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RSEAP is a recently proposed RFID based authentication protocol for vehicular cloud computing whose
authors claimed to be secure and efficient. In this article, we challenge these claims. More precisely, we
show that RSEAP does not provide the desired security, and it is possible to conduct both tag and reader
impersonation attacks efficiently. Besides, despite the use of timestamps, we show how this protocol also
suffers from a range of relay attacks. The complexity of any of the proposed attacks is negligible while
the success probability is maximum (i.e., the adversary’s success probability is ‘1’ since all the proposed
attacks are deterministic). To improve the security of RSEAP scheme, we suggest the required patches for
fixing the security vulnerabilities mentioned above. We show that the improved protocol, called RSEAP2,
is more efficient (computation and communication costs) than the original RSEAP, while provides a higher
security level. The security of RSEAP2 is evaluated informally and also formally using the Scyther tool,
which is a well-known and automated tool to assess the security of cryptographic protocols. Additionally,
we have formally verified the security of the proposed scheme under the Real-or-Random oracle model.

1. Introduction

Vehicular cloud computing (VCC) is a new paradigm for trans-
ferring information in a typical network of vehicles that attracted 
many researchers’ interest. With this technology, vehicles can in-
teract, collaborate, and share their resources which can be used to 
sense the environment, process data, or propagate the results [26]. 
VCC is a sort of intelligent transportation system and has been 
developed to overcome the drawbacks of its predecessor, i.e. ve-
hicular Ad-Hoc networks (VANET), and is an extension of mobile 
cloud computing [2]. In a typical VCC, vehicles are equipped with 
communication sensing capacities, and VCC employs cloud infras-
tructures, Internet of Things (IoT), vehicular networking, and ve-
hicle resources technologies to provide real-time computational 
facilities for the constrained devices that are equipped on the ve-
hicles. Thanks to these technologies, it is possible to offer many 
services for drivers and passengers, and many of them could be 
based on mobile applications. Examples of facilities that are pro-
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vided by VCC could be travel planning, avoiding accidents, traffic 
management, finding nearest roadside infrastructures and messag-
ing, Internet access, and infotainment for vehicle occupants [8,22]. 
In the context of low cost-devices, an RFID based VCC ecosystem 
is depicted in Fig. 1, including for example vehicle to vehicle (V2V) 
communication, vehicles to road-infrastructure (V2I) communica-
tion, vehicles-to-sensors (V2S) communication and also communi-
cations with cloud infrastructures.

1.1. Related works

Despite many advantages of VCC, it has its challenges among 
which security and privacy are a major concern [39]. This matter is 
even more, as instant location-based services (LBS) are becoming 
very popular and widespread. Nevertheless, to provide a service 
based on the user’s interest and location, we need some informa-
tion that could compromise his privacy. This is the case for the 
other potentials of VCC, such as its connection to healthcare and 
infotainment [8]. Also, to provide services without a high cost, 
many equipped devices on the edge side of VCC should be low-
cost equipment such as RFID tags or mobile devices that transfer 
sensitive information over a public channel. Given that many of (C. Camara), pperis@inf.uc3m.es (P. Peris-Lopez), Nbagheri@sru.ac.ir (N. 

Bagheri).
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Fig. 1. An RFID based vehicular cloud computing ecosystem (thanks to https://thenounproject.com for the icons in all pictures of this paper).

them are constrained devices, they cannot support on-board com-
mon security protocols such as TLS to provide the desired security 
for the transferred data. Many researchers recently have tried to 
tackle the security challenges of mobile cloud computing, which 
might be directly used in VCC by proposing efficient solutions. To 
mention some, we highlight Yan et al. [41], Tsai and Lo [35], He et 
al. [16], Sharma et al. [31], Wang et al. [37], Liu et al. [25], Jiant 
et al. [19], Shi et al. [32] and Choi et al. [10] schemes. For in-
stance, Tsai and Lo [35] introduced an authentication scheme for 
distributed mobile cloud computing services. The scheme builds 
on bilinear pairing cryptosystem, dynamic nonce generation and 
a trusted smartcard generator service. Nevertheless, He et al. [16]
pointed out the security weaknesses of Tasai and Lo’s scheme and 
also proposed a privacy-aware authentication scheme for mobile 
cloud computing services. Vijayakuma et al. [36] proposed a dual 
authentication and key management protocol to be used in vehicu-
lar Ad-Hoc networks. Later, Tan et al. [34] stated that their protocol 
suffers from replay attacks. However, Azees [6] showed that the 
Vijayakumar et al.’s protocol is secure against replay attacks by 
providing appropriate and reasoned explanations.

Some other works concentrated on designing a specific solu-
tion for VCC. For example, Wazid et al. [38] recently proposed an 
authenticated key management protocol for VCC. However, later 
Saleem et al. [30] showed how it does not provide acceptable secu-
rity by introducing several impersonation attacks. Jiang et al. [19]
introduced an integrated authentication and key agreement (AKA) 
protocol for VCC. Their proposed scheme is a three-factor identity-
based key establishment protocol. Jiang et al. [20] also recently 
proposed a biometric-based three-factor authentication and key 
agreement for VCC. Among the last solutions could be SFVCC 
which is a chaotic map-based security protocol for vehicular cloud 
computing [27], proposed by Mishra et al. In this research, the au-
thors proposed a mutual authentication protocol for VCC to ensure 

security and anonymity for the users. In this direction, Kumar et al. 
also recently presented an RFID based mutual authentication and 
key agreement protocol for VCC [22], which is called RSEAP. In this 
protocol, which could also be considered as a scheme for mobile 
cloud computing, all the messages are passed over a public chan-
nel. Hence, to ensure security and privacy of the protocol’s entities, 
the authors employed elliptic curve-based cryptography, one-way 
hash functions, and also timestamps in each transaction. Based 
on their security analysis and computational comparison results, 
RSEAP is more efficient or comparable with their predecessors’ 
protocols. In this article, we evaluate the security of this scheme 
in more depth, and it is the first third-party security analysis to 
the best of our knowledge. Apart from well-known attacks such as 
impersonation attacks, we also evaluate the security of the proto-
col against relay attacks which are critical in the context of mobile 
computing and VCC. Our security analysis concerning relay attacks 
demonstrates dangerous pitfalls on the security of RSEAP scheme 
despite the merits of this contribution. It worth noting that relay 
attacks belong to distance bounding attacks in which an adversary 
aims to cheat a verifier into thinking that the prover is located 
within a valid physical vicinity (neighbourhood area) while he is 
not. We urge the reader to consult [5] where Avoine et al. pre-
sented a survey about distance-bounding principles, protocols and 
threats.

1.2. Our contribution

The main contribution of this paper is twofold:

• First, to the best of our knowledge, we present the first third-
party security analysis of RSEAP, an RFID based authentication
protocol for vehicular cloud computing. Our security analy-
sis demonstrates important security pitfalls in this protocol,
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Table 1
Used notations.

Notations

S The server Ti The i-th RFID tag
R j The j-th RFID reader A The adversary
U a client, which could be the tag or the reader I DT The tags identification number
g A generator point of a large group G xS The server’s ECC encryption private key
pwT The Ti password sni A serial number for Ti , generated by S
h(.) One-way hash function ⊕ Bitwise XOR operation
P + Q Addition of two points on the elliptic curve E , results in

another point from the curve
a.P Multiplying a point P on the elliptic curve E by natural

number (scalar) a, results in another point on the curve
∥ Concatenation A

?= B Determine whether A and B are equal
SKST /SKT S The shared session key between Ti and S T SR A timestamp which is used in the registration phase of

the protocol
T SLA A timestamp which is used in the login and

authentication phase of the protocol
Fq A finite field with q elements {0, 1, . . . , q − 1} where q

is a prime number
!T A threshold for time |X | The cardinality of the set X
F∗
q The set of integers {1, . . . , q − 1}, i.e. Fq/{0} F2m The finite field with 2m elements, also known as

GF (2m) (Galois field)

including a very efficient and effective relay attack with an 
adversary’s success probability of ‘1’.

• Given that RSEAP has some merits, e.g., it outperforms pre-
vious related protocols in terms of computation and commu-
nication costs, we have kept its core and patched its security
flaws. We have assessed the security of this enhanced proto-
col, called RSEAP2, from informal and formal perspectives. For
the formal analysis, we have used the Scyther tool, which is
an automated tool to evaluate the security of a cryptographic
protocol formally. The security and performance analyses of
RSEAP2 show how this proposal is a more efficient and more
secure scheme compared with its predecessor, i.e. RSEAP.

