

We will often make use of the notion of the incoming language of a state of an
NFA, defined as follows.

Definition 1 (Incoming language). Let A = (Q, q0, δ, F,Σ) be an NFA and
let q ∈ Q. The incoming language of q, denoted by Iq, is the set of strings that
can be read on A starting from q0 and ending in q. In other words, Iq is the
language recognized by the automaton Aq = (Q, q0, δ, {q}, Σ).

The class of Wheeler automata has been recently introduced in [8]. An au-
tomaton in this class has the property that there exists a total order on its states
that is propagated along equally labeled transition. Moreover, the order must be
compatible with the underlying order of the alphabet:

Definition 2 (Wheeler Automaton). A Wheeler NFA (WNFA) A is an NFA
(Q, q0, δ, F,Σ) endowed with a binary relation <, such that: (Q,<) is a linear
order having the initial state q0 as minimum, q0 has no in-going edges, and the
following two (Wheeler) properties are satisfied. Let v1 ∈ δ(u1, a1) and v2 ∈
δ(u2, a2):

(i) a1 ≺ a2 → v1 < v2
(ii) (a1 = a2 ∧ u1 < u2) → v1 ≤ v2.

A Wheeler DFA (WDFA) is a deterministic WNFA.

Remark 1. A consequence of Wheeler property (i) is that A is input-consistent,
that is all transitions entering a given state u ∈ Q have the same label: if
u ∈ δ(v, a) and u ∈ δ(w, b), then a = b. Therefore the function λ : Q \ {q0} → Σ
that associate to each state the unique label of its incoming edges is well defined.
For the state q0, the only one without incoming edges, we set λ(q0) := #.

In Figure 1 is depicted an example of a WDFA.

Remark 2. Note that, for a fixed (i.e. constant in size) alphabet, requiring an
automaton to be input-consistent is not computationally demanding. In fact,
given an NFA A = (Q, q0, δ, F,Σ) we can build an equivalent, input-consistent
one just by creating, for each state q ∈ Q, at most |Σ| copies of q, that is,
one for each different incoming label of q. This operation can be performed in
O
(

|Q| · |Σ|
)

time.

In [8] it is shown that WDFA’s have a property called path coherence: let
A = (Q, q0, δ, F,Σ) be a WDFA according to the order (Q,<). Then for every
interval of states I = [qi, qj] and for all α ∈ Σ∗, the set J of states reachable
starting from any state of I by reading α is also an interval. Path coherence
allows us to transfer the order < over the states of Q to the co-lexicographic
order ≺ over the strings entering the states: two states q and p satisfy q < p if
and only if ∀α ∈ Iq ∀β ∈ Ip(α ≺ β) holds (again proved in [1]).

A consequence of this fact is that a WDFA admits an unique order of its
states that makes it Wheeler and this order is univocally determined by the co-
lexicographic order of any string entering its states (the order ≤D mentioned in

Ordering Regular Languages and Automata: Complexity 5

q0

q1 q2

q4 q3 q5

a c

c

d

c

c

f

f

Fig. 1. A WDFA’s A recognizing the language Ld = ac∗ + dc∗f . Condition (i) of
Definition 2 implies input consistency and induces the partial order q1 < q2, q3 < q4 <

q5. From condition (ii) it follows that δ(q1, c) ≤ δ(q4, c), thus q2 < q3. Therefore, the
only order that could make A Wheeler is q0 < q1 < q2 < q3 < q4 < q5. The reader can
verify that condition (ii) holds for each pair of equally labeled edges.

the introduction). This result is important for two different reasons. First of all,
it makes possible to decide in polynomial time whether a DFA is Wheeler: for
each state q, pick a string αq entering it and order the states reflecting the co-
lexicographic order of the strings {αq : q ∈ Q}; then check if the order satisfies
the Wheeler conditions. Secondly, it is the key to adapt Myhill-Nerode Theorem
to Wheeler automata. We recall the following definition.

Definition 3 (Myhill-Nerode equivalence). Let L ⊆ Σ∗ be a language.
Given a string α ∈ Σ∗, we define the right context of α as

α−1L := {γ ∈ Σ∗ : αγ ∈ L},

and we denote by ≡L the Myhill-Nerode equivalence on Pref(L) defined as

α ≡L β ⇐⇒ α−1L = β−1L.

The (classic) Myhill-Nerode Theorem, among many other things, establishes
a bijection between equivalence classes of ≡L and the states of the minimum DFA
recognizing L. This minimum automaton is also unique up to isomorphism and
a similar result, fully proved in [2], holds for Wheeler languages as well. In order
to state such an analogous of Myhill-Nerode Theorem for Wheeler languages,
the equivalence ≡L is replaced by the equivalence ≡c

L defined below.

Definition 4. The input consistent, convex refinement ≡c
L of ≡L is defined as

follows. α ≡c
L β if and only if

– α ≡L β,
– α and β end with the same character,
– for all γ ∈ Pref(L), if min(α, β) � γ � max(α, β), then α ≡L γ ≡L β.

6 G. D’Agostino et al.

The Myhill-Nerode Theorem for Wheeler languages proves that there exists a
minimum (in the number of states) WDFA recognizing L. As in the classic case,
states of the minimum automaton are, in fact, ≡c

L-equivalence classes, this time
consisting of intervals of strings. Also, such WDFA is unique up to isomorphism.

Theorem 1. (see [2]) If A = (Q, s, δ, <, F) is a WNFA with |Q| = n and
L = L(A), then there exists a unique minimum-size WDFA B with 2n− 1− |Σ|
states such that L = L(B).

Starting from the (possibly non Wheeler) minimum DFA of a Wheeler lan-
guage L, we will give an algorithm constructing the minimum Wheeler automa-
ton for the language. This automaton can be described as follows (see [2]):
B = (Q′, δ′, q′0, F

′) where

- Q′ = {[α]≡c
L
: α ∈ Pref(L)};

- q0 = [ǫ]≡c
L
;

- δ′([α]≡c
L
, a) = [αa]≡c

L
, for all α ∈ Pref(L), a ∈ Σ,

- F ′ = {[α]≡c
L
: α ∈ L}.

2 Reduced NFA’s meets Wheelerness

2.1 Automata

Among the two possible ways of presenting regular languages by automata, that
is DFA’s or NFA’s, in general, computational problems tend to be significantly
harder when referred to the non-deterministic class. Typical examples are: check-
ing emptiness, computing the intersection, checking universality and much more.
In the realm of Wheeler automata and languages a new class emerges: the class
of reduced automata, formally defined below.

Definition 5. An NFA A = (Q,S, δ, F,Σ) is called reduced if q 6= p implies
Iq 6= Ip.

Clearly, the class of reduced NFA’s contains properly the class of DFA’s. When
Wheelerness is concerned, the class of reduced NFA’s is interesting because it
has been proved that deciding whether an NFA is Wheeler is an NP-complete
problem [7], whereas deciding whether a reduced NFA is Wheeler turns out to
be in P [2] as it is for DFA’s [1]. Clearly, any NFA can be turned into a reduced
one simply by merging all the states that recognize the same incoming language.
Finding states to be merged is complex: the language-equivalence problem for
NFA’s can easily be proved as complex as deciding whether two states of an NFA
recognize the same incoming language and, therefore, the latter is PSPACE-
complete.

A natural question is now whether switching from NFA’s to reduced NFA’s
simplifies some otherwise difficult problem. In this section we prove that this
is not always the case: some problems remain hard even when restricted to the
class of reduced NFA’s.

Ordering Regular Languages and Automata: Complexity 7

Lemma 1. The universality problem for reduced NFA’s is PSPACE-complete.

Proof. This problem belongs to PSPACE, since it is a restriction of the uni-
versality problem over generic NFA’s. To prove the completeness, we show a
reduction from the universality problem.

Given an NFA, we can assume w.l.o.g. that there is only one initial state
without incoming edges, hence let A = (Q, q0, δ, F,Σ) be an NFA with Q =
{q0, . . . , qn} be such an NFA. We build a new automaton A′ = (Q∪P, q0, δ′, F,Σ∪
{d}), where P = {p1, . . . , pn−1} is a set of n−1 new states and d is a new charac-
ter. For each q ∈ Q we add the self loop (q, d, q). If we add only these transitions,
it holds that L(A) = Σ∗ iff L(A′) = (Σ+d)∗. We can now add to the automaton
as many d-transitions as we please without violating the property L(A) = Σ∗

iff L(A′) = (Σ + d)∗: the right-to-left implication still holds if we only add d-
transitions, whereas the left-to-right implication holds since adding transitions
may only expand the recognized language, but (Σ + d)∗ is already maximal
(with respect to the inclusion). Therefore we add the transitions (q0, d, q1) and
(q0, d, p1). Moreover, for each 1 ≤ i ≤ n − 1 we add the transitions (pi, d, qi+1)
and (pi, d, pi+1) (see Figure 2).

q0 q1 q2 q3 . . . qn

p1 p2 · · · pn−1

d d d d d

d

d

d d d

d d d

Fig. 2. The automaton A′ with only d-transitions depicted.

To conclude the proof that the reduction is correct, we need to show that A′

is reduced. Since q0 has no incoming edges, we have

Iq0 = d∗

Ipi
= di · d∗ for 1 ≤ i ≤ n− 1.

