
A secure road traffic congestion detection and
notification concept based on V2I communications

Vinh-Thong Taa,∗, Amit Dvirb

aSchool of Physical Sciences and Computing, University of Central Lancashire, Preston,
PR1 2HE, UK

bAriel Cyber Innovation Center, Department of Computer Science, Ariel University, Ariel,
Israel

Abstract

Applying vehicular (V2X) communications in detecting traffic congestion is a
promising approach, as smart and self-driving vehicles are equipped with sensors
that can be used to detect an incident anywhere in real-time. Unfortunately,
without appropriate security measures and careful design the communication
can be vulnerable to malicious attacks, causing even more damage on the roads.
Addressing these problems, we propose a high-level system architecture and a
security protocol specifically designed for congestion detection based on vehicle-
to-infrastructure (V2I) type communication. The security properties of our pro-
posed approach are formally verified using the ProVerif tool, and its efficiency
compared to the traditional traffic light systems is demonstrated through sim-
ulations with the Veins framework. Results show that our system is secure
against a large set of attacks, and can have lower total travelling time compared
to three traditional traffic light approaches based on induction loop, lane area
detector/camera (installed near the junctions), and static lights.

Keywords: Security, V2I communications, traffic congestion detection.
2010 MSC: 68M12

1. Introduction

Many studies on road traffic control problems address the efficiency aspect,
for instance, proposing algorithms and methods for traffic lights to reduce con-
gestion and CO2 emission (see, for example, the studies [1–12]). Besides the
theoretical research studies, adaptive traffic control systems are already widely5

deployed on the roads, using technologies of induction loop or cameras to mit-
igate congestion. For instance, SCATS [8] and SCOOT [9] measure traffic in-
tensity by installing vehicles detector loops at the junctions, while InSync [10]
relies on camcorders. Although adaptive traffic control systems mitigate traffic

∗Corresponding author

Preprint submitted to Journal of Vehicular Communications July 1, 2020

congestion, they are not capable of detecting any traffic congestion or incident10

taking place outside the range of the cameras or detector loops.
There are initiatives and studies, for example [13, 14], on using surveillance

camera systems in smart cities to detect road congestion. Unfortunately, mon-
itoring the entire roads, especially motorways, would require a huge number of
detector loops or cameras throughout the road, which can be expensive. Fur-15

ther, surveillance camera systems for this purpose can be less effective in bad
weather with poor visibility. Nowadays, self-driving vehicles are equipped with
LIDAR and multi camera systems (e.g. [15, 16]) that could be used to detect a
road incident. However, V2X communication would be necessary to report this.

The security problems of traditional traffic light systems were examined in20

the past, for instance, in the studies [17–20], where the authors found that
the communications in some early versions of traffic light systems happened
without any encryption, as well as the default passwords remaining unchanged.
More recently, researchers also found the possibility for generating fake traffic
congestion in social navigation systems such as Waze [21].25

Adapting vehicular (V2X) communications in traffic management is a promis-
ing approach to overcoming the limitations of traditional methods. However,
this would increase the possibility for attacks as the attackers can intercept and
modify the messages as well as compromise the vehicles and road-side units with
malware. Several projects investigated the security and privacy problems of ve-30

hicular (and intra-vehicular) communications such as SeVeCom1 and EVITA2.
The main goal of these projects is to secure the wireless vehicle-to-vehicle (V2V),
vehicle-to-infrastructure (V2I) as well as the intra-vehicular communications,
preventing attackers from causing accidents by eavesdropping and manipulat-
ing the communications or stealing the secret keys stored inside the on-board35

modules. The anonymity of vehicles on the road has been also investigated,
and solutions proposed such as using pseudonym or group signature [22]. These
projects provided a generic concept of secure vehicular communications, which
we adapted and modified for the road traffic control context and problems.

Addressing the above-mentioned problems, to fill the gap, we propose a40

secure road congestion detection and notification concept (namely, a system
architecture and a secure communication protocol) based on the vehicle to in-
frastructure (V2I) type communication. The security of the proposed commu-
nication protocol against both the external and insider attackers is formally
proved with the ProVerif verification tool [23], and the efficiency of the pro-45

posed concept is demonstrated through simulations with the Veins framework
[24]. In our approach a vehicle would be able to identify the lane IDs based on
the road information sent by the road side units.

We note that this paper is an improved version of our previous conference

1Secure vehicle communication project, 2006-2008, https://trimis.ec.europa.eu/project/secure-
vehicle-communication

2E-safety vehicle intrusion protected applications project, 2008-2011, http://www.evita-
project.org/

2

paper [25] with improved algorithms, security analysis and simulation. Section50

2 highlights the related works. Section 3 discusses the adversary model, followed
by our proposed smart traffic control concept based on V2I communications in
Section 4. We provide a formal security analysis of our concept in Section 5,
and a simulation to demonstrate its efficiency against different traditional ap-
proaches in Section 6. Section 8 summarizes our observations and findings, and55

we conclude the paper in Section 9.

2. Related Works

Zhou et. al. [2], proposed a decentralised traffic light control approach
using wireless sensor network. Their system has a three-layer architecture that
consists of a traffic flow policy model and a high-level coordination between the60

so-called intersection control agents. The authors in [3] proposed a real time
vehicle detection and tracking system using surveillance videos. They proposed a
video processing algorithm for vehicle detection and analysing traffic density on
a particular lane. Unlike our V2I approach, video-based methods would require
a large amount of cameras to detect congestion on long roads/motorways.65

Leontiadis et. al. [6] evaluated the effectiveness of a decentralized traffic-
based navigation system in which instead of distributing traffic information
centrally, vehicles report their current information such as location, speed, and
travel time to their neighborhood. Their solution assumes vehicle-to-vehicle
(V2V) communications and that each vehicle is able to act as a traffic sensor, to70

measure the surrounding traffic density (vehicle quantity), and then exchange
the information in an ad-hoc manner. Their results show that a decentralized
approach can greatly reduce congestion in a realistic scenario.

The above studies focused mainly on the effectiveness of traffic control sys-
tems, but not the security problems. From the security aspect, Jeske [17] pre-75

sented a man-in-the-middle attack on GPS coordinate transmissions in order to
trick navigation services into inferring non-existent congestion while in an arti-
cle, Zetter [18] outlined how the wireless vehicle detection systems (an earlier
version of Sensys Networks VDS240) deployed in 40 U.S. cities were vulnera-
ble and could be exploited to generate false traffic congestion. The author, C.80

Cerrudo, found that those Sensys networks devices communicated with each
other without any encryption or security mechanism, making it possible for an
attacker to modify the messages to mislead the control system. Similarly, in his
article, Grad [19] outlined that by adjusting the signal times at the key inter-
sections in Los Angeles, USA, insider attacks on command centers could also85

create massive delays.
A study from the University of Michigan in 2014 [20] points out that a large

portion of traffic lights in the United States communicated with each other
wireless over the 900Mhz and 5.8Ghz ISM band without any encryption. In
order to connect to the 5.8Ghz traffic signals, attackers only needed the SSID90

of the corresponding device. The second security hole the researchers found
was that the passwords were left default, which could be found on the traffic
light manufacturer’s website. In addition to these, to gain access to the 900Mhz

3

networks attackers also needed a 16-bit slave ID. The authors also found a
vulnerability in the open debug port in the VxWorks OS which allowed the95

attacker to read-modify-write any memory register. In another attack (called
remote keypad), the attacker could freeze the current intersection state, modify
the signal timing, or change the state of any light. Fortunately, the hardware
based malfunction management unit (MMU) would still be able to detect any
illegal states (conflicting green or yellow lights), and took over with the 4-way100

red flashing. In this case, a technician needed to manually reset the traffic signal
to recover from the illegal state, the attacker could turn every intersection on
the network into a 4-way stop, causing traffic congestion.

Laszka et al. [26] introduced a novel approach for evaluating vulnerabilities
of transportation networks by identifying traffic signals that have the greatest105

impact on congestion. Therefore, those signals may be the targets of attacks.
The authors showed that this is a NP-hard problem, so a polynomial-time heuris-
tic algorithm for computing approximately optimal attacks was presented. Yin
et al. [27] presented a threat of data spoofing over the U.S. Department of
Transportation traffic control system. The data spoofing can be done from one110

single attack vehicle only, with the attack goal of creating traffic congestion.
Some further vulnerabilities are discussed in [28].

Machine learning has been used recently to estimate or predict traffic con-
gestion. In [29] the authors proposed an efficient traffic congestion estima-
tion method based on model-based estimation through virtual sensors using the115

Kalman filter. The procedure is based on the data collected from sensors such
as induction loops and then applying the KNN classification to estimate conges-
tion. The authors tested their method by deploying induction loops in the SR60
Highway of California to collect traffic data, and showed that their algorithm can
estimate congestion with good accuracy. The authors in [30] discussed several120

methods between 2014-2019 on the application of machine learning to predict
crowd flow (human mobility prediction), traffic flow and public transit flow (e.g.
bike sharing and metro flows) on spatio-temporal datasets. They examined five
groups of prediction approaches, including statistics-based, traditional machine
learning-based and deep learning-based approaches.125

Social networking concept has already been broadly applied to smart traffic
control. Waze3 is a community-based navigation application, where users can
share traffic status on certain roads with each other, such as indicating traffic
congestion, police presence, construction, etc. Researchers managed to exploit
a vulnerability in an earlier version of Waze [21], and misled the application130

causing fake traffic congestion. As a result, the application suggested an alter-
native longer route for the nearby drivers. Finally, camera-based products for
smart city are also widely deployed and used in self-driving vehicles that could
potentially be applied for traffic management (e.g. MobilEye4).

Unfortunately, only very few studies proposed specific protocols and concepts135

3Waze, https://www.waze.com/en-GB/about
4MobilEye, https://www.mobileye.com

4

for smart traffic control systems based on vehicular communications. The main
difference between our work and the previous studies is that we propose an
approach that combines those different areas, such as V2X communications,
traffic management and security. The main focus of our work is the security
design against different attacker models; however, we also show the effectiveness140

of our method compared to the traditional traffic management solutions based
on induction loops, area lane detector or cameras.

3. Our Adversary Model

In our case, the main goal of the attackers is to mislead the traffic control
system with incorrect or incomplete traffic data leading to inefficient traffic145

schedule. They can prevent normal light functionality, for instance, by setting
all lights to red or green at the same time (e.g. [20]). Although recent traffic
light systems are protected by a hardware-based malfunction management unit
(MMU) that prevents inconsistent/unsafe light states avoiding accidents, this
will not prevent the attackers from setting inefficient light programs (e.g. longer150

red time than required).
As for the attacker’s ability, in our approach we consider the insider and

external attackers, as well as a set of possible attack methods, as follows:

• Insider attackers are parts of the roads, such as compromised vehicles
or road side units. They can be instructed to send incorrect, fake traffic155

messages to the other participants on the roads. The incorrect messages
are encrypted or signed with the valid keys of the compromised nodes.

• External attackers are not parts of the road (i.e. they are neither com-
promised vehicles nor road side units), and hence, they do not possess any
valid keys by default. In our case, the main goal of the external attack-160

ers is exploiting the design flaws in the communication and the security
protocols. We assume that an external attacker is able to eavesdrop the
entire wireless communication and modify, forge and create fake messages
with the keys it possesses. Further, it can replay and relay any captured
packets to any participant. This adversary model is strong as in vehicular165

ad-hoc networks attackers can normally only overhear certain parts of the
roads, and hence their ability of intercepting and sending messages is more
limited [31]. Since we will prove that our proposed system is secure against
the stronger attacker model, it is also secure against a weaker model.

Furthermore, we also consider the attacks based on their nature, as follows:170

• Local attacks are attacks that require the attacker to have either physical
or local access to the RSUs, controllers or vehicles. Local attack is a means
to recruit compromised vehicles or RSUs.

• Remote attacks are attacks where the victims (e.g. vehicles, RSUs) are
exploited and taken control over from anywhere.175

5

• Non-collusion attack : In this case, we are talking about a single at-
tacker who does not cooperate with the other attackers to reach a certain
goal.

• Collusion attack : In this case, the attackers cooperate with each other
to reach the same goal. They can share resources and synchronize their180

activities. This includes the so-called Sybil attack [32] when a node uses
several fake identities to mislead the traffic control systems.

The motivation of the attackers in our case includes causing false traffic
congestion and unnecessary traffic diversion, like in [18]. Namely, the attackers’
intent is to modify or fake the traffic data and then get it accepted by the185

controllers who are responsible for setting the traffic light programs. We consider
the following cases where congestion can be caused if the attacker

1. achieves that the duration of the red light is prolonged on a busy road/lane
segment, leading to a potential financial impact (e.g. [33]);

2. achieves that certain roads (e.g. the road on which the attacker is trav-190

elling) have longer green light duration than normal, so that the attacker
can benefit from this (e.g. [18]);

3. achieves that the traffic flow on certain roads is diverted to other roads
because of fake congestion reports (e.g. [21]).

4. Proposed Secure Traffic Congestion Detection and Management195

Methodology

We present our proposed concept for detecting and managing traffic con-
gestion based on the so-called vehicular public key infrastructure (VPKI). As
outlined in [31], asymmetric key cryptography seems to be the most suitable ap-
proach in securing vehicular communications as it has the potential to provide200

confidentiality, authenticity, privacy and accountability (e.g. for police inves-
tigation) at the same time. This concept has been applied in several previous
studies and projects such as the SeVeCom project [22]. However, we modify it
for the traffic congestion detection context that, to the best of our knowledge,
has not been done before. Our system architecture, protocol and algorithms are205

different from the one in the project.

4.1. System architecture
The basic concept of our method is depicted in Fig. 1. In our approach, we

define road segments as a part of the road from one junction to another junction
with traffic lights, and denote them by Ri, i ∈ {1, . . . , n}.210

Each lane segment Lni is defined by a triple, Lni = (Lid j
i , Dj

i , RSU
n
i),

where Lid j
i is the unique ID of a lane segment, Dj

i is the direction of the lane
that can be, for instance, north (N), south (S), east (E), west (W), or from the
perspective of a vehicle it can be forward (FW) and reverse (REV), as well as
a road side unit (RSU) that is installed at the beginning of a lane segment.215

6

Figure 1: An architecture overview of the road and lane segments with the RSUs, mRSUs.
Point (a) shows a road defined by R1 = ({(Lidj1, D

j
1, RSU

1
1), j=1,2}, mRSU), and in (b),

R1 = ({(Lidj1, D
j
1, RSU

n
1), j=1,2,3, n=1,2}, mRSU).