1.3. Organization

The remainder of this paper is structured as follows: In sec-
tion 2, we provide the required preliminaries, including notations, 
system model, and description of RSEAP scheme. In section 3, we 
present the security analysis of RSEAP and show several efficient 
and powerful attacks against this proposal. To patch RSEAP, in sec-
tion 4, we introduce RSEAP2. Security analysis of RSEAP2 is de-
scribed in section 5. In section 6, we compare RSEAP and RSEAP2 
in terms of performance and security. Finally, we conclude the pa-
per in section 7.

2. Preliminaries

In this section, we introduce notations, the system model, ellip-
tic curve-based cryptography, and also provide a brief description 
of RSEAP protocol.

2.1. Notations

The listed notations, used in this paper, are represented in Ta-
ble 1.

2.2. System model

It is worth noting that in this paper, we evaluate RSEAP and 
enhance its security and efficiency, instead of starting from scratch 
and design a new model. Our motivation is the merits that RSEAP 
has [22]. Hence, we follow the same system model, but, we re-
vise its adversarial model to make it more realistic. More precisely, 
we consider two types of adversaries. The first kind is a local 
adversary, who can just eavesdrop messages, impersonate a proto-
col’s entity or modify the transferred messages if a valid tag (resp. 
reader) is in the vicinity of a legitimate reader (resp. server) and 
communications occur over a public channel. This adversary can 

control the channel between Ti , R j , and S and can store, block or 
modify any transferred message between them or initiate a new 
session with Ti , R j or S . The second type of adversary is a dis-
tance bounding adversary which is aiming to make a relay attack. 
This adversary is a man-in-the-middle that uses one or more re-
lay devices to trick two remote devices into thinking they are close 
enough. The aim of the adversary, as a prover, in a relay attack is 
to cheat a legitimate verifier/reader into believing that for exam-
ple, an honest RFID tag is within the reader vicinity area when it 
is not the case. [28]. Hence, besides the basic attacks that were 
considered in RSEAP, our model also includes relay attacks. For the 
details of our proposed system model in RSEAP2, the interested 
reader is referred to [22, Sec. 3].

2.3. Elliptic curve cryptography

Elliptic Curve Cryptography (ECC) is a sort of public-key cryp-
tography based on a mathematical-group and defined over an el-
liptic curve. A benefit of ECC could be its smaller key size com-
pared to other public-key systems, which is a critical factor for 
constrained environments [29]. For example, the security level of 
ECC-256, which provides 128 bits security level, equates to the se-
curity level of RSA-3072 [22].

An elliptic curve E is defined formally as follows [17]:

Definition 1. An elliptic curve E is the set of solutions to a Weier-
strass equation E : y2 = x3 + ax + b, along with a distinguished 
point at infinity which is denoted by O, where the constants a
and b must satisfy 4a3 + 27b2 mod q ≠ 0. Assuming P and Q
are two points on E , the addition law on E is defined as follows. 
Let L the line which connects P and Q , or the tangent line to E
at P when P = Q . Then the intersection of E and L consists of 
three points P , Q , and R . Denoting R = (a, b), the sum of P and 
Q is defined to be the reflection R ′ = (a, −b) of R across the x-
axis and it is denoted by P + Q . Similarly, the multiplication of 
a point P by an integer a is performed as repeated addition as 
a.P = P + P + . . .+ P︸ ︷︷ ︸

a

.

For cryptographic purposes, we need to focus on elliptic curves 
whose points have coordinates in a finite field. Let q be a large 
prime number. An elliptic curve EFq over the finite field Fq is de-
fined as the set of all (λ, µ) ∈ Fq ×Fq such that λ2 =µ3 +aµ + b, 
where a, b ∈ Fq and 4a3 + 27b2 mod q ≠ 0. Then G = {(λ, µ) ∈
EFq ∪O, +} is a group. It is also possible to define an elliptic curve 
over the finite field F2m .

If there is an element g ∈ G that its different orders can gen-
erate all elements of the group, G is called a cyclic group and 
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g is called a generator. In general, the order of any g ∈ EFq is 
denoted as the smallest positive number n such that n.g = O. 
Assuming that n is enough large, given any natural value a ∈ Fq 
and g = {(λ, µ) ∈ EFq } of order n, it is easy to calculate y = a.g . 
However, given y, EFq and g , it is computationally infeasible 
to determine a, which is known as Elliptic Curve Discrete Loga-
rithm Problem (ECDLP). Similarly, for a, b ∈ Fq , given a.g , b.g , EFq 
and g , it is computationally infeasible to determine a.b.g , which 
is known as Elliptic Curve Computational Diffie-Hellman Problem 
(EC-CDHP) [22,29].

2.4. RSEAP protocol

In this section, we provide a brief description of RSEAP [22]. In 
this protocol, the tag Ti and the cloud database server S communi-
cate via the reader R j , to establish a session key SKST  . It includes 
two phases. The first phase is the tag enrollment or initialization 
phase, where the tag communicates with S over a secure chan-
nel to share the required information. The second phase of the 
protocol is the login and authentication phase, which is used to 
do mutual authentication and share the session key SKST  = SKT S . 
This phase of the scheme occurs over a public channel.

In the initialization phase of RSEAP, the server S chooses an el-
liptic curve E(Fq) over F∗

q and a generator g over G . It also selects 
xs ∈ Fq as its secret key and its public key will be xs.g . Any tag Ti
which aims to register with S , inputs its I DT and pwT , gener-
ates a random value RT ∈ F∗

q , computes PW T = h(I DT ∥pwT ∥RT )
and sends the tuple MR1 = {PW T , I DT , T SR1} to S . Once S re-

ceived M1, verifies the timestamp, i.e. T SR2 − T SR1
?≤ !T at the 

first. Next, it generates sni ∈ F∗
q and sets it as the Ti ’s serial 

number, computes XT = h(sni∥I DT ∥xS), AT = h(PW T∥XT ∥I DT ), 
BT = XT ⊕ PW T , and stores sni corresponding to I DT . It then 
sends tuple MR2 = {AT , BT , sni, g, xs.g, G, h(.)} to Ti . The tag Ti
stores {AT , BT , sni, g, xs.g, G, h(.)}.

In the login and authentication phase of the protocol, see Fig. 2, 
the already registered tag Ti , which wants to communicate with S , 
logs on by its (I DT , pwT , RT ), computes PW T = h(I DT ∥pwT ∥RT ), 
X∗
T = BT ⊕ PW T and A∗

T = h(PW T∥X∗
T ∥I DT ). Then it verifies 

whether A∗
T

?= AT . Assuming the verification passed correctly, 
Ti generates a ∈ F∗

q , computes a.g and W1 = h(X∗
T ∥a.g∥I DT )

and sends M1 = {I DT ⊕ a.xs.g, a.g, W1, T SLA1} to the reader 
R j . The reader checks the timestamp, i.e. T SLA2 − T SLA1

?≤
!T , and then sends M2 = {I DT ⊕ a.xs.g, a.g, W1, T SLA3} to S .
Once S received M2, it verifies the timestamp, i.e. T SLA2 −
T SLA3

?≤ !T , and then computes I D∗
T = I DT ⊕ a.xs.g ⊕ a.xs.g ,

retrieves related sni , computes X∗
T = h(sni∥I D∗

T ∥xs) and W1 =
h(X∗

T ∥a.g∥I DT ) and checks W ∗
1

?= W1. Next, it generates b ∈ F∗
q , 

computes SKST = h(I D∗
T ∥XT ∥bag∥xs.a.g∥sni∥T SLA5) and W2 =

h(I D∗
T ∥SKST ∥b.g∥T SLA5) and sends M3 = {W2, b.g, T ST L5} to R j , 

where SKST is the shared session key. R j just verifies the times-

tamp, i.e. T SLA6 − T SLA5
?≤ !T , and then sends M4 = {M3, T SLA7}

to Ti . Similarly, Ti checks the timestamp, i.e. T SLA8 − T SLA7
?≤ !T , 

and then computes SKT S = h(I DT ∥X∗
T ∥a.b.g∥a.xs.g∥sni∥T SLA5)

and verifies W ∗
2

?= h(I DT ∥SKT S∥b.g∥T SLA5), to set SKT S as the 
session key.