Since A was trimmed and since each q ∈ Q \ {q0} is not an initial state, we have
Iq ∩ Σ+ 6= ∅ for each q ∈ Q \ {q0}. Thus Iq 6= Ip for each q ∈ Q \ {q0} and for
each p ∈ P ∪{q0}. Moreover, for each 1 ≤ i < j ≤ n we have di ∈ Iqi \ Iqj , hence
Iqi 6= Iqj . ⊓⊔

8 G. D’Agostino et al.

We will use the previous lemma to solve a problem related to another in-
teresting aspect of the relationship between DFA’s, NFA’s, and reduced NFA’s:
indexability. Given an NFA A, it is possible to define a partial order <A on its
states that allows to represent A using an index, that is, a succint structure that
supports fast matching queries [4]. The partial order <A is defined using the
family of incoming languages {Iq : q ∈ Q}. As opposed to the case of DFA’s,
over NFA’s these languages may not be pairwise disjoint, and we can compare
them as follows:

Iq � Ip ⇐⇒ ∀α ∈ Iq ∀β ∈ Ip
(

{α, β} 6⊆ Iq ∩ Ip ⇒ α ≺ β
)

.

The above partial order can be lifted to the collection of states of an NFA.

Definition 6. Given two states q and p of an NFA A, we say that q <A p iff
Iq � Ip and Iq 6= Ip.

Note that if D is a DFA, then <D simplifies:

q <D p ⇐⇒ ∀α ∈ Iq ∀β ∈ Ip
(

α ≺ β
)

,

and this order satisfies the properties of a Wheeler order, with the exception of
not necessarily being total. As a matter of fact, it can be proved that the DFA
D is Wheeler if and only if <D is a total order. Remarkably, this partial order
can be computed in polynomial time [4] on DFA’s.

Proposition 1. Let D be a DFA with n states. Then, we can compute the order
<D in O(n5) time.

It follows that, given a DFA D, we can compute <D in polynomial time and
use it to index D efficiently. Would it be possible to generalized this result to
NFA’s using the corresponding partial order <A of Definition 6? In the follow-
ing lemma we give a negative answer to this question, even when restricted to
reduced automata, proving that a different approach is needed to index NFA’s
(see [4] for a positive solution to the problem).

Theorem 2. Given two states q and p of an NFA A, deciding whether q <A p
is PSPACE-complete. The same result holds even if A is reduced.

Proof. First of all we need to prove that the problem is in PSPACE. We will
show instead that its complement is in PSPACE and the thesis follows from
the fact that PSPACE is closed under complementation. The complement of
our problem consist of answering to the question whether q ≮ p. To do so, first
we check whether Iq = Ip. As we have already mentioned, this problem is in
PSPACE, so we can get the answer in polynomial space. If Iq = Ip, then q ≮ p
and we answer "yes". Otherwise, we have

q <A p ⇐⇒ ∀α ∈ Iq ∀β ∈ Ip
(

{α, β} 6⊆ Iq ∩ Ip ⇒ α ≺ β
)

,

Ordering Regular Languages and Automata: Complexity 9

or equivalently

q ≮A p ⇐⇒ ∃α ∈ Iq ∃β ∈ Ip
(

{α, β} 6⊆ Iq ∩ Ip ∧ β ≺ α
)

.

Let d be the number of states of the DFA D generated by the determinization
of A; clearly it holds d ≤ 2n. We claim that if q ≮ p, then there exist two strings
α, β of length at most d2 + d such that

α ∈ Iq ∧ β ∈ Ip ∧ {α, β} 6⊆ Iq ∩ Ip ∧ β ≺ α. (1)

Assume that α, β satisfy (1), with either |α| or |β| (possibly both) greater than
d2 + d. We assume, w.l.o.g., that |α| ≤ |β| and distinguish two cases.
1) The last d2 characters of α and β differs; this also includes the case where
|α| is strictly less than d2. Consider the d+ 1 states of D visited by reading the
first d characters of β. Since D has d states, at least one of them appears twice,
implying that we visited a cycle. By erasing from the first d characters of β the
factor corresponding to such cycle, we obtain a string β′ such that α and β′ also
satisfy (1).
2) The last d2 characters of α and β coincide; in particular |α|, |β| ≥ d2. Consider
the last d2 +1 states r0, ..., rd2 of D visited by reading the string α, and the last
d2+1 states p0, ..., pd2 visited by reading the string β. Since D has only d states,
there must exist 0 ≤ i, j ≤ d2 with i < j such that (ri, pi) = (rj , pj), implying
that α and β visited two cycles labeled by the same string. By erasing from the
last d2 characters of α and β the factor corresponding to such cycles, we obtain
two strings α′, β′ which also satisfy (1).
In both cases, we were able to shorten the length of the longest string. By
repeating this process as many times as needed, we will eventually obtain two
strings both shorter than d2 + d, with d ≤ 2n.

Now that we have bounded the length of α, β with the constant 22n+2n, we
can use non-determinism to guess, bit by bit, the length of α and β and store this
guessed information in two counters a, b respectively, using O

(

log(22n + 2n)
)

=
O(n) space for each. These counters determine which string among α and β is
longer and we start guessing the characters of such longest string from the left to
the right, decreasing by one its counter whenever we guess a character. Note that
we are not storing the guessed characters, since it would use too much space.
When the counter reaches the same value of the other counter, we start guessing
the characters of both the first and the second string at the same time and we
carry on until both counters reach the value 0. While guessing the characters of
α (respectively, β) we update at each step the set of states of A reachable from q0
by reading the currently guessed prefix of α (β), so that in the end we obtain the
sets δ(q0, α) and δ(q0, β). With this information, we can check whether α ∈ Iq
and β ∈ Ip and {α, β} 6⊆ Iq ∩ Ip. To complete checking condition (1), we need
to show how to decide whether β ≺ α.

To confront co-lexicographically α and β, we use a variable ρ that indicates
whether α is less, equal or greater than β. We initialize ρ based on the counters

10 G. D’Agostino et al.

a, b as follows:

ρ :=

= if a = b

⊣ if a < b

⊢ if b < a.

We leave ρ unchanged until we start guessing simultaneously the characters of
α and β. When we guess the character c1 for α and the character c2 for β, we
set

ρ :=

≺ if c1 ≺ c2

≻ if c1 ≻ c2

ρ if c1 = c2.

Note that if at the end ρ has value ⊣, it means that α ⊣ β, thus α ≺ β. Similarly,
if ρ has value ⊢ then β ≺ α. Otherwise, we have αρβ. Thus we are always able
to determine the co-lexicographic order of α and β. Therefore, deciding whether
q ≮ p is a problem in PSPACE, and so it is its complement.

To prove completeness, we show a reduction from the universality problem
over generic, respectively reduced, NFA’s.

q0

s1

s2

q1

q2

qe

qf

A

a1

a1

a1

a2

a2

a3

a3

y, z

y

Fig. 3. The automaton A′ built starting from the automaton A with S = {s1, s2}
recognizing the language L = {ε, a2, a1a3}. Edges entering a final state in A have been
duplicated and redirected to qe. Green edges are labeled Σ = {a1, a2, a3}.

Ordering Regular Languages and Automata: Complexity 11

Let A = (Q,S, δ, F,Σ) be an NFA with Q = {q1, . . . , qn} and Σ = {a1, . . . , aσ}
recognizing the language L = L(A), we build a new NFA A′ = (Q′, q0, δ

′, F ∪
{qe, qf}, Σ

′) by adding a new initial state q0 and two final states {qe, qf} (see Fig-
ure 3). The new alphabet is Σ′ = Σ∪{y, z}, where aj ≺ y ≺ z for each 1 ≤ j ≤ σ.
For each qi ∈ S, we add a transition from q0 to qi labeled a1. Adding q0 has
the sole purpose of having an initial state without incoming edges. Note that we
can not make the usual assumption that A has only one initial states without
incoming edges: if we start from a reduced NFA and we build an equivalent NFA
with the required property, there is no guarantee that the new automaton will
still be reduced. The state qe represents the new final state that gathers all the
strings in a1 · (L \ {ε}). To achieve this goal, for each transition (qi, aj , qi′) of δ
such that qi′ ∈ F we add a new transition (qi, aj , qe). The state qf gathers all the
strings in a1 ·Pref(L) ·Σ, and this can be easily achieved by adding a transition
(qi, aj , qf) for each i ≥ 1 and j ≥ 1. Lastly, we add the transitions (q0, y, qe),
(q0, y, qf) and (q0, z, qf). This way, if A is reduced then A′ is also reduced: note

that Iq0 = {ε}, for each i ≥ 1 it holds IA
′

qi
= a1 · IAqi , the states qe, qf are the only

that can read the string y and qf is the only state that can read the string z.
Let Lε denote the language L \ {ε}. By construction, we have

Iqe = a1 · Lε + y

Iqf = a1 · Pref(L) ·Σ + y + z.

We want to show that L = Σ∗ iff qe < qf ∧ Σ ⊆ Lε. Note that Σ ⊆ Lε is a
necessary condition for L to be universal, and such condition can be checked in
polynomial time using reachability on A, therefore the reduction is still polyno-
mial.
(⇒) If L = Σ∗, it clearly follows that Σ ⊆ Lε. Moreover we have Pref(L) ·Σ =
Σ+ and we obtain

Iqe = a1 ·Σ
+ + y

Iqf = a1 ·Σ
+ + y + z.

