
INTEGRATION, the VLSI journal 44 (2011) 280–289
Contents lists available at ScienceDirect
INTEGRATION, the VLSI journal
0167-92

doi:10.1

� Corr

E-m

junfeng

ingrid.v
journal homepage: www.elsevier.com/locate/vlsi
Design and design methods for unified multiplier and inverter and its
application for HECC
Junfeng Fan a,�, Lejla Batina a,b, Ingrid Verbauwhede a

a Katholieke Universiteit Leuven, ESAT/SCD-COSIC and IBBT, Kasteelpark Arenberg 10, B-3001 Leuven-Heverlee, Belgium
b Radboud University Nijmegen, Institute for Computing and Information Sciences (ICIS), Postbus 9010, 6500 GL Nijmegen, The Netherlands
a r t i c l e i n f o

Available online 22 April 2011

Keywords:

Modular multiplication

Inversion

Hyperelliptic curve cryptography
60/$ - see front matter & 2011 Elsevier B.V. A

016/j.vlsi.2011.04.001

esponding author.

ail addresses: fanjunfeng@gmail.com,

.fan@esat.kuleuven.be (J. Fan), lejla.batina@es

erbauwhede@esat.kuleuven.be (I. Verbauwhe
a b s t r a c t

This paper describes two novel architectures for a unified multiplier and inverter (UMI) in GF(2m): the

UMI merges multiplier and inverter into one unified data-path. As such, the area of the data-path is

reduced. We present two options for hyperelliptic curve cryptography (HECC) using UMIs: an FPGA-

based high-performance implementation (Type-I) and an ASIC-based lightweight implementation

(Type-II). The use of a UMI combined with affine coordinates brings a smaller data-path, smaller

memory and faster scalar multiplication.

Both implementations use curves defined by h(x)¼x and f ðxÞ ¼ x5þ f3x3þx2þ f0. The high through-

put version uses 2316 slices and 2016 bits of block RAM on a Xilinx Virtex-II FPGA, and finishes

one scalar multiplication in 311 ms. The lightweight version uses only 14.5 kGates, and one scalar

multiplication takes 450 ms.

& 2011 Elsevier B.V. All rights reserved.
1. Introduction

Hyperelliptic curve cryptography (HECC) [22] is an important
candidate for public-key cryptography [13]. Like elliptic curve
cryptography (ECC) [27,21], it uses smaller parameter sizes than
RSA [29] for equivalent security level. In constrained devices,
HECC enables valuable optimizations in area and speed.

Implementing HECC on a resource-constrained platform is a
challenge for both area and performance. Table 1 describes the
computational complexity of divisor operations in different co-
ordinate systems [5]. Here I, M and S denote modular inversion,
multiplication and squaring, respectively. Over the past few years,
HECC have been implemented in both software [28,30,3,4,6] and
hardware [8,11,17,14]. Table 2 summarizes previous FPGA-based
HECC implementations.

In 2001, Wollinger described the first hardware architecture
for HECC implementations [36]. However, the architecture was
only outlined. The first complete hardware implementation of
HECC was presented in [8]. This work was improved by Clancy
[11]. All of them use Cantor’s algorithm [10] for divisor addition
and doubling.
ll rights reserved.

at.kuleuven.be (L. Batina),

de).
In 2002, Lange generalized the explicit formulae for HECC over
finite fields with arbitrary characteristic [23]. The first hardware
implementation of HECC using explicit formulae was described in
[15]. In [14] an improved version is proposed. The first hardware
implementation using the affine version of explicit formulae was
described in [35], which presents the fastest FPGA-based HECC
coprocessor up to date.

Also some ASIC implementations of HECC using projective
coordinates were proposed. For example, Sakiyama proposed an
HECC coprocessor [31] using 130 nm CMOS technology. The
coprocessor is able to run at 500 MHz, and it can perform one
scalar multiplication of HECC over GFð283

Þ in 63 ms.
Previous HECC implementations often use multiple multipliers

or inverters to speed up the scalar multiplication. Commonly, an
architecture shown in Fig. 1 is used. The use of multiple multi-
pliers in parallel demands a high-throughput memory and a
complex data bus, which result in further area increase. In this
paper, we explore the power of a unified multiplier and inverter
(UMI) for area reduction and performance improvement. We
consider the architecture shown in Fig. 2 more area-efficient.
We show that the use of a UMI brings three main advantages.
First of all, the fast inverter makes affine coordinates very
efficient, thus the performance is improved. Secondly, it reduces
the area of the data-path. Thirdly, using only one data-path
simplifies the data-bus and reduces the size of memory.