3. Security analysis of RSEAP

In this section, we evaluate the security of RSEAP. Given that
the login and authentication phase happens over the public chan-
nel, the transferred messages between protocol’s parties are ac-
cessible by the adversary. Our security analysis is based on the 
observations described below:

1. The exchanged message M1 does not guarantee the integrity
of T SLA1. Hence, any active man in the middle adversary can
change the T SLA1 fraction of the transferred M1 = {I DT ⊕
a.xs.g, a.g, W1, T SLA1} without being detected.

2. The transferred message M4 does not guarantee the integrity
of T SLA7. Consequently, an active man in the middle adver-
sary can change the T SLA7 fraction of the exchanged M4 =
{M3, T SLA7} without being detected.

3. R j has no shared key, neither with Ti nor with S , and cannot
be authenticated by them.

Following the observations mentioned above, we propose several 
attacks against RSEAP: 1) tag impersonation attack; 2) several relay 
attacks; 3) reader impersonation attack; and 4) finally a distance 
fraud attack.

3.1. Tag impersonation attack

Based on the first observation, the adversary can impersonate 
the tag Ti to the reader and server. More precisely, the adversary 
eavesdrops a message M1 = {I DT ⊕ a.xs.g, a.g, W1, T SLA1} which 
is transferred from Ti to R j , over a public channel, in a session 
between Ti and R j/S . Hence after, the adversary can impersonate 
Ti by determining the current timestamp, e.g. T ′

LA1, and sending
M ′

1 = {I DT ⊕ a.xs.g, a.g, W1, T ′
LA1} to R j . Given that neither R j

nor S can detect the T ′
LA1 integrity, the adversary will be authen-

ticated as a legitimate Ti and the server establishes the session 
key. Although the adversary will not be able to extract the shared 
session key, however, it could impersonate Ti successfully, which 
compromises the claimed security by the protocol designers [22, 
Sec. 5.3].

3.2. Relay attack against the tag and reader

The adversary can use the first and the second observations to 
make a relay attack against the tag and the reader that are not in 
an acceptable distance from each other (out of the vicinity area). 
As described in Fig. 3, the attacker follows the steps outlined be-
low:

1. Assuming the legitimate Ti , which is not in the acceptable
vicinity of the legitimate R j , sends its request as M1 = {I DT ⊕
a.xs.g, a.g, W1, T SLA1} to R j .

2. Using the fake reader R f , which is in the Ti ’s vicinity, the ad-
versary relays this message to the phoney tag T f , which is in
the R j ’s vicinity.

3. T f replaces the T SLA1 of M1, e.g. by T ′
LA1, and sends M ′

1 =
{I DT ⊕ a.xs.g, a.g, W1, T ′

LA1} to R j .
4. R j and S will authenticate Ti . In response to the T f query R j

sends M4 = {M3, T SLA7} to Ti , where M3 = {W2, b.g, T SLA5},
SKST = h(I D∗

T ∥XT ∥bag∥xs.a.g∥sni∥T SLA5) and W2 =
h(I D∗

T ∥SKST ∥b.g∥T SLA5).
5. T f relays M4 to R f .
6. R f replaces T SLA7 fraction of M4 by an acceptable value, e.g.

T ′
LA7, and sends M ′

4 to Ti .

7. Ti verifies the timestamp, i.e. T SLA8 − T ′
LA7

?≤ !T which it is,
and then computes

SKT S = h(I DT ∥X∗
T ∥a.b.g∥a.xs.g∥sni∥T SLA5),

verifies W ∗
2

?= h(I DT ∥SKT S∥b.g∥T SLA5) and sets SKT S as the
session key.

Based on the above attack, Ti and S will successfully share the 
session key SKT S = h(I DT ∥X∗

T ∥a.b.g∥a.xs.g∥sni∥T SLA5), believing 
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Tag Ti Reader R j Cloud database server S
Logs on by (I DT , pwT , RT ), com-
putes PW T = h(I DT ∥pwT ∥RT ), 
X∗
T = BT ⊕ PW T and

A∗
T = h(PW T∥X∗

T ∥I DT ). If

A∗
T

?= AT , generates a ∈ F∗
q , com-

putes W1 = h(X∗
T ∥a.g∥I DT )

and sends M1 = {I DT ⊕
a.xs.g, a.g, W1, T SLA1} to R j

M1−→
If T SLA2 − T SLA1

?≤ !T , 
sends M2 = {I DT ⊕
a.xs.g, a.g, W1, T SLA3}
to S

M2−→
if T SLA2 − T SLA3

?≤ !T , computes 
I D∗

T = I DT ⊕ a.xs.g ⊕ a.xs.g, retrieves 
sni , computes X∗

T = h(sni∥I D∗
T ∥xs) and 

W1 = h(X∗
T ∥a.g∥I DT ). If W ∗

1
?= W1 it 

generates b ∈ F∗
q , computes SKST =

h(I D∗
T ∥XT ∥bag∥xs.a.g∥sni∥T SLA5) and 

W2 = h(I D∗
T ∥SKST ∥b.g∥T SLA5) and 

sends M3 = {W2, b.g, T ST L5} to R j
M3←−

If T SLA6 − T SLA5
?≤ !T

sends M4 = {M3, T SLA7}
to Ti

M4←−
If T SLA8 − T SLA7

?≤
!T computes SKT S =
h(I DT ∥X∗

T ∥a.b.g∥a.xs.g∥sni∥T SLA5)

and verifies it by W ∗
2

?=
h(I DT ∥SKT S∥b.g∥T SLA5).

Fig. 2. The login and authentication phase of RSEAP, over a public channel.

Fig. 3. Representation of the relay attack between the tag and the reader.

they are in the acceptable vicinity of each other while they are 
not. Hence, the adversary successfully and efficiently made a relay 
attack. Therefore, after this attack, an adversary can also transfer 
the encrypted messages between Ti and R j/S . For example, if this 
protocol is used for communication between a car and a remote 
key, the attacker could quickly start that mentioned car.

3.3. Relay attack against the server, reader and tag

Given that protocol designers considered transmission among 
the readers and the database server to be also over a public chan-
nel [22, Sec. 3.2], the adversary can thus make almost similar relay 
attack against the server, the reader and the tag as well. More 
precisely, following Fig. 4, we consider a general case where the 
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reader, the tag and the server are not within an acceptable dis-
tance from each other, and the adversary aims to perform both a 
successful authentication and key establishment using a relay at-
tack. The attack procedure is as follows:

1. The legitimate tag Ti , which is not in the acceptable vicin-
ity of the legitimate R j , sends its login request M1 = {I DT ⊕
a.xs.g, a.g, W1, T SLA1} to R j .

2. Using a fake reader R f 1, which is in the Ti ’s neighbourhood,
the adversary receives this message and relays this message
to the phoney tag T f , which is in the valid vicinity of the
legitimate R j .

3. T f modifies the T SLA1 of M1, e.g. T ′
LA1, and sends M ′

1 =
{I DT ⊕ a.xs.g, a.g, W1, T ′

LA1} to R j .
4. R j verifies T SLA1 and sends M2 = {I DT ⊕ a.xs.g, a.g, W1,

T SLA3} to S .
5. The fake server S f , located in the R j ’s neighbourhood, could

be the same device that also plays the role of T f . It receives
M2 and relays it to the fake reader R f 2, which is in the S
vicinity.

6. R f 2 modifies the T SLA3 of M2, e.g. T ′
LA3, and sends M ′

2 =
{I DT ⊕ a.xs.g, a.g, W1, T ′

LA3} to S .
7. S verifies T ′

LA3, authenticates the tag Ti , and sends M3 =
{W2, b.g, T SLA5} to R j , where

SKST = h(I D∗
T ∥XT ∥bag∥xs.a.g∥sni∥T SLA5) and

W2 = h(I D∗
T ∥SKST ∥b.g∥T SLA5).

8. R f 2 receives M3 and relays it to S f .
9. S f modifies the T SLA5 of M3, e.g. T ′

LA5, sends M ′
3 = {W2,

b.g, T ′
LA5} to R j and relays M3 = {W2, b.g, T SLA5} to R f 1.

10. R j verifies T ′
LA5 and sends M4 = {M ′

3, T SLA7} to Ti .
11. T f receives M4 and relays it to R f 1.
12. Given M3 and M4 were relayed by S f and T f respectively,

R f 1 modifies the T SLA7, e.g. T ′
LA7, uses M3, and sends M ′

4 =
{M3, T ′

LA7} to Ti .
13. Ti verifies T ′

LA7, computes

SKT S = h(I DT ∥X∗
T ∥a.b.g∥a.xs.g∥sni∥T SLA5),

verifies W ∗
2

?= h(I DT ∥SKT S∥b.g∥T SLA5) and sets SKT S as the
session key.