Each road segment Rk is defined by a set of lane segments, and a so-called
main road-side unit (mRSU), namely, Rk = (Ridk, {Lnj}, mRSU). One mRSU
is installed in a region of several road segments and junction(s).

At a junction, we define the so-called traffic light system, denoted by TLSys,
which includes a set of traffic lights ({TL1, . . . , TLM}) for some natural M,220

and the program (PR) that controls those lights. Formally, a region (denoted
by Regn) can be defined as Regn = ({Rk}, {TLSysj}, mRSU), where {Rk}
and {TLSysj} are a set of road segments and a set of traffic light systems,
respectively, in this region, while mRSU is the main RSU installed in this region
and is responsible for changing the traffic light programs in {TLSysj}.225

Fig. 1/(a) highlights a simple road segment containing two lane segments,
and a traffic light system, TLSys1, with two lights TL1, TL2, and a default light
program, PR. A RSU (RSU 1

1) is installed at the start of the road segment that
covers both lanes. Finally, mRSU is the main road side unit assigned to this
region. Fig. 1/(b) depicts a road segment and three lane segments with two230

RSUs. The same approach is applied for the bigger road segments.
The RSUs should be installed close to the traffic lights/junctions, at the start

of the lane segments in order to inform the incoming vehicles about the lane
segments they are about to enter. We assume that each RSU has a short-range
radio antenna that enables transmission of data within the radius equal to the235

width of some lanes. With the short-range antennas we would like to minimise
the number of messages that a vehicle has to deal with.

4.1.1. Architectural requirements
Our approach includes a few architectural requirements regarding the vehi-

cles, the RSUs and mRSUs, such as:240

• For vehicles: Each vehicle has a built-in satellite navigation system (Sat-
Nav/GNSS), e.g. GPS, Galileo, GLONASS, or BeiDou.

Vehicles are equipped with a V2X capable internal module (IM) that stores
the addresses of the mRSUs in a record (denoted by MRSUrecord). The
format of MRSUrecord is defined in Table 1.245

7

Table 1: The record MRSUrecord for some N ≥ 1

———————————————————————————————————
MRSUrecord = {1. mRSU 1 : Re1, 2. mRSU 2 : Re2, . . . , N. mRSUN : ReN }
———————————————————————————————————

Each row of MRSUrecord contains the ID of a mRSU and the region (Rej)
in which this mRSU is installed, which is specified by SatNav coordinates.

To reduce the size of MRSUrecord, only the information about the mR-
SUs inside a country/state is stored, where a vehicle was registered. This
can be updated with new mRSUs when a vehicle arrived in a new coun-250

try/state. Alternatively, this record can be built into the SatNav system
used inside the vehicles.

In addition, an IM is responsible for handling non-sensitive cryptographic
operations with the public keys (e.g., signature verification or asymmetric
encryption). An IM is connected to a sensor (or to the odo/mileo-meter)255

and records the distance that a vehicle traveled within a road segment.

A vehicle is equipped with a good quality camera (or a set of cameras),
with which it can take pictures about the road segment it arrived at, and
the IM module is capable of extracting and differentiating the lanes from
the pictures taken, as well as identifying the lane in which the vehicle is260

currently traveling (e.g. see [34]).

In addition to the IM module, each vehicle is equipped with a hardware
security module (HSM) or a trusted platform module (TPM) that is re-
sponsible for performing security critical operations such as digital signa-
ture generation as well as the storage of the private keys. We will discuss265

further the choice between TPM and HSM in Section 8.

• For RSUs: Each RSU is equipped with a trusted platform module (TPM)
for digital signature generation and storing the signature keys. In addition,
they are installed with an internal module that is responsible for putting
together and broadcasting messages for the vehicles.270

• For mRSUs: Each mRSU is equipped with an internal module (IM) that
can receive and verify the traffic status messages from the vehicles. An IM
stores a record, Roadrecord, about the road segments in the region where
the mRSU is installed, and the lane information in each road segment,
such as lane IDs, number of lanes, lane and pavement width.275

In order to broadcast road information for the vehicles to help them with
identifying the lane they are traveling on, at the installation time each RSU
stores a record called RoadInfo about the road segment where it has been in-
stalled. Specifically, the format of RoadInfo is defined in Table 2.

8

Table 2: The format of RoadInfo for some NumLanes ≥ 1

———————————————————————————————-
RoadInfo = (SatNvArea, NumLanes, LanesInfo, DistInterval)
LanesInfo = (Lanes, Pavements)
Lanes = {(LaneID i, Directioni, Widthi) | i ∈ {1,. . . , NumLanes}
Pavements = (Left_Width, Right_Width)
———————————————————————————————-

RoadInfo contains the SatNav area of the road segment (SatNvArea), the280

number of lanes in the road (NumLanes), a set of lanes information (LanesInfo),
and a distance interval DistInterval. LanesInfo includes information about the
lanes and pavements in the road segment. Namely, Lanes contains the lane
ID, the lane direction, and the width of the lanes. From the perspective of
the arriving vehicles, i = 1 is the leftmost lane while i = NumLanes is the285

rightmost, or vice versa. Pavements contains the width of the left and right
pavements (zero in case of no pavement). Finally, DistInterval is the interval
defined by two distances from the start of the road segment, during which
vehicles are required to notify if they have not got stuck until that point. This
interval depends on the length of the road segment. The road information can290

be edited at the installation time of the RSU, as normally, information about
the road does not change often. In case of any change due to construction, the
corresponding RoadInfo is updated accordingly.

4.2. Cryptographic Keys
As mentioned, we assume a public key infrastructure for vehicular systems,295

where communications between the vehicles and RSUs, mRSUs are digitally
signed, and the certificate authority/authorities (CA) is responsible for issuing
and revoking certificates for the public keys. Following the concept of SeVeCom
[22, 31, 35], the vehicles have a pair of long-term public and private keys. These
are generated by and stored inside the HSM or TMP in the vehicle at the time300

of registration or manufacture. This way nobody can read or obtain the private
key. The long-term public key part is certified by the CA (there can be several
CAs for different regions and countries). Each vehicle is also given a unique
long-term identity and the public key of the CA at the registration time.

To prevent the vehicles from being tracked in the long term, short-term key305

pairs are used in the communications instead of the long-term key pairs. This
kind of solution is referred to as “pseudonymous authentication" [22, 35]. The
CA is given the authority to link long-term identities with several corresponding
short-term credentials to provide accountability. The short-term public keys do
not reveal the vehicles long-term identity, and each vehicle will switch to another310

(not previously used) short-term key pair at a junction. Junctions prevent the
observer/attacker from tracking a certain vehicle due to the crowd, and to the
fact that messages signed under different short-term private keys cannot be

9

Table 3: The variables and their values/calculations in the algorithms
Variable The calculation/value of the variable
1. RSUBroadcast = (RSUid, MRSUid, RoadInfo, curr_time)
2. signed_RSUBroadcast = Sign(RSUBroadcast, SKRSU)
3. curr_loc = (currLaneID, dist, loc)
4. notstuck_msg = ("Not Stuck", lanes_info, curr_time,

curr_loc, curr_state, mRSUid)
5. signed_notstuck_msg = Sign(notstuck_msg, SKS

V E)
6. lanes_info = signed_RSUBroadcast[RoadInfo][LanesInfo]
7. taken_picset = enhancePics(takePics(), lanes_info)
8. currLaneID = idenCurrLaneID(taken_picset, lanes_info)
9. dist = updateDistance()
10. state = updateState(loc)
11. loc_of_stuck = (currLaneID, dist, loc)
12. stuck_msg = (“Got Stuck", lanes_info, loc_of_stuck,

curr_time, state, Vtype, mRSUid)
13. signed_stuck_msg = Sign(stuck_msg, SKS

V E)
14. goagain_msg = ("Go Again", loc_of_stuck, curr_time)
15. signed_goagain_msg = Sign(goagain_msg, SKS

V E)
16. newSKS

V E = SK()
17. newPKS

V E = PK(newSKS
V E)

18. loc = updateSatNavLoc()
19. curr_time = updateTime()
20. cert_request_msg = (IDV E , CAid, newPKS

V E , loc, curr_time)
21. signed_request = Sign(cert_request_msg, SKL

V E)

22. encrypted_signed_request = AEnc(signed_request, PKEnc
CA)

23. mRSUid = updateMRSU(loc, MRSUrecord)
24. no_br_alarm = (“No Br", loc, curr_time, mRSUid)
25. signed_no_br = Sign(no_br_alarm, SKS

V E)
26. cert_new_key = (CAid, IDV E , newCertSV E , curr_time)
27. signed_cert = Sign(cert_new_key, SKL

CA))
28. encrypted_signed_cert = AEnc(signed_cert, PKEnc

V E)
29. notstuck_time = signed_notstuck_msg[curr_time]
30. notstuck_curr_loc = signed_notstuck_msg[curr_loc]
31. notstuck_loc = curr_loc[loc]
32. notstuck_state = signed_notstuck_msg[curr_state]
33. XPKS

V E = Cert(PKS
V E)[PKS

V E]
34. got_roadID = getRoadID(loc, Roadrecord)
35. got_lanes_info = getLanes(got_roadID)
36. stuck_time = signed_stuck_msg[curr_time]
37. stuck_curr_loc = signed_stuck_msg[curr_loc]
38. stuck_loc = curr_loc[loc]
39. stuck_state = signed_stuck_msg[curr_state]
40. goagain_loc = signed_goagain_msg[loc_of_stuck]
41. SetTLSys = {TLSys1, . . . , TLSysN}
42. SetCV = {CV(L1), . . . , CV(LM)}

linked. New short-term key pairs are generated by the HSM/TPM inside the
vehicles. The private keys are kept inside the HSM/TPM or stored encrypted315

inside the vehicle, while the public key parts are certified by the CA.

10

Table 4: Notations Used in The Algorithms (Constant values/records Part 1)
Notations Explanation

RSUid/MRSUid Long-term ID of an RSU/main RSU
CA/CAid The certificate authority/its long-term ID
Vtype A vehicle type (e.g., “emergency", "bus")

RoadInfo (SatNavLoc, NumLanes, LaneInfo, DistInterval)
LaneInfo (Lanes, Pavements)
SatNvLoc The SatNav area/coord. of a road segment
NumLanes The number of lanes in a road segment

Lanes A set of properties about the
lanes in a road segment

Pavements Contains the width of the pavements
in a road segment

DistInterval An interval of values of distance from the road start
Roadrecord A record of all the road segments in a region
Initime An initialisation time value

Resendlimit A limit value for resending a message
Current_time The current time
Current_loc The current SatNav location of a vehicle
4TRSU A time period after which a RSU broadcasts
4T thres

stuck A threshold after which a “Got Stuck" alarm is sent
4T thres

goagain A threshold after which a “Go Again" msg is sent
4Tresend A Threshold after which a msg is re-sent
4Tfresh A time threshold to check message freshness
4Tnotstuck A threshold after which a “Not Stuck" msg is sent
4Tsignal A threshold until there is no satellite signal
4Tupdate

light A threshold after which the congestion states are checked

4.3. The Secure Traffic Congestion Detection Procedure
As discussed in the previous section, the RSUs are installed at the start of

the lane segments in order to broadcast the record RoadInfo to the approaching
vehicles so that they know which lane of a road segment they arrived at. The320

SatNav/GNSS system built in a vehicle is used to identify roads, junctions and
a larger region with several road segments, but cannot be used to identify a
single lane accurately [36].

For better readability, we keep the description of the algorithms as simple
and short as possible, and refer the reader to Table 3 for the values or calculation325

of the variables used in the algorithms. In the algorithms, we use generic,
implementation specific parameters and variables rather than proposing specific
values. We examined some specific values in simulation (Section 6).

Algorithm 1 defines the operation of a RSU. After each 4TRSU time period,
a RSU broadcasts a digitally signed message, signed_RSUBroadcast, along with330

the certificate of the public key of RSU (Cert(PKL
RSU)). As shown in row 1

of Table 3, signed_RSUBroadcast contains the ID of the RSU (RSUid), the
ID of the main RSU for that region (mRSUid), the record RoadInfo and the
timestamp (curr_time) for message freshness.

Algorithm 2, VE, outlines the behaviour of a vehicle. When VE receives a335

broadcast message from a RSU (line 3), it carries out several verification steps

11

Table 5: Notations Used in The Algorithms (Constant values/record Part 2)
Notations Explanation
VE/IDV E A vehicle VE/its long-term ID
PKL/PKS Long/short-term public (signature) key
SKL/SKS Long/short-term private (signature) key

PKEnc/SKEnc Long-term encryption public/private key
Cert(PK) The digital certificate of the public key PK

CurrLaneID The current lane ID of a vehicle
MRSUrecord The record of the mRSUs and their regions

Msg[e1] The element e1 in the message Msg
V thres

ano A threshold on the amount of the “not stuck"
vehicles, above which “anomaly" is reported.

Dano Anomaly check will be done within Dano

distance before and after the location of the stuck
Tano Anomaly check will be done within Tano

time before and after the time of the stuck.
TL An ID of a traffic light

TLSys An ID of the traffic light system at a junction
(TLSys = {TL1, . . . , TLn} for some n)

SetTLSys A set of traffic light systems
(SetSTLSys = {TLSys1, . . . , TLSysn} for some n)

PRDefault The default program of a traffic light system.
PRi A program of a traffic light system for some i.
4TTL A threshold after which a PRi is updated
SetPR The set of all pre-defined programs of all

the traffic light systems in a region.
STj A state of a traffic light system for some j.

e.g. for TLSys = {TL1, TL2, TL3, TL4} the
state Green-Red-Green-Red refers to the color

of the lights TL1,. . . ,TL4, respectively.
M A pre-defined value to specify that the green light

time in one light state is M times longer than
in another light state.

