
ARTICLE IN PRESS

INTEGRATION, the VLSI journal 42 (2009) 346–355
Contents lists available at ScienceDirect
INTEGRATION, the VLSI journal
0167-92

doi:10.1

� Corr

E-m
journal homepage: www.elsevier.com/locate/vlsi
An embedded, FPGA-based computer graphics coprocessor with native
geometric algebra support
Silvia Franchini a, Antonio Gentile a, Filippo Sorbello a, Giorgio Vassallo a, Salvatore Vitabile b,�
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a b s t r a c t

The representation of geometric objects and their transformation are the two key aspects in computer

graphics applications. Traditionally, computer-intensive matrix calculations are involved in modeling

and rendering three-dimensional (3D) scenery. Geometric algebra (aka Clifford algebra) is attracting

attention as a natural way to model geometric facts and as a powerful analytical tool for symbolic

calculations. In this paper, the architecture of Clifford coprocessor (CliffoSor) is introduced. CliffoSor is

an embedded parallel coprocessing core that offers direct hardware support to Clifford algebra

operators. A prototype implementation on a programmable gate array (FPGA) board is detailed. Initial

test results show the potential to achieve a 20� speedup for 3D vector rotations, a 12� speedup for

Clifford sums and differences, and more than a 4� speedup for Clifford products, compared to the

analogous operations in GAIGEN, a standard geometric algebra library generator for general-purpose

processors. An execution analysis of a raytracing application is also presented.

& 2008 Elsevier B.V. All rights reserved.
1. Introduction

Many research fields, such as machine vision, robotics, and
computer graphics, rely heavily on geometric models of external
reality. Software packages and graphics hardware accelerators
have been designed to deal with the representation of points, lines,
and planes and their transformations in three-dimensional (3D)
space, such as rotations, translations, reflections, and projections.

Traditionally, computer graphics packages are implemented
using homogeneous coordinates and a matrix package [1]. This
approach creates a separation between geometric reasoning and
matrix-based processing. Programming geometric models re-
quires reasoning in affine and projective geometries; whereas
the implementation of graphic objects and their transformations
using a matrix formulation require a geometric interpretation of
vector calculations that is often problematic and prone to error.

Geometric algebra, which has been studied for more than a
century, is attracting attention in recent years as a powerful
new computing paradigm for a number of research fields. It offers
a natural way to model geometric objects independent of
their coordinates with its powerful and simple symbolic formal-
ism [2]. Also known as Clifford algebra (from its main contributor,
W. K. Clifford [3]), this type of algebra offers an integrated
ll rights reserved.
approach to geometric modeling and algorithms. It permits the
specification of geometric objects at a coordinate-free, unified level,
where points, lines, and planes become basic elements of
computation and their transformations are executed directly [2,4,5].

The exploitation of geometric algebra’s symbolic computing
power requires efficient support for its powerful operators and
data types. Previous implementations had to resort to changing
complex translations into matrix equations and standard matrix
libraries. Many software libraries (CLU [6], GluCat [7]), packages
for symbolic and numerical environments (Maple [19,20], Math-
ematica, MatLab), and stand-alone programs (CLUit [6], CLICAL
[8]) have been developed to solve geometric algebra expressions
directly on general-purpose processors. In these implementations,
a hierarchy of abstraction layers is used to program geometric
algebra expressions, lowering their computational advantage
through the introduction of significant overhead. These ap-
proaches address general n-dimensional Clifford algebra, whereas
in the case of computer graphics and machine vision applications,
an optimized four-dimensional (4D) implementation should be
sought as a good compromise between complexity and benefits.
The GAIGEN library generator [9] is a software library that
addresses this need.

This paper examines the direct support of geometric algebra
data types and operators in hardware. Related research [10]
presents a coprocessor for native geometric product execution, for
algebras of dimension up to 8. A geometric product is executed by
computing the components of its basis blades in a pipeline

www.sciencedirect.com/science/journal/vlsi
www.elsevier.com/locate/vlsi
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fashion. No other geometric algebra operation is supported directly
by the coprocessor, with the exception of a prototype implementa-
tion on a field-programmable gate array (FPGA) board.