Based on this attack, Ti and S (through R j) will successfully
share the session key SKT S = h(I DT ∥X∗

T ∥a.b.g∥a.xs.g∥sni∥T SLA5). 
Besides these entities, wrongly believe they are in the acceptable 
vicinity of each other while they are not. Since the attack pro-
cedure is deterministic, the adversary’s success probability of the 
attack described above is maximum, that is, ‘1’.

3.4. Reader impersonation attack

In addition to the previous attacks, it should be noted that an 
adversary can completely bypass R j . This weakness represents a 
man-in-the-middle (relay) attack against Ti and S . The attack pro-
cedure is as follows:

1. The legitimate tag Ti , which is not in the acceptable vicinity
of the legitimate server S , sends its login request M1 = {I DT ⊕
a.xs.g, a.g, W1, T SLA1} to R j .

2. The fake reader R f 1 relays this message to another phoney
reader R f 2.

3. Given M1, R f 2 computes M ′
2 = {I DT ⊕ a.xs.g, a.g, W1, T ′

LA3}
and sends it to S .

4. S verifies T ′
LA3, authenticates Ti and sends M3 = {W2,

b.g, T SLA5} to R j , where

SKST = h(I D∗
T ∥XT ∥bag∥xs.a.g∥sni∥T SLA5) and

W2 = h(I D∗
T ∥SKST ∥b.g∥T SLA5).

5. R f 2 receives M3 and relays it to R f 1.
6. Given M3, R f 1 determines the validity of T SLA7, and sends

M4 = {M3, T SLA7} to Ti .
7. Ti verifies T SLA7, computes

SKT S = h(I DT ∥X∗
T ∥a.b.g∥a.xs.g∥sni∥T SLA5),

verifies W ∗
2

?= h(I DT ∥SKT S∥b.g∥T SLA5), and sets SKT S as the
session key.

Once completed the attack, Ti and S successfully share SKT S ,
without any form of impact on the legitimate reader (R j) sup-
planted. This attack can be catalogued as a reader impersonation 
attack against Ti and S . The adversary only has to follow the de-
scribed steps. The success is guaranteed as it is a deterministic 
procedure. Therefore, the adversary’s success probability of this at-
tack is maximum, that is, ‘1’.

3.5. Distance fraud attack

Finally, it is worth noticing that the role of R j in RSEAP protocol 
is to relay messages from Ti to S and vice versa. Expressly, it veri-
fies the transfer time of the received messages and also includes a 
timestamp in the forwarded messages. Given that this process does 
not include any secret, based on the third observation, an active 
adversary can easily emulate it. Hence, it is trivial for an adversary 
to perform a successful reader impersonation attack. Furthermore, 
the adversary can program the counterfeited reader such that it 
accepts the arrival messages even if the timestamps do not sat-
isfy the expected threshold or if the messages include an incorrect 
timestamp. Given such a fake reader, the adversary can complete 
a distance-fraud attack (a kind of relay attack) when the tag is not 
in the acceptable vicinity of the reader. Following Fig. 5, when the 
counterfeited reader R f is in the tag’s neighbourhood and there-
fore, outside the server vicinity, the attack procedure is as follows:

1. The legitimate tag Ti , which is not in the acceptable vicinity
of the legitimate server S , sends its login request M1 = {I DT ⊕
a.xs.g, a.g, W1, T SLA1} to R j .

2. The fake R f 1 computes M ′
2 = {I DT ⊕a.xs.g, a.g, W1, T ′

LA3} and
relays it to S with the help of an adversary or by using enough
transmission power. It has to set T SLA3 to an acceptable value
for S , taking into consideration the actual distance up to S and
the relay time.

3. S verifies T SLA3, authenticates Ti and sends M3 = {W2,

b.g, T SLA5} to R j , where

SKST = h(I D∗
T ∥XT ∥bag∥xs.a.g∥sni∥T SLA5) and

W2 = h(I D∗
T ∥SKST ∥b.g∥T SLA5).

4. The adversary relays M3 to R f . Alternatively, R f has to be
equipped with powerful antennas to receive M3 when it is out
of the acceptable vicinity of S .

5. Given M3, R f determines the validity of T SLA7, and sends
M4 = {M3, T SLA7} to Ti .

6. Ti checks T SLA7, computes

SKT S = h(I DT ∥X∗
T ∥a.b.g∥a.xs.g∥sni∥T SLA5),

verifies W ∗
2

?= h(I DT ∥SKT S∥b.g∥T SLA5), and sets SKT S as the
session key.
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Fig. 4. Representation of the relay attack between the server, the reader and the tag.

Fig. 5. Representation of the distance-fraud attack (relay attack) between the server and the tag using a counterfeited reader.

The attack procedure for the case where R f is in the server 
vicinity is practically the same. It is evident in the above attack 
that once completed Ti and S share successfully the session key 
SKT S , and there is no intervention of the legitimate R j . The suc-
cess probability of this deterministic attack is also ‘1’.

4. RSEAP2, the improved version of RSEAP

In this section, following the observations and the attacks previ-
ously described in section 3 against RSEAP, we apply the required 
patches to improve its security. We name the improved version 

as RSEAP2, considering the initial RSEAP as RSEAP1. Apart from 
enhancing the security of the new protocol, we design RSEAP2 
aiming to reduce the tag’s computations (and power consumption) 
as much as possible.

It is clear at the first that the timestamps’ integrity should 
be guaranteed to evade the relay attacks descried above against 
RSEAP. Consequently, it could be easy to defeat the tags against 
impersonation and relay attacks. However, a reader in RSEAP does 
not share any key with the other entities, and thus it would not 
be easy to design a secure protocol for which a protocol party 
does no share any secret value. Hence, in RSEAP, to combat the 
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proposed attacks, which exploit the reader’s weaknesses, we need 
to assume that any reader in the vehicular cloud has a permanent 
identifier R I  Di and a public key xRi .g share with S . R j keeps xRi  
as its secret key. This extra step requires a registration phase be-
tween R j and S over a secure channel. As the reader is generally a 
permanent device, we can assume that this information is set once 
installed in the environment or used for the first time by an op-
erator. From the tag’s point of view, similar to RSEAP, RSEAP2 also 
includes two phases, i.e. initialization phase and login/authentica-
tion phase over secure and public channels respectively. Through 
the protocol, the message time-duration is checked by validating 
the attached timestamp to the message. Given that an entity may 
receive messages from different entities at a once, it should then 
use different thresholds to validate each message. As described in 
the protocol, we use !T as the base value of the threshold. In 
this sense, an acceptable threshold of a timestamp sent from Ti 
to R j is determined by tT R  × !T . Therefore tT R  is a factor to 
set the maximum delay of a transferred message from Ti to R j . 
In this way, depending on the situation, it is possible to adjust 
those parameters to determine the physical coverage of the proto-
col (neighbourhood area), in which distance attacks are prevented.

The initialization phase of RSEAP2 (see Fig. 6) is identical to 
that of RSEAP, exclude that to reduce the tag’s computation PW  T  
and AT are receptively computed as PW  T  = h(I DT ∥(pwT ⊕ RT )) 
and AT = h(PW  T∥(XT ⊕ I DT )).

In the login and authentication phase of the protocol, see Fig. 7, 
Ti logs on by its (I DT , pwT , RT ), computes PW  T  = 
h(I DT ∥(pwT ⊕ RT )), XT

∗ = BT ⊕ PW  T  and A∗
T = h(PW  T∥(XT

∗ ⊕
I DT )). Then it verifies whether A∗

T 
?= AT . If verification is suc-

cessful, Ti generates a ∈ Fq
∗ , calculates a.g and W1 = h((a.g) ⊕

(X∗
T ∥I DT )∥T SLA1), and sends M1 = {(I DT ∥W1) ⊕ a.xs.g, a.g,

T SLA1} to the reader R j .