It follows immediately that qe < qf .
(⇐) Note that Lε ⊆ Pref(L) · Σ. We first prove that from the hypothesis it
follows Lε = Pref(L) ·Σ. Assume by contradiction that Lε 6= Pref(L) ·Σ and let
β be a string in Pref(L) ·Σ \ Lε. Then we have

y ∈ Iqe , a1 · β ∈ Iqf , {y, a1 · β} * Iqe ∩ Iqf

but y ≻ a1 · β, a contradiction. Thus Lε = Pref(L) ·Σ.
We can then prove by induction on |α| that α ∈ Σ+ implies α ∈ Lε. If

|α| = 1 then α ∈ Σ and by hypothesis we have Σ ⊆ Lε. If |α| = n+ 1 > 1, then
α = α′ ·aj for some α′ ∈ Σ+ and some aj ∈ Σ. By induction hypothesis we have
α′ ∈ Lε ⊆ Pref(L), and from Lε = Pref(L) ·Σ it follows α ∈ Lε.

This concludes the reduction from the universality problem to our problem
over general NFA’s. Since the construction described preserves the reduced-ness

12 G. D’Agostino et al.

of the starting automaton, it also works as a reduction from the universality
problem over reduced NFA’s to our problem over reduced NFA’s. In Lemma 1
we proved that the former problem is PSPACE-complete, thus proving that the
latter is also PSPACE- complete. ⊓⊔

We can use the previous results to prove another complexity result over
reduced NFA’s.

Corollary 1. Deciding whether an NFA A is reduced is PSPACE-complete.

Proof. To prove that the problem is in PSPACE, note that A = (Q, q0, δ, F,Σ)
is reduced iff, for all q, p ∈ Q, q 6= p implies Iq 6= Ip. Therefore, it is sufficient
to check O(n2) times whether Iq = Ip, where n = |Q|. As we have already
mentioned, the problem of deciding whether Iq = Ip belongs to PSPACE, thus
the thesis follows.

To prove completeness, we combine the reductions shown in Lemma 1 and
Theorem 2. Let Σd = Σ ∪ {d}. We first apply the reduction shown in Lemma
1 to build a reduced automaton A′ such that L(A) = Σ∗ iff L(A′) = Σ∗

d . We
set L′ := L(A′). Then, we apply the reduction showed in Theorem 2 to the
automaton A′, but we remove the edge (q0, z, qf); we call this new automaton
A′′. The languages recognized by qe and qf change as follow:

Iqe = a1 · L
′
ε + y

Iqf = a1 · Pref(L′) ·Σ + y.

Since A′ is a reduced automaton and the states qe and qf are the only ones
with an incoming edge labeled y, it immediately follows that A′′ is not reduced
iff Iqe = Iqf . Applying the same argument we used in Theorem 2, we can con-
clude that L(A)′ = Σ∗

d iff Iqe = Iqf —again, we assumed that Σd ⊆ L(A′),
since this condition can be checked in polynomial time. Summarizing we have
that A′′ is not reduced iff L(A) = Σ∗. Our claim follows from the equality
PSPACE=NPSPACE. ⊓⊔

Note that, as proved in [2], deciding whether a Wheeler NFA is reduced is a
simpler problem, being in P.

2.2 Languages

In this section we switch our focus from automata to languages. An important
consequence of the Myhill-Nerode Theorem for Wheeler languages is stated in
the following Lemma (proved in [2]).

Lemma 2. A regular language L is Wheeler if and only if all monotone se-
quences in (Pref(L),≺) become eventually constant modulo ≡L. In other words,
for all sequences (αi)i≥0 in Pref(L) with

α1 � α2 � . . . αi � . . . or α1 � α2 � · · · � αi � . . .

there exists an n such that αh ≡L αk, for all h, k ≥ n.

Ordering Regular Languages and Automata: Complexity 13

Lemma 2 shows how it is possible to recognize whether a language L is
Wheeler simply by verifying a property on elements of Pref(L): trying to find
a WDFA that recognizes L is no longer needed to decide Wheelerness of L. As
shown in Theorem 3 (see [2]), we can verify whether the property mentioned in
Lemma 2 is satisfied just analysing the structure of the minimum DFA recog-
nizing L.

Theorem 3. Let DL be the minimum DFA that recognizes the language L, with
initial state q0 and dimension n = |DL|.
L is not Wheeler if and only if there exist µ, ν and γ in Σ∗, with γ ✓⊣ µ, ν, such
that:

1. µ 6≡L ν and they label paths from q0 to states u and v, respectively;
2. γ labels two cycles, one starting from u and one starting from v;
3. µ, ν ≺ γ or γ ≺ µ, ν.

The length of the strings µ, ν and γ satisfying the above can be bounded:

4. |µ|, |ν| ≤ |γ| ≤ n3 + 2n2 + n+ 2.

The proof of Theorem 3 in [2] can be adapted to work on generic DFA’s. Since
such proof is both long and technical, we will prove instead (in the Appendix)
the following proposition, where we worsen the bound given in condition 4. This
is not a problem, since we will only use the fact that this bound is polynomial
in n.

Proposition 2. Let D = (Q, q0, δ, F,Σ) be a DFA recognizing the language L,
with n = |D|.
L is not Wheeler if and only if there exist µ, ν and γ in Σ∗, with γ ✓⊣ µ, ν, such
that:

1. µ 6≡L ν and they label paths from q0 to states u and v, respectively;
2. γ labels two cycles, one starting from u and one starting from v;
3. µ, ν ≺ γ or γ ≺ µ, ν.

The length of the strings µ, ν and γ satisfying the above can be bounded:

4. |µ|, |ν| ≤ |γ| ≤ (n3 + 2n2 + n+ 2) · n2.

The polynomial bound given by condition 4 of Theorem 3 allows us to design
an algorithm that decides whether a given DFA recognizes a Wheeler language:
using dynamic programming (see [1]) it is possible to keep track of all the relevant
paths and cycles inside the DFA and check, in polynomial time, whether there
exists three strings satisfying the conditions of the theorem.

Things change if, instead of a DFA, we are given an NFA. Trying to exploit
the same idea used for DFA’s does not work: the problem of deciding whether
two strings µ and ν read by an NFA are Myhill-Nerode equivalent is PSPACE-
complete. Even worse, a straightforward attempt of building the minimum DFA
recognizing the NFA’s language might lead to a blow-up of the sates, resulting
in a exponential time (and exponential space) algorithm.

14 G. D’Agostino et al.

We show that the problem of deciding whether an NFA recognizes a Wheeler
language is indeed hard, but does not necessarily require exponential time to be
solved. Instead, the problem turns out to be PSPACE-complete. To show this,
we first show how to adapt Theorem 3 to work on NFA’s, as described in the
following corollary.

Corollary 2. Let A = (Q, q0, δ, F,Σ) be an NFA of dimension n := |A|. Then
L := L(A) is not Wheeler if and only if there exist three strings µ, ν, γ such that
γ ✓⊣ µ, ν and

1. µγi 6≡L νγj for all 0 ≤ i, j ≤ 2n;
2. γ labels two cycles, one starting from a state p ∈ δ(q0, µ) and one from a

state r ∈ δ(q0, ν);
3. µ, ν ≺ γ or γ ≺ µ, ν.

Moreover, the length of the strings µ, ν and γ satisfying the above can be bounded:

4. |µ|, |ν| < |γ| < n3 · (23n + 2 · 22n + 2n + 2) ∈ O(23n).

Proof. Let D = (Q̂, q̂0, δ̂, F̂ , Σ) be the minimum DFA recognizing L. Clearly D
has at most 2n states.
(⇐=) From condition 2 it follows that µγ∗ ⊆ Pref(L), so consider the following
list of 2n + 1 states of D:

δ̂(q̂0, µγ
0), δ̂(q̂0, µγ

1), . . . , δ̂(q̂0, µγ
2n).

Since D has at most 2n states, there must exist two integers 0 ≤ h < k ≤ 2n

such that δ̂(q̂0, µγ
h) = δ̂(q̂0, µγ

k). Therefore γk−h labels a cycle starting from

δ̂(q̂0, µγ
h). Similarly, there exist 0 ≤ h′ < k′ ≤ 2n such that γk′−h′

labels a cycle

starting from δ̂(q̂0, νγ
h′

). The strings

µ̂ := µγh

ν̂ := νγh′

γ̂ := γlcm(k−h,k′−h′)·2n ,

where the factor 2n in the definition of γ̂ ensures that |µ̂|, |ν̂| < |γ̂|, so that
γ̂ 6⊣ µ̂, ν̂ and the strings µ̂, ν̂, γ̂ satisfy condition 2 of Theorem 3. Condition 1
of Theorem 3 follows automatically from conditions 1 of this corollary. Lastly,
condition 3 of Theorem 3 follows from conditions 3 of this corollary and the fact
that γ ✓⊣ µ, ν. Thus we can apply Theorem 3 to conclude that L is not Wheeler.
(=⇒) Since L = L(D) is not Wheeler, let µ̂, ν̂, γ̂ be strings satisfying Theorem
3. The DFA D has at most 2n states, hence the length of γ̂ is bounded by the
constant 23n +2 · 22n +2n +2. We have µ̂γ̂∗ ⊆ Pref(L), so let t0 = q0, t1, . . . , tm
be a run of µ̂γ̂n over A. We set u := |µ̂| and g := |γ̂|, and consider the list of
n+ 1 states

tu, tu+g, tu+2g, . . . , tu+ng = tm

Ordering Regular Languages and Automata: Complexity 15

Since A has n states, there must exist two integers 0 ≤ h < k ≤ n such that
tu+hg = tu+kg . That is, there exists a state p := tu+hg such that p ∈ δ