This paper presents a novel coprocessing architecture, the
Clifford coprocessor (CliffoSor). Aimed at embedded machine
vision and computer graphics applications, either as part of
robotic platforms or dedicated graphic boards, this architecture
directly supports 4D homogeneous operands (namely scalars,
vectors, bivectors, trivectors, and pseudoscalars) and their opera-
tions (geometric products, outer products, left and right contrac-
tions, sums and differences). Clifford numbers, their expressions
in terms of homogeneous numbers, and related operations are
described in Section 2. The CliffoSor architecture is currently
implemented as a coprocessor core hosted on a PCI-based FPGA
board. The core is described using a mixed hardware description
language design that incorporates both Handel-C and VHDL
hardware description languages. An early version of the CliffoSor
architecture was presented in [11,12]. Test results are presented
for 4D geometric products, 4D sums/differences, and 3D rotations
on CliffoSor, compared to the same operations implemented for
general-purpose processors by the 4D library generated by the
GAIGEN library generator [9]. In addition, a raytracer application
and 3D model rotation have been implemented and executed on
CliffoSor to prove its effectiveness on its application domain.
These results suggest that there is great potential for speedup in
comparison with the execution on a traditional processor. To
realize this potential, however, the core must be placed as close as
possible to the memory subsystem, with dedicated DMA access.
The potential cycle speedup is demonstrated for products (4� ),
sums (12� ), and rotations (20� ).

The paper is organized as follows. Section 2 briefly introduces
geometric algebra and its implications for computer graphics. In
Section 3, design considerations are discussed along with their
implications for efficient hardware implementation of operand
types and operations. Section 4 details the architecture of
CliffoSor and its implementation of FPGA. Experimental results
are described in Section 5, and Section 6 summarizes the
conclusions from this work.
Table 1
Basis elements (blades) in n-dimensional Clifford algebra.

Dimension Element Blade

0 Scalar 1

1 Vector ei

2 Bivector eiej

3 Trivector eiejek

y y y

n Pseudoscalar e1e2e3yen

Table 2
Clifford product axioms.

eiei ¼71 i ¼ 1, 2,y, n

ejei ¼ �eiej iaj ¼ 1, 2,y, n

lei ¼ eil i ¼ 1, 2,y, n
2. Geometric algebra and computer graphics

Geometric algebra (Clifford algebra) is a powerful mathema-
tical tool for symbolic calculations. It is applied to different fields
of research such as computer graphics, CAD/CAM, robotics,
physics, and any application in which description and manipula-
tion of geometric entities are very important. As a unifying
mathematical language, geometric algebra comprises a number of
mathematical descriptions widely used in computer graphics,
such as quaternions to represent rotations and Lie algebras for
rigid body motion descriptions [13]. A brief introduction to the
theory is given in the following sections. Interested readers may
find further details in [2,4,5,14,17,18,22].

2.1. Theoretical background

Clifford algebra expands classical linear algebra concepts, such
as scalars and vectors, by introducing two-, three-, or higher-
dimensional subspaces, called blades. In Clifford algebra, vectors
can be combined using the outer product to obtain higher-
dimensional entities, such as bivectors (representing planes) and
trivectors (representing 3D subspaces). For example, if a and b
are vectors, their outer product a4b is a blade of grade 2 (or a
2-blade), which represents the two-dimensional oriented sub-
space that contains a and b. Such blades of grade 2 are called
bivectors. The outer product of three vectors results in a blade of
grade 3 (also called a trivector), and so on. According to this
formalism, vectors are 1-blades, and scalars are 0-blades.
Geometric algebra also defines the operators with which these
subspaces can be manipulated. It is possible, in fact, to add and
subtract subspaces of different dimensions by means of composi-
tion, and even to multiply them, resulting in powerful expressions
that can express many geometric relations and concepts.

Considering an orthonormal basis {e1, e2,y, en} of Rn, a
possible basis of the n-dimensional Clifford algebra, Cln, consists
of all k-dimensional subspaces with kpn, as listed in Table 1.
The total number of these subspaces is 2n, while the number of
k-dimensional subspaces is given by the binomial coefficient
n!/(k!(n–k)!). The basis blade of the highest dimension is called
the pseudoscalar. A generic number in Cln is called a multivector,
which is a linear combination with real coefficients of the
previously mentioned basis elements.

The most important operator of Clifford algebra is the
geometric product (also called the Clifford product). The geometric
product between two multivectors is performed by ‘‘multiplying’’
each component of an operand individually with each component
of the other operand, and simplifying the resulting terms by
means of the set of axioms listed in Table 2.

A particular type of multivector is the rotor, formed by a scalar
element and a bivector element. Rotors are used to perform
rotations of subspaces of any dimension. If R denotes a rotor and v
denotes a vector, the rotated vector v0 can be calculated as
v0 ¼ RvRy, where Ry is the reverse of R. Interestingly, a generic
rotor can be derived from the geometric product of two unitary
vectors, where the rotation is in the plane determined by the two
vectors, and the rotation angle is twice the angle between them.
2.2. 4D Clifford homogeneous numbers

In the case of computer graphics and machine vision applica-
tions, 4D geometric algebra is a reasonable compromise between
complexity and benefits. A generic Clifford algebra multivector is a
linear combination with real coefficients of the basis elements of
Clifford space; in four dimensions, a generic multivector can be
written as

a0 þ a1e1 þ a2e2 þ a3e3 þ a4e4 þ a12e1e2 þ a13e1e3 þ a14e1e4

þ a23e2e3 þ a24e2e4 þ a34e3e4 þ a123e1e2e3 þ a124e1e2e4

þ a134e1e3e4 þ a234e2e3e4 þ a1234e1e2e3e4

It is possible to collect generic multivector basis elements of the
same grade to build 4D homogeneous Clifford numbers: scalar,
vector, bivector, trivector, and pseudoscalar as shown in Table 3.
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Table 4
Homogeneous element format.