Our contributions: The contributions of this paper are three-
fold. Firstly, we propose two novel architectures for a unified

www.elsevier.com/locate/vlsi
dx.doi.org/10.1016/j.vlsi.2011.04.001
mailto:fanjunfeng@gmail.com
mailto:junfeng.fan@esat.kuleuven.be
mailto:lejla.batina@esat.kuleuven.be
mailto:ingrid.verbauwhede@esat.kuleuven.be
dx.doi.org/10.1016/j.vlsi.2011.04.001


J. Fan et al. / INTEGRATION, the VLSI journal 44 (2011) 280–289 281
multiplier and inverter. We show that merging an inverter into a
multiplier results in a substantial area reduction. Secondly, we
propose a digit-serial UMI architecture and describe a method to
adjust the digit-size. We use this method to explore the best area-
time trade-off for HECC. Thirdly, using the proposed UMIs, we
implement two HECC processors: a high-throughput design that
outperforms all previous FPGA-based HECC implementations and
a lightweight design that is suitable for passive RFID tags.

The rest of the paper is organized as follows. Section 2 gives a
brief introduction to the previous work, including mathematical
background of HECC and the field arithmetic. Sections 4 and 5
describe the FPGA-based, high throughput architecture and the
ASIC-based, lightweight architecture for HECC coprocessors,
respectively. We conclude the paper in Section 6.
2. Previous work

2.1. Hyperelliptic curve cryptography

Hyperelliptic curves are a special class of algebraic curves;
they can be viewed as a generalization of elliptic curves. Namely,
a hyperelliptic curve of genus g¼1 is an elliptic curve, while in
general, hyperelliptic curves can be of any genus gZ1. However,
not all geni are used for cryptography.

Let GFð2m
Þ be an algebraic closure of the field GFð2m

Þ. Here we
consider a hyperelliptic curve C of genus g ¼ 2 over GFð2m

Þ, which
is given by an equation of the form:

C : y2þhðxÞy¼ f ðxÞ in GFð2m
Þ½x,y�, ð1Þ

where hðxÞAGFð2m
Þ½x� is a polynomial of degree at most g

ðdegðhÞrgÞ and f(x) is a monic polynomial of degree 2gþ1
ðdegðf Þ ¼ 2 gþ1Þ. Also, there are no solutions ðx,yÞAGFð2m

Þ �

GFð2m
Þ which simultaneously satisfy Eq. (1) and the equations:

hðxÞ ¼ 0,h0ðxÞyþ f 0ðxÞ ¼ 0. For the genus 2, in the general case the
following equation is used y2þðh2x2þh1xþh0Þy¼ x5þ f4x4þ

f3x3þ f2x2þ f1xþ f0.
A divisor D is a formal sum of points on the hyperelliptic curve

C, i.e., D¼
P

mPP, where P is a point on C, mP is an integer and
Table 2
HECC implementations on FPGA.

Ref. Year Fields Algorithm Coordin

[36] 2001 – Cantor’s Affine

[8,11] 2002 GF(2113)

[15] 2004 GF(2113) Explicit formulae Inversi

[35] 2004 GF(281) Affine

[32] 2006 GF(283) Project

[14] 2007 GF(2113) Project

Table 1
Modular operations required by divisor operations.

Coordinates Divisor

addition

Divisor

doubling

Coordinates

conversion

HECC Affine Iþ22Mþ3S Iþ20Mþ6S –

Inversion-free 49Mþ4S 38Mþ7S Iþ4M

Lange–Stevens Iþ21Mþ3S Iþ5Mþ6Sa –

nThis table is not exhaustive. State-of-the-art formulae can be found in [5,12].

a Note this fast doubling formulae only work for curves with deg(h)¼1.
mP ¼ 0 for almost all P. The degree of D is defined as
degD¼

P
mP . Let Div denote the group of all divisors on C and

Div0 the subgroup of Div of all divisors with degree zero. The
Jacobian J of the curve C is defined as quotient group J¼Div0=R,
where R is the set of all principal divisors. A divisor D is called
principal if D¼ divðf Þ for some element f of the function field of C

(divðf Þ ¼
P

PACordPðf ÞP). The discrete logarithm problem in the
Jacobian is the basis of security for HECC. In practice, the
Mumford representation according to which each divisor is
represented as a pair of polynomials [u,v] is commonly used.
Here, u is monic and [u,v] satisfy degðuÞr2,degðvÞodegðuÞ and
ujf�hv�v2 (so-called reduced divisors).