(

q0, µ̂γ̂
h
)

and γ̂k−h labels a cycle starting from p. We can repeat the same argument for a
run of ν̂γ̂n over A to find a state r and two integers h′, k′ such that r ∈ δ(q0, ν̂γ̂

h′

)
and γ̂k′−h′

labels a cycle starting from r. We can then define the strings

µ := µ̂γ̂h

ν := ν̂γ̂h′

γ := γ̂lcm(k−h,k′−h′)·n

which satisfy the conditions 2 and 3.
Condition 4 is satisfied since |γ̂| ≤ 23n+2·22n+2n+2 and lcm(k−h, k′−h′) < n2.
Finally, condition 1 is satisfied for all i, j ≥ 0. Indeed, for all l the strings µ̂ and
µ̂γ̂l lead to the same state of D, thus µ̂ ≡L µ̂γ̂l. Similarly, for all l we also have
ν̂ ≡L ν̂γ̂l. Since ∀i ∃si such that µγi = µ̂γ̂si , and similarly, ∀j ∃sj such that
νγj = ν̂γ̂sj , the thesis follows from µ̂ 6≡L ν̂. ⊓⊔

Despite the fact the the bound in condition 4 has become exponential by
switching to NFA’s, it is still possible to check in polynomial space (but expo-
nential time) whether there are three strings µ, ν and γ satisfying the conditions
of Proposition 2. Thus we can prove the following:

Theorem 4. Given an NFA A = (Q, q0, δ, F,Σ), deciding whether the language
L := L(A) is Wheeler is PSPACE-complete. The same result holds even if A is
reduced.

Proof. First of all we need to prove that the problem is in PSPACE. We will
show instead that its complement is in NPSPACE, then the thesis follows from
Savitch’s Theorem, which states that NPSPACE = PSPACE, and the fact that
PSPACE is closed under complementation.

Let D be the automaton obtained by the determinization of A with dimension
d = |D| ≤ 2n. We prove that we can check the conditions in Proposition 2 for
the automaton D, without building it, using polynomial space. We use non-
determinism to guess, bit by bit, the length of µ, ν and γ and store this guessed
information in three counters u, v, g respectively, using O

(

log(d5)
)

= O(n) space
for each. These counters determine which string among µ, ν and γ is longer
and we start guessing the characters of such string from the left to the right,
decreasing by one its counter whenever we guess a character. When the counter
reaches the same value of the second biggest counter, we start guessing the
characters of both the first and the second string at the same time and we carry
on until they reach the value of the last counter. Then, we guess simultaneously
the characters of all three strings until all counters reach the value 0. While
guessing the characters of µ (respectively, ν) we update at each step the set of
states of A reachable from q0 by reading the currently guessed prefix of µ (ν),
so that in the end we obtain the sets δ(q0, µ) and δ(q0, ν). We proceed similarly
for γ, but this time we compute the set δ(q, γ) for each state q ∈ Q. Since D

16 G. D’Agostino et al.

is the determinized version of A, we can verify condition 2 of Proposition 2 by
checking whether the set δ(q0, µ) and the set

δ(q0, µ · γ) =
⋃

p∈δ(q0,µ)

δ(p, γ)

are equal, and we do the same for δ(q0, ν) and δ(q0, ν · γ). Condition 3 of Propo-
sition 2 can be checked in constant space. To confront µ and γ, we use a variable
ρ that indicates whether µ is less, equal or greater than γ. We initialize ρ based
on the counters u, g as follows:

ρ :=

{

= if u = g

⊢ if u < g.

We leave ρ unchanged until we start guessing simultaneously µ and γ. Then,
when we guess simultaneously the character c1 for µ and the character c2 for γ,
we set

ρ :=

≺ if c1 ≺ c2

≻ if c1 ≻ c2

ρ if c1 = c2.

Note that if at the end ρ has value ⊢, it means that µ ⊢ γ. Otherwise, we have
µ ρ γ. Therefore, we are always able to determine the co-lexicographic order of µ
and γ. To check condition 1 of Proposition 2, consider the automata Aµ and Aν

obtained from the NFA A by considering as initial states the sets δ(q0, µ) and
δ(q0, ν), respectively. We have that µ 6≡L ν if and only if L(Aµ) 6= L(Aν), and
checking whether L(Aµ) = L(Aν) can be done in polynomial space, since decid-
ing whether two NFA’s recognize the same language is a well-known PSPACE-
complete problem.

To prove the completeness of the problem, we will show a polynomial reduc-
tion from the universality problem for NFA, i.e. the problem of deciding whether
the language accepted by an NFA A, over the alphabet Σ, is Σ∗.

Let A = (Q, q0, δ, F,Σ) be an NFA and let L = L(A). We can assume without
loss of generality that q0 ∈ F , otherwise A would not accept the empty string
and we could immediately derive that L 6= Σ∗. Let a, b, c be three characters
not in Σ and such that a ≺ b ≺ c with respect to the lexicographical order
(the order of the characters of Σ is irrelevant in this proof). First, we build the
automaton A′ starting from A by adding an edge (qf , q0, c) for each final state
qf ∈ F , see the top part of Figure 4. Notice that A′ recognizes the language
L′ = L(A′) = (Lc)∗ · L, and it is straightforward to prove that L = Σ∗ if and
only if L′ = (Σ + c)∗: if L = Σ∗, let α be a string in (Σ + c)∗ containing n
occurrences of c. Then α = α0 c α2 c . . . αn−1 c αn for some α1, . . . , αn ∈ Σ∗.
Hence α ∈ (Σ∗c)∗ ·Σ∗ = L′. On the other hand, if L 6= Σ∗ let α be a string in
Σ∗ \ L. Then α · c /∈ L′.

We build a second automaton A′′ as depicted in Figure 4. Let L′′ = L(A′′)
be the language recognized by A′′. We claim that L = Σ∗ if and only if L′′ is

Ordering Regular Languages and Automata: Complexity 17

q′0

q0

q1

N AA

A′

a

b

c
c

Σ, c

Fig. 4. The automaton A′′. Every accepting state of A, labeled A in the figure, has a
back edge labeled c connecting it to q0. Conversely, non-accepting states of A, labeled
N in the figure, do not have such back edges.

Wheeler.
(=⇒) If L = Σ∗, we have already proved that L′ = (Σ + c)∗. Hence we have
L′′ = (a + b) · (Σ + c)∗. The minimum DFA recognizing L′′ has only one loop,
therefore by Theorem 3 L′′ is Wheeler.
(⇐=) If L 6= Σ∗, let α be a string in Σ∗ \ L. Note that α 6= ε since we assumed
that ε ∈ L. Every possible run of α over A must lead to a non-accepting state,
hence α · c /∈ L′. This implies that for all i ≥ 0 we have a · ci · α · c /∈ L′′ (notice
that the only edge labeled c leaving q0 ends in q0). On the other hand, for all
j ≥ 0 we have bcj · α · c ∈ L′′, hence for all i, j ≥ 0 we have aci 6≡L′′ bcj. Thus
the following monotone sequence in Pref(L′′)

ac ≺ bc ≺ acc ≺ bcc ≺ · · · ≺ acn ≺ bcn ≺ . . .

is not eventually constant modulo ≡L′′ . From Lemma 2 it follows that L′′ is not
Wheeler.

Note that in the reduction described in Figure 4, if the starting NFA A was
reduced, then also A′′ would be reduced. This means that the statement of the
theorem holds even if restricted to reduced NFA’s. ⊓⊔

Remark 3. Note that the previous theorem is in contrast with what happens
when we consider the problem of deciding whether an NFA is Wheeler, instead
of whether it accepts a Wheeler language: in that case, restricting the problem
to reduced NFA’s makes it solvable in polynomial time.

3 State complexity

As already mentioned above, a significant property on the interplay between
deterministic and non-deterministic Wheeler Automata is that given a size-n

18 G. D’Agostino et al.

WNFA A, there always exists a WDFA that recognizes the same language whose
size is at most 2n. The announced amount of states can be computed using the
(classic) powerset construction. In other words, the blow-up of the number of
states that we might observe when converting NFA’s to DFA’s, does not occur
for Wheeler non-deterministic automata. This property is a direct consequence
of an important feature of Wheeler automata: for any state q, the set of strings
recognized by q—namely Iq—is an interval over Pref(L) with respect to the
co-lexicographic order.

State complexity is also used to measure the complexity of operations on
regular languages. In the next section we prove that the interval property of a
Wheeler DFA can also be exploited to prove that the state complexity of the
intersection of Wheeler languages is significantly better than the state complexity
of the intersection of general regular languages.

3.1 Intersecting Wheeler languages

The state complexity of a regular language L is defined as the number of states
of the minimum DFA DL recognizing L. The state complexity of an operation
on regular languages is a function that associates to the state complexities of the
operand languages the worst-case state complexity of the language resulting from
the operation. For instance, we say that the state complexity of the intersection
of L1 and L2 is mn, where m and n are the number of states of DL1

and DL2

respectively. The bound mn for the intersection can easily be proved using the
state-product construction for DL1

and DL2
, and it is a known fact that this

bound is tight [9].
It is natural to define the Wheeler state complexity of a Wheeler language L

as the number of states of the minimum WDFA DW
L recognizing L. In the follow-

ing theorem, we show what it is the Wheeler state complexity of the intersection
of two Wheeler languages L1 and L2.