The reader checks the timestamp, i.e. T SLA2 − T SLA1
?≤ tT R ×

!T , generates b ∈ F∗
q , computes b.g , and then sends M2 =

{M1, T SLA3, b.g, (h((T SLA1∥T SLA3) ⊕ (xRi .g))∥R IDi) ⊕ b.xs.g} to S .
Once S received M2, it verifies the timestamps, i.e. T SLA4 −

T SLA1
?≤ tT S × !T and T SLA4 − T SLA3

?≤ tRS × !T . Next S ex-
tracts h∗((T SLA1∥T SLA3) ⊕ (xRi .g))∥R ID∗

i = (h((T SLA1∥T SLA3) ⊕
(xRi .g))∥R IDi) ⊕ b.xs.g ⊕ b.xs.g , retrieves xRi .g from the database 
and evaluates h((T SLA21∥T SLA21) ⊕ (xRi .g)) to authenticate R j . Af-
ter the success in the authentication of R j , S extracts I D∗

T ∥W ∗
1 =

(I DT ∥W1) ⊕ a.xs.g ⊕ a.xs.g , retrieves the related sni using I D∗
T , 

computes X∗
T = h(sni∥I D∗

T ∥xS) and W ∗
1 = h(((a.g) ⊕

(X∗
T ∥I D∗

T ))∥T SLA1), and verifies W ∗
1

?= W1 to authenticate Ti . Next,
it generates c ∈ F∗

q , calculates SKST = h((I D∗
T ⊕ XT )∥(a.b.c.g ⊕

xs.a.g)∥(sni ⊕ (T SLA1∥T SLA5))) and W2 = h(I D∗
T ∥SKST ), and sends 

M3 = {W2 ⊕ h(R IDi∥b.c.g), cg, T SLA5, h(R IDi∥T SLA5∥b.c.g)} to 
R j , where SKST is the shared session key.

R j checks the timestamp, i.e. T SLA5 − T SLA3
?≤ tSR × !T , and 

h(R IDi∥T SLA5∥b.c.g) to authenticate S . Subsequent, it extracts W2
and then sends M4 = {W2, b.c.g, T SLA5} to Ti .

Similarly, Ti verifies the timestamp, i.e. T SLA7 − T SLA1
?≤ tST ×

!T and T SLA5 − T SLA1
?≤ tRT × !T , and then computes SKT S =

h((I DT ⊕ XT )∥(a.b.c.g⊕ xs.a.g)∥(sni ⊕ (T SLA1∥T SLA5))) and checks
W ∗

2
?= h(I DT ∥SKT S ). If so, it sets SKT S as the session key.

5. Security analysis of RSEAP2

In this section, we evaluate the security of the login and au-
thentication phase of RSEAP2 against various attacks. The analysis 
is conducted using both an informal and formal approach. For the 
latter, we use a popular tool, named as Scyther [11], which is com-
monly employed to assess the security of cryptographic protocols. 

We want to emphasize that since the initialization phase is over 
a secure channel, there are no security concerns linked with this 
protocol phase.

5.1. Informally security analysis

For the security analysis, we use the system model of RSEAP 
[22, Sec. 4] and the revised adversarial model. In addition to the 
attacks considered initially for RSEAP by its designers, we also take 
into account relay, reader impersonation and server impersonation 
attacks.

5.1.1. Location privacy (non-traceability)
The tag Ti simply sends M1 = {(I DT ∥W1) ⊕ a.xs.g, a.g, T SLA1}

message, where W1 = h((a.g) ⊕ (X∗
T ∥I DT )∥T SLA1). The only frac-

tion of this message that could be used to determine the tag iden-
tity is (I DT ∥W1) ⊕ a.xs.g . This token mentioned above is masked 
by a.xs.g and randomized by the variables a and T SLA1 on each 
session. Note that all these values are out of the adversary’s con-
trol. In the worst-case scenario, assuming a collision occurs on the 
selected a value by Ti , then the adversary could identify its occur-
rence by monitoring a.g fraction of M1 and then Ti can be tracked. 
Nevertheless, the adversary’s advantage to find a collision after N
sessions of the protocol is O ( N2

|F∗
q | ), which is small enough in prac-

tice. Besides, M1 does not disclose any information related to R j
or S .

The reader R j sends M2 = {M1, T SLA3, b.g, (h((T SLA1∥T SLA3) ⊕
(xRi .g))∥R IDi) ⊕ b.xs.g} to S , in which (h((T SLA1∥T SLA3) ⊕
(xRi .g))∥R IDi) ⊕ b.xs.g can be used to track the reader whether 
there is a collision in the b.g fraction. Similarly, the adversary’s ad-
vantage to detect a collision after N protocol executions is O ( N2

|F∗
q | ). 

Therefore, the adversary’s success probability is low.
The server S sends M3 = {W2 ⊕ h(R IDi∥b.c.g), cg, T SLA5,

h(R IDi∥T SLA5∥b.c.g)}, where W2 = h(I D∗
T ∥SKST ). However, each 

of h(R IDi∥T SLA5∥b.c.g) and W2 ⊕ h(R IDi∥b.c.g) tokens are ran-
domized in each session by both the reader R j and the server S . 
Therefore, an adversary does not retrieve information that could 
help him/her to break the protocol’s location privacy.

Lastly the reader R j sends M4 = {W2, b.c.g, T SLA5} to Ti . The 
only target for the adversary in this message might be W2. Un-
likely for the adversary, this token is function of SKST = h((I D∗

T ⊕
XT )∥(a.b.c.g⊕xs.a.g)∥(sni ⊕(T SLA1∥T SLA5))) which is randomized 
by Ti , R j and S on each session.

All in all, RSEAP2 protocol guarantees location privacy of all its 
entities (i.e., Ti , R j and S).

5.1.2. Mutual authentication
Assuming that a legitimate tag Ti communicates with an honest 

server S through a valid reader R j , and within acceptable time-
thresholds, it is clear that the pairs (S, Ti) and (S, R j) are mutually 
authenticated. However, in this protocol, we do not need mutual 
authentication between the reader R j and the tag Ti . In detail, the 
source of trust for Ti is S , and R j is only a gateway to access 
S . The above assumption is valid since the mutual authentication
between the tag and the server implies that S has already authen-
ticated R j and Ti can trust the reader R j .

5.1.3. Replay attack
In a replay attack, the adversary aims to use an exchanged 

message at a time t at a different time t′ . Likely, in RSEAP2, any 
message received at any time out of the threshold time (a prede-
fined factor of !T ) is rejected. Besides the integrity of timestamps 
is guaranteed by the usage of the one-way hash function. Hence 
replay attacks are not feasible against RSEAP2.
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Tag Ti Cloud database server S
Inputs its I DT and pwT , generates RT ∈ F∗

q , com-
putes PW T = h(I DT ∥(pwT ⊕ RT )), and sends MR1 =
{PW T , I DT , T SR1} to S

MR1−−→
Inspects T SR2 − T SR1

?≤ tT S × !T , generates sni ∈ F∗
q

and sets it as the Ti ’s serial number, computes XT =
h(sni∥I DT ∥xS ), AT = h(PW T∥(XT ⊕ I DT )), BT = XT ⊕
PW T , and stores sni corresponding to I DT . It sends
MR2 = {AT , BT , sni , g, xs .g, G, h(.)} to Ti

MR2←−−
Stores {AT , BT , sni , g, xs .g, G, h(.)}

Fig. 6. The initialization phase of RSEAP2, over a secure channel.

Tag Ti Reader R j Cloud database server S
Logs on by (I DT , pwT , RT ), com-
putes PW T = h(I DT ∥(pwT ⊕
RT )), X∗

T = BT ⊕ PW T
and verifies A∗

T , generates 
a ∈ F∗

q , computes W1 =
h((a.g) ⊕ (X∗

T ∥I DT )∥T SLA1)
and sends M1 = {(I DT ∥W1) ⊕
a.xs.g, a.g, T SLA1} to R j

M1−→ Verifies T SLA1, chooses 
b ∈ F∗

q and sends M2 =
{M1, T SLA3, b.g, (h((T SLA1∥T SLA3) ⊕
(xRi .g))∥R IDi) ⊕ b.xs.g}
to S

M2−→ Verifies T SLA1 and T SLA3, extracts 
h∗((T SLA1∥T SLA3) ⊕ (xRi .g))∥R ID∗

i , 
validates h((T SLA1∥T SLA3) ⊕ (xRi .g)), 
extracts I D∗

T ∥W ∗
1 , verifies W ∗

1 =
h(((a.g) ⊕ (X∗

T ∥I D∗
T ))∥T SLA1), 

generates c ∈ F∗
q , computes

SKST = h((I D∗
T ⊕ XT )∥(a.b.c.g ⊕

xs.a.g)∥(sni ⊕ (T SLA1∥T SLA5))) and 
W2 = h(I D∗

T ∥SKST ) and sends 
M3 = {W2 ⊕ h(R IDi∥b.c.g), cg, T SLA5, 
h(R IDi∥T SLA5∥b.c.g)} to R j .