The main operation in any hyperelliptic curve based primitive
is scalar multiplication, i.e., mD where m is an integer and D is a
reduced divisor in the Jacobian of C. The first algorithm for
arithmetic in the Jacobian is due to Cantor [10]. However, until
‘‘explicit formulae’’ were introduced, HECC was not considered a
suitable alternative to elliptic curve based cryptosystems. For geni
2 and 3, there was some substantial work on the formulae and
algorithms for computing the group law on the Jacobian have
been optimized. The algorithms we use for divisor operations are
due to Lange and Stevens [25].

2.2. Field arithmetic

An element a in GFð2m
Þ is represented as a polynomial

AðxÞ ¼
Pm�1

i ¼ 0 aix
i, where aiAGFð2Þ. For the sake of simplicity, we

use capital letters to denote polynomials, and small letters with
subscript to denote their coefficients. For example, A stands for
A(x), and a0 is the least significant bit of A.
ates Notes

Architecture is only outlined

Two multipliers, one inverter, one ring GCD, one ring norm

on-free Twelve multipliers, one inverter

Three multipliers, two inverters

ive Three multipliers

ive/mixed Twelve multipliers, one inverter

Fig. 1. Conventional architecture.

Fig. 2. Proposed architecture.



J. Fan et al. / INTEGRATION, the VLSI journal 44 (2011) 280–289282
Algorithm 1. MSB-first multiplication [7].
Input: Polynomial A, B and P.
Output: R¼AB mod P.

1:
 Cm’0;

2:
 for i¼m�1 to 0 do

3:
 Ci’xðCiþ1þbiAÞ mod P;

4:
 end for

Return: R’C0=x.
Algorithm 2. Left-shift inversion [20].
Input: Polynomial A and P.

Output: R¼ A�1 mod P.

1:
 R0’P, S0’A,
H0’0, J0’x�m,
d0’0;

2:
 for i¼ 1 to 2m do

3:
 c’ðsi�1

m Þ&ðd
i�1

Z0Þ;
4:
 if c¼1 then

5:
 fRi, Hig’fSi�1, Ji�1g;

6:
 else

7:
 fRi, Hig’fRi�1, Hi�1g;

8:
 end if

9:
 if c¼1 then

10:
 Si’xðRi�1þSi�1Þ;
Ji’xðHi�1þ Ji�1Þmod P ;
di’�di�1þ1;

11:
 else

12:
 Si’xðsi�1

m Ri�1þSi�1Þ;
Ji’xðsi�1
m Hi�1þ Ji�1Þmod P;
di’di�1þ1;

13:
 end if

14:
 end for
Return: R’H2m.
Algorithm 3. LSB-first multiplication [7].
Input: Polynomial A, B and P.
Output: R¼ AB mod P.

1:
 C0’0, T0’A;

2:
 for i¼ 0 to m�1 do

3:
 Ciþ1’CiþbiT

i;

4:
 Tiþ1’xT i mod P;
end for

Return: R’Cm.
Algorithm 4. Right-shift inversion [37].
Input: Polynomial A and P.

Output: R¼ A�1 mod P.

1:
 R0’P, S0’xA,
H0’0, J0’xm,
d0’2, sign0
’1;
2:
 for i¼ 1 to 2m�1 do

3:
 c1’si�1

m ;
c2’c1&signi�1;
signi’signi�1?c1 : di�1
0 ;
4:
 if c2¼1 then

5:
 fRi, Hig’fSi�1, Ji�1=xg;

6:
 else

7:
 fRi, Hig’fRi�1, Hi�1=xg;

8:
 end if
9:
 if c1¼1 then

10:
 Si’xðRi�1þSi�1Þ;
Ji’Hi�1þ Ji�1;

11:
 else

12:
 Si’xSi�1;
Ji’Ji�1;

13:
 end if
di’signi?2di�1 : di�1=2;

14:
 end for
Return: R’H2m�1.
2.2.1. Multiplication

In the literature there are various algorithms and architectures
proposed for modular multiplication in GFð2m

Þ [7,34]. The bit-
serial algorithms can be classified into two categories, the most
significant bit (MSB) first algorithms and the least significant bit
(LSB) first algorithms. Algorithms 2 and 4 show an MSB-first and
an LSB-first multiplication algorithm, respectively. Here we use Ci

to denote the value of C after ith iteration, and bi the ith
coefficient of B.