Theorem 5. Let DW
L1

and DW
L2

be the minimum WDFA’s recognizing the lan-
guages L1 and L2 respectively. Then, the minimum WDFA recognizing L :=
L1 ∩ L2 has at most |DW

L1
|+ |DW

L2
| − |Σ| − 1 states.

This bound is tight.

Proof. First we prove that, given any two strings α, β ∈ Σ∗, if α ≡c
L1

β and
α ≡c

L2
β then α ≡c

L β. From α ≡L1
β and α ≡L2

β it follows that α ≡L β.
Moreover, from α ≡c

L1
β it follows that α and β end with the same letter. What

it is left to prove is that for any γ ∈ Σ∗ such that α ≺ γ ≺ β it holds α ≡L γ.
This follows immediately since α ≡c

L1
β implies α ≡L1

γ and α ≡c
L2

β implies
α ≡L1

γ.
Let C1

0 , . . . C
1
n−1 be the ≡c

L1
-classes and let C2

0 , . . . C
2
m−1 be the ≡c

L2
-classes;

we assume that both lists are ordered co-lexicographically. Since the ≡c
L1

-classes
are pairwise disjoint—and the same holds for the ≡c

L2
-classes—the number of

≡c
L1∩L2

-classes is at most equal to the number of non-empty intersections of the
form C1

i ∩ C2
j , for 1 ≤ i ≤ n and 1 ≤ j ≤ m. Classes that end with different

Ordering Regular Languages and Automata: Complexity 19

characters of the alphabet must have empty intersection; a particular case are
the classes C1

0 = C2
0 = {ε}, which always lead to the non-empty intersection

C1
0 ∩ C2

0 = {ε}. We will focus on classes whose elements end with a specific
character, say a. Let C1a

1 , . . . , C1a
na

be all the ≡c
L1

-classes that end with a, co-
lexicographically ordered, and let let C2a

1 , . . . , C2a
ma

be all the ≡c
L2

-classes that
end with a. Let k be the number of non-empty intersections of the form C1a

i ∩C2a
j ,

and let α1 ≺ · · · ≺ αk be an ordered list containing one representatives for each
non-empty intersection. For any 1 ≤ s < k, consider the strings αs and αs+1.
There must exist four unique indexes i, j, i′, j′ such that αs ∈ C1a

i ∩ C2a
j and

αs+1 ∈ C1a
i′ ∩ C2a

j′ . From αs ≺ αs+1 it follows that both i ≤ i′ and j ≤ j′

hold, since the ≡c
L1

-classes—and the ≡c
L2

-classes—are pairwise disjoint and co-
lexicographically ordered. On the other hand, it can not be the case that both
i = i′ and j = j′ hold, because αs and αs+1 belong to different intersections.
Therefore we have that i′+j′ ≥ i+j+1. The values of the function f(αs) = i+j
can range from 2 to na+ma, hence there might be at most na+ma−1 different
representatives. Taking the sum over every possible characters of Σ and adding
the class C1

0 ∩C2
j = {ε}, we get an upper bound of

1 +
∑

a∈Σ

(na +ma − 1) = 1 +
∑

a∈Σ

na +
∑

a∈Σ

ma − |Σ| =

= 1 + (n− 1) + (m− 1)− |Σ| = n+m− |Σ| − 1

different possible representatives.

To show that the bound is tight (at least for |Σ| = 2), consider the following
families of languages over the alphabet Σ = {a, b}, with a ≺ b:

An := {α ∈ Σ∗ : an+1 is not a factor of α}

Bm := {β ∈ Σ∗ : bm+1 is not a factor of β}.

We can easily prove that all these languages are Wheeler. The minimum DFA
recognizing Bm is already a WDFA, see Figure 5, with m + 2 states. A list of
representatives of such classes is

ε, a, b, . . . , bm.

20 G. D’Agostino et al.

q0

q1

q2 q3 q4

a

b

b b

a

a a
a

b

Fig. 5. The minimum WDFA recognizing B3.

q0 q1 q2 q3

q4

q5

q6

a a a

a

a

a

b b

b b

b

b

b

Fig. 6. The minimum WDFA recognizing A3.

The minimum WDFA recognizing An has more states than the minimum DFA:
for 1 ≤ i < n we have that ai ≺ an ≺ bai, hence we have to split the ≡An

-class
containing both ai and bai into two different ≡c

An
-classes. The automaton has

2n+ 1 states, see Figure 6. A list of representatives of the ≡c
An

-classes is

ε, a, . . . , an, ban−1, . . . , ba, b.

Ordering Regular Languages and Automata: Complexity 21

We have already proved that the language L := An∩Bm might have at most
(2n+1)+ (m+ 2)− |Σ| − 1 = 2n+m different ≡c

L-classes, hence it is sufficient
to show that there are at least 2n+m different ones. We claim that the 2n+m
strings

ε, a, . . . , an, ban−1, . . . , ba, b, . . . , bm

all belong to different ≡c
L-classes. Strings that ends with a different amount of

a′s (or b′s) belong to different ≡L-classes, so there is nothing to prove. Therefore
we only have to check, for each 1 ≤ i < n, that ai and bai belong to different
≡c

L-classes, and again this is true since ai ≺ an ≺ bai. ⊓⊔

Remark 4. Similarly to the case of determinizing a WNFA, where we can use
the classic powerset construction without generating too many states, to com-
pute a WDFA that recognizes the intersection of the languages accepted by two
WDFA’s W1 and W2 we can use the classic state-product construction with the
certainty that it will not produce more states that necessary; that is, the number
of states generated will be at most the sum of the number of states of W1 and
W2.

Open Problem 1. Wheeler automata are closed under few operations: intersec-
tion and right-concatenation with a finite language, i.e. if L is a Wheeler language
and F is a finite language, then also L ·F is a Wheeler language. In general, the
state complexity of the concatenation of L(D1) · L(D2) can result in an expo-
nential blow-up in the number of states of D2 [9], even when restricted to finite
languages [3]. It remains open the question whether it is possible to obtain a
better—that is, sub-exponential—upper bound for Wheeler automata.

3.2 Computing the minimum WDFA

Despite of the good behaviour that Wheeler automata show regarding deter-
minization and intersection, there are cases when the state complexity of a con-
struction is exponential. In fact, it is known [1] that a blow-up of states can
occur when switching from the minimum DFA recognizing a language L to its
minimum WDFA. As a last contribution we provide an algorithm to compute
the minimum WDFA starting from the minimum DFA DL of a Wheeler lan-
guage L, consisting in two steps: first, we describe an algorithm that extracts
a fingerprint of L starting from DL, that is, a set of string containing exactly
one representative of each ≡c

L-class of L. Second, we provide an algorithm that
builds the minimum WDFA recognizing L starting from any of its fingerprints.

Definition 7 (Fingeprint). Let L be a Wheeler language, and let m be the
number of equivalence classes of ≡c

L. A set of strings F = {α1, . . . , αm} ⊆ Σ∗ is
called a fingerprint of L if and only if for each ≡c

L-class C it holds |F ∩C| = 1.

We start by proving that we can impose an upper bound to the length of the
representative of a fingerprint.

22 G. D’Agostino et al.

Lemma 3. Let DL be the minimum DFA recognizing the Wheeler language L
over the alphabet Σ, and let C1, ..., Cm be the pairwise distinct equivalence classes
of ≡c

L. Then, for each 1 ≤ i ≤ m, there exists a string αi ∈ Ci such that
|αi| < n+ n2, where n := |DL|.

Proof. Suppose by contradiction that there exists a class Ci such that for all
α ∈ Ci it holds |α| ≥ n + n2, and let α ∈ Ci be a string of minimum length.
Consider the first n+ 1 states q0 = t0, ..., tn of DL visited by reading the first n
characters of α. Since DL has only n states, there must exist 0 ≤ i, j ≤ n with
i < j such that ti = tj . Let α′ be the prefix of α of length i (if i = 0 then α′ = ε),
let δ be the factor of α of length j− i labeling the path ti, ..., tj , and let ζ be the
suffix of α such that α = α′δζ. By construction, the strings α and β := α′ζ end
in the same state, hence α ≡L β. Moreover, from |β| < |α| and the minimality
of α it follows that α 6≡c

L β.
Suppose that α ≺ β, the other case being completely symmetrical. Since α and
β share the same suffix ζ, they end with the same character. This means that
the strings α and β, which are Myhill-Nerode equivalent but not ≡c

L equivalent,
were not split into two distinct ≡c

L-classes due to input-consistency, therefore
there must exists a string η such that α ≺ η ≺ β and η 6≡L α. Formally, assume
by contradiction that for all strings η such that α ≺ η ≺ β it holds η ≡L α.
Then, by definition of ≡c

L, it would follow α ≡c
L β, a contradiction.