Verifies T SLA5 and 
h(R IDi∥T SLA5∥b.c.g), 
extracts W2 and sends 
M4 = {W2, b.c.g, T SLA5}
to Ti

M3←−

Verifies T SLA7 and T SLA5, 
computes SKT S = h((I DT ⊕
XT )∥(a.b.c.g ⊕ xs.a.g)∥(sni ⊕
(T SLA1∥T SLA5))) and verifies 
W ∗

2
?= h(I DT ∥SKT S ), to set SKT S

as the session key.

M4←−

Fig. 7. The login and authentication phase of RSEAP2, over a public channel.

Finally note that if the adversary would extract xs.g from the 
a.xs.g and a.g pair, s/he could break the tag’s anonymity. Likely,
it is equivalent to solving EC-CDHP, which is known to be a hard
problem.

5.1.4. Message authentication
In this protocol, M1 and M2 are authenticated by the server 

S , M3 is authenticated partially by the reader R j and is entirely 
authenticated by the tag Ti . The integrity of all messages is guar-
anteed by the usage of random numbers and the one-way hash 

function. Any modification on the transferred message leads to the 
rejection of the received message by the receiver. For instance, 
consider M1 = {(I DT ∥W1) ⊕ a.xs.g, a.g, T SLA1}, which should be 
authenticated by S . The server S first checks T SLA4 − T SLA1

?≤ !T . 
Hence, if the adversary replays this message at another time, S
will reject it. Then, S extracts I D∗

T ∥W ∗
1 = (I DT ∥W1) ⊕ a.xs.g ⊕

a.xs.g , retrieves the related sni value using I D∗
T , computes X∗

T =
h(sni∥I D∗

T ∥xS ) and W ∗
1 = h(((a.g) ⊕ (X∗

T ∥I D∗
T ))∥T SLA1), and finally

verifies W ∗
1

?= W1 to accept the message. It is clear that any modi-
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fication in T SLA , a.g , or (I DT ∥W1) ⊕a.xs.g renders the probability 
of W1

∗ ?= W1 to 2−n , where n is the hash length, e.g. 256-bit for 
SHA-256. We can follow similar reasoning for the other messages 
included in the protocol. Consequently, RSEAP2 guarantees mes-
sage authentication between the involved entities.

5.1.5. Tag impersonation attack
Given that the adversary chances of a replay attack are neg-

ligible, thanks to the integrity of T SLA1, the only way to im-
personate the tag is to generate a valid M1. However, it is not 
feasible without guessing or computing a valid W1 = h(((a.g) ⊕ 
(XT ∥I DT ))∥T SLA1) where T SLA1 is the timestamp of the attack 
time. Also, the adversary does not have XT and I DT . Hence, the 
success probability of the adversary to impersonate the tag is 2−n , 
where n is the bit length of the hash function. In other words, the 
replay attack is ineffective.

5.1.6. Reader impersonation attack
The adversary cannot replay messages to take the place of a 

reader since the integrity of T SLA3 is guaranteed in RSEAP2. Hence, 
the only way to impersonate the R j in front of S is to generate a 
valid {T SLA3, b.g, (h((T SLA1∥T SLA3) ⊕ (xRi .g))∥R I  Di) ⊕ b.xs.g} tu-
ple. However, the adversary does not have R I  Di , xs.g and xRi .g . 
Even if s/he receives the values xs.g and xRi .g somehow, s/he 
would need to extract b from b.g to determine R I  Di . It requires 
to solve EC-CDHP, which is a hard problem and renders the attack 
unfeasible. Therefore, it is not practical to impersonate R j to S in 
this protocol.

5.1.7. Sever impersonation attack
The adversary would need to compute the token 

h(R I  Di∥T SLA5∥b.c.g) to impersonate the server S in front of R j . 
It would require knowledge of R I  Di . Besides this token is ran-
domized by b.c.g , which is contributed by R j through sending 
b.g . For the disclosure of b, it would require the solving of an 
EC-CDHP problem, which is a hard problem. But even more, if 
the adversary discloses b and adapts it accordingly, yet because 
of T SLA5 in h(R I  Di∥T SLA5∥b.c.g), the adversary still needs to 
know R I  Di which is not the case. Therefore, the adversary’s ad-
vantage for cheating R j and successfully impersonating S is 2−n . 
Besides, the impersonation of S in front of R j is a requirement 
to impersonate S in front of Ti . Hence, the adversary cannot 
impersonate efficiently the server S in front of Ti through R j . 
The adversary only might attempt to generate a valid message 
M4 = {W2, b.c.g, T SLA5}, where W2 = h(I D∗

T ∥SKST  ). Unlikely for 
the attacker, s/he does not have I D∗

T . Therefore, the adversary’s ad-
vantage to perform this impersonation attack is minimal (i.e. 2−n).

5.1.8. Provision of key agreement
The shared key between S and Ti is computed as SKST =

h((I D∗
T ⊕ XT )∥(a.b.c.g ⊕ xs.a.g)∥(sni ⊕ (T SLA1∥T SLA5))), where a, 

b and c are respectively contributed by Ti , R j and S . Besides I D∗
T , 

XT and sni are only known by Ti and S . Hence, assuming that 
S , R j and Ti are all legitimate entities, S and Ti will successfully 
share a key (i.e., KST ). On the contrary, if any of them is fraudu-
lent, the key agreement between these parties will fail.

5.1.9. Off-line password guessing attack
The argument for the security against this attack is almost iden-

tical to that used in the original RSEAP. In a nutshell, the tempo-
rary password of the tag is calculated as PW T = h(I DT ∥(pwT ⊕
RT )). Even if the adversary could guess PW T , s/he would still 
need the value RT , which is a random number generated by the 
tag Ti . Therefore, this attack is unfruitful to the adversary who 
could not predict RT .

5.1.10. De-synchronization attack
RSEAP2 is immune against de-synchronization attacks since 

there is not updating phase of shared parameters once the pro-
tocol execution ends. The adversary only might block M4 message 
to prevent the tag Ti to set the session key SKT S . Likely, in this sit-
uation, since Ti has not received M4 in the proper time, this entity 
could re-initiate the login and authentication phase to re-establish 
the session key. We want to emphasize that the above scenario is 
different from the impersonation attack presented against RSEAP. 
In that attack, the adversary successfully impersonates Ti without 
the presence of the honest Ti . Concerning RSEAP2, we have ex-
plained that an adversary cannot take the place of a genuine tag. 
Furthermore, the tag Ti must initiate the protocol; otherwise, the 
server S would not accept the request.

5.1.11. Insider attack
In the initialization phase of RSEAP2, Ti sends MR1 =

{PW T , I DT , T SR1} to S , where PW T = h(I DT ∥(pwT ⊕ RT )). 
Likely, the chances for an insider attacker to disclose pwT are 
almost null (i.e. 2−n).

5.1.12. Relay attack
The critical points in our proposed relay attacks against the 

original RSEAP were successful impersonation attacks and also the 
flaw in the integrity of timestamps. Likely, in RSEAP2, we have 
shown that it is not achievable to impersonate any of the protocol 
parties. Also, the integrity of any transferred timestamp is guaran-
teed by the use of a hash function (i.e., h(.)). Consequently, it is 
not feasible to perform a relay attack against RSEAP2.

5.1.13. Man in the middle attack
An adversary should be able to impersonate a protocol entity or 

perform a message modification without being detected to make 
a successful man-in-the-middle attack. Nevertheless, in our pro-
posed protocol, the mentioned attack will be unsuccessful due to 
the following reasons. Firstly, we have previously shown how the 
adversary’s advantage to impersonate the tag (section 5.1.5), the 
reader (section 5.1.6 or the server (section 5.1.7) is negligible. Sec-
ondly, we have illustrated (see

5.2. 5.1.4) that any modification on the transferred message 
leads to the rejection of the received message by the receiver. 
Thirdly, in subsections 5.1.3 and 5.1.12, we have shown how an 
adversary cannot relay a message to deceive about his distance 
or replay later an old message successfully. Consequently, the pro-
posed protocol is secure against man in the middle attack.

5.3. Formal security evaluation using Scyther tool

Apart from the informal analysis, we have assessed the secu-
rity of RSEAP from a formal perspective. In the literature, we can 
find several formal methods that have been developed to evalu-
ate the robustness of a cryptographic protocol. Those methods are 
either manual such as GNY logic [15] and BAN logic [9] or auto-
mated such as Scyther [11] and CryptoVerif [7]. We choose Scyther 
among them to formally simulate RSEAP2 and to verify its secu-
rity. Our choice is motivated by the fact that this tool is a widely 
accepted method for formal verification of cybersecurity schemes 
and has been used to evaluate the security of many new protocols, 
including [3,4,14,21].