The MSB-first multiplication scans B from the MSB side. In
each iteration, biA is added to C, which is then shifted to the left
and reduced. The LSB-first multiplication scans B from the LSB
side. In each iteration, T is updated to xT, and biT accumulated in C.
LSB-first multipliers update T and C in parallel, thus they can
achieve shorter critical path than MSB-first multipliers [7]. On the
other hand, it requires an extra register to keep T.

2.2.2. Inversion

Modular inversion is considered as a computationally expen-
sive operation. The most commonly used inversion algorithms are
based on Fermat’s little theorem [2], extended Euclidean algo-
rithm (EEA) [20] and Gaussian elimination [18]. EEA is widely
used to perform inversion in practice.

The schoolbook EEA-based inversion algorithm in GFð2m
Þ is

considered inefficient due to the long polynomial division in each
iteration. This problem was partially solved by replacing the
degree comparison with a counter [9]. Algorithms 2 and 4 show
two variants of EEA, namely, left-shift inversion and right-shift
inversion [37], respectively. Here we use Si to denote the value of
S after ith iteration, and si�1

m the MSB of Si�1. The complement of
c1 is represented as c1.

From an implementation perspective, the right-shift inversion
algorithm is preferred for a high-performance inverter. The right-
shift inversion algorithm has no modular operations. As a result, a
short critical path delay can be easily achieved. The counter d is
realized with the ring counter [37]. A ring counter d has only one
1-bit. The value of the counter is defined as ð�1Þsign

� d, where d is
the number of 0 at the right side of 1 in the register d. An n-bit
ring counter can count up to n�1, thus it is larger than an
equivalent counter using ripple-carry adder. On the other hand, it
has a shorter critical path delay since it only has shift operations.
The left-shift inversion algorithm uses a ripple-carry adder, and it
fits better in area-constrained devices.
3. Unified multiplier and inverter

The main observation of this paper is that multiplier and
inverter can be efficiently merged, which brings a significant
reduction in area. For example, Step 3 in Algorithm 3 and Step 10
in Algorithm 4 can be generalized to the following operation:

T’xðGþeQ Þ:



Table 3
Unified multiplier and inverter: Type-I vs. Type-II.

Optimization priority Algorithm selection Counter d I/M Target applications

Type-I Short critical path delay Alg. 3þAlg. 4 Ring 2 High throughput

Type-II Low footprint Alg. 1þAlg. 2 Carry-ripple 4 Lightweight

Fig. 3. AND–XOR cell building block. Fig. 4. LSB-first bit-serial modular multiplier.

J. Fan et al. / INTEGRATION, the VLSI journal 44 (2011) 280–289 283
Another example is Algorithm 1 and Step 12 in Algorithm 2. They
can be generalized to

T’xðGþeQ Þmod P:

Indeed, a modification of the architecture of a bit-serial multiplier
makes it also an inverter.

In the following sections we describe two UMI architectures.
Table 3 summarizes the design rationale of these two types of
UMI. Let I/M denote the inversion to multiplication ratio in terms
of delay. Type-I UMI is optimized for low critical path delay. It
realizes the LSB-first multiplication and the Right-shift EEA
algorithm. Here one inversion is equivalent to 2 multiplications.
Type-I UMI is used to build a high-performance HECC processor.
Type-II UMI is targeting ultra-constrained devices. It realizes the
MSB-first multiplication and the Left-shift EEA algorithm. Here
one inversion is equivalent to 4 multiplications. Type-II UMI is
used to build a low footprint HECC processor.
4. High-throughput UMI and HECC processor

In this section we present the architecture of Type-I UMI and a
high-performance HECC processor. We first describe the archi-
tecture of the UMI, then we discuss a method to select the I/M
ratio. We also compare the performance of the design with
previous implementations in the end of this section.