Let η be a string such that α ≺ η ≺ β and η 6≡L α. From ζ ⊣ α, β it follows that
ζ ⊣ η, so we can write η = η′ζ for some η′ ∈ Σ∗. Recall that by construction
α = α′δζ with |α′δ| ≤ n, hence |ζ| ≥ n2. Consider the last n2+1 states r0, ..., rn2

of DL visited by reading the string α, and the last n2+1 states p0, ..., pn2 visited
by reading the string η. Since DL has only n states, there must exist 0 ≤ i, j ≤ n2

with i < j such that (ri, pi) = (rj , pj). Notice that it can’t be ri = pi, otherwise
from the determinism of DL it would follow rn2 = pn2 ; from the minimality of
DL it would then follow α ≡L η, a contradiction.
Let ζ′′ be the suffix of ζ of length n2 − j, and let γ be the factor of ζ of length
j − i labeling the path ri, ..., rj . Since |ζ| ≥ n2, there exists ζ′ ∈ Σ∗ such that
ζ = ζ′γζ′′. We can then rewrite α, η and β as

α = α′δζ = α′δζ′γζ′′

η = η′ζ = η′ζ′γζ′′

β = α′ζ = α′ζ′γζ′′.

Let k be an integer such that |γk| is greater than |α′δζ′| and |η′ζ′|. Set µ := η′ζ′;
from α ≺ η ≺ β it follows that α′δζ′ ≺ µ ≺ α′ζ′. If γk ≺ µ set ν := α′ζ′,
otherwise set ν := α′δζ′. In both cases, the hypothesis of Theorem 3 are satisfied,
since γk labels two cycles starting from the states ri and pi, that we have proved
to be distinct. We can conclude that L is not Wheeler, a contradiction, and the
thesis follows. ⊓⊔

We show now how to compute the minimum WDFA recognizing a Wheeler
language L if we are given its minimum DFA DL and one of its fingeprints.

Ordering Regular Languages and Automata: Complexity 23

Proposition 3 (Fingerprint to min WDFA). Let DL be the minimum au-
tomaton recognizing the Wheeler language L with |DL| = n and let C1, ..., Cm

be the pairwise distinct equivalence classes of ≡c
L. Assume that we are given a

fingerprint of L, whose elements have length less than n2+n. Then it is possible
to build the minimum WDFA recognizing L in O(n2 · σ ·m logm) time.

Proof. Let {α1, ..., αm} be a fingerprint of L and let DL be the minimum DFA
recognizing L. We can assume without loss of generality that α1 ≺ ... ≺ αm.
We build the automaton DW

L = (Q,α1, δ, F,Σ), where the set of states is Q =
{α1, ..., αm} and the set of final states is F = {αj : αj ∈ L}. The transition
function δ can be computed as follow. For all 1 ≤ j ≤ m and for all c ∈ Σ, check
whether αj · c ∈ Pref(L). If αj · c /∈ Pref(L), there are no edges labeled c that
exit from αj . If instead αj · c ∈ Pref(L), in order to define δ(αj , c) we just have
to determine the ≡c

L-class of the string αj · c (see Theorem 1). We first locate
the position of αj · c in the intervals defined by α1 ≺ ... ≺ αm using a binary
search. There are three possible cases.

1. αj · c � α1. Then by the properties of ≡c
L it easily follows αj · c ≡c

L α1 and
we define δ(αj , c) = α1.

2. αm � αj · c. Similarly to the previous case, we have αj · c ≡c
L αm and we

define δ(αj , c) = αm.
3. There exists s such that αs � αj · c � αs+1. It can not be the case that

both αjc 6≡L αs and αjc 6≡L αs+1, since {α1, ..., αm} is a fingerprint of L
and ≡c

L-classes are intervals in Pref(L). Hence we distinguish three cases.

(a) αs ≡L αj · c 6≡L αs+1. Then αj · c ≡c
L αs and we define δ(αj , c) = αs.

(b) αs 6≡L αj · c ≡L αs+1. Then δ(αj , c) = αs+1.
(c) αs ≡L αj · c ≡L αs+1. Since {α1, ..., αm} is a fingerprint of L, it is

either c = end(αjc) = end(αs), in which case αj · c ≡c
L αs and we define

δ(αj , c) = αs, or c = end(αs+1), in which case αj · c ≡c
L αs+1 and we

define δ(αj , c) = αs+1 (where by end(β) we denote the last letter of the
string β, for β ∈ Σ+).

⊓⊔

To complete the construction, we show how to extract a fingerprint of a
Wheeler language L starting from its minimum DFA. We first need to prove the
following Lemma.

Lemma 4. Given a DFA D with n states, a state q and a string γ /∈ Iq with
|γ| ≤ n2 + n, we can find in polynomial time, if it exists, the greatest (smallest)
string in Iq that is smaller (greater) than γ and has length at most n2 + n.

Proof. Let UB the the upper bound UB = n2+n. Using dynamic programming,
we can extract a n×UB table storing, for each (i, j), the smallest and the greatest
string in Iqi of length at most j (see [ADPP]). Given a string α, we use the
notation α[i] to denote the i-th to last character of α (or ε if i > |α|), and the
notation αi to denote the suffix of α of length i. In particular we have αi+1 =
α[i+1] ·αi. In this Lemma we are interested only in strings with length less than

24 G. D’Agostino et al.

UB, therefore every string (subset of strings) that will be mentioned has to be
intended as an element (subset, respectively) of Σ≤UB = {α ∈ Σ∗ : |α| ≤ UB}.

We want to find the greatest string in Iq that is smaller than γ. Note that if
γ is the suffix of a string α, then γ ≺ α so we do not have to worry about strings
ending with γ. Note also that the greatest string smaller than γ must maximize
the length of the longest suffix it has in common with γ. Therefore, we look for
all the states of D starting from which it is possible to read the longest proper
suffix of γ that ends in q. To do that, for each 1 ≤ i < |γ| we build the set

Si = {p ∈ Q : p
γi
 q}. We start from the set S0 = {q} and to build Si+1 from Si

we simply follow backward the edges labeled γ[i+ 1]. Every time we determine
a set Si, we check if there exists at least one incoming edge with a label strictly
less than γ[i+1]. If this is the case, we keep in memory Si as the last set we built
with such property; previously stored sets can be overwritten. This procedure
ends either when we find an Si that is empty or when we successfully build the
last set S|γ|−1. If we did not store any of the Si we have built, then there is no
string in Iq smaller than γ. If instead we have stored at least one Si, we consider
the last one stored (that is, the only one that has not been overwritten), say Sk.
Clearly, the computation of any string in Iq smaller than γ that maximizes the
length of the longest suffix it has in common with γ must reach a state of Sk at
his k-th to last step. Therefore, let c be the greatest label smaller than γ[k + 1]
that enters Sk (note that c must exists since we stored Sk), and let S be the
set of states that can reach Sk by an edge labeled c. Using the table computed
at the very beginning of this lemma, we can easily find, if it exists, the greatest
string ᾱ of length at most UB−(k + 1) that can reach a state of S. Then, the
greatest string in Iq that is smaller than γ is ᾱ · c · γk.

To find the smallest string in Iq that is greater than γ, we split the problem
into two sub-problems: 1) find the smallest string in Iq that is greater than γ
but has not γ as a suffix and 2) find the smallest string in Iq that has γ as a
suffix. The first problem is a symmetric version of the one discussed above, and
can be solved in a similar way: we use exactly the same sets Si, but this time
we store a set Si if there exists at least one incoming edge with a label strictly
greater than γ[i+1]. To also solve the second problem, instead of stopping when
computing S|γ|−1 we carry on and compute S|γ|. We do this since the following
implication holds: there exists at least one string in Iq that has γ as a suffix iff
S|γ| is not empty and there is at least one string of length at most UB−|γ| that
can reach a state of S|γ|. If S|γ| 6= ∅, we use again the table to determine, if it
exists, the smallest string β̄ of length at most UB − |γ| that can reach a state
of S|γ|. Lastly, we confront β̄ · γ with the string obtained by solving the first
problem and we choose the smaller one. ⊓⊔

As a last step, Algorithm 1 generates a fingerprint of a language L starting
from the minimum DFA DL. The algorithm uses the subroutines described in
Lemma 4: given a DFA D with set of states Q = {q0, . . . , qn−1} and two strings
m,m′ ∈ Pref(L(D)) with m ∈ Iqk (for some 0 ≤ k ≤ n− 1),

Ordering Regular Languages and Automata: Complexity 25

– MinMaxPair(D) returns the set of pairs (m0,M0), . . . , (mn−1,Mn−1), where
mi is the co-lexicographically smallest string in Iqi of length at most n2+n,
and Mi is the greatest.

– GreatestSmaller(m,m′,D) returns the greatest string in Iqk smaller than m′

of length at most n2 + n.
– SmallestGreater(m,m′,D) returns the smallest string in Iqk greater than m′

of length at most n2 + n.

Algorithm 1 Min DFA to fingerprint

Input: The minimum DFA DL recognizing L
Output: A fingerprint of L

1: τ ← MinMaxPairs(DL) ⊲ We initialize a set of |DL| pairs of strings

2: while there exist (m,M), (m′,M ′) ∈ τ such that m ≺ m′ ≺M do

3: M1 ← GreatestSmaller(m,m′,DL)
4: m2 ← SmallestGreater(m,m′,DL)
5: τ ← τ \ {(m,M)}
6: τ ← τ ∪ {(m,M1), (m2,M)}
7: end while

8: τ ← Expand(τ)
9: return the first component of each element of τ

At each iteration of the while cycle, we check the existence of two overlapping
pairs (m,M), (m′,M ′) and replaces the first one with two new pairs (m,M1)
and (m2,M). As we will prove in the Appendix, this cycle always ends. Clearly,
when we exit the cycle τ can not contain overlapping pairs. We will also prove
that, at this point, each pair (m,M) ∈ τ satisfy the following properties:

1. m and M belong to the same ≡L-class;
2. if there exists a Wheeler class C such that m ≺ C ≺ M , then C ⊆ [m]≡L

.