Tag Blade coefficients and bit masks

A B C D E F

Scalar 000 a0 0 0 0 0 0

0000

Vector 001 a1 a2 a3 a4 0 0

0001 0010 0100 1000

Bivector 010 a12 a13 a14 a23 a24 a34

0011 0101 1001 0110 1010 1100

Trivector 101 a234 a134 a124 a123 0 0

Table 3
4D homogeneous geometric algebra elements.

Homogeneous element

(symbol)

Grade Analytic expression

Scalar (s) 0 a0

Vector (v) 1 a1e1+a2e2+a3e3+a4e4

Bivector (b) 2 a12e1e2+a13e1e3+a14e1e4+a23e2e3+a24e2e4+a34e3e4

Trivector (t) 3 a123e1e2e3+a124e1e2e4+a134e1e3e4+a234e2e3e4

Pseudoscalar (p) 4 a1234e1e2e3e4
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A homogeneous number is an element that contains blades of
only the same grade.

In terms of homogeneous elements, a generic multivector m
can be rewritten as an ordered five-element tuple m ¼ (s, v, b, t, p).
1110 1101 1011 0111

Pseudoscalar 100 a1234 0 0 0 0 0

1111

Each homogeneous element is represented by a vector of seven elements: a tag

specifying the element, and six elements to store blade coefficients. Bit masks

associated to each blade are listed below the corresponding coefficient. Shaded

cells are non-used vector elements.
3. A hardware implementation of 4D geometric algebra

From the previous section, the implementation of 4D geo-
metric products on two generic multivectors will result in a large
number of multiplications between blade coefficients, and
accumulation of partial products into the proper result blade
coefficient. Since generic 4D multivectors consist of up to 24

¼ 16
blades, a geometric product will require up to (24)2

¼ 28
¼ 256

multiplications between coefficient pairs and 24(24–1) ¼ 240
additions. Since in most cases many coefficients are zero,
thoughtful processing can avoid wastage of resources. This
computational complexity is indeed the most significant impedi-
ment to a wide-spread use of geometric algebra, which hides such
complexity behind its powerful operators.

Two observations lead to the design choice to implement
native support for Clifford operations on 4D homogeneous
numbers. First, it has been widely observed that in most of the
common applications of geometric algebra, Clifford numbers
appear in the form of either a single homogenous number or
simple compositions of homogeneous parts. Second, the distribu-
tive property holds for operations on homogeneous Clifford
numbers, thus allowing operations on generic multivectors to be
sequenced as multiple operations on their homogeneous parts.
This choice would make the worst case scenario a product of two
bivectors for a total of 36 multiplications and 28 additions,
considerably better than the general case. A closer look at the
application profiles reveals that the most frequent situation is the
case of vector–bivector (or trivector–bivector) products, which
would require 24 multiplications and 16 additions. CliffoSor is
therefore designed to make the most frequent case faster,
resorting to a higher-level Application Programming Interface
(API) to solve more complex and less frequent operations with
multiple calls to the specialized hardware.

3.1. Bit-mask encoding of homogeneous element blades

As described in Table 3, 4D homogeneous elements carry a
variable number of blades, where each blade is a basis element-
coefficient pair. In n dimensions, given an orthonormal basis
B ¼ {e1, e2, e3,y, en} of a Euclidean vector space Rn, the corre-
sponding basis of the Clifford space Cln is defined by 2n elements,
namely all possible combinations of basis elements. To represent
them efficiently in hardware, an n-bit mask is associated with
each blade, where each bit is associated with a basis element ei,
iA[1,n], with e1 the least significant bit. In four dimensions, each
one of the 24 basis blades is associated with a four-bit mask, as
described in Table 4, where the bit masks associated with each
blade are listed below the corresponding coefficient.
This mapping exhibits an interesting bit-inversion property
between basis elements belonging to dual homogeneous ele-
ments, such as scalar–pseudoscalar, and vector–trivector pairs.
This property will be usefully exploited in the geometric product
implementation details in Section 4.4.2.2). A single format is used
to represent all five types of homogeneous elements, as described
in Table 4.