SetST The set of all pre-defined states of all
the traffic light systems in a region.

Algorithm 1 RSU
1: procedure RSU
2: Init values for RSU
3: prev_time = Inittime
4: while state == “functioning" do
5: curr_time = updateTime()
6: if (curr_time - prev_time = 4TRSU) then
7: broadcast (signed_RSUBroadcast, Cert(PKL

RSU))
8: end if
9: state = updateRSUState()

10: prev_time = curr_time
11: end while
12: end procedure

12

Table 6: Notations Used in The Algorithms (Variables)
Notations Explanation

dist The distance a vehicle travels
since entering a new road segment

speed Captures the current speed of VE (see getSpeed())
lanes_info Captures the received lane properties

taken_picset Captures a set of pictures taken by a vehicle
enh_picset Captures a set of enhanced pictures of a vehicle
pic_set Captures a set of pictures from a RSU

currLaneID Captures a current lane ID of a vehicle
roadID Captures an ID of a road segment

got_roadID An ID of a road segment fetched by a mRSU
from its road record

got_lanes_info The lanes info fetched by a mRSU from its record
prev_time A variable that captures the time
curr_time A variable that captures the time

stuck_msg_sent A Boolean variable, whether stuck alarm is sent
loc A SatNav location/coordinate variable

loc_of_stuck A variable for the location where a vehicle stuck
state The state of a vehicle (onroad, parked, leave)

record(PK) The traffic record stored at a mRSU about
the vehicle whose public key is PK.

recordset A set of Record(PK) maintained by a mRSU about
the vehicles in its region with short-term public key PK

of a vehicle within a road segment

(line 4). First, it checks the validity of the public key of the RSU in the attached
certificate (Cert(PKL

RSU)), and then, the validity of the signature. Afterwards,
VE checks if the time stamp in the message is fresh (i.e., the difference between
the current time and the received timestamp is within a threshold 4Tfresh).340

In case of success, and the satellite signal is unavailable or weak (line 5), VE
continues its operation as defined in procedure VEONROAD.

Otherwise, if the satellite signal is good in the area (line 7, Alg. 2), then VE
checks if the received MRSUid (signed_RSUBroadcast[MRSUid]) is the same
as the mRSU ID the vehicle stores in its MRSUrecord (line 8)5. In line 9, VE345

compares its current SatNav location (loc, row 18 of Table 3) with the SatNav
area in the received broadcast, signed_RSUBroadcast[RoadInfo][SatNvArea]. In
case they are consistent (VE is inside the correct road segment), VE continues
its operation as defined in procedure VEONROAD (line 10, Alg. 2).

In procedure VEONROAD, first, VE resets the distance value dist and sets350

its state to “onroad" (lines 18-20). Then, until the vehicle VE leaves the road
segment (i.e. state == ”leave"), in case its speed is less than a given threshold,
S, for a certain period of time, 4T thres

stuck , it sends a “Got Stuck" message to the

5Although a vehicle can fetch the mRSU ID from its MRSUrecord, it requires the avail-
ability of a satellite signal. To prepare for the case when there is no/weak signal in an area,
the mRSU ID is included in a RSU broadcast. Besides, with this redundancy, a vehicle can
also detect compromised RSUs that intentionally send wrong/fake mRSU IDs.

13

Table 7: Notations Used Inside The Algorithms (Functions/Activities)
Notations Explanation

Sign(Msg, SK) The signature of Msg with the key SK
AEnc(Msg, PK) The encryption of Msg with the key PK
broadcast Msg Broadcasts a message Msg

SK() Returns a new secret key, newSK
PK(newSK) Returns a new public key for newSK
receive Msg Receive a message Msg
delete Msg Delete a message Msg
verif(Msg) The verification of the message Msg

returns true if successful
updateTime() Returns the current time

updateSatNavLoc() Returns the current satnav location
updateState(loc) Returns the current state of a vehicle

getSpeed() Returns the current speed of a vehicle
numNotStuckVeh Returns the number of NOT stuck vehicles
(R, L, T, D, T’) within a distance d from the location L,

and within the time T’ from the time T,
based on the set of records R.

enhancePics Returns a set of enhanced pictures of the
(pic_set, lanes_info) input set of pictures based on a

set of lanes properties
drawLanes Draw virtual lanes lines in the pictures

(pic_set, lanes_info) in pic_set based on a set lanes_info
idenCurrLaneID Returns the current lane ID based on

(taken_picset, lanes_info) a set of taken pictures and lane info
takePics() Returns a set of taken pictures

getRoadID(loc, Roadrecord) Returns the ID of a road segment based
on the SatNav location, and
a record of road segments

getLanes(roadID) Returns the lanes of a road segment
CV(L) Returns the congestion value on the

lane L (e.g., number of stuck cars)
Func1 | Func2 Func1 and Func2 are running in parallel

setLightProg(TLSys, PR) Set the program of the traffic light
system TLSys to PR

CurrProg(TLSys) Returns the current program (PR) of
the traffic light system TLSys

mRSU installed in this region (lines 22-24). When VE manages to go again (i.e.
speed > S) for at least a pre-defined time period,4T thres

goagain, a signed “Go Again"355

message is sent to the same mRSU that was previously sent the corresponding
“Got Stuck" message (lines 25-26). The signed “Go Again" message will also
be sent (even if 4T thres

goagain has not elapsed) when VE leaves the road segment
where it got stuck (lines 32-33).

If a vehicle VE does not get stuck from the point it received a RSU broadcast360

when entering a road segment up to a random distance in DistInterval, it sends
the so-called “Not Stuck" message once to the corresponding mRSU (lines 27-
29). This is to make the mRSU capable of detecting anomalies in case the
compromised vehicles intentionally send fake “Got Stuck" messages.

When VE leaves a road segment and reaches a junction, it starts updating365

14

Algorithm 2 VE
1: procedure VE
2: Init values for VE
3: if receive (signed_RSUBroadcast, CertRSU) then
4: if verif(signed_RSUBroadcast, CertRSU) == true then
5: if no or weak satellite signal for 4Tsignal then
6: VEOnRoad
7: else
8: if signed_RSUBroadcast[MRSUid] == mRSUid then
9: if loc is in signed_RSUBroadcast[RoadInfo][SatNvArea] then

10: VEOnRoad
11: end if
12: end if
13: end if
14: end if
15: end if
16: end procedure

17: procedure VEOnRoad
18: dist = 0 . reset the travelled distance in this road
19: stuck_counter = 0 . reset the number of stuck in this road
20: state = “onroad"
21: while updateState(updateSatNavLoc()) != “leave" do
22: if (speed ≤ S) for 4T thres

stuck AND !stuck_msg_sent then
23: SendStuckAlarmMsg
24: stuck_counter = stuck_counter + 1 . number of times VE got stuck
25: else if (speed > S) for 4T thres

goagain AND stuck_msg_sent then
26: SendGoAgainNotificationMsg
27: else if stuck_counter==0 then
28: at a random dist. in signed_RSUBroadcast[RoadInfo][DistInterval] do
29: SendNotStuckMsg
30: end if
31: end while . If state == ”leave" send “Go Again" message
32: if stuck_msg_sent then
33: SendGoAgainNotificationMsg
34: UpdateShortTermKeys
35: else and update the keys
36: UpdateShortTermKeys
37: end if
38: end procedure

15

Vehicle arrived at a

Wait for RSUbroadcast

[recv] [notrecv]

 [[TTBroadcast cast elapsed]

[SatNav OK] [SatNav not OK]

Notify the mRSU

Notify the mRSU Notify the mRSU Notify the mRSU

in MRSUrecord

Verify sig., time Verify sig

[not OK]

[SatNav OK] KK [SatNav not OK]

in MRSUrecord in MRSUrecord
Check if mRSUid

VEONROAD

]
 [[[TTBroadcastast not elapsed]

 for TTStuckStuckStuc]

Send “Got Stuck” Send “Got Stuck”
To MRSUid in To MRSUid inTo MRSUid in
RSUBroadcast

StucTTStucfor Stuc

[speed < S

[speed > S ed > Speed
 for T

 > Sed >
TGoAgainainain]

To MRSUid in

RSUBroadcast RSUBroadcast

To MRSUid in To MRSUid in
Send “Go Again”

To MRSUid in To MRSUid in

Send “Not Stuck”

To MRSUid inTo MRSUid in

RSUBroadcast

has not got stuck until a random omgo

 distance in DistInterval]

ON

[YES]

U
P

D
A

T
E

 K
E

Y
S

 A
N

D
 A

S
K

 F
O

R
 C

E
R

T
IF

IC
A

T
IO

N

 for

SeSeSeSe

[spe[spe
for

ededededed
TGoAg

RSRS

for

RS

[speedpeed[s ed[speedpe[spepeedededed

[state =”leave”]

ndnd
ToToToTo
RSRSRSRSRS

[state =”leave”]veve”]”]”]

SendSend
ToToToTo
RSRS

ndnd
ToToToTo
RSRS

[state =”leave”]

om

distance in DistIntervalan]

has not nohas not s no got stuck until a randomhas not no got stuck until a random

 [within this road segment,

gain”gain”

[state =”leave”]

Vehicle arrived at aVehicle arrive
new road segment

ved at aved at a
egmentegment

Notify the mRSU Notify the mRSU Notify the mRSU Notify the mRSU

ininin[state =”leave”]

] [recvd “Not Stuck”] [recvd “Got Stuck”]
[recvd “Go Again”]

Figure 2: The operation of a vehicle (VE) when arrived at a new road segment.

the new short-term signature key pairs (lines 34 and 36, procedure VEOnroad).
The rationale behind this is to achieve a higher degree of anonymity for VE, as
this area is where we expect a large number of vehicles change their short-term
keys at the same time, making it more difficult to (re)-identify a vehicle after
that6. Although this concept would allow vehicles to be traceable within a single370

road segment, the long-term tracking is more difficult [37].
Algorithm 3 defines how VE sends a message. In line 2, the “Got Stuck" mes-

sage, is signed using the actual short-term private key of VE (signed_stuck_msg),
and as shown in rows 12-13 of Table 3, contains

1. the “Got Stuck" tag;375

2. the information about the lanes, lanes_info, which VE received from the
RSU (see row 6 of Table 3);

3. the location where VE got stuck (loc_got_stuck, row 11 of Table 3), con-

6This solution is less effective in case there are only few vehicles on the roads. (Asymmet-
ric) Encryption could be used to achieve confidentiality all time, but it would increase the
computation and message overhead.

16

Algorithm 3 VE Send Messages
1: procedure SendStuckAlarmMsg
2: sendmRSU(signed_stuck_msg, Cert(PKS

V E))
3: stuck_msg_sent = true
4: end procedure

5: procedure SendGoAgainNotificationMsg
6: sendmRSU(signed_goagain_msg, Cert(PKS

V E))
7: stuck_msg_sent = false
8: end procedure

9: procedure SendNotStuckMsg
10: sendmRSU(signed_notstuck_msg, Cert(PKS

V E))
11: end procedure

sists of the current lane ID, (currLaneID, row 8 of Table 3), the distance
that VE travelled so far within this road segment (dist, row 9 of Table 3),380

and the current SatNav location of VE (loc, row 18 of Table 3);
4. the timestamp (curr_time, row 19 of Table 3);
5. the state of VE (state, row 10 of Table 3), and the type of VE (which can

be e.g., public, emergency, private);
6. finally, the ID of the actual mRSU as addressee (mRSUid, row 23 of385

Table 3), which VE extracts from its internal MRSUrecord based on its
current SatNav location (loc, row 18 of Table 3).

The ‘Go Again" message (line 6, Alg. 3), as shown in rows 14-15 of Table 3, is
composed of the ‘Go Again" tag, the location where it got stuck (loc_of_stuck,
row 11 of Table 3) and the current time (row 19 of Table 3).390

The “Not Stuck" message (line 10, Alg. 3) contains the tag “Not Stuck", the
current time, current location (comprised of the current lane ID, the travelled
distance, and the current SatNav location), the current state, and the ID of the
addressee mRSU (rows 4-5 of Table 3).

Algorithm 4 captures when VE updates its short-term signature key pairs395

at a junction. In line 3, a new short-term secret key is generated based on
the function SK, then the corresponding public key is derived from the new
private key using the function PK (line 4). In line 5, an encrypted and signed
request, encrypted_signed_request, along with the certificate of the long-term
public (signature) key of VE is sent to the CA. As shown in row 20 of Table 3,400

the message cert_request_msg contains:

1. the long-term ID of VE and the ID of the CA,
2. the newly generated short-term public key (newPKS

V E), for which VE
requests the certificate, and

3. the current SatNav location of VE (loc), and the current time (curr_time).405

The new short-term private key (newSKS
V E) is kept in secret inside the

HSM/TPM module of VE. As row 21 of Table 3 shows, this message is signed

17

Algorithm 4 VE Updates Short Term Keys
1: procedure UpdateShortTermKeys
2: already_recvd_newRSUbroadcast = false
3: newSKS

V E= SK()
4: newPKS

V E= PK(newSKS
V E)

5: sendCA(encrypted_signed_request, Cert(PKL
V E))

6: while !receive (encrypted_signed_cert) do
7: if loc is inside the area of a new road segment then
8: if receive (signed_RSUBroadcast, CertRSU) for the first time then
9: if verif(signed_RSUBroadcast, CertRSU) == true then

10: already_recvd_newRSUbroadcast = true
11: end if
12: end if
13: end if
14: end while . once received (encrypted_signed_cert) from CA
15: if verif(encrypted_signed_cert) == true then
16: delete SKS

V E , PKS
V E , Cert(PKS

V E) . delete old key pair
17: . still not received RSU broadcast for the new road
18: if already_recvd_newRSUbroadcast == false then
19: . invoke VEAFTERKEY with the new key pair
20: VEafterKeys(newSKS

V E , newPKS
V E , newCertSV E)

21: else
22: if (updateSatNavLoc() == "nosignal") for 4Tsignal then
23: VEOnRoad
24: else
25: if signed_RSUBroadcast[MRSUid] == mRSUid then
26: if loc is in signed_RSUBroadcast[RoadInfo][SatNvArea] then
27: VEOnRoad
28: end if
29: end if
30: end if
31: end if
32: end if
33: end procedure

34: procedure VEafterKeys(SKS
V E , PKS

V E , Cert(PKS
V E))

35: Init values for VEAFTERKEYS
36: while !receive (signed_RSUBroadcast, CertRSU) do
37: if loc is inside the area of a new road segment then
38: if !receive (signed_RSUBroadcast, CertRSU) for 4Twait

broadcast then
39: sendmRSU(signed_no_br, Cert(PKS

V E))
40: end if
41: end if
42: end while
43: [Here we reuse the lines 3-15. of Algorithm 2 for brevity.]
44: end procedure

18

using the long-term signature private key of VE (SKL
V E), which is then en-

crypted using the (long-term) encryption public key of the CA (PKEnc
CA) in row

22. The encryption is necessary to keep the long-term ID (IDV E) confidential410

to avoid the vehicle being tracked for a long time. For security purpose, different
algorithms are used for signature and encryption.