4.1. Type-I UMI architecture

Fig. 3 describes the AND–XOR cell that realizes (biAþC). Fig. 4
shows the architecture of an LSB-first multiplier. Here
ðtm�1PþðT{1ÞÞ and (biTþC) are performed on the left and the
right cell, respectively. The critical path delay is TANDþTXOR,
where TAND and TXOR denote the delay of a 2-input AND and
XOR gate, respectively. B is shifted to the right by one bit in each
clock cycle. Hence one multiplication in GFð2m

Þ takes m clock
cycles on this multiplier.

Fig. 5 shows the data-path of a bit-serial inverter using the
AND–XOR cells. It realizes Algorithm 4. The critical path, from
signi�1 to di, has a delay of 2TMUX, where TMUX denotes the delay
of a 2-input multiplexer.
Fig. 6 shows the data-path of the proposed unified inverter and
multiplier. The data-path realizes both Algorithms 3 and 4.
Table 4 describes how to configure the UMI to perform inversion
or multiplication.

The goal of this data-path merging is to maximize the hard-
ware sharing and at the same time to minimize the overhead on
critical path delay.
�
 Hardware sharing: Three registers (R, S and H) and one AND–
XOR cell are shared.

�
 Critical path: The critical path delay is the same as a standalone

inverter, i.e., 2TMUX.

�
 Function selection: The selection of a working mode (i.e.,

multiplication or inversion) is performed on the existing
registers at the first cycle. It is also shown in Table 4.

�
 Throughput: The UMI achieves a throughput of 1/(2m�1)

inversions or 1/m multiplications per cycle.

The critical path delay of UMI is longer than the one of a
multiplier. In other words, merging an inverter into a multiplier
slows down the multiplication. However, for divisor additions in
HECC, performing one inversion saves 28 multiplications (see
Table 1). Indeed, having a fast inverter at the cost of slower
multiplication may still speed up the divisor addition and dou-
bling. This issue is discussed in the following section.
4.1.1. Digit-serial UMI

While the use of UMI achieves an area reduction of the ALU, it
also slows down multiplications. For applications where many
more multiplications than inversions are required, maximizing
the throughput of an inverter at the cost of a slower multiplier is
not always desirable. Therefore, we propose a flexible architec-
ture which enables an arbitrary I/M ratio. Fig. 7 shows a design
that replaces two bit-serial UMI with multipliers. We use wI and
wM to denote the actual digit-size of the inverter and multiplier,
respectively. The UMI in Fig. 7 uses two UMIs (wI ¼ 2) and
two multipliers ðwM ¼ 4Þ. When m¼ 83, one inversion takes
d2m�1=wIe ¼ 83 clock cycles, while one multiplication takes
dm=wMe ¼ 21 clock cycles. The I/M ratio is approximately 2wM/wI.



Fig. 5. Right-shift bit-serial inverter.

Fig. 6. Type-I bit-serial UMI.

Fig. 7. Type-I digit-serial UMI with I/M � 2wM=wI (wI ¼ 2,wM ¼ 4).

Table 4
Configurations and operations of UMI-I.

Registers Multiplication Inversion

i¼ 0 0o iomþ1 i¼ 0 0o io2 m

d 0 – 2 di�1{1 if signi
¼ 1

di�1
c1 if signi

¼ 0

sign 0 – 1 :si�1
m if signi�1

¼ 1

di�1
0 if signi�1

¼ 0

R P Ri�1 P Si�1
if ðsi�1

m & signi�1
Þ ¼ 1

Ri�1
if ðsi�1

m & signi�1
Þ ¼ 0

S xA ðSi�1þsi�1
m Ri�1Þ{1 xA ðSi�1þsi�1

m Ri�1Þ{1

C 0 h0ðS
i�1

c1ÞþCi�1 – –

H B Hi�1
c1 0 Ji�1

c1 if ðsi�1
m & signi�1

Þ ¼ 1

Hi�1
c1 if ðsi�1

m & signi�1
Þ ¼ 0

J – – xm
Ji�1þsi�1

m Hi�1

Return Cm H2m�1

J. Fan et al. / INTEGRATION, the VLSI journal 44 (2011) 280–289284



J. Fan et al. / INTEGRATION, the VLSI journal 44 (2011) 280–289 285
The wI/wM ratio should be decided by the applications and the
design constraints of the circuit. The next section describes an
HECC processor built with the UMI.
Fig. 9. Area of the UMI and d

Table 5

Performance comparison of FPGA-based HECC implementations in GFð2m
Þ.