Each homogeneous element is represented by a vector of seven
elements, namely a three-bit tag, and six 32-bit elements (A–F) to
store the blade coefficients. The tag is encoded such that dual
elements differ in the most significant bit. While choosing a fixed
format causes some storage inefficiencies, as only the bivector uses
all seven elements, this choice enables a simpler design, and is thus
preferable to the more compact blade representation given in [10].

3.1.1. Computing the bit mask of results

Based on the approach proposed in [15], the following technique
has been developed to calculate geometric products, outer products,
and left or right contractions between two blades. These operations
are performed by a three-step process. First, for all products, the
scalar values associated with the input blades are multiplied to yield
the coefficients of the result. Second, the blade bit mask of the result
is computed, according to the following cases:
�
 for geometric products, the result blade bit mask is the XOR of
the two input blade bit masks;

�
 for outer products, the result blade bit mask is the XOR of the

two input blade bit masks, with the exception that the result
will be zeroed if the bitwise AND of the two bit masks is
different from zero.

�
 for left (right) contractions, the result blade bit mask is the XOR

of the two input blade bit masks, with the exception that the
result will be zeroed if the bitwise AND between the first
(second) bit mask and the complemented second (first) bit
mask is different from zero.

Third, the sign of the result depends on the input blades according
the axioms listed in Table 2, and is implemented with a look-up
table.
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3.2. Operations on homogeneous numbers

The subdivision of a Clifford multivector into homogeneous
elements allows these elements to be treated as input operands of
Clifford algebra operations. A Clifford operation on generic
multivectors m ¼ (s, v, b, t, p) can be expressed as a sequence of
binary operations on their homogeneous elements. In particular,
operations that are supported natively in CliffoSor are additions/
subtractions, geometric products, left and right contractions, and
outer products.

Operations on non-homogeneous numbers are executed by the
software API, which translates them into the appropriate
sequence of binary operations on homogeneous elements. The
only exception is the case of 3D rotations, which is treated
separately (see Section 3.3 below).

The result type of a given operation between two homo-
geneous operands can be determined from the types of the input
operands. The outer product, left contraction, and right contrac-
tion generate a single homogeneous number as a result, while the
geometric product, sum, and difference generate two homoge-
neous numbers as a result. The full geometric product between
two bivectors generates three homogeneous numbers (namely a
scalar, a bivector, and a pseudoscalar), and is executed by the API
with multiple calls to CliffoSor.

Other Clifford operations on homogeneous numbers, such as
the unary operators dual, reverse, conjugate, grade involution,
inverse, and the binary operators meet and join, are implemented
in the API as special cases of the supported operations.

3.2.1. Considerations of product operations

With proper handling of coefficients, different product
operations can re-use the same functional unit, leading to
a simplified design. For example, both (vector�vector) and
(vector�trivector) products can be executed by the same unit, as
illustrated below:

Vectornvector case:

vect1 ¼ A1e1 þ B1e2 þ C1e3 þ D1e4

vect2 ¼ A2e1 þ B2e2 þ C2e3 þ D2e4

vect1nvect2

¼ ðA1A2 þ B1B2 þ C1C2 þ D1D2Þ

þ ðA1B2 � B1A2Þe1e2 þ ðA1C2 � C1A2Þe1e3

þ ðB1C2 � C1B2Þe2e3 þ ðA1D2 � D1A2Þe1e4

þ ðB1D2 � D1B2Þe2e4 þ ðC1D2 � D1C2Þe3e4

Vectorntrivector case:

vect1 ¼ A1e1 þ B1e2 þ C1e3 þ D1e4

trivect2 ¼ A2e2e3e4 þ B2e1e3e4 þ C2e1e2e4 þ D2e1e2e3

vect1ntrivect2

¼ ðA1A2 � B1B2 þ C1C2 � D1D2Þe1e2e3e4

þ ðC1D2 þ D1C2Þe1e2 þ ð�B1D2 þ D1B2Þe1e3

þ ðA1D2 þ D1A2Þe2e3 þ ð�B1C2 � C1B2Þe1e4

þ ðA1C2 � C1A2Þe2e4 þ ðA1B2 þ B1A2Þe3e4

By comparing the two above algebraic expressions, one can
observe that the blade coefficient calculation for the (vector�
trivector) case is obtained from the case of (vector�vector) by
applying the following coefficient-swapping rules:

e1e22e3e4

e1e32e2e4

e2e32e1e4
3.3. Operations on non-homogeneous numbers—3D rotations

As described earlier, operations on multivectors are executed
in API by translating them into sequences of supported operations
on homogeneous parts of the multivectors.

The only operations on non-homogeneous elements that are
supported natively on CliffoSor are 3D rotations, as they are
important and frequent operations in computer graphics. 3D
rotations require a chain of products involving non-homogeneous
elements, such as rotors R, generically composed of a scalar and a
bivector:

R ¼ ðs; bÞ ¼ q0 þ q1e12 þ q2e13 þ q3e23.