Lines 6-14 of Algorithm 4 capture the case when VE, while waiting for the
certificate of its new public key, enters a new road segment. If VE receives a
RSU broadcast in this road segment (line 8), after a successful verification (line415

9), it sets the flag “already received a new broadcast", and saves this broadcast
(line 10). Later, when VE receives the key certification from the CA, after
a successful verification steps (line 15), VE deletes the old short-term keys to
free space and enhance its anonymity (line 16). In case VE has not received
any RSU broadcast for the new road segment yet (line 18), it continues its420

operation with the new short-term keys and certificate as defined in lines 34-
44. Otherwise, depending on the availability of the satellite signal in that area,
it verifies the received mRSU ID against its MRSUrecord (lines 25-26), and
continues as procedure VEONROAD (line 23 and 27).

Procedure VEafterKeys defines an operation of VE after the key certification425

from the CA. If VE has not received any RSU broadcast from the new road for
a 4Twait

broadcast time period, then VE sends to the corresponding mRSU a so-
called “no broadcast" message, signed_no_br, indicating a potential problem
with the RSU. Upon receiving this, the mRSU notifies the authority so the
broken/compromised RSU can be fixed. The message signed_no_br, as shown430

in rows 24-25 of Table 3, contains the tag “No Br", the current SatNav location
and time, and the mRSUid fetched from the MRSUrecord (row 23 of Table 3).

Algorithm 5 CA certifies the short-term public keys
1: procedure CA
2: Init values for CA
3: if receive (encrypted_signed_request, CertLV E) then
4: if verif(encrypted_signed_request, CertLV E) == true then
5: SendVE(encrypted_signed_cert)
6: . storing 3 elements from the received message
7: Store(encrypted_signed_request[IDV E],
8: encrypted_signed_request[newPKS

V E],
9: encrypted_signed_request[loc])

10: end if
11: end if
12: end procedure

In Algorithm 5, once the CA receives a certificate request message (line 3), in
line 4 it decrypts the message with its own decryption private key, then verifies
the signature and checks whether the time stamp is fresh. Once successful, the435

CA checks if CAid is its own ID, then, in line 5 it sends back to VE a message
that contains the certification for the new short term public key. Again, this
message is signed with the private key of the CA, and then encrypted using

19

the encryption public key of VE. The CA stores the long-term ID of VE, the
new short-term public key and the SatNav location of VE for accountability440

purposes, for example, during an investigation of a criminal incident (lines 7-9).

Algorithm 6 mRSU
1: procedure mRSU
2: Init values and variables for mRSU
3: mRSUHandleMsg | mRSUUpdateLights
4: end procedure

A mRSU, in Algorithm 6, performs more computation tasks than a RSU,
including signature verification, as well as modifying the phases or states of the
traffic lights under its control (region). The operation of a mRSU consists of two
functions running in parallel, mRSUHandleMsg specifies how a mRSU handles445

a received message, while mRSUUpdateLights specifies how a mRSU regularly
checks and updates the traffic light programs based on the congestion values.

In Algorithm 7 (mRSUHandleMsg), we distinguish among the cases when
a mRSU receives a “Not Stuck" message from a vehicle (line 3), a “Got Stuck"
message (line 5) or a “Go Again" message (line 7).450

In the first case (lines 11-17), mRSU performs a verification including the
validity of the signature and certificate, and the freshness of the timestamp
(line 12). Next, the mRSU checks if the lanes information it stores about the
road (got_lanes_info) is consistent with the received lanes information (line
13). In order to do this, as shown in rows 34-35 of Table 3, the mRSU extracts455

the road ID from its stored Roadrecord based on the received SatNav location
(row 34), then reads the lanes information it stores about this road (row 35) to
compare with the received one. In case of consistency, a so called “Not Stuck"
entry with the timestamp, the location, the state and the public key inside the
received message is (temporarily) cached/stored in the storage of the mRSU460

called recordset (line 14, Alg. 7). This verification is for security purposes, to
detect if a compromised RSU sent incorrect lane information to the vehicle.

Once a signed “Got Stuck" message (lines 18-27, Alg. 7) has been received
from VE, and in case this message has not been stored before (line 19), the
verification of the message will take place. In line 20, mRSU checks whether it465

is the addressee (i.e., mRSUid is correct), and the attached public key certificate
and the signature on the message are valid, as well as if the timestamp is fresh.
Finally, in line 21, the mRSU double checks if the lane information the vehicle
sent is correct. In case the verification is successful, in line 22, an entry with the
flag “stuck" is added into recordset. Finally, in line 23 the congestion values of the470

lane segments are updated with the flag “stuck" indicating that the congestion
value is updated after receiving a “Got Stuck" message (see Algorithm 8).

When a mRSU receives a “Go Again" message (lines 28-35, Alg. 7), this
message should be related to a previous “Got Stuck" message from the same
vehicle, indicating that a vehicle manages to go again after it got stuck. This475

relation is verified in line 29, checking if there is already a corresponding “stuck"
entry in the record record(XPKS

V E). Thereafter, further verification will be done

20

Algorithm 7 mRSU Handle Messages
1: procedure mRSUHandleMsg
2: Init variables for mRSUHandleMsg
3: if receive (signed_notstuck_msg, Cert(PKS

V E)) then
4: mRSUHandleNotStuckMsg
5: else if receive (signed_stuck_msg, Cert(PKS

V E)) then
6: mRSUHandleStuckMsg
7: else if receive (signed_goagain_msg, Cert(PKS

V E)) then
8: mRSUHandleGoAgainMsg
9: end if

10: end procedure

11: procedure mRSUHandleNotStuckMsg
12: if verif(signed_notstuck_msg, Cert(PKS

V E)) == true then
13: if got_lanes_info == signed_notstuck_msg[lanes_info] then
14: Cache((“notstuck", notstuck_time, notstuck_loc, notstuck_state,

XPKS
V E), recordset)

15: end if
16: end if
17: end procedure

18: procedure mRSUHandleStuckMsg
19: if (“stuck", stuck_time, stuck_loc, stuck_state, XPKS

V E) NOT in
record(XPKS

V E), for any stuck_time, stuck_loc, stuck_state then
20: if verif(signed_stuck_msg, Cert(PKS

V E)) == true then
21: if got_lanes_info == signed_stuck_msg[lanes_info] then
22: Cache((“stuck", stuck_time, stuck_loc, stuck_state, XPKS

V E),
recordset)

23: updateCongestionState("stuck", recordset, stuck_time,
stuck_loc, V thes

ano , Dano, Tano, SetCV)
24: end if
25: end if
26: end if
27: end procedure

28: procedure mRSUHandleGoAgainMsg
29: if (“stuck", stuck_time, goagain_loc, stuck_state, XPKS

V E) is in
record(XPKS

V E), for some stuck_time, goagain_loc, stuck_state then
30: if verif(signed_goagain_msg, Cert(PKS

V E) == true then
31: updateCongestionState("goagain", recordset, goagain_loc,

stuck_time, V thes
ano , Dano, Tano, SetCV)

32: delete (“stuck", stuck_time, goagain_loc, stuck_state, XPKS
V E) from

record(XPKS
V E)

33: end if
34: end if
35: end procedure

21

in line 30 and the congestion state will be updated, in line 31. Eventually, the
“stuck" entry of XPKS

V E will be deleted as the vehicle managed to go again.
The procedure updateCongestionState (Algorithm 8) expects as input the480

parameter flag, the set recordset, the location and the time of the stuck (loc
and time) included in the received message, the threshold Vthres

ano , the pre-defined
values Dano and Tano, and the set SetCV (see Tables 4-5 for the meaning of
the notations). If a “Got Stuck" message is received (line 2) and no anomaly is
detected (line 4), then the congestion value (CV) of the lane where the vehicle485

got stuck (lane currLaneID) is increased. Otherwise, if a “Go Again" message
is received, then the congestion value of the lane is decreased. Lines 3 and
11 double check whether the lane segment with the ID loc[currLaneID] (i.e.,
currLaneID inside loc) is in the area under the control of the mRSU.

Lines 15-18 (Algorithm 8) define how a mRSU updates the programs of490

the traffic light systems under its control area. After every pre-defined delay
4Tupdate

lights , a mRSU checks the congestion values of the lane segments in its
area and updates the programs of the light systems accordingly (in lines 19-39,
procedure UPDATELIGHTS).

Our main goal is to decrease the total travelling time of all the vehicles, hence,495

we compare the total congestion values of the crossing roads at the junctions.
In line 20, for each traffic light system TLSys under control of the mRSU, given
two sets of crossing lane segments (L1,. . . , Ln and Ln+1, . . . , Lk) that follow the
opposite light colours, the total congestion value of the two sets of lane segments
will be compared with each other (lines 24 and 30), and an appropriate program500

will be set, which favours one or another sets of lane segments (lines 26 and 32).
PR1 is the program that gives green for the lane segments L1,. . . , Ln, while
PR2 for Ln+1,. . . , Lk. In lines 27 and 33, after prolonging the green time for
(Ln+1, . . . , Lk) and (L1,. . . , Ln), respectively, the mRSU checks if a diversion
of the traffic is needed (CheckIfDiversionNeeded). In case there is a set of lanes,505

denoted by LaneSameDir, with the same directions (LaneSameDir ⊆ {Ln+1,
. . . , Lk} or {L1,. . . , Ln}) in which all lanes are blocked (full road blockage), or
the total congestion values of those lanes do not decrease for 4TDiv time period
then the traffic arriving in these lanes will be diverted (if possible), and the
authority will be automatically notified to resolve this. Otherwise, the default510

program PRDefault will be set at the junction (line 36).
Note that the specific approaches used in the procedures increaseValue, de-

creaseValue, and the specific values in Tables 4-5 are not defined in this pa-
per. Instead we leave them in a generic form and carry out the simulation (in
Seciton 6) on some example specific values and approaches for the functions.515

Algorithm 9 deals with the anomaly detection done by a mRSU. Basically,
in line 2, the amount of vehicles sent “Not Stuck" (NS) within a pre-defined
distance Dano before and after the location of the stuck (loc) and a pre-defined
time period Tano before and after the time of the “got stuck" message is derived
from recordset. If NS is larger than a pre-defined threshold value V thres

ano (line520

3), then an anomaly is detected (i.e., true is returned). Intuitively, this means
that the more vehicles notify the mRSU that they do not get stuck the more
likely that there is an attack carried out by compromised vehicles.

22

Algorithm 8 mRSU Updates Congestion State and Lights
1: procedure updateCongestionState(flag, recordset, loc, time, V thes

ano , Dano,
Tano, SetCV)

2: if flag == “stuck" then
3: if CV(loc[currLaneID]) ∈ SetCV then
4: if !isAnomaly(recordset, loc, time, V thres

ano , Dano, Tano) then
5: increaseValue(CV(loc[currLaneID]))
6: else return -1 . otherwise, exit
7: end if
8: end if
9: else if flag == “goagain" then

10: if CV(loc[currLaneID]) ∈ SetCV then
11: decreaseValue(CV(loc[currLaneID]))
12: end if
13: end if
14: end procedure

15: procedure mRSUUpdateLights(SetCV, SetTLSys, SetST, SetPR, 4TTL,
4Tupdate

light , M)
16: after each 4Tupdate

light time period do
17: UpdateLights(SetCV, SetTLSys, SetST, SetPR, 4TTL, 4TDiv, M)
18: end procedure

19: procedure UpdateLights(SetCV, SetTLSys, SetST, SetPR, 4TTL, 4TDiv, M)
20: for each TLSys ∈ SetTLSys do
21: Let L1,. . . , Ln and Ln+1 . . . , Lk be all the lane segments directly linked to

a junction controlled by TLSys (e.g., L1, L2, L3, currLaneID in Fig. 3).
22: Let ST1 be the light state where L1,. . . , Ln are on green, while Ln+1 . . . ,

Lk are not, and let ST2 be the light state where Ln+1 . . . , Lk are on green, while
L1,. . . , Ln are not.

23: Let PR1 be the program where ST1 lasts M times longer than ST2 (i.e.,
favouring L1,. . . , Ln), and let PR2 be the program where ST2 lasts M times longer
than ST1 (i.e., favouring Ln+1 . . . , Lk).

24: if
∑m

k CV(Lj) >
∑n

1CV(Lj) for a 4TTL period then
25: if CurrProg(TL) != PR2 then
26: setLightProg(TL, PR2)
27: CheckIfDiversionNeeded({Ln+1, . . . , Lk}, 4TDiv)
28: else goto point 2.
29: end if
30: else if

∑m
k CV(Lj) <

∑n
1CV(Lj) for a 4TTL period then

31: if CurrProg(TL) != PR1 then
32: setLightProg(TL, PR1)
33: CheckIfDiversionNeeded({L1,. . . , Ln}, 4TDiv)
34: else goto point 2.
35: end if
36: else setLightProg(TL, PRDefault)
37: end if
38: end for
39: end procedure

23

Algorithm 9 Anomaly Detection
1: procedure isAnomaly(recordset, loc, time, V thres

ano , Dano, Tano)
2: NS = numNotStuckVeh(recordset, loc, time, Dano, Tano)
3: if NS ≥ V thres

ano then
4: return true
5: else
6: return false
7: end if
8: end procedure

Figure 3: There is an accident caused by V1 and V2 in the lane NewLaneID, and all the
vehicles behind them got stuck. {CurrLaneID, Lane 2} and {Lane 1, Lane 3} are the two
sets of crossing lanes following the opposite light colors. The vehicles from Lane 1 can turn
to right preventing V3, . . . , Vn in overtaking V1/V2 in the opposite lane.