Lastly, we use the subroutine Expand to extract, from each pair (m,M) ∈ τ , a
representative of all the Wheeler classes C (if any exists) such that m ≺ C ≺ M .
Since property 1-2 hold, if end(m) = end(M) there are no Wheeler classes C
such that m ≺ C ≺ M ; moreover, m and M belong to the same Wheeler class,
so we leave the pair (m,M) unchanged. Otherwise, if end(m) 6= end(M) and
there is a Wheeler class C is such that m ≺ C ≺ M , it must be the case that the
strings in C end with a character that differs from both the last character of m
and the last one of M . For each character c such that end(m) ≺ c ≺ end(M), we
check whether there exists a string αc ∈ Iδ(q0,m) such that end(αc) = c. Every
time we find an αc with such property, we add to τ the pair (αc, αc). As a last
step, we replace the pair (m,M) with the pairs (m,m) and (M,M), since from
end(m) 6= end(M) it follows that m and M belong to different Wheeler classes.

26 G. D’Agostino et al.

After the Expand subroutine has been run, τ will contain exactly one pair for
each Wheeler class C of L, whose components both belong to C. By extracting
from each pair one of its components, e.g. the first one, we obtain a fingerprint
of L.

4 Conclusions

In this paper we considered a number of computational complexity problems
related with the general idea of ordering states of a finite automaton. In general,
ordering objects might lead to significant simplification of otherwise difficult
storage and/or manipulation problems. In fact, ordered finite automata can ease
such tasks as index construction, membership testing, and even determinization
of NFA’s accepting a given regular language. Clearly, a key point is the com-
plexity of finding the right order from scratch. Even though this turned out to
be simple on DFA’s and, as opposed to the non-ordered case, turning a Wheeler
NFA into a Wheeler DFA is polynomial, things become much more tricky when
the input automaton is a non-deterministic one. This issue, together with some of
its natural variants, were the main theme of this paper. We proved that a number
of ordered-related results, ultimately guaranteeing the existence of polynomial
time algorithms on DFA’s, are much more complex if the starting automaton is
an NFA—even in the case of a reduced NFA.

The complexity bounds we studied and presented here suggest the “danger-
ous” directions along which generalisations can be searched.

An interesting theme we did not explore here, is the possibility of exploiting
order over more general classes of automata and languages. Can ordering states of
a push-down (deterministic) automata or even a (deterministic) Turing Machine,
be a way to obtain a simplification of interesting problems over the recognized
languages? Can we define an order over the states of a DFA and use this order
to simplify problems relative to language over infinite strings?

The order imposed on states of an accepting automaton is reflecting, in a va-
riety of ways, the underlying properties of the ordering on strings reaching that
state. The co-lexicographic order seems to be an especially effective one. How-
ever, exploring this relationship—and the corresponding complexity bounds—in
interesting and expressive contexts, can be extremely stimulating in terms chal-
lenging formal language problems.

References

1. Alanko, J., D’Agostino, G., Policriti, A., Prezza, N.: Regular languages meet
prefix sorting. In: Proceedings of the 2020 ACM-SIAM Symposium on Dis-
crete Algorithms. pp. 911–930 (2020). https://doi.org/10.1137/1.9781611975994.55,
https://epubs.siam.org/doi/abs/10.1137/1.9781611975994.55

2. Alanko, J., D’Agostino, G., Policriti, A., Prezza, N.: Wheeler languages.
Inf. Comput. 281(C) (dec 2021). https://doi.org/10.1016/j.ic.2021.104820,
https://doi.org/10.1016/j.ic.2021.104820

https://doi.org/10.1137/1.9781611975994.55
https://epubs.siam.org/doi/abs/10.1137/1.9781611975994.55
https://doi.org/10.1016/j.ic.2021.104820
https://doi.org/10.1016/j.ic.2021.104820

Ordering Regular Languages and Automata: Complexity 27

3. Câmpeanu, C., Culik, K., Salomaa, K., Yu, S.: State complexity of basic operations
on finite languages. In: Boldt, O., Jürgensen, H. (eds.) Automata Implementation.
pp. 60–70. Springer Berlin Heidelberg, Berlin, Heidelberg (2001)

4. Cotumaccio, N., D’Agostino, G., Policriti, A., Prezza, N.: A theory of (co-lex) or-
dered regular languages. In preparation (2022)

5. Cotumaccio, N., Prezza, N.: On Indexing and Compressing Finite Au-
tomata, pp. 2585–2599. https://doi.org/10.1137/1.9781611976465.153,
https://epubs.siam.org/doi/abs/10.1137/1.9781611976465.153

6. Gibney, D., Hoppenworth, G., Thankachan, S.V.: Simple reductions from
formula-sat to pattern matching on labeled graphs and subtree iso-
morphism. In: Le, H.V., King, V. (eds.) 4th Symposium on Simplic-
ity in Algorithms, SOSA 2021, Virtual Conference, January 11-12, 2021.
pp. 232–242. SIAM (2021). https://doi.org/10.1137/1.9781611976496.26,
https://doi.org/10.1137/1.9781611976496.26

7. Gibney, D., Thankachan, S.V.: On the hardness and inapproximability of
recognizing wheeler graphs. In: 27th Annual European Symposium on
Algorithms, ESA 2019, September 9-11, 2019, Munich/Garching, Ger-
many. pp. 51:1–51:16 (2019). https://doi.org/10.4230/LIPIcs.ESA.2019.51,
https://doi.org/10.4230/LIPIcs.ESA.2019.51

8. Travis Gagie, Giovanni Manzini e Sirén, J.: Wheeler graphs: A framework for bwt-
based data structures. Theoretical computer science 698, 67–78 (2017)

9. Yu, S., Zhuang, Q., Salomaa, K.: The state complexities of some basic operations
on regular languages. Theor. Comput. Sci. 125, 315–328 (1994)

https://doi.org/10.1137/1.9781611976465.153
https://epubs.siam.org/doi/abs/10.1137/1.9781611976465.153
https://doi.org/10.1137/1.9781611976496.26
https://doi.org/10.1137/1.9781611976496.26
https://doi.org/10.4230/LIPIcs.ESA.2019.51
https://doi.org/10.4230/LIPIcs.ESA.2019.51

28 G. D’Agostino et al.

5 Appendix

Proof of Proposition 2. Let DL = (Q̂, q̂0, δ̂, F̂ , Σ) be the minimum DFA
recognizing L. Clearly DL has at most n states.
(⇐=) From condition 2 it follows that δ(q0, µ) = δ(q0, µγ), thus µ ≡L µγ.
Therefore, in DL we also have δ(q̂0, µ) = δ(q̂0, µγ). Similarly, it holds δ(q̂0, ν) =
δ(q̂0, νγ). It follows that µ, ν, γ satisfy condition 1-3 of Theorem 3, hence L is
not Wheeler.
(=⇒) Since L is not Wheeler, let µ̂, ν̂, γ̂ be three strings satisfying conditions 1-4
of Theorem 3. The DFA DL has at most n states, hence the length of µ̂, ν̂ and γ̂
is bounded by n3+2n2+n+2. We have µ̂γ̂∗ ⊆ Pref(L), so let t0 = q0, t1, . . . , tm
be a run of µ̂γ̂n over D. We set u := |µ̂| and g := |γ̂|, and consider the list of
n+ 1 states

tu, tu+g, tu+2g, . . . , tu+ng = tm

Since D has n states, there must exist two integers 0 ≤ h < k ≤ n such that
tu+hg = tu+kg . That is, there exists a state p := tu+hg such that p ∈ δ

(

q0, µ̂γ̂
h
)

and γ̂k−h labels a cycle starting from p. We can repeat the same argument
for a run of ν̂γ̂n over D to find a state r and two integers h′, k′ such that
r ∈ δ(q0, ν̂γ̂

h′

) and γ̂k′−h′

labels a cycle starting from r. We define the constant
h′′ as the minimum multiple of (k−h) · (k′−h′) greater than max{h+1, h′+1};
it can be proved that h′′ ≤ n2, and by construction γ̂h′′

labels both a cycle
starting from p and one starting from r. We then define the strings

µ := µ̂γ̂h

ν := ν̂γ̂h′

γ := γ̂h′′

,

which satisfy conditions 2 and 3. Note that we have chosen a h′′ such that
|γ| > |µ|, |ν|, so that γ ✓⊣ µ, ν. Condition 4 is satisfied since |γ̂| ≤ n3+2n2+n+2
and h′′ ≤ n2. Lastly, condition 1 is satisfied since the strings µ̂ and µ̂γ̂h lead to
the same state of DL, thus µ̂ ≡L µ̂γ̂h. Similarly, we have ν̂ ≡L ν̂γ̂h′

. The thesis
then follows from µ̂ 6≡L ν̂. ⊓⊔

Termination and correctness of Algorithm 1. We start by analyzing the
subroutines used by the algorithm. The subroutine MinMaxPairs can be com-
puted simply by looking at the n×UB table described in Lemma 4. Note that
Lemma 3 ensures that mqi (respectively, Mqi) belongs to the smaller (greatest)
Wheeler class contained in Iqi . Subroutines GreatestSmaller and SmallestGreater
are thoroughly described in Lemma 4.