In Scyther, we model the security protocol using the Security 
Protocol Description Language (or SPDL programming language), 
and a graphical analysis shows the possible security threats de-
tected on the analyzed scheme. Regarding the adversary model, 
this is predefined and based on the Dolev-Yao model. Once de-
scribed the protocol in SPDL, the Scyther simulator evaluates the 
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Table 2
Security analysis result of the RSEAP2 scheme with Scyther.
Role Claim Status Comments
Tag Secret I DT Ok No attacks within bounds

Secret pw Ok No attacks within bounds
Secret RT Ok No attacks within bounds
Secret XT Ok No attacks within bounds
Secret a Ok No attacks within bounds
Niagree Ok No attacks within bounds
Nisynch Ok No attacks within bounds
Alive Ok No attacks within bounds
Weakagree Ok No attacks within bounds

Reader Secret R IDi Ok No attacks within bounds
Secret b Ok No attacks within bounds
Niagree Ok No attacks within bounds
Nisynch Ok No attacks within bounds
Alive Ok No attacks within bounds
Weakagree Ok No attacks within bounds

Cloud Server Secret sni Ok No attacks within bounds
Secret c Ok No attacks within bounds
Niagree Ok No attacks within bounds
Nisynch Ok No attacks within bounds
Alive Ok No attacks within bounds
Weakagree Ok No attacks within bounds

scheme against the predefined security claims included in the 
model [14]. For instance, it assumes that the private information 
used in the protocol is safe from the adversary during the proto-
col execution [3]. That is, the Scyther tool will not detect any flaw 
whose success depends on that assumption (e.g., an adversary can-
not tamper the device’s memory in which private information is 
stored).

To describe RSEAP2 in SPDL language, all entities, i.e. the tag, 
the reader and the cloud server, are represented by roles. A role 
contains all the actions (i.e., computing, sending or receiving) to 
be performed in the protocol. For each role, we declare some re-
lated functions. We also define nonce values and timestamp, which 
are used in the protocol specification, utilising the fresh and times-
tamp declarations, respectively. Next, the macros used to simplify 
the protocol specification are defined, where recv and send events 
are used respectively to denote the receiving and sending of a mes-
sage. Finally, claim events are used in the specifications of each role 
to model intended security properties. Scyther uses a set of prede-
fined claims including the following ones: Secret, Alive, Weakagree, 
Nisynch, Niagree. The tool automatically verifies all claims and re-
ports the result. Following this specification, Table 2 depicts the 
results of the security verification of RSEAP2 using the Scyther tool. 
The obtained results confirm the security of RSEAP2.1

Similarly, to the informal analysis, we can conclude that the 
proposed protocol satisfies its security objectives, and no vulnera-
bilities are detected.

6. Performance comparison

From the performance point of view, it has already been shown
that RSEAP outperforms previous works [22, Sec. 6], i.e. Yan et 
al. [41], He et al. [16], Sharma et al. [31], Wang et al. [37], Liu 
et al. [25], Jiant et al. [19], Shi et al. [32], Choi et al. [10]. Hence, 
for more clarity, we compare RSEAP2 with RSEAP and those new 
protocols that have been proposed for VCC. From this comparison, 
we can conclude that if RSEAP2 beats RSEAP, this also implies the 
overcoming of its predecessors.

RSEAP designers built the protocol based on SHA-1 [13] hash 
function, which has an output length of 160-bit. Unluckily, re-

1 The model of RSEAP2 in SPDL is available at https://lightweightcryptography.
com /?p =727.

cent studies [24,23] showed practical chosen-prefix collision at-
tacks on SHA-1, and the recommendation is to avoid its usage. 
Consequently, we have opted to use the SHA-2 family [33]. We 
propose the truncation of its output to 160 bits to maintain the 
same security level as that offered by RSEAP.

For evaluating the computation time, we take as reference 
the implementation results in [40] (CPU: Intel(R) Core(TM)2T6570 
2.1GHz, Memory:4G OS:Win7 32-bit, Software: Visual C++ 2008,
MIRACL C/C++ Library). As SHA-2 consumes 15.8 cycles per 
bytes [12], it means that its computation requires T f

h = 0.0004 ×
15.8
11.4 = 0.0005 milliseconds. As a clarification, the value T f

h cor-
responds to one call to the compression function ( f ) of SHA-2. 
The message-block length of the SHA-2 compression function is 
512 bits. We take this fact into account while modified the mes-
sages’ structure in RSEAP. In detail, we have designed the new 
protocol optimizing the number of calls to this compression func-
tion, especially in the tag’s side, which is the most constrained 
device. Finally, an also considering as reference the results in [40], 
the time consumed for the calculation of scalar multiplication on 
ECC-160, denoted by T EMP is 7.3529 millisecond and the time of 
chaotic map is T CH = T EMP [27]. Depending on the used symmet-
ric encryption scheme, the required time for encryption/decryption 
T S of a symmetric scheme varies but the reported time in [40] for 
AES is T S = 0.1303 milliseconds.

For the performance analysis, we assume that the bit sizes of 
the hash function output, nonces, timestamps, tag/reader identi-
fiers, a symmetric encryption output block and elliptic curve points 
are respectively 160, 160, 32, 160, 128 and 320 bits. In Table 3, 
we summarize the comparison of RSEAP and RSEAP2 in terms of 
computational and communication costs. We focus this analysis on 
tags since these are the most constrained devices in the system. In 
terms of consuming time, as it is illustrated in Fig. 8, there are no 
significant differences compared to RSEAP–only a slight improve-
ment for RSEAP2. Regarding the bits sent (and received), RSEAP2 is 
much more efficient than RSEAP, as it is shown in Fig. 9. It implies 
a considerable reduction in power consumption, which is a fun-
damental parameter in this sort of devices. Finally, in Table 4, we 
summarize the security properties offered by RSEAP and RSEAP2, 
respectively. In conclusion, the new protocol is more efficient and 
provides a higher security level.
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Table 3
Computation cost (Comp., in millisecond) and communication cost (Comm., in bits) comparison for the tags/users
entities in RSEAP2 and related protocols; SM and RM denote the sending and the receiving mode, respectively.
Protocol Comp. Time Comm. (SM) Comm. (RM)

[19] 9T f
h + 5T S + 3T EMP 37.4205 (ms) 768 768

[20] 9T f
h + T S + 5T EMP 22.1935 (ms) 1280 800

[27] 4T f
h + 2T CH 14.7078 (ms) 672 224

RSEAP 9T f
h + 3T EMP 22.0632 (ms) 832 544

RSEAP2 6T f
h + 3T EMP 22.0617(ms) 672 512

Table 4
Security comparison of RSEAP2 versus RSEAP. The used notations are summarized below: A1: Mutual authentication, A2: Replay attack, A3: Message authentication, A4:
Tag/User impersonation attack, A5: Reader impersonation attack, A6: Sever impersonation attack, A7: Provision of key agreement, A8: Off-line password guessing attack, A9:
Parallel session attack, A10: De-synchronization attack, A11: Insider attack, A12: Relay attack and A13: Man in the middle attack.
Protocol A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13
[19] ! ! ! ! ! ! ! ! ! ! ! × !
[20] ! ! ! ! ! ! ! ! ! ! ! × !
[27] ! ! × × × ! ! ! ! ! ! × ×
RSEA ! ! × × × ! ! ! ! ! ! × ×
RSEAP2 ! ! ! ! ! ! ! ! ! ! ! ! !

Fig. 8. RSEAP2 versus related protocols, computation comparison.

Fig. 9. RSEAP2 versus related protocols, communication comparison.

7. Conclusion

In this contribution, we have analyzed RSEAP [22], a recently
proposed RFID based authentication protocol for vehicular cloud 
computing. We show how an adversary succeeds regarding tag im-
personation, reader impersonation, and various relay attacks. The 
success probabilities for these attacks are maximum, and their 
complexities are low. In these attacks, we exploit two main weak-
nesses identified in the original protocol. First, there is a lack of 
integrity mechanism for the used timestamps. Thanks to this prop-
erty, the adversary can efficiently and effectively carry out relay 
and tag impersonation attacks. Secondly, the reader, as a protocol 
party, does not share any secret with the other protocol parties 
(i.e., tag or the server). As a consequence of this, the adversary can 
easily impersonate the reader and can run a distance fraud attack.