X

X

X

V3
V2
x

V1

x

V4……V5

Vn
…… Vn+1

Vk+1VkVm+1Vm

……

……

V
t

…
.…

incident

Vs……

…… Vs+1

mRSU

Lane 1 Lane 2

Lane 3 Lane 4Lane 5

Lane 6

Lane 7

RSU

RSU

Figure 4: An accident scenario involving V1, V2, V3 where both the two lanes, Lane 4, Lane
6 of the same direction are blocked for more than 4TDiv time. The mRSU diverts the traffic
from Lane 1, Lane 2, and Lane 7.

5. Security Analysis

We discuss a security analysis of our proposed protocol against the attacker525

models and attack methods defined in Section 3. Our analysis is based on the
ProVerif tool [23], which has been extensively applied in verifying the security

24

of different protocols (e.g. [38–40]). It assumes the attacker model in which the
attacker can intercept, replay and relay as well as creating fake messages using
the data it has and take part in different protocol sessions running in parallel.530

5.1. The security against external attackers
For the external attackers who are not part of the system, we aim to analyze

the key secrecy, authenticity and integrity properties of the protocol as three of
the most relevant security properties, namely:

• Key secrecy: Here we formally prove the secrecy of the long-term and535

short-term private keys of the participants and long-term ID of the vehi-
cles. Specifically,

1. the attacker cannot obtain the long-term private key (SKenc
CA, SK

enc
V E)

for the asymmetric encryption used in the communication between a
vehicle and the CA for certifying the new short term keys;540

2. the attacker cannot obtain the short-term private key SKS
V E used

for signing the traffic messages (“Not Stuck", “Got Stuck" and “Go
Again");

3. the attacker cannot obtain the long-term private keys SKL
V E , SK

L
RSU ,

SKL
mRSU and SKL

CA;545

4. the attacker cannot obtain the long-term ID (IDV E) of the vehicles.

• Authenticity: We prove three different properties for authenticity.

1. Property Auth1: In the communication between a vehicle VE and
the CA to certify the new short-term keys (lines 34, 36 in Alg. 2 and
Alg. 5), whenever VE finished the session and believes that it ran550

the session with the CA, then this is really the case, and vice versa.
Hence, an external attacker cannot impersonate either VE or the CA,
and cannot generate valid signatures in the name of VE or CA.

2. Property Auth2: Whenever a vehicle receives and accepts a broadcast
message about the road segment (lines 3-4 of Alg. 2), the message555

was really generated freshly by a RSU.
3. Property Auth3: Whenever a mRSU accepts a (“Not Stuck", “Got

Stuck" and “Go Again") message of a vehicle VE and accepts this
as valid (i.e., the verification was successful), this message was really
generated by VE, who sent it freshly.560

• Integrity: We prove three different properties for integrity, as follows.
Any modification of the messages broadcast by a RSU can be detected
(Property Int1), any modification of the messages sent by a vehicle to
a mRSU can be detected (Int2), and any modification of the messages
exchanged between a vehicle and the CA can be detected (Int3).565

To analyse the security properties of our system, we define a ProVerif process
for each participant, namely, procRSU, procMRSU, procVE, and procCA. The
protocol definition in ProVerif is as follows:

25

process
1. new skVE : skey; (* a private key of VE, for decryption *)
2. new skCA : skey; (* a private key of the CA, for decryption *)
3. new lskVE : lskey; (* a long-term signature key of VE *)
4. new lskCA : lskey; (* a long-term signature key of CA *)
5. new lskRSU : lskey; (* a long-term signature key of RSU *)
6. let pkVE = pk(skVE) in out(c , pkVE);
7. let pkCA = pk(skCA) in out(c , pkCA);
8. let lpkVE = slpk(lskVE) in out(c , lpkVE);
9. let lpkCA = slpk(lskCA) in out(c , lpkCA);
10.let lpkRSU = slpk(lskRSU) in out(c , lpkRSU);
11.((!procVE(lpkRSU, lskVE, skVE, pkCA, lpkCA)) |
12.(!procCA(skCA, lpkVE, lskCA, pkVE)) |
13.(!procMRSU(lskRSU, lpkCA)) | (!procRSU(lskRSU)))

The keyword process denotes the main process (i.e., the protocol itself) and
each line of the code can be seen as a (sub-)process. Lines 1-10 define the initial-570

ization of the long-term keys at the beginning, which will be used throughout
the protocol. Specifically, line 1 (similarly, lines 2-5) defines the process that
creates the data with the name skVE and of the type decryption private key
(skey). Line 6 (similarly, 7-10) defines the process that computes the public key
pkVE from the secret key skVE using the function pk(skey), and sends it out575

on the channel c. Finally, lines 11-13 define the four processes procVE, procCA,
procMRSU, procRSU running in parallel (denoted by “ |"). The syntax element
“!" means that each process is allowed to replicate its operation infinitely in
order to capture parallel protocol sessions. We define the long-term and the
short-term signing and encryption keys, and each process has parameters of the580

keys that it uses during the operation. The short-term signature keys of the ve-
hicles (procVE) are generated during the protocol run (not at the initialization)
inside the process procVE.

In ProVerif, the participants communicate via channels. We define a channel
c, namely, “free c : channel.", allowing the attacker to overhear and inter-585

cept the communication. We define message types, such as the type for data
(bitstring), type for long-term signature private and public keys (lskey, lpkey,
respectively), and short-term signature private and public keys (sskey, spkey,
respectively), the time (time) and road information (RoadInfo).

Then, we define cryptographic functions and primitives, such as the function590

for generating a public key from the corresponding private key, asymmetric
key encryption (fun aenc(bitstring, pkey) : bitstring.) and decryption, digital
signature generation with a short-term and long-term keys (fun ssign(bitstring,
sskey) : bitstring., and fun sign(bitstring, lskey) : bitstring.) and verification.

The security properties are defined as follows in the ProVerif syntax. For595

the key secrecy properties:

1. To verify that the attacker cannot obtain the long-term private keys SKenc
CA

and SKenc
V E for decryption, we specify two queries, namely “query secret

skCA." and “query secret skVE.".

26

2. For the short-term signature private key SKS
V E of a vehicle: “query secret600

sskVE.".
3. For the long-term signature private keys SKL

V E , SK
L
RSU , SK

L
mRSU , SK

L
CA

of VE, RSU, mRSU, CA, respectively: “query secret lskVE.", “query
secret lskRSU.", “query secret lskMRSU.", and “query secret lskCA.".

4. For the long-term ID of VE (IDV E): “query attacker(IDve)"7.605

With these queries we can check if the attacker can obtain the keys and the
long-term ID of VE. After running the verification, as result we got "RESULT
not attacker(IDve[]) is true" for IDve, and "RESULT secret x is true" for all
the six private keys, where x ∈ {skCA[], skVE[], sskVE[], lskVE[], lskRSU[],
lskCA[]}. This formally proves that the attacker cannot obtain any of these610

keys and the long-term ID of VE during the protocol runs.
For the authenticity properties, in ProVerif events and the so-called corre-

spondence assertions are used (see sections 3.2.2-3.2.3 of the manual [41]).
For property Auth1, we define the following events:

1. event acceptsVECA(spkey,id). 2. event termVECA(spkey,id).
3. event acceptsCA(spkey,id) 4. event termCA(spkey,id).

The first event captures that a vehicle VE accepted running a protocol ses-615

sion with the CA and with the short-term public key to be certified (of type
spkey) and with the long-term ID of VE (of type id). The second captures that
VE believes that it terminated the protocol with the CA with the key of type
spkey and the long-term ID of type id. The third and fourth events specify that
the CA accepted, finished the protocol with the key of type spkey and with the620

long-term ID of type id, respectively. The correspondence assertions are:

1. query x : spkey, y : id;
inj-event(termVECA(x,y)) ==> inj-event(acceptsCA(x,y)).

2. query x : spkey, z : id;
inj-event(termCA(x,z)) ==> inj-event(acceptsVECA(x,z)).

The first query instructs ProVerif to check if whenever a vehicle VE believes
that it terminated a protocol session with the CA with a short-term signature
public key (x) and the long-term ID of VE (y), then previously at some point,
the CA accepted running this protocol session with a vehicle using the same625

short-term public key (x) and the same long-term ID (y). Here, we rely on
the so-called injective correspondence (inj-event, see section 3.2.3 of the manual
[41]), in order to check the possibility of someone replaying the messages of the
CA to VE. Similarly, the second query verifies that whenever the CA finished
its session and sent back the certified short-term public key x to a vehicle of630

7Note that this property at the same time also proves the secrecy of keys SKenc
CA and SKenc

V E
as they are used for decrypting the message containing IDve (lines 6-9 of Alg. 4, and lines
7-10 of Alg. 5).

27

long-term ID y, there was a vehicle with y that accepted running this session
with the CA, and requested the certification for the key x.

For property Auth2, we define the following events:

1. event receivedVERSU(id, time, roadinfo). 2. sentRSU(id, time, roadinfo).

The first event captures that the vehicle VE received a broadcast containing
an ID (of type id) of the RSU who sent it, a timestamp (of type time) and the635

record RoadInfo (of type roadinfo). The second event captures when a RSU
sent the broadcast message that contains its ID (of type id), the current time
(of type time) and a RoadInfo record. The correspondence assertions are:

1. query x : id, y : time, z : roadinfo;
event(acceptedVERSU(x,y,z)) ==> event(sentRSU(x,y,z)).

This query checks the authentication of a RSU towards a vehicle VE, namely,
whenever the vehicle VE received a broadcast message that contains a RSU ID x,640

a timestamp y and a RoadInfo record z, then this RSU really sent the broadcast
message with the same x, y and z.

For property Auth3, we define the following events:

1. event sentVEmRSU(spkey, id, lanesinfo, time).
2. event acceptedMRSU(spkey, id, lanesinfo, time).

The first event captures that a vehicle VE sent a message containing its
short-term public key (of type spkey), the ID of the mRSU (of type id), the lane645

information (of type lanesinfo) and the timestamp (of type time).8 Then, the
query to verify is:

1. query x : spkey, y : id, z : laneid, w : time;
event(acceptedMRSU(x,y,z,w)) ==> event(sentVEmRSU(x,y,z,w)).

This query checks if whenever a mRSU accepted the message that contains
a short-term public key (x), the ID of the mRSU (y), lane information (z), and
a timestamp (w), then a vehicle really sent this freshly with x, y, z and w.650

To verify the integrity properties, we define an attacker process called pro-
cAttInt for verifying the effect of message modification. For the property Int1,
we specify a vehicle process, procVE, such that when a vehicle receives a broad-
cast message from a RSU, and all the verification steps are successful, a piece
of data named VERIFICATIONOK will be sent out on the channel c, other-655

wise, nothing will be sent, namely: free VERIFICATIONOK [private]. Here,
VERIFICATIONOK is declared as a piece of data that is not available to the
attackers at the beginning ([private]), but they can intercept it later.

Next, we specified the process procAttInt such that a modified version of the
original broadcast message will be sent via the channel c. We examined different660

8Note that the message sent by VE contains more elements, but only these four are used
in the events as they are sufficient to uniquely identify the context of the communication.

28

versions of message modifications, e.g., the same broadcast message signed with
a different key, or when an element of the message is modified.

let procAttInt = modify1 | modify2
let modify1 = out (c, sign((IDrsu, IDmRSU, RoadInfo, curr_time), skAtt))
let modify2 = out (c, sign((IDAtt, IDmRSU, RoadInfo, curr_time), lskRSU)).

The case of property Int2 is similar to Int1, except that this time the
process mRSU, procMRSU, sends out the “flag" VERIFICATIONOK on the
channel c when the verification of the message sent by a vehicle (procVE) is665

successful. The process procAttInt this time sends different modifications of the
original/correct traffic message on the channel c.

Finally, for the property Int3, both the processes procVE and procCA send
out VERIFICATIONOK on the channel c when the verification of their received
messages are successful, and nothing otherwise. The process procAttInt sends670

different modifications of the two original messages, namely, the certificate re-
quest message from procVE, and the certificate reply from procCA.

In order to show that our protocol is capable of detecting the message mod-
ifications, we specified the following query in all three cases.

query attacker(VERIFICATIONOK).

This query checks if the attacker will be able to intercept the flag VER-675

IFICATIONOK. As a result, in case of the original messages, ProVerif re-
turned "RESULT not attacker(VERIFICATIONOK[]) is false", which means
that the attacker was able to intercept the flag during the protocol, while for
the modified versions of the original messages ProVerif returned "RESULT not
attacker(VERIFICATIONOK[]) is true", as the verification of the messages was680

unsuccessful, hence, the flag was not sent out. We got the same result in cases
when the other elements of the message were modified. Therefore, our proposed
protocol is capable of distinguishing between a correct and a modified message.

5.2. The security against insider attackers
We assume that the mRSUs are well protected and therefore they are less685

vulnerable to attacks. Since in our approach, mRSUs are equipped with powerful
CPU and resources, it can be assumed that intrusion detection systems, firewalls
and anti-malware software are installed in them, and that they are physically
well protected. Hence, in our analysis, compromised mRSUs are not considered.