Ref. Design FPGA Freq. (MHz) Area (Slices) R

Clancy [11] Xilinx Virtex-II N/A 23,000 0

Elias et al. [14] Xilinx Virtex-II (XC2V8000) 45.3 25,271 0

Sakiyama et al. [32] Xilinx Virtex-II Pro (XC2VP30) 100 6586 8

100 4749 5

2446 2

Wollinger [35] Xilinx Virtex-II (XC2V4000) 56.7 7785 0

47.0 5604 0

54.0 3955 1

This work Xilinx Virtex-II (XC2V4000) 125 2316 2

Designs with n support fields defined with an arbitrary polynomial P.

a Non-adjacent form.
b Using binary method for scalar divisor multiplication.

Fig. 8. Block diagram of the Type-I HECC processor.
4.2. Type-I HECC processor

The HECC coprocessor is shown in Fig. 8. It contains an
instruction ROM, a main controller and the Type-I UMI. The
instruction ROM contains the field operation sequences of divisor
addition and doubling. As only a single data-path is used,
the coprocessor does not require high-bandwidth register
files. Instead, a data RAM is used to keep the curve parameters,
base divisor and intermediate data. On FPGAs, block RAMs
are used.

For divisor addition and doubling, we use the explicit formulae
proposed by Lange and Stevens [25]. One divisor addition takes
1Iþ21Mþ3S, while one divisor doubling takes 1Iþ5Mþ6S. We
give in the Appendix the explicit formulae in the form of register
operations.

The selection of wM and wI is decided by the following constraints:
speed and area. We choose wM¼14 such that the area meets our
constraints, i.e., the overall area should be smaller than the smallest
known implementation ([32] in Table 2). We then adjust wI and
measure the performance of the UMI on a Xilinx XC2V4000 FPGA.
The following equations are used to estimate the delay of one divisor
addition (DA), one divisor doubling (DD) and one scalar multiplication
elay for DA, DD and SM.

AM (bits) Finite field Perf. (ms) Comments

GFð283
Þ
n 10,000 Two multipliers, one inverter, using NAFa

GFð2113
Þ 2030 Twelve multipliers, one inverter, using NAF

064 GFð283
Þ
n 420 Three multipliers, using NAF

376 GFð283
Þ
n 549 Two multipliers, using NAF

688 GFð283
Þ
n 989 One multiplier, using NAF

GFð281
Þ 415b Three multipliers, two inverter

GFð281
Þ 724b Two multipliers, one inverter

536 GFð281
Þ 831b Two multipliers, one inverter

016 GFð283
Þ 311 Type-I UMI, using NAF



J. Fan et al. / INTEGRATION, the VLSI journal 44 (2011) 280–289286
(SM), respectively. Here TI and TM denote the delay of one inversion
and multiplication, respectively. Note that squaring is also performed
with the UMI, thus TS ¼ TM .

TDA ¼ TIþ24TM , TDD ¼ TIþ11TM , TSM ¼ 166TDDþ83TDA:

As shown in Fig. 9, when wI increases, TM goes up. However, the
delay of one inversion goes down. TDA reaches its low point when
wI¼3, while TDD stays almost unchanged when wI goes from 3 to 5.
The delay of one scalar multiplication also reaches its low point at
wI¼3. Note that the area increases almost linearly when wI grows.
When wI 43, there is no gain in speed while area goes up. Thus, we
choose wI¼3 and wM¼14 as the best performance-area trade-off for
this architecture. One multiplication and one inversion in GFð283

Þ

take 47.9 and 439 ns, respectively.
Fig. 11. Block diagram of the Type-II HECC processor.
4.2.1. Results and comparison

We implemented the architecture from Fig. 8 on a Xilinx Virtex-II
(XC2V4000) FPGA. The coprocessor is described with the Gezel [33]
language and synthesized with Xilinx ISE8.1. It uses 2316 slices and
6 block RAMs. A clock frequency of 125 MHz can be reached. Table 5
gives a comparison in the area and performance with previous
FPGA-based implementations of HECC in GFð2m

Þ.
Among all the previous implementations, the design from

Sakiyama et al. and Wollinger are of special interests to compare
with. They both use explicit formulae, and the designs are much
smaller than other implementations. The HECC coprocessor presented
in [32] uses projective coordinates and a superscalar architecture.
Different number of digit-serial (w¼12) multipliers are used for
different configurations. Our coprocessor, using one unified multi-
plier/inverter, is faster than the one of [32] using three multipliers.