A 3D rotation of a generic vector v ¼ a1e1+a2e2+a3e3 can be
expressed as

v0 ¼ RvRy

where v0 is the rotated vector and Ry is the reverse of R,
Ry ¼ (s,�b) ¼ q0�q1e12�q2e13�q3e23. A dedicated functional unit
is implemented in CliffoSor to handle 3D rotations.
4. CliffoSor architecture

CliffoSor is an embedded coprocessor core that offers direct
hardware support for Clifford algebra operations. CliffoSor per-
forms operations between homogeneous elements (scalars,
vectors, bivectors, trivectors, pseudoscalars) coded using 32-bit
integers in two’s complement representation. A prototype
CliffoSor has been implemented on an FPGA board containing a
Xilinx FPGA Virtex2000E hosted on the Celoxica Ltd. RC 1000 PCI
board, pictured in Fig. 1. The board uses the PCI bus to interface
with the host CPU and is equipped with 8 MB of SRAM for
dynamic data storage, which is accessible to both the host CPU
and the FPGA. The operating frequency of CliffoSor is 50 MHz, as
required by the SRAM read/write access cycle.

4.1. System overview

Fig. 2 depicts the system architecture. CliffoSor is hosted on the
FPGA housed in the Celoxica RC1000 board. Computer graphics
applications (such as a raytracer and a 3D modeler) are
implemented in a C++ host program.

An API controls the execution of Clifford operations, and
translates operations on generic multivectors into sequences of
operations on their homogeneous components, instantiating them
to the CliffoSor.

Instructions and data are transferred through the PCI bus to the
RC1000 SRAM area. Results are collected once CliffoSor signals
execution completion. The Clifford Interface unit controls data
exchanges between the PCI bus, the SRAM, and CliffoSor. The
resource utilization of CliffoSor is detailed in Table 5.

Although the actual design would allow for a dual core in the
same FPGA device, the limiting factor is the low bandwidth of the
PCI interface currently used. Future CliffoSor designs will target
PCI Express buses with higher transfer rates (in excess of 400 MB/s),
capable of sustaining multiple core parallel operations. The phases
of the system operation are described in the subsequent section.

4.2. System operation

The system operation is organized in six phases: the first phase
is host–coprocessor synchronization (the handshaking phase); the
second phase is instruction and data transfers from the host to the
SRAM banks (the host-writing phase); the third phase is
instruction and data transfers from the SRAM to CliffoSor (the
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Fig. 1. (a) System setup and (b) Celoxica Ltd. RC 1000 PCI board.
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Fig. 2. CliffoSor system architecture.
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coprocessor-reading phase); the fourth phase is instruction
execution on CliffoSor (the execution phase); the fifth phase is
the transfer of results from CliffoSor to the SRAM (the coproces-
sor-writing phase); the sixth phase is the transfer of data from
SRAM to host (the host-reading phase). The system operation
phases are depicted in Fig. 3.

4.3. Instruction format

A single instruction format is currently used, containing a
32-bit INSTRUCTION word followed by two 7�32-bit operands,
for a total of 15�32-bit words (480 bits). The format is described
in Table 6.

The INSTRUCTION word, illustrated in Table 7, contains a 4-bit
OPCODE, specifying the operation to be executed on the two
operands, followed by three bytes containing the ID for the result,
operand A, and operand B, respectively. These IDs are used in the
API to identify homogeneous numbers that are part of the same
composite multivector.
The OPCODE field in the INSTRUCTION word specifies
the Clifford operation to be performed. Each operand (see also
Section 3.1) is represented by a 32-bit HEADER word followed by
six 32-bit blade coefficients, in two’s complement representation,
as described in Table 8.

Table 9 details the operand HEADER word format. As described
in Table 4, some of the coefficients may be zeros, according to the
TAG field in the HEADER word. The content of the TAG field is
described in Table 4. The operand HEADER word contains also the
OPERAND ID byte, used to associate a homogeneous number with
a specific multivector. CliffoSor is designed to perform operations
with homogenous numbers, which may result in one or two
homogeneous parts. The result format is described in Table 10.
4.4. CliffoSor architecture

Fig. 2 shows the CliffoSor architecture, which is composed of
two main units, namely the Clifford Interface and the Clifford ALU.
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The Clifford Interface unit controls data and signals for
instructions and data transfers between the ALU and both the
memory and bus infrastructure. A Celoxica proprietary host–
board handshake protocol is used for the component synchroni-
zation and data/instructions transfer. A 32-bit data transfer occurs
at a PCI bus frequency of 33 MHz, with a transfer rate of 132 MB/s.
The SRAM memory banks allow for a single read/write cycle of
four 32-bit words. The Clifford ALU unit natively executes Clifford
algebra operations. Since the design targets computer graphics
applications, the ALU has been optimized to execute Clifford 4D
additions, subtractions, multiplications, and 3D rotations.