5.2.1. Compromised vehicles690

In the following, let us consider the settings in lines 21-23 of Algorithm 8.
In order to generate a fake traffic congestion in a lane segment, say L1, an
attacker has to affect the function increaseValue(CV(L1)), namely, increasing
the congestion value of L1 that ultimately leads to increasing the duration for
the green light incorrectly. To do this, the attacker needs to compromise a695

certain number of vehicles (e.g., by infecting them with malware) and instruct
them to send “Got Stuck" messages at a certain point of L1, even if they do not

29

get stuck. Each compromised vehicle is instructed to generate and send a “Got
Stuck" message in line 2 of Algorithm 3, and set their distance value (dist) to
adjust them into the same point of the lane segment. Since the certificate and the700

signature will be valid, these messages will be accepted by the corresponding
mRSU. However, because of the anomaly detection defined in Algorithm 9,
the attacker can only be successful if the number of benign vehicles sending
“Not Stuck" messages (in that area and time) is less than the threshold V thres

ano .
Otherwise, the congestion value will not be increased. Hence, by setting the705

threshold to a small value we can limit the chance of the attacker.
Continuing the previous argument and scenario, let us assume that the num-

ber of benign vehicles is less than V thres
ano , so the attacker successfully increases

the congestion value of L1. The attacker still cannot be sure that the mRSU
will set the traffic light program to give longer green time for L1, as this would710

also depend on the congestion values of the other lane segments. The attacker
can achieve its goal if

∑m
k CV(Lj) <

∑n
1CV(Lj) (line 30, Alg. 8), and this can

be the case when either the total congestion value of the crossing lanes of L1 is
very low or the attacker manages to increase the congestion value of L1 greatly
(e.g. when there are only compromised vehicles on L1 and there is no congestion715

on the crossing lanes). For this, the attackers need to control a huge amount of
vehicles over a long time, which is costly and difficult.

5.2.2. Compromised RSUs
A compromised RSU can broadcast incorrect information about a road seg-

ment for the arriving vehicles. It can also remain silent not broadcasting any-720

thing, so the vehicles would not know which lane they arrived at, and hence the
corresponding mRSU will not get any “Got Stuck" message from the vehicles9.

1. In case a compromised RSU refuses to broadcast any message, the vehicles
report to the corresponding mRSU the fact that it is not receiving any
information (line 39 of Alg. 4), so an engineer or system administrator can725

check and fix this RSU. However, this would require the availability of the
satellite signal.

2. A compromised RSU can send incorrect lane information (LanesInfo in
RoadInfo) with the result that the vehicles would include incorrect lane
IDs into their messages. In order to mitigate the impact of this attack, a730

vehicle sends a message containing these incorrect lanes to the mRSU for
verification purposes (line 2 and 10 of Alg. 3), which the mRSU verifies
in lines 12-13 of Alg. 7, respectively. In case of inconsistency, the mRSU
alerts the appropriate authority who will then fix the RSU. To check this
in ProVerif, we declare the data FakeLanesInfo with the type lanesinfo,735

and define the process procComprRSU1 as follows.

9Vehicles could still send the “Got Stuck" messages but without the accurate information
about the lane and location of the stuck vehicles, as we assumed that the SatNav system in
the vehicles cannot identify accurately the lanes.

30

1. free FakeLanesInfo : lanesinfo.
2. let procComprRSU1(lskRSU : lskey) =
3. let RoadInfo = (SatNvArea, NumLanes, FakeLanesInfo, DistInterval) in
4. out (c, sign((IDrsu, IDmRSU, RoadInfo, curr_time), lskRSU)).

The record RoadInfo will be sent out on the channel c with FakeLanesInfo
(line 4). Then, we define the event acceptsMRSUFakeLanes(lanesinfo),
which captures that the mRSU accepts the message containing a data
of type lanesinfo. Finally, the ProVerif query to check if the event when740

mRSU accepts FakeLanesInfo would occur during the protocol run:

query event(acceptsMRSUFakeLanes(FakeLanesInfo)).

"RESULT not event(acceptsMRSUFakeLanes(FakeLanesInfo[])) is true"
was got as a result, which basically means that the mRSU never accepts
the fake lane information by a compromised RSU. The reason is because
the mRSU will carry out the verification on the correctness of the lane745

information (lines 12-13 and lines 20-21 Alg. 7).
3. Finally, a compromised RSU can broadcast a message with an incorrect

mRSU ID, so the vehicles will send their messages to this incorrect mRSU.
This attack can be prevented by the vehicles when they double check the
received mRSUid against their MRSUrecord (see line 10 in Algorithm 2).750

In ProVerif, for the verification of this attack, we declare a fake mRSU ID
called FakeIDmRSU, and define a process, procComprRSU2, which sends
out a message containing this fake ID.

1. free FakeIDmRSU:id.
2. let procComprRSU2(lskRSU : lskey) =
3. let RoadInfo = (SatNvArea, NumLanes, LanesInfo) in
4. out (c, sign((IDrsu, FakeIDmRSU, RoadInfo, curr_time), lskRSU)).

The query for this case is “query event(acceptsVEFakeMRSUID(id))",
which captures that VE accepts the fake mRSU ID of type id. As a755

result, we got that this event only happens besides the attacker process
procComprRSU2 when there is no SatNav signal in the area of the vehicle.

6. Simulation

We demonstrate the efficiency of our proposed approach compared to the tra-
ditional systems which rely on induction loops, cameras or purely static lights.760

31

6.1. Simulation Environment
We use the Veins simulation framework [24], which is an open source frame-

work for vehicular networks and V2X simulations. Veins is built upon the
SUMO simulator and the OMNET++ discrete event simulator. For the sim-
ulation, Veins-5.0, OMNET++ 5.4.1 and SUMO 1.2.0 were used. We run the765

simulation on a selected area of the city of Preston, UK, which is exported from
OpenStreetMap (see Fig. 5)10. As depicted in Fig. 5, we set two routes for the
cars (only cars were considered) to travel at the same time.

Figure 5: The simulation area, part of the city of Preston, UK, PR1 2TY. The two routes
cross each other at junction A. RouteA starts from Fylde Road through Aqueduct street to
the end, while on the right, RouteB starts from Plungington Road, through Aqueduct street
and Fylde Road in the reverse direction compared to RouteA.

Aqueduct street has only two lanes in reverse directions, and in real life, a
high number of cars or an incident on that road easily causes traffic congestion.770

In our simulation, we set an incident on RouteA (the car at the beginning of
the flow breaks down) right before the junction A (illustrated by the red cross
in Fig. 5). Since at junction A, the cars from RouteB will turn into the road
that has the incident, we expect a high delay for the cars on RouteA because
they have to wait until the flow from RouteB passes or until the traffic light at775

the junction A is green for RouteA in order to overtake the car broken down on
the opposite lane. This situation is depicted in Fig. 6.

We compare four different approaches based on the total travel time of all
the cars on RouteA and RouteB from the start to the end of the simulation:
The first approach is our proposed method based on V2I communication. The780

second approach is based only on an adaptive (actuated) traffic light concept
with the car detectors installed beneath the roads. In this case, the traffic lights
are able to prolong the green time favouring the road with a high number of

10We choose Preston because it is the home of the first author’s institution.

32

A

B

C

Figure 6: The simulation in Veins (SUMO) shows the car at the beginning of the flow on
RouteA is broken down. Note that the cars travel on the left-side of the roads following the
UK rules (a view from SUMO gui. A: Static, B:Lane area detector, C: Actuated).

cars following each other closely. The third is based on lane area detectors that
follows the concept of camcorders installed at the junctions to record and count785

the vehicles within a certain distance. The fourth approach is when only traffic

33

lights with static program are used. Note that V2I communication is not applied
in the last three cases.

The common simulation configurations we set in all four cases are:

• The car, map and route parameters and the car numbers are the same for790

all four cases. We used the default car following model implemented in
SUMO, which is a modified version of the Krauss model by Stefan Krauss
[42]. The simulation time is set to 2500 sec, long enough for all the vehicles
to be able to finish their journey.

• The first vehicle on RouteA is set to be broken down (speed is zero) at the795

middle of the road segment before junction A. This happens at time 165s
during the simulation of the V2I case, and 185s-190s during the simulation
of the other three cases.

• RouteA and RouteB include five traffic light systems in total, each at a
junction. Cars are allowed to overtake in the opposite lane. This makes it800

possible for the cars stuck behind the incident to overtake the car broken
down on their opposite lane when there is a chance.

In the (purely) static lights case, the phases of the lights were set to 42s (for
the red-green light state) and 3s (for red-yellow), which is the default setting of
the map imported from OpenStreetMap.805

In the actuated lights case, an induction detector loop is installed close to
the junctions (Fig. 6/c) measuring the vehicle flow and extend the green time
accordingly. We set the minimum duration of the red-green phase to 42s that
can be prolonged to the maximum duration of 63s (i.e. 63s = 3/2 * 42s).

In case of the approach using lane area detector or camcorders installed at810

the junctions (Fig. 6/b) we set the length of the lane area detector such that the
car broke down outside the sensing/detector area, but its sensing range is longer
than a half of the road segments (enough to capture at least seven cars). In this
case, camcorders cannot detect the cars that get stuck behind the incident.

In Veins, the V2X communication simulation is based on the 802.11p stan-815

dard. We choose the following simulation configuration:

• The parameters of the 802.11p NIC include nic.mac1609_4.txPower =
20mW for the transmission power, nic.mac1609_4.bitrate = 6Mbps bi-
trate level. The transmission power is set to strong enough for a car to be
able to communicate with the mRSUs. Since we could not set the signal820

strength to accurately limit the communication to just one specific area,
the mRSUs are programmed to ignore the messages sent from other areas.

• All the five traffic light systems on RouteA and RouteB are defined to be
able to receive instructions from the mRSUs about the congestion status
and change the light status accordingly. We also define five mRSUs to825

handle congestion status messages from vehicles in five different segments
of RouteA and RouteB.

34

• A vehicle will send a "Got Stuck" message to a corresponding mRSU if
its speed drops to less than 1 for 21s (half of the length of the default
light period, 42s). In order to reduce the amount of message lost due to830

channel congestion, each vehicle sets a random delay (with the uniform
distribution) between 0 and 2s before sending the message. Further, each
vehicle also re-sends the same message (after the original one was already
sent) once after a random delay between 0 and 2s. This delay period is
small enough to avoid any change in the stuck status of a vehicle, and at835

the same time, can mitigate message lost during the simulation.

• For each junction with traffic lights in RouteA/RouteB (there are five of
them in the simulation), the mRSUs check the congestion status on the
crossing roads in its area after each second. If the number of cars that
got stuck (i.e., speed < 1) on one road (say, Road1) outweighs the number840

of the stuck cars on the crossing road (say, Road2), then the light system
will be programmed to switch to green for Road1, red for Road2, and
vice versa. Otherwise, if there is an equal number of stuck cars on the
two crossing roads then the light system switches back to a default static
program (i.e., 42s for green-red, and 3s for yellow-red).845

• A re-sent “Got Stuck"/“Go Again" message by a car will be ignored by an
mRSU unless it has not received the original message due to packet lost.

• When the speed of a stuck car becomes greater than 1 for at least 20s (or
a car moves into the area of a different mRSU), it will send a "Go Again"
status message to the mRSU (that controls the area where it got stuck)850

with a random (uniform) delay between 0 and 2. This is then re-sent once
with a random delay between 0 and 2s (after the original was sent).

Finally, the configuration for the lane area detection method is as follows:

• Since there are only cars on RouteA and RouteB, only the lane area de-
tectors on those roads are defined. The lane area detectors are set to be855

longer than a half of the road segments, and be able to detect at least
seven cars in its area (this is equivalent to a camcorder that is able to
capture around half of a road segment).

• Static traffic lights are used by default with the same setting as in the
other cases, namely, 42s for green-red, and 3s for yellow-red. Five mRSUs860

are defined to collect the information from the lane area detectors and
change the traffic lights.

• Let RoadA and RoadB be two crossing roads at a junction: the traffic
lights are set to green for RoadA and red for RoadB if the number of the
vehicles detected by the lane area detector on RoadA is (at least) seven,865

and greater than the number of cars detected on RoadB for at least 20s,
and vice versa. Otherwise, the traffic light is set to the default static
phases.

35

Table 8: TOTAL TRAVEL TIME COMPARISON 1
Cars Cars Incident V2I Lane Area Actuated Static

RouteA RouteB Duration (Our Approach) Detector Lights Lights
12 14 280s 7690 8571 8969 9045
24 14 280s 11709 13759 13922 14666
36 14 280s 15732 19964 20442 21384
48 14 280s 20522 26103 26376 27725
60 14 280s 25692 31289 31917 33938

Table 9: TOTAL TRAVEL TIME COMPARISON 2
Cars Cars Incident V2I Lane Area Actuated Static

RouteA RouteB Duration (Our Approach) Detector Lights Lights
60 14 280s 25692 31289 31917 33938
60 28 280s 35851 38460 40074 40715
60 42 280s 43942 44392 46491 46778
60 56 280s 50458 50744 52603 52778
60 70 280s 56871 57251 59065 59283

Table 10: TOTAL TRAVEL TIME COMPARISON 3
Cars Cars Incident V2I Lane Area Actuated Static

RouteA RouteB Duration (Our Approach) Detector Lights Lights
60 70 280s 56871 57251 59065 59283
60 70 380s 57659 60630 62482 64785
60 70 480s 58748 64122 65391 67586
60 70 580s 59090 65970 68769 69434
60 70 680s 59616 67468 69215 71077

6.2. Simulation Results
We run the simulation with the above configurations besides different num-870

bers of cars on RouteA and RouteB. In order to see how the number of the
cars behind the incident affects the total travel time, in Table 8 we increase
the number of the cars on RouteA from 12 to 60, while the number of cars on
RouteB is set to 14 in every case. We can see in Table 8 that the proposed
V2I communication method has the lowest total travel time among the four875

methods. The reason is that once the car flow on RouteB passes the place of
the incident, the mRSUs change all the five traffic light systems (at five junc-
tions in RouteA/B) to green for the car flow on RouteA. The lane area detector
method out performs the induction loop method and, unsurprisingly, the option
with purely static lamps performs the worst. Finally, we can also see that by880

increasing the number of cars on RouteA, the time difference becomes greater.
In Table 9, we fix the number of cars on RouteA to 60, and change the

cars on RouteB from 14 to 70. With this, we want to check how the cars on
the crossing road slow down the traffic on RouteA, preventing the cars stuck
behind the incident from overtaking in the opposite lane. We can still see that885

the proposed V2I method out performs the other three, but (unlike the first
comparison) the more cars on RouteB, the smaller the difference. We believe
that our V2I method achieves a lower travel time compared to the lane area
detection method because the lane area detectors are not be able to detect the
incident outside the range, and hence, there is a delay until at least seven cars890

36

manage to overtake the broken down car and get into the range of the detectors
due to the heavy traffic in the opposite lane. Finally, the reason the difference
is decreasing with the increasing number of cars on RouteB is because the cars
on RouteA and RouteB compete with each other by sending the "Got Stuck"
messages to the mRSU. By increasing further the number of cars on RouteB the895

V2I remains the best among the four approaches. Eventually, Table 10 outlines
the differences in case the incident duration is increased from 280s to 680s.