We now prove that Algorithm 1 always terminates. Let τi be the set τ at the
end of the i−th iteration of the while cycle, and for any pair of strings c = (m,M)
let w(c) denote the number of Wheeler classes C such that m ≺ C ≺ M and
C * [m]≡L

. Given a set of pairs τ , let w(τ) denote the value

w(τ) :=
∑

c∈τ

w(c) ≥ 0.

Ordering Regular Languages and Automata: Complexity 29

We say that two pairs c = (m,M) and c′ = (m′,M ′) are ordered if either
M ≺ m′ or M ′ ≺ m. In order to prove that w(τi+1) < w(τi), we will maintain
the following invariants:

0. if c = (m,M) and c′ = (m′,M ′) are two distinct pairs in τi, then {m,M} ∩
{m′,M ′} = ∅;

1. if c = (m,M) ∈ τi, then m � M , m ≡L M , and end(m) = end(M);
2. if c = (m,M) and c′ = (m′,M ′) are two distinct pairs in τi such that m ≡L

m′, then c and c′ are ordered. Moreover, if c and c′ are also consecutive, that
is if there is no c∗ = (m∗,M∗) in τi such that m ≡L m∗ and m ≺ m∗ ≺ m′,
then there is no Wheeler class C ⊆ [m]≡L

such that m ≺ C ≺ m′;
3. let x be the first or second component of any pair c in τi and y be the first

or second component of any pair c′ in τi. If x ≡c
L y, then c = c′.

Note that invariant 0 implies that every time we have two distinct, not ordered
pairs c = (m,M) and c′ = (m′,M ′), the strict inequalities m ≺ M ′ and m′ ≺ M
hold. By construction, these invariants hold for τ0, which is the set returned by
MinMaxPairs. For instance, invariant 2, 3 hold since in τ0 distinct pairs have
components belonging to different ≡L-classes.

Invariants 0-2 can be easily proved by induction on i just by looking at how
new pairs are created. We prove by induction invariant 3: suppose that it holds
for τi. Let c = (m,M), c′ = (m′,M ′) be the pairs that meet the while condition
on Line 2, and let c1 = (m,M1), c2 = (m2,M) be the two pairs that replace c on
Line 5-6. Note that c, c′ are not ordered, hence invariant 2 implies that m and
m′ belong to different ≡L-classes. Suppose by contradiction that the invariant
does not hold for τi+1, that is, there exist two distinct pairs d, d′ ∈ τi+1 such
that a component x of d belongs to the same Wheeler class of a component y of
d′. By induction, it can not be the case that d, d′ ∈ τi. Therefore, at least one
among d and d′ belongs to {c1, c2}. Moreover, d and d′ can not both belong to
{c1, c2}: we have by construction that the (possibly identical) Wheeler classes
of m and M1 are different from the Wheeler classes of m2 and M . We assume,
w.l.o.g., that d belongs to {c1, c2} whereas d′ doesn’t; in particular d′ ∈ τi and
since d′ ∈ τi+1 we also have d′ 6= c. There are two possibilities. If d = c1, it
can not be the case that x = m, otherwise the pairs c, d′ ∈ τi would violate
the inductive hypothesis. Thus x = M1. From y ≡c

L M1 ≡L m it follows that
y ≡L m and invariants 1, 2 applied to τi imply that c and d′ are ordered, that
is, either y ≺ m or M ≺ y holds. If y ≺ m we get y ≺ m � M1, thus m belongs
to the same Wheeler class of y. If M ≺ y we get M1 � M ≺ y, thus M belongs
to the same Wheeler class of y. In both cases, considering c, d′ ∈ τi, we reach a
contradiction with our inductive hypothesis.
If instead d = c2, we use a similar argument to show that x = m2 and that
either y ≺ m � m2 or m2 � M ≺ y hold. Since both inequalities lead to a
contradiction, we can conclude that invariant 3 holds. Hence we proved that
invariant 3 holds for all τi.

We can now prove that w(τi+1) < w(τi). Let (m,M1), (m2,M) be the pairs
added to τi on Line 6 of the Algorithm 1. Note that if C is a Wheeler class such
that m ≺ C ≺ M and C * [m]≡L

, it can not be the case that both m ≺ C ≺ M1

30 G. D’Agostino et al.

and m2 ≺ C ≺ M occurs, since M1 ≺ m2. Moreover, let C′ be the Wheeler
class containing m′. From invariant 2 it follows that C′ * [m]≡L

, and from
M1 ≺ m′ ≺ m2 it follows that neither m ≺ C′ ≺ M1 nor m2 ≺ C′ ≺ M holds.
Therefore we have w(c1) + w(c2) ≤ w(c)− 1, and w(τi+1) < w(τi) follows.

We want to prove that if w(τi) > 0 then there exist two pairs c = (m,M)
and c′ = (m′,M ′) in τi such that c and c′ are not ordered, thus proving that
w(τi) = 0 holds when we exit the while cycle. If w(τi) > 0, then there exists a
pair c = (m,M) in τi such that w(c) > 0, that is, there exists a Wheeler class C
with m ≺ C ≺ M and C * [m]≡L

; in particular we have m 6≡c
L M . By Lemma 3,

there exists α ∈ C with |α| ≤ n2 +n. We want to prove, by induction on j, that
for each 0 ≤ j ≤ i there exists a pair cj = (mj ,Mj) ∈ τj such that c and cj are
not ordered and mj ≡L α; note that c may not belong to τj for j < i. If j = 0,
let qk be the state of DL such that α ∈ Iqk . The pairs c and ck = (mk,Mk) ∈ τ0
are not ordered, since we have both m ≺ α ≺ M and mk � α � Mk, therefore
we set c0 := ck.
If 0 < j < i, suppose the thesis holds for τj , that is, there exists a pair cj =
(mj ,Mj) in τj such that c and cj are not ordered and mj ≡L α. If cj ∈ τi+1,
we set cj+1 := cj . Otherwise, cj had been split into two pairs cj1 = (mj ,Mj1)
and cj2 = (mj2,Mj) with mj � Mj1 ≺ mj2 � Mj . By construction it holds
mj1 ≡L mj2 ≡L mj ≡L α. Since c and cj are not ordered, we have m ≺ Mj and
mj ≺ M . If m ≺ Mj1 we have both m ≺ Mj1 and mj ≺ M , hence c and cj1 are
not ordered and we set cj+1 := cj1; similarly, if mj2 ≺ M we set cj+1 := cj2.
Otherwise we have Mj1 � m and M � mj2 and strings have the following order:

mj � Mj1 � m ≺ α ≺ M � mj2 � Mj . (2)

Let m′ be the string used to split cj : by construction it holds Mj1 ≺ m′ ≺
mj2, and it can not be m′ = α since mj ≡L α. By construction, the string mj2

is the smallest string γ of length at most n2+n such that m′ ≺ γ and γ ≡L mj .
Thus, if m′ ≺ α, the string α would have all this properties, hence it would
follow that mj2 � α, which contradicts (2). Similarly, if α ≺ m′ it would follow
α � Mj1, a contradiction. Therefore the condition depicted in (2) can not occur,
ending the proof of the inductive step. Hence, if c ∈ τi and w(c) > 0 then there
exists c′ ∈ τi such that c, c′ are not ordered and we iterate the while cycle.

Let τp be the last set built before exiting the while cycle. We need to prove
that the collection of the first components of the pairs in Expand(τp) is a fin-
gerprint of L. First we prove that all pairs in τp are ordered. Let ci = (mi,Mi)
and cj = (mj ,Mj) be two distinct pairs in τp. If mi ≡L mj , then ci and cj are
ordered by invariant 2. If instead mi 6≡L mj , suppose ci and cj are not ordered.
Then either mi ≺ mj ≺ Mi or mj ≺ mi ≺ Mj. In the first case, if C is the
Wheeler class containing mj , we have mi ≺ C ≺ Mj and w(ci) > 0. Similarly,
the second case implies w(cj) > 0 and in both cases we reach a contradiction
with w(τp) = 0.

Second, we prove that if C is a Wheeler class that is not represented by τp,
i.e. C does not contain any components of any pair in τp, then there exists a
pair (m,M) ∈ τp such that m ≺ C ≺ M . Then the proof is complete, since the

Ordering Regular Languages and Automata: Complexity 31

subroutine Expand extracts a representative αc of C and adds to τp the pair
(αc, αc). Let C be a Wheeler class not represented by τp, and consider the state
qi in DL such that C ⊆ Iqi . By construction, the pair (mqi ,Mqi) ∈ τ0 is such
that mqi (respectively, Mqi) belongs to the smaller (greatest) Wheeler class con-
tained in Iqi . Since when we build τi+1 from τi we only add, and never delete,
representatives of Wheeler classes, both mqi and Mqi must appear as a compo-
nent of some pair in τp. Therefore, it is well defined the smallest representative
m in τp such that m ≺ C, as well as the greatest representative M in τp such
that C ≺ M . The second part of invariant 2 implies that m and M belong to
the same pair, which completes the proof. ⊓⊔

	Ordering Regular Languages and Automata: Complexity