4.4.1. Clifford Interface

The Clifford Interface unit handles PCI–SRAM–CliffoSor data
transfers. It is implemented using the Handel-C language, and
uses the Celoxica proprietary handshake protocol for RC1000–PCI
bus communications. It executes two main tasks: SRAM read,
consisting of four transfers of four 32-bit words to transfer the
15�32-bit instruction vector from SRAM to the ALU instruction
vector register and SRAM write, consisting of four transfers of four
32-bit words to write back results (a single 15�32-bit vector)
from the ALU result vector register to SRAM.

Host–RC1000 synchronization occurs by exchanging a control
byte and a status byte through the two homonymous ports.
Table 5
CliffoSor resource utilization on a XILINX xcv2000e-6bg560

Operation Slices FF 4-LUT IOB Gates

Clifford multiplier 4911 1715 9271 – –

25.5% 4.5% 24.1%

ALU controller 38 15 70 – –

0.2% 0.03% 0.2%

Clifford adder 673 827 982 – –

3.5% 2.1% 2.6%

Clifford rotator 2991 430 5777 – –

15.5% 1.1% 15.1%

Clifford ALU 8444 2945 16,027 – 211,278

43.9% 7.7% 41.7% 8.33%

Clifford interface 958 550 683 93 12,512

4.9% 1.4% 1.8% 23% 0.49%

CliffoSor 9402 3495 16,710 93 228,802

48.9% 9.1% 43.5% 23% 9.01%

1: handshaking phase 

6: result reading phase (SRAM-host) 

bus  PC
I 
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program 

PC

RC1

3: instr
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Fig. 3. System op
A SRAM read operation initiates as soon as the control byte from
the host signals that SRAM data transfer from the host is
complete. A SRAM write operation initiates once the Clifford
ALU sets the w_ack signal. Once the four four-word transfers are
completed, a status byte is sent back to the host to indicate result
availability.

4.4.2. Clifford ALU

The Clifford ALU is composed of three functional units
dedicated to native Clifford operation execution:
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a multiplier unit, for geometric products, outer products, left
and right contractions;

�
 an adder unit, for sums and subtractions;

�
 a 3D rotation unit, for 3D rotations.

A controller unit decodes the instruction and selects the
appropriate functional unit for its execution. Fig. 4 shows the
Clifford ALU internal architecture. The RC1000 clock synchronizes
the ALU operations.

4.4.2.1. Controller unit design. The controller unit supervises the
ALU operation. After decoding the instruction, it enables the ap-
propriate functional unit by setting the corresponding chip enable
signal (namely product_CE, adder_CE, and rotator_CE).

After the enable signal is set for the currently active functional
unit, the instruction execution is completed and the acknowl-
edgement signal w_ack is set to signal execution completion for
the Clifford Interface. As an example, the timing diagram for a
product operation is illustrated in Fig. 5.
4-5:

execution 

phase and 

result write-

back on 

SRAM

M

FPGA

ons and data fetch phase (SRAM-CliffoSor)

ransfer (host-SRAM)

CliffoSor

ion cycle.

le 7
TRUCTION field format

8b 8b 8b 4b

28 27 20 19 12 11 4 3 0

OPERAND B ID OPERAND A ID RESULT ID OPCODE

le 6
foSor instruction format

b

7�32b 7�32b

TRUCTION OPERAND A OPERAND B



ARTICLE IN PRESS

Table 8
Operand format

32b BLADES

32b 32b 32b 32b 32b 32b

HEADER A B C D E F

Table 9
Operand header format

21b 8b 3b

31 11 10 3 2 0

NOT USED OPERAND ID TAG

Table 10
Result format

32b BLADES

32b 32b 32b 32b 32b 32b

TAG1 A1 B1 C1 D1 E1 F1

TAG2 A2 B2 C2 D2 E2 F2

Fig. 4. Clifford ALU internal architecture.
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4.4.2.2. Multiplier unit design. The multiplier functional unit
executes the geometric product of two homogeneous elements.
The result of a geometric product operation is a Clifford number
composed of one or two homogeneous elements, whose
coefficients are given as sums of intermediate sub-products. The
sub-products are all the possible products between operand
coefficients, and a 24� multiplier bank is used to parallel the
computation of all 24 sub-products.

A mask generator look-up table is designed to compute the
appropriate sign for each sub-product as the result of three
contributions: operand coefficient signs, algebra signature,1 and
blade multiplication. The LUT input is determined by the two
operand tags. The LUT output is fed to a 24-bit register: if the nth
bit of the mask register is set, then the nth sub-product must
be sign inverted, or else left unchanged. Signed sub-products
are then routed and added to the appropriate coefficient in the
result register.