6.3. Simulation discussion
We have shown that besides the default parameters of the traffic lights pro-

grams downloaded from OpenStreetMap, there exists a configuration for our900

V2I solution that outperforms the other traditional solutions. Obviously, we
could modify the light programs of the traditional methods, so that the actu-
ated light can prolong the green time much longer than 63s, or use longer lane
area detector to capture more cars. In this case, the parameter for the V2I
approach could be adjusted accordingly, for instance, the time period for send-905

ing a “Got Stuck" message could be shortened. Nevertheless, since in the V2I
approach the mRSU can get a full picture of the congestion in lane segments, a
more informed decision can be made than with the traditional systems.

7. Message Overhead and Beacon Congestion

In the following, we refer the reader to different points of Table 3. The size910

of the “Got Stuck" message of a vehicle in points 12-13 is estimated to be around
189 bytes besides the ECDSA signature scheme (with a 28 bytes key), and a 6-
lane road. Specifically, 189 bytes = lanes_info (30 bytes)11 + loc_of_stuck (6
bytes) + curr_time (8 bytes) + state and Vtype (1 byte) + mRSUid (3 bytes)
+ ECDSA signature and certificate (140 bytes [31]).915

The signed "Not Stuck" message (points 4-5) is estimated to be around 190
bytes for a 6-lane road, namely, 190 bytes = lanes_info (30 bytes) + curr_time
(8 bytes) + curr_loc (8 bytes) + state (1 byte) + mRSUid (3 bytes) + ECDSA
signature and certificate (140 bytes).

Similarly, the estimated size of the signed “Go Again" (points 14-15) message920

is around 154 bytes (6+8+140). The encrypted certificate request message
(point 22) is between 84 and 256 bytes12, and finally, the signed “No Br" message
(points 24-25) is estimated to be 153 bytes.

Eventually, the signed RSU broadcast in point 2 is around 163 bytes (where
the plaintext is 23 bytes and the signature is 140 bytes). These values are in925

line with the literature (e.g. [31]) as they estimated the security messages to be
around 200-400 bytes.

11In Table 2, Pavements is 1 byte, lane ID is 4 bytes, the direction information and lane
width is 1 byte all together. Hence, the information for one lane is 5 bytes together.

1284 bytes can be in case of elliptic curve integrated encryption scheme (ECIES), while
128/256 bytes in case of RSA.

37

Table 11: COMPARING AVG MAC BUSY TIME AND THE MESSAGES RECEIVED BY
EACH mRSU (1 accident, 280s accident duration). The percentage shows the amount of
messages received by a mRSU out of the total messages addressed to it. This rate includes
the re-sent “Got Stuck" and “Go Again" messages. The packet size was set to 200bytes.
MAC busy mRSU0 mRSU1 mRSU2 mRSU3 mRSU4 Cars Cars
time AVG recvd recvd recvd recvd recvd RouteA RouteB

0.193 72.5% 80.6% 85.7% 100% 83.3% 50 50
0.181 72.3% 79.7% 87% 100% 84% 50 42
0.144 74% 78.4% 90.3% 100% 81.4% 50 28
0.097 78.4% 79.8% 89.4% 100% 80.6% 50 14

To calculate the worst-case transfer rate, let us distinguish the cases with
congestion and without congestion. In the first case, let us assume that 50 cars
got stuck on RoadA and 50 cars on RoadB at juction A at the same time (we930

recall Fig. 6 and assume that a road segment can accommodate 50 cars). Unlike
other studies (e.g. [31]), in our case, a vehicle does not process any message from
other vehicles but a mRSU. Hence, we focus on the messages sent to a mRSU by
the vehicles. Suppose that a vehicle sends ten “Got Stuck”/“Go Again” messages
per second, in the worst-case scenario the corresponding mRSU would receive935

1000 messages (10 messages x 100 cars). Based on the message overhead above,
189 bytes, this results in a transfer rate of (1000 x 189byte)/sec, which is around
1.51Mbps. The rate would change to 1.6Mbps in case of 200byte messages, and
0.15Mbps in case each vehicle only sends one message in one second.

In case there is no congestion on RoadA and RoadB at all, each vehicle only940

sends one “Not Stuck" message of 190 bytes within a road segment, which in
the worst-case would require 100(cars) x 190byte, around 0.15Mbps.

These are within 6Mbps, the (default) transfer rate in DSRC [43]. Obviously,
the actual rate would be less in practice as depending on when the cars got stuck,
messages are sent at different times, and the “Not Stuck" messages are sent at945

different times as well. The simulations show the average MAC busy time in
the first column of Table 11.

Regarding channel congestion, during the simulation we adapted the IEEE
1609.4 multi-channel operation. In our case, however, there are no WSA (Wave
Service Announcement) beacons, as there is only one service. Both the RSUs950

and the vehicles only send WSM (Wave Short Messages) on the control channel
(CCH). Based on the scenario and the settings given in Section 6 and packet
size of 200bytes, Table 11 depicts the comparison of the average MAC busy time
(for all cars in the simulation), and the amount of “Not Stuck", “Got Stuck"
and “Go Again" messages received by each mRSU. The percentage in the case955

of mRSU0 is the lowest because it is in the area of the incident, hence, directly
affected by the congestion. mRSU1 and mRSU2 receive the messages from the
road segments next to the one with the incident, while in the area of mRSU3

there is no road congestion at all, hence, each car only sends one “Not Stuck"
message (with a random delay), resulting in no message lost. Finally, mRSU4960

covers the entire area on the right of junction A (Fig. 5).
Note that this percentage includes the re-sent “Got Stuck" and “Go Again"

38

messages. In the simulation, after one re-transmission with a random delay,
eventually all the ‘Got Stuck" and “Go Again" messages arrived at the mRSUs.

Moreover, in our system the vehicles only start sending traffic status mes-965

sages to the mRSUs after it has arrived at the new road segment and already
received the RSU broadcast. This limits the chance of collision between mes-
sages sent by a vehicle and a RSU. The RSUs in the neighbouring road segments
are set to start broadcasting at different times to reduce message collision.

Finally, the authors in [44] showed that the delivery delay for safety messages970

increases linearly with the speed, both in case of DSRC (from 90ms/20mph to
130ms/50mph) and LTE (2690ms/20mph to 3000ms/50mph). While we use
different message contents, the result in this paper can be used as a reference.

8. Discussion

Security, privacy and accountability : Our approach also provides protection975

against physical attacks, such as intrusion into the on board devices of a vehicle
or a RSU/mRSU to extract the private keys. The hardware security modules
(HSMs) or the trusted platformed modules (TPM) are designed to physically
protect the private keys. Alternatively, we can use the on-demand secure key
generation approach in [45]. Denial of Services (DoS) attacks can be launched980

against our system, when the attackers send a huge amount of messages to the
mRSUs. Although these messages are invalid, they consume the computing
resource of the mRSUs. Known methods against DoS attacks [46, 47] can be
implemented at the mRSUs to mitigate their impact. Finally, a jamming at-
tack is always a potential threat in wireless communication, where the attacker985

prevents the RSUs, vehicles and mRSUs from receiving any messages. Different
anti-jamming techniques [48] could be adopted to mitigate the effect of jamming.

From a privacy perspective, we assume that the vehicles regularly change
their short-term public and private key pairs before arriving at a new road seg-
ment, and no future key pairs can be linked to the old ones (except for the990

trusted CA). This makes it difficult for an attacker or a system administra-
tor/technician who eavesdrops the wireless communication to track the vehicles
in the long-term. It is, however, still possible for someone to track the vehi-
cles within a single road segment. Note that we adapted the concept of the
pseudonyms because it provides a sensible balance between anonymity and ac-995

countability. However, our concept can be easily incorporated with different
privacy enhancing approaches, e.g. group signature [49]. As for accountability,
whenever there is an incident that requires an investigation (e.g. police or insur-
ance company), our approach allows the CA to assist the investigation (under
legislation) by revealing the link between the short-term public keys and the1000

long-term ID of a vehicle.
The installation cost : Since the main RSUs require powerful computing and

memory resources, their installation can be expensive. However, this can be
adjusted by choosing how large a region a mRSU can control. The larger the
region, the less mRSUs are required as only one mRSU is required for a region.1005

In the case of the RSUs, since their numbers are much higher than the mRSUs,

39

it is important to keep their cost reasonable. Each RSU only stores a minimal
amount of data, and carries out two types of operations, signature generations
and broadcasting. To moderate the cost of a RSU, a TPM is used to handle the
cryptographic operations, which are much cheaper than using HSMs13.1010

HSMs are powerful cryptoprocessors that perform cryptographic operations
very effectively, and provide superior physical protection with tamper-resistant,
tamper-proof properties. The private keys are generated inside the HSMs, and
never leave it. Whilst very secure, HSMs are expensive and widely used by
banks and financial institutions. Example HSMs include the IBM 4768 and 47691015

PCIe 14. TPMs are micro-controllers that stores keys, and digital certificates.
The early version 1.2 of TPMs was typically integrated to the motherboard of
a PC with cryptographic operations. Recently, TMP 2.0 has been improved
to support a more extensive set of cryptographic operations including digital
signature [50]. Compared to HSMs which cost thousands of Euros, TMPs are1020

much cheaper (normally, less than 100 Euros).
V2V versus V2I concept : An alternative smart traffic control system could

rely (entirely) on vehicle-to-vehicle (V2V) communication as well, where vehicles
will send traffic information to each other and a vehicle is able to set the traffic
lights. While this concept can be cheaper (a vehicle would take over the tasks1025

of our mRSU), it also poses a higher security risk, because vehicles can be more
easily compromised than the mRSUs in our approach. Besides, we get back to
the question of an accurate satellite navigation system, as if a concept is reliant
only on V2V communication, then each vehicle needs to be able to accurately
determine the lanes. Channel congestion is a well-known problem of V2V.1030

Lane identification: Identifying lanes is relevant for lane level traffic manage-
ment, for example, traffic diversion could be done on time to avoid congestion
or accidents on the motorways. Approaches to identifying lanes include camera
based, e.g. [51], precise point positioning (PPP), e.g. [52], and GNSS shadow
matching based methods, e.g. [36]. The main challenge faced by camera based1035

methods is their effectiveness in bad weather or at night, while the latter two
approaches require the availability of the satellite signals (from several satellites
at the same time), as well as depending on the surrounding obstacles such as
buildings, mountains, trees etc.

5G technology : In this paper, we mainly focused on V2I communications1040

(e.g., DSRC/802.11p). Our concept could be adapted in a 5G network, where
instead of contacting the mRSUs the vehicles can follow the cellular V2X stan-
dard to communicate with the base station instead. Since 5G allows a much
bigger message size, more information (e.g., pictures, videos) could be shared
among the participants. RSUs could broadcast a set of pre-taken pictures about1045

the road segments with the lane information and lane lines in different weather

13Note that it would be cheaper if the RSUs broadcast unsigned messages. However, anyone
would be able to send a fake RoadInfo to the vehicles, and this cannot be detected in the areas
where the satellite signal is permanently weak/unavailable.

14https://www.ibm.com/security/cryptocards/hsms. Accessed 01/07/2020.

40

conditions and time to help vehicles identify the lanes better. Our message
contents could be adapted in the cellular V2X standard. It is a potential future
work to explore this in more detail.

9. Conclusion and Future Work1050

In this paper, we have provided an automated traffic congestion detection
and notification concept based on V2I communication, including a system archi-
tecture and communication protocols. Unlike the previous studies and projects
in a similar area, our solution is specifically designed for traffic congestion detec-
tion, hence it is different from those studies. The security properties of the new1055

system were formally proved using the ProVerif tool. The security verification
showed that our method is secure against external attackers, and in case of suffi-
cient satellite signal, it is also secure against the compromised vehicles or RSUs.
Finally, we demonstrate the performance of our concept through simulations
with the Veins framework. Results have shown that besides the default settings1060

OpenStreetMap, the total travel time of the traditional traffic control solutions
is higher than the total travel time in our method (besides a reasonably chosen
set of parameters and roads as an example).

10. Acknowledgement

This work was supported by the Ariel Cyber Innovation Center in conjunc-1065

tion with the Israel National Cyber directorate in the Prime Minister’s Office.

References

[1] B. De Schutter, B. De Moor, Optimal traffic light control for a single in-
tersection, European Journal of Control 4 (3) (1998) 260–276.

[2] B. Zhou, J. Cao, X. Zeng, H. Wu, Adaptive traffic light control in wire-1070

less sensor network-based intelligent transportation system, in: IEEE 72nd
Vehicular Technology Conference (VTC 2010-Fall), 2010, pp. 1–5.

[3] F. Mehboob, M. Abbas, R. Jiang, R. A., A. S. Khan, S. Rehman, Trajectory
based vehicle counting and anomalous event visualization in smart cities,
Cluster Computer 21 (2018) 443–452.1075

[4] C. Osorio, K. Nanduri, Urban transportation emissions mitigation: Cou-
pling high-resolution vehicular emissions and traffic models for traffic sig-
nal optimization, Transportation Research Part B: Methodological 81 (P2)
(2015) 520–538.

[5] S. Djahel, M. Salehie, I. Tal, P. Jamshidi, Adaptive traffic management for1080

secure and efficient emergency services in smart cities, in: The IEEE Per-
vasive Computing and Communication (PerCom) conference (WiP track),
San Diego, California, USA, 2013.

41

[6] I. Leontiadis, G. Marfia, D. Mack, G. Pau, C. Mascolo, M. Gerla, On the
effectiveness of an opportunistic traffic management system for vehicular1085

networks, IEEE Transactions on Intelligent Transportation Systems 12 (4)
(2011) 1537–1548.

[7] D. Curiac, C. Volosencu, Urban traffic control system architecture based
on wireless sensor-actuator networks, in: 2nd International Conference on
Manufacturing Engineering, Quality and Production Systems, 2010, pp.1090

259–263.