We have also proposed a revised version of RSEAP, called 
RSEAP2. To fix the security faults existing in the original proto-
col, we guarantee the integrity of all timestamps by proper use 
of a one-way hash function. Also, in our proposal, the reader 
shares some secret parameters with the server. Thanks to the 
meticulous designing of the exchanged messages, the patched pro-
tocol (RSEAP2) even has significantly lower communication cost 
(and implicitly less power consumption) compared to the origi-
nal scheme (RSEAP). Apart from the performance analysis, we have 
validated the security of RSEAP2 from both a formal and informal 
perspective.

Last but not least, we would like to mention that the new 
SFVCC [27] scheme shares much of the design of RSEAP [22]. Es-
sentially, SFVCC is a variant of RSEAP in which the authors have 
replaced ECC by chaotic map-based cryptography. Unlikely for their 
designers, from the security point of view, both protocols share the 
same two main security pitfalls. First, there is a lack of integrity 
mechanisms for the used timestamps. Secondly, there is a protocol 
party (i.e., reader) that does not share any key with the other pro-
tocol entities. As a consequence of all the above, all of the attacks 
against RSEAP would also be applicable against SFVCC.
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Appendix A. Formal security analysis of RSEAP2 in real or 
random oracle model

For completeness and to provide a formal security proof of 
RSEAP2, we follow the used framework by Abdalla et al. [1,18]. 
In this framework, the scheme’s participants use their permanent 
password to agree on a common session key SK securely. Then, 
the involved entities can use the mentioned key to build secure 
channels for transferring sensitive information.
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U∈U

A protocol’s instance could be either an (honest or malicious) 
client U ∈ U or a trusted server S ∈ S . U holds a permanent pass-
word pwU –the adversary knows it in case of a malicious client. 

Respectively, S holds a vector pwS = 
〈
pwS [U ]

〉 
, which con-tains an entry for each client U and pwS [U ] represents a transfor-

mation of pwU . Besides, if two clients Ui and U j share the same 
session credentials they are considered partners.

A uniformly random bit b is chosen at the beginning of the ex-
periment and should be guessed by the adversary later. This game 
determines the adversary’s ability to distinguish a real session of 
the target scheme from a random session. Also, and concerning the 
exchange of messages, we assume that the adversary (A) controls 
all the public communications between the scheme’s participants 
and interacts passively or actively with them. To this end, A has 
access to the oracle queries listed below [1]:

• Execute(Ui , S , U j) query models a passive adversary A who
eavesdrops the communication between Ui , S and U j in an
honest protocol execution.

• Send(S/U , m) query models an active adversary who can in-
tercept a message and then even modify it, create a new one,
or forward a message to a protocol participant, which could be
S or U .

• Reveal(Ui) query models the disclosure of the session key held
by the client Ui .

• Test(Ui) query. Assuming that a client Ui and an honest part-
ner set a session key, the answer to this query is conditioned
by the value of bit b: 1) if b = 1, the answer is the mentioned
session key; and 2) if b = 0, the query returns a random string
of the same size of the session key.

Through the execution of a password-authenticated key agree-
ment protocol P , A has access to the Execute, Send, and Test
queries –and perhaps to the Reveal query. After that, A outputs 
its guess bit b0. The adversary wins the semantic security of the 
protocol in the Real-or-Random (RoR) game if b0 = b. Note that b
is the hidden bit used by the Test query and set at the begin-
ning of the experiment. The advantage of A to win this game, 
AdvRoR

D,P (t, R), is defined as follows [1]:

AdvRoR
D,P (t, R)

=
(
(Pr(A → b0 = 1 : b= 1)− (Pr(A → b0 = 1 : b= 0))

and P is secure in RoR semantic security model if:

AdvRoR
D,P (t, R) < ε(.)

and ε(.) being some negligible function, where the adversary 
makes R queries and spend t as the total time.

Following this introduction, we formally evaluate the security 
of RSEAP2 scheme in the real or random model (RoR).

Theorem 1. Let qexe , qsend and qtest , respectively, the number of queries 
of Execute, Send and Test oracles in RSEAP2 protocol. Then the adver-
sary’s advantage to win RoR game is:

AdvRoR
D,I P (t;qexe;qtest;qsend)≤ 6× q × εh + 4× q × εECC

where εECC denotes the maximum advantage of solving ECDLP or EC-
CDHP by the adversary on each query, εh represents the maximum ad-
vantage of contradicting indistinguishability of h(.) from a random or-
acle on each query, and finally, q represents the total amount of queries 
(q = qexe + qtest + qsend).

Proof. We suppose a tag Ti , a reader R j and a server S which 
communicate between them and agree on a session key SK . Be-
sides, we assume that an adversary A aims to compromise the 

semantic security of RSEAP2, in the RoR model. Similar to [18], 
we provide a game-based proof for the above theorem, by defin-
ing a set of games G that start in the random world RW and 
end in the real world, which represents RSEAP2. We also define 
AdvRoR−Gn

D,P (t, R) for each game. Specifically, it determines the ad-
vantage of A to correctly guess the hidden bit b involved in the 
Test queries, based on the game Gn . In the analysis, we omit trivial 
advantages (e.g. timestamp) to guess the game since it is possible 
to adapt the random word to transfer the involved values. Also, 
we assume that the structure of the transferred messages remains 
identical in all games.

Game G0. It defines a random world RW . In such a world, 
excluding timestamps, any transferred value over the channel is se-
lected at random but of the expected length. Hence,
AdvRoR−G0

D,RW (t, R) = 0.
Game G1. Compared to G0, in this game we introduce ECC to 

compute a.g , b.g and c.g , e.g. Ti generates a random value a ∈
F∗
q and computes a.g . Given that a, b and c are random, their 

mapping using g will also be random and this modification does 
not increase the adversary’s advantage. Hence: AdvRoR−G1

D,RW (t, R) −
AdvRoR−G0

D,RW (t, R) = 0.
Game G2. This game is identical to G1, excluding that we 

introduce h(.) through the computations. For example, we com-
pute W1 = h((a.g) ⊕ (X∗

T ∥I DT )∥T SLA1) instead of only using 
a mapping in the previous game. It is also applied to the 
other transferred values which are computed by h(.) in RSEAP2, 
i.e., W1, h((T SLA1∥T SLA3) ⊕ (xRi .g))∥R IDi), W2 = h(I D∗

T ∥SKST ),
h(R IDi∥b.c.g) and h(R IDi∥T SLA5∥b.c.g). Note that random values
and fresh timestamps influence on those calculations. Also, a se-
cure hash function with a random input is indistinguishable from
random oracle up to its indistinguishability bound, determined by
εh . Hence, this modification increases the adversary’s advantage as
follows:

AdvRoR−G2
D,RW (t, R)− AdvRoR−G1

D,RW (t, R) ≤ 5× q × εh,

where q = qexe + qsend + qtest .
Game G3. This game is identical to G2, excluding that we call 

ECC component to compute a.xs.g , b.xs.g , a.b.c.g and b.c.g . Given 
that A has access to a.g , b.g and c.g from G1, this modification 
can compromise the protocol if the adversary can solve ECDLP or 
EC-CDHP. Likely, the advantage to solve ECDLP or EC-CDHP based 
on this modification is upper bounded by 4 × εECC , on each query. 
Hence, the A’s advantage to distinguish G3 from G4 is as follows:

AdvRoR−G3
D,RW (t, R)− AdvRoR−G2

D,RW (t, R) ≤ 4× q × εECC .

Game G4. This game is identical to G3, excluding that the ses-
sion key is calculated using a hash function (i.e., SKT S = h((I DT ⊕
XT )∥(a.b.c.g⊕xs.a.g)∥(sni ⊕(T SLA1∥T SLA5)))). Since the input val-
ues of h(.), to compute SKT S , are randomized by nonces and 
timestamps, the adversary’s advantage to distinguish SKT S from 
a random string is equivalent to distinguish h(.) from a random 
oracle. Therefore:

AdvRoR−G4
D,RW (t, R) ≤ AdvRoR−G3

D,RW (t, R)+ q.εh.

On the other hand, G4 represents the implementation of 
RSEAP2. Hence:

AdvRoR
D,RSE AP2(t;qexe;qtest;qsend)

= AdvRoR
D,RSE AP2(t, R)− AdvRoR

D,RW (t, R)

= AdvRoR−G4
D,RW (t, R)− AdvRoR−G0

D,RW (t, R)

≤ 6× q × εh + 4 × q × εECC

which completes the proof. !
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