The symmetries observed in the geometric product operations
for all the 24 possible combinations of the input operands led to
the design of only three sub-units, namely scalar unit, vector unit,
and bivector unit, in which all the route and add operations are
performed.

The scalar unit is used for the following geometric product
operations: scalars�others, pseudoscalars�others, others�scalars,
and others�pseudoscalars. It performs no sums, but only field-to-
field routing.

The vector unit is used in the following cases: vector�vector,
vector�trivector, trivector�vector, and trivector�trivector; in all
considered cases, operands are formed by four fields. The result is
composed of two homogeneous numbers: the first one is a scalar
or a pseudoscalar (with only one field filled) and the second is a
bivector (with all six fields filled).
1 The signature of the algebra is the pair of integers (p, q) where p is the

number of basis elements which square to +1 and q is the number of basis

elements which square to �1.
The bivector unit is used in the following cases: bivector�
vector, bivector�trivector, vector�bivector, and trivector�
bivector; in all considered cases, one operand is formed by six
fields (bivector), and the other operand is a four-field homo-
geneous number (vector or trivector). The result is composed of
two homogeneous numbers: a vector (with four fields filled) and a
trivector (with four fields filled).

This hardware organization requires appropriate pre-swapping
and post-swapping of the input operand elements and the output
result elements.

Pre-swapping of input operands is performed before multi-
plication when either the first operand is a bivector or the first
operand is a vector (or a trivector) and the second operand is a
scalar (or a pseudoscalar). In fact, in all 24 possible cases, a
geometric product involves at most a four-field operand and a six-
field operand, hence the use of four 32-bit registers for the first
operand and six 32-bit registers for the second one. In the
particular case in which the first operand is a bivector (formed by
six fields), pre-swapping is performed, storing it to the second six-
word register. Pre-swapping is also performed when the second
operand is a scalar or pseudoscalar (with only one field filled). In
the pre-swapping phase, the first operand is sent to the six-field
register, while the first four fields of the second operand are sent
to the four-field register. The last two fields of the second operand
are discarded since they are empty.

Post-swapping of the output result elements is performed after
the sum and route operations in the following cases: vector�
trivector, trivector�vector, bivector�pseudoscalar, and pseudos-
calar�bivector. In the post-swapping phase, therefore, the result-
ing first field is swapped with the sixth one, the second field
with the fifth one, and the third field with the fourth one (see
Section 3.2.1).

As the results of other product operations (the outer product,
left contraction, right contraction) are subsets of the results of
the geometric product, they are always performed in CliffoSor by
taking the appropriate parts of a geometric product result.
Fig. 6(a) shows the dataflow diagram for the multiplier functional
unit.

4.4.2.3. Adder unit design. The adder functional unit performs al-
gebraic sums between two homogeneous elements. If the two
homogeneous elements are of the same type, then the result is a
homogeneous element of the same type (with fields that are given
by a field-to-field sum); otherwise, the result is simply the com-
position of the two input homogeneous elements. For a subtrac-
tion operation, the second operand is sign inverted before the sum
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Fig. 5. Timing diagram for a product operation.
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operation. Fig. 6(b) depicts the dataflow diagram for the adder

unit.

4.4.2.4. 3D rotation unit design. The 3D rotation functional unit
performs 3D vector rotations. The input operands are a 3D vector
and a rotor, which is a particular multivector of Clifford algebra
formed by a scalar part and a bivector part, as seen in Section 3.3.
Since the rotation occurs in three dimensions, the bivector has
only three non-null components.

The result element is again a 3D vector. The rotation operation
is performed in two phases. In the first one, a collection of
coefficients are built from the rotor values in parallel using a bank
of multipliers. In the second phase, the result vector components
are evaluated as sums of products between input vector
components and previous coefficients. These latter multiplica-
tions are performed by the same multiplier bank, saving hardware
resources. Fig. 6(c) depicts the dataflow diagram for the rotation

functional unit.
5. Experimental results

Several experimental tests were performed to evaluate the
performance of CliffoSor and compare it with existing Clifford
algebra software implementations. To this end, the GAIGEN
geometric algebra software library generator [9] was used to
generate a 4D library.

This library implements 4D homogeneous Clifford algebra on a
general-purpose processor, with methods to handle homogeneous
numbers (scalars, vectors, bivectors, trivectors, and pseudoscalars)
and to perform operations on them.