[8] Scats (sydney coordinated adaptive traffic system), http://www.scats.
com.au/, accessed: 23/03/2020.

[9] D. I. Robertson, R. D. Bretherton, Optimizing networks of traffic signals
in real time-the scoot method, IEEE Transactions on Vehicular Technology1095

40 (1) (1991) 11–15.

[10] R. Chandra, C. Gregory, Insync adaptive traffic signal technology: Real-
time artificial intelligence delivering real-world results, InSync White paper,
accessed: 23/03/2020 (3 2012).

[11] I. Khan, K. Umar, H. Muhammmad, S. Bilal, S. B. Shah, Traffic den-1100

sity based light control system, Journal of American Academic Research 5
(2017) 90–94.

[12] M. J. Deshmukh, C. N. Modi, Designing an adaptive vehicular density-
based traffic signal controlling system, in: P. K. Sa, S. Bakshi, I. K. Hatzi-
lygeroudis, M. N. Sahoo (Eds.), Recent Findings in Intelligent Computing1105

Techniques, Springer Singapore, Singapore, 2018, pp. 107–115.

[13] A distributed image-retrieval method in multi-camera system of smart city
based on cloud computing, Future Generation Computer Systems 81 (2018)
244 – 251.

[14] J. Barthélemy, N. Verstaevel, H. Forehead, P. Perez, Edge-computing1110

video analytics for real-time traffic monitoring in a smart city, Sensors
19 (9) (2019) (2019) 1 – 23.

[15] L. Caltagirone, M. Bellone, L. Svensson, M. Wahde, Lidar–camera fusion
for road detection using fully convolutional neural networks, Robotics and
Autonomous Systems 111 (2019) 125 – 131.1115

[16] C. Häne, L. Heng, G. H. Lee, F. Fraundorfer, P. Furgale, T. Sattler,
M. Pollefeys, 3d visual perception for self-driving cars using a multi-camera
system: Calibration, mapping, localization, and obstacle detection, Image
and Vision Computing 68 (2017) 14 – 27.

[17] T. Jeske, Floating car data from smartphones : What google and waze1120

know about you and how hackers can control traffic, 2013.

42

http://www.scats.com.au/
http://www.scats.com.au/
http://www.scats.com.au/

[18] K. Zetter, Hackers can mess with traffic lights to jam roads and reroute
cars, accessed: 23/03/2020 (2014).
URL https://www.wired.com/2014/04/traffic-lights-hacking/

[19] S. Grad, Engineers who hacked into l.a. traffic signal computer, accessed:1125

23/03/2020 (2009).
URL LosAngelesTimes

[20] B. Ghena, W. Beyer, A. Hillaker, J. Pevarnek, J. A. Halderman, Green
lights forever: Analyzing the security of traffic infrastructure, in: Proceed-
ings of the 8th USENIX Conference on Offensive Technologies, WOOT’14,1130

USENIX Association, Berkeley, CA, USA, 2014, pp. 7–17.

[21] M. B. Sinai, N. Partush, S. Yadid, E. Yahav, Exploiting social navigation,
CoRR abs/1410.0151 (2014).

[22] F. Kargl, P. Papadimitratos, L. Buttyan, M. Müter, E. Schoch, B. Wieder-
sheim, T. Thong, G. Calandriello, A. Held, A. Kung, J. Hubaux, Secure1135

vehicular communication systems: implementation, performance, and re-
search challenges, IEEE Communications Magazine 46 (11) (2008) 110–118.

[23] Proverif: Cryptographic protocol verifier in the formal model, http://
prosecco.gforge.inria.fr/personal/bblanche/proverif/, accessed:
23/03/2020.1140

[24] C. Sommer, R. German, F. Dressler, Bidirectionally Coupled Network and
Road Traffic Simulation for Improved IVC Analysis, IEEE Transactions on
Mobile Computing 10 (1) (2011) 3–15. doi:10.1109/TMC.2010.133.

[25] V. Ta, A. Dvir, Y. Arie, Securing road traffic congestion detection by in-
corporating v2i communications, in: 2018 IEEE 19th International Sympo-1145

sium on "A World of Wireless, Mobile and Multimedia Networks" (WoW-
MoM), 2018, pp. 1–6.

[26] A. Laszka, B. Potteiger, Y. Vorobeychik, S. Amin, X. D. Koutsoukos,
Vulnerability of transportation networks to traffic-signal tampering, 2016
ACM/IEEE 7th International Conference on Cyber-Physical Systems (IC-1150

CPS) (2016) 1–10.

[27] Q. A. Chen, Y. Yin, Y. Feng, Z. Mao, H. Liu, Exposing congestion attack
on emerging connected vehicle based traffic signal control, in: Network and
Distributed Systems Security (NDSS), 2018, pp. 1–15.

[28] A. Burg, A. Chattopadhyay, K.-Y. Lam, Wireless communication and secu-1155

rity issues for cyber–physical systems and the internet-of-things, Proceed-
ings of the IEEE 106 (2018) 38–60.

[29] F. Harrou, A. Zeroual, Y. Sun, Traffic congestion monitoring using an
improved knn strategy, Measurement 156 (2020) 107534.

43

https://www.wired.com/2014/04/traffic-lights-hacking/
https://www.wired.com/2014/04/traffic-lights-hacking/
https://www.wired.com/2014/04/traffic-lights-hacking/
https://www.wired.com/2014/04/traffic-lights-hacking/
Los Angeles Times
http://prosecco.gforge.inria.fr/personal/bblanche/proverif/
http://prosecco.gforge.inria.fr/personal/bblanche/proverif/
http://prosecco.gforge.inria.fr/personal/bblanche/proverif/
http://dx.doi.org/10.1109/TMC.2010.133

[30] P. Xie, T. Li, J. Liu, S. Du, X. Yang, J. Zhang, Urban flow prediction1160

from spatio-temporal data using machine learning: A survey, Information
Fusion 59 (2020) 1 – 12.

[31] M. Raya, J.-P. Hubaux, Securing vehicular ad hoc networks, Journal of
Computer Security 15 (1) (2007) 39–68.

[32] J. R. Douceur, The sybil attack, in: Revised Papers from the First Inter-1165

national Workshop on Peer-to-Peer Systems, IPTPS’01, Springer-Verlag,
Berlin, Heidelberg, 2002, pp. 251–260.

[33] P. Goodwin, The economic costs of road traffic congestion, University Col-
lege London, The Rail Freight Group, accessed: 23/03/2020 (2004).

[34] F. Ran, Z. Jiang, M. Xu, Vision-based lane detection algorithm in urban1170

traffic scenes, in: K. Li, Y. Xue, S. Cui, Q. Niu (Eds.), Intelligent Com-
puting in Smart Grid and Electrical Vehicles, Springer Berlin Heidelberg,
Berlin, Heidelberg, 2014, pp. 409–419.

[35] P. Papadimitratos, L. Buttyan, T. Holczer, E. Schoch, J. Freudiger
M. Raya, Z. Ma, F. Kargl, A. Kung, J.-P. Hubaux, Secure Vehicular Com-1175

munication Systems: Design and Architecture, IEEE Communcations Mag-
azine 46 (11) (2008) 100–109.

[36] A. D. R. Yozevitch, B. Ben-Moshe, Gnss accuracy improvement using rapid
shadow transitions, IEEE Transactions on Intelligent Transportation Sys-
tems 15 (3) (2014) 1113–1122.1180

[37] A. Boualouache, S. Senouci, S. Moussaoui, A survey on pseudonym chang-
ing strategies for vehicular ad-hoc networks, IEEE Communications Sur-
veys Tutorials 20 (1) (2018) 770–790.

[38] M. Abadi, B. Blanchet, C. Fournet, Just fast keying in the pi calculus,
ACM Transactions on Information and System Security (TISSEC) 10 (3)1185

(2007) 1–59.

[39] B. Blanchet, Symbolic and computational mechanized verification of the
ARINC823 avionic protocols, in: 30th IEEE Computer Security Founda-
tions Symposium (CSF’17), IEEE, Santa Barbara, CA, USA, 2017, pp.
68–82.1190

[40] B. Blanchet, A. Chaudhuri, Automated formal analysis of a protocol for
secure file sharing on untrusted storage, in: Proceedings of the 29th IEEE
Symposium on Security and Privacy (SP’08), IEEE, 2008, pp. 417–431.

[41] B. Blanchet, B. Smyth, V. Cheval, M. Sylvestr, Proverif 2.00: Automatic
cryptographic protocol verifier, user manual and tutorial, User Manual (51195

2018).

44

[42] S. Krauß, Microscopic modeling of traffic flow: Investigation of collision
free vehicle dynamics, Ph.D. thesis (1998).

[43] J. B. Kenney, Dedicated short-range communications (dsrc) standards in
the united states, Proceedings of the IEEE 99 (7) (2011) 1162–1182.1200

[44] Vehicle-to-vehicle (v2v) and vehicle-to-infrastructure (v2i) communication
in a heterogeneous wireless network - performance evaluation, Transporta-
tion Research Part C: Emerging Technologies 68 (2016) 168 – 184.

[45] S. N. Muthaiah, On-demand secure key generation in a vehicle-to-vehicle
communication network, patent No. US8526606B2, Filed Dec. 20th., 2010,1205

Issued Sept. 3rd., 2013 (September 2013).

[46] M. Mejri, J. Ben-Othman, Gdvan: A new greedy behavior attack detection
algorithm for vanets, IEEE Transactions on Mobile Computing 16 (03)
(2017) 759–771.

[47] D. Mansouri, L. Mokddad, J. Ben-othman, M. Ioualalen, Preventing denial1210

of service attacks in wireless sensor networks, in: 2015 IEEE International
Conference on Communications (ICC), 2015, pp. 3014–3019.

[48] A. Mpitziopoulos, D. Gavalas, C. Konstantopoulos, G. Pantziou, A survey
on jamming attacks and countermeasures in wsns, IEEE Communications
Surveys Tutorials 11 (4) (2009) 42–56.1215

[49] J. Guo, J. Baugh, S. Wang, A group signature based secure and privacy-
preserving vehicular communication framework, 2007, pp. 103–108.

[50] T. C. Group, Tcg pc client platform tpm profile (ptp) specification, TCG
Published, accessed: 12/03/2020 (2015).
URL https://www.trustedcomputinggroup.org/wp-content/uploads/1220

PC-Client-Specific-Platform-TPM-Profile-for-TPM-2-0-v43-150126.
pdf

[51] A. Gupta, A. Choudhary, A framework for camera-based real-time lane and
road surface marking detection and recognition, IEEE Transactions on In-
telligent Vehicles 3 (4) (2018) 476–485. doi:10.1109/TIV.2018.2873902.1225

[52] V. L. Knoop, P. F. de Bakker, C. C. J. M. Tiberius, B. van Arem, Lane
determination with gps precise point positioning, IEEE Transactions on
Intelligent Transportation Systems 18 (9) (2017) 2503–2513.

45

https://www.trustedcomputinggroup.org/wp-content/uploads/PC-Client-Specific-Platform-TPM-Profile-for-TPM-2-0-v43-150126.pdf
https://www.trustedcomputinggroup.org/wp-content/uploads/PC-Client-Specific-Platform-TPM-Profile-for-TPM-2-0-v43-150126.pdf
https://www.trustedcomputinggroup.org/wp-content/uploads/PC-Client-Specific-Platform-TPM-Profile-for-TPM-2-0-v43-150126.pdf
https://www.trustedcomputinggroup.org/wp-content/uploads/PC-Client-Specific-Platform-TPM-Profile-for-TPM-2-0-v43-150126.pdf
https://www.trustedcomputinggroup.org/wp-content/uploads/PC-Client-Specific-Platform-TPM-Profile-for-TPM-2-0-v43-150126.pdf
https://www.trustedcomputinggroup.org/wp-content/uploads/PC-Client-Specific-Platform-TPM-Profile-for-TPM-2-0-v43-150126.pdf
http://dx.doi.org/10.1109/TIV.2018.2873902

Appendix A. Auxiliary Algorithms

Algorithm 10 Auxiliary Algorithms
1: procedure updateRSUstate
2: if the RSU is running then return ”functioning"
3: else return ”shutdown"
4: end if
5: end procedure

6: procedure enhancePics(pic_set, lanes_info)
7: if lane lines are not visible in pic_set then
8: enh_picset = drawLanes(pic_set, lanes_info)
9: return enh_picset

10: else
11: return pic_set
12: end if
13: end procedure

14: procedure updateSatNavLoc
15: if satellite signal OK then return Current_loc
16: else return (-1,-1) . return an invalid coordinate
17: end if
18: end procedure

19: procedure updatestate(loc)
20: if the vehicle has parked then return ”parked"
21: else if loc shows the vehicle is at a junction then return ”leave"
22: else return ”onroad"
23: end if
24: end procedure

25: procedure updatemRSU(loc, MRSUrecord)
26: if there exists entry in MRSUrecord, where

entry = (mRSUid, Rej) AND (loc is in Rej) then
27: return mRSUid
28: else return -1
29: end if
30: end procedure

31: procedure Cache((flag, time, loc, state, PKS
V E), RecordSet)

32: if state == ”onroad" then
33: if Record(PKS

V E) ∈ RecordSet then
34: insert (flag, time, loc, state) in Record(PKS

V E)
35: else
36: create Record(PKS

V E)
37: insert (flag, time, loc, state) in Record(PKS

V E)
38: end if
39: else
40: if (state == ”leave") or (state == ”parked") then
41: delete Record(PKS

V E)
42: end if
43: end if
44: end procedure

46

	Introduction
	Related Works
	Our Adversary Model
	Proposed Secure Traffic Congestion Detection and Management Methodology
	System architecture
	Architectural requirements

	Cryptographic Keys
	The Secure Traffic Congestion Detection Procedure

	Security Analysis
	The security against external attackers
	The security against insider attackers
	Compromised vehicles
	Compromised RSUs

	Simulation
	Simulation Environment
	Simulation Results
	Simulation discussion

	Message Overhead and Beacon Congestion
	Discussion
	Conclusion and Future Work
	Acknowledgement
	Auxiliary Algorithms