5.1. Performance tests

Three performance tests of this implementation are presented.
In the first test, 500,000 product operations were performed using
randomly generated homogeneous numbers. A second test
performed 500,000 additions, and a third test executed 500,000
vector rotations. The product operations, sum operations, and
vector rotation operations were executed on a traditional general-
purpose CPU and on CliffoSor. CliffoSor runs on a FPGA board
driven by a 50 Mhz clock, while the GAIGEN software library runs
on a 2 GHz Pentium4 CPU. The latencies for each operation were
calculated in clock cycles, to suggest the potential speedup.
However, the different clock cycle between the highly optimized
Pentium4 and the slower-paced CliffoSor do not allow for a direct
comparison. By measuring the latencies inside CliffoSor, from
when the data is available for reading in SRAM until the results
are written back in the SRAM, a potential for speedup can be
achieved by placing the CliffoSor core on the motherboard, with
DMA access to the memory subsystem.

Table 11 lists the clock cycle latencies for products, additions,
and 3D rotations. Note that the majority of the total latency is due
to cycles spent in the Clifford Interface unit.

Fig. 7 compares the execution of the same product, sum, and
3D rotation operations both in software and using CliffoSor. The
full-software implementation uses the highly optimized 4D
library generated using GAIGEN. While direct comparison of clock
cycles is not meaningful due to the diverse implemented system
architecture, the results suggest a potentially significant speedup.
The product, sum, and rotation latencies using the GAIGEN-
generated library are 264, 640, and 1094 (2 GHz Pentium) clock
cycles, respectively. Comparing them with the total CliffoSor clock
cycles (at 50 MHz), we see that CliffoSor could potentially achieve
4� , 12� , and 20� speedups for products, sums, and rotations,
respectively.

5.2. Raytracing

To demonstrate the full power of the geometric algebra
unifying language, authors Fontjine and Dorst have implemented
a full raytracing application using the GAIGEN library generator
[16]. Calls to homogeneous number operations were trapped and
redirected to the CliffoSor API, to be executed on CliffoSor. Fig. 8
shows both the full-software-rendered scene (a) and the CliffoSor-
rendered scene (b). The artifacts in the two sphere surfaces
indicate the effects of rounding errors in the CliffoSor execution.
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Table 11
CliffoSor Interface and ALU latencies for products, additions, and 3D rotations on

random generated homogeneous numbers

Operation Interface cycles ALU cycles Total cycles

Product 49 7 56

Sum, difference 49 5 54

3D rotation 49 7 56

Latencies are expressed in clock cycles at 50 MHz.

Fig. 7. Product, sum, and 3D rotation operations comparison between full-

software implementation on a 2 GHz Pentium and CliffoSor. The comparison is

intended for potential speedup estimation only. Fig. 8. Sample scene rendered using a GAIGEN-based raytracing application:

(a) full-software-rendered scene and (b) CliffoSor-rendered scene.
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The raytracer is used to render a 320�240 pixel image with a
recursion factor of 5. The application profile exhibits about 2
million sums/subtractions between homogeneous numbers and
about 11 million left contractions between vectors and bivectors.
The image is rendered in about 87 s using the full-software
raytracer, while the execution time increases to over 2 h once
CliffoSor is used. This result was expected as an effect of the very
slow interface between the FPGA and the PCI. Accurate profiling of
the application shows that most of the time (over 98%) is taken by
the PCI handling and data transfer, while the remaining 2% is
divided between data preparation (conversion to fixed point and
assembly, for 0.7%) on the software side, and CliffoSor operation
(between CliffoSor reads and writes to SRAM, for 1.3%).

Interestingly enough, the profiling confirms execution times of
0.1 and 0.149ms (five cycles and seven cycles at 50 MHz,
respectively) for sums/subtractions and left contractions, respec-
tively, while showing that about 7.1ms (or 353 cycles at 50 MHz)
are spent in the Clifford Interface unit. This latter result accounts
for both the SRAM control latency discussed earlier, and the
Celoxica handshake protocol between RC1000 and PCI bus.
5.3. 3D rotation

3D rotations are executed in real time, and are natively
supported on CliffoSor. A sample video is available at the IEEE
Manuscript Central, which shows rotation of a 3D model of a
teapot with basic rendering.
6. Conclusions

Geometric algebra is a powerful analytical tool that offers an
integrated approach to geometric modeling. This paper examined
native support of geometric algebra objects and operators directly
in hardware. This paper presented the Clifford coprocessor
(CliffoSor) system architecture, and a prototype system was
implemented on a FPGA board. Test results were presented for
4D geometric products, 4D sums/differences, and 3D rotations on
CliffoSor, and compared against the same operations implemen-
ted for general-purpose processors by the 4D library generated by
the GAIGEN library generator. In addition, a raytracer application
and 3D model rotation were successfully implemented and
executed on CliffoSor to prove its effectiveness on its application
domain.

These results suggest that there is great potential for speedup
in comparison with the execution on a traditional processor, but
to realize this potential, the core must be placed as close as
possible to the memory subsystem, with dedicated DMA access.
The potential cycle speedups demonstrated are 4� for products,
12� for sums, and 20� for rotations.
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