The architectures proposed in [35], however, uses affine
coordinates of the explicit formulae. Three different architectures
ranging from high speed to low hardware cost are proposed. The
high speed version uses three multipliers and two inverters, and it
takes 415 ms to finish one scalar multiplication. To the best of our
knowledge, this is also the fastest HECC implementation on FPGA
up to date. The low-area version uses 3955 slices. However, it
requires 831 ms for one scalar multiplication.

Compared to all the previous implementations, our HECC proces-
sor achieves a higher performance at a lower area cost. The area
reduction is attributed to the use of compact ALU and the reduction of
the memory throughput. The ALU in [35] contains two multipliers
and one inverter, which in total use 2427 slices. The ALU used in this
Fig. 10. Type-II UMI. (a) Bit-serial modular multiplie
paper requires only 1500 slices. The performance gain is mainly due
to the efficient inverter. When running at 56.7 MHz, the inverter in
[35] requires 1570 ns on average for one inversion in GFð281

Þ, while
our high-throughput UMI finishes one inversion in GFð283

Þ in 439 ns.
Although we use only one multiplier, which is also slower than the
one in [35], the divisor addition and doubling are faster.
5. Lightweight UMI and HECC processor for RFID

In this section, we describe an HECC processor targeting
extremely constrained devices such as passive RFID tags. In such
applications, area and power consumption are of higher priority
than performance. According to [1], a passive RFID tag should
have power consumption less than 15 mW to guarantee 1 m
operation range. Some ECC implementations [26,19] can already
fulfill the requirements. We show that HECC can also fulfill the
requirements with a comparable performance.
r building block and (b) Digit-serial UMI (w¼2).



Table 6
Performance comparison of HECC and ECC implementations targeting RFID tags.

Ref. Design ASIC Tech. Finite field Area (kGates) Perf. (#cycle) Freq. (kHz) Power (mW) Energya (mJ) Comments

HECC (this work) 130 nm GFð283
Þ 14.5 136,838 300 13.4 6.03 Type-II UMI (d¼4)

HECC (Sakiyama [31]) 130 nm GFð267
Þ 7.6b 266,133 500 19b 10.0b One multiplier (d¼8)

ECC (Lee et al. [26]) 130 nm GFð2163
Þ 14.1c 144,842 590 21.55 5.29 (d¼2)

14.7c 101,183 411 15.75 3.88 (d¼3)

15.4c 78,544 323 12.08 2.94 (d¼4)

ECC (Hein et al. [19]) 180 nm GFð2163
Þ 11.9 296,000 106 10.8 31.3d 16�16 multipliers

a Energy for one scalar multiplication.
b Modular arithmetic logic unit only.
c Including ECC core and an 8-bit controller for cryptographic protocols.
d Estimated by authors.

J. Fan et al. / INTEGRATION, the VLSI journal 44 (2011) 280–289 287
5.1. Type-II UMI

Type-II UMI realizes Algorithms 1 and 2. In this architecture,
the bit-serial multiplier is reused for the inversion. The counter d,
implemented as a ring counter in Type-I UMI, is replaced with a
ripple-carry adder. Fig. 10 shows the data-path of the proposed
digit-serial inverter and multiplier.
�
 Multiplication: The data-path performs Ciþ1’ððCiþbiAÞ

{1Þmod P. In this case, only two registers (S and H) are used,
thus R and J can be used as storage.

�
 Inversion: In this mode, fR,Sg pair and fH,Sg pair are updated

alternatively. The bit-serial multiplier performs one of the
following operations:
J Si’ðRi�1þSi�1Þ{1
J Si’ðsi�1

m Ri�1þSi�1Þ{1
J Ji’ððHi�1þ Ji�1Þ{1Þ mod P

J Ji’ððsi�1
m Hi�1þ Ji�1Þ{1Þ mod P.
Note that R and S are updated first, then H and J are updated
accordingly in the next cycle.

Assuming the digit-size is w, one multiplication in GFð2m
Þ

takes dm=we cycles, while one inversion takes d4m=we cycles.
5.2. Type-II HECC processor: low-footprint

The HECC processor is shown in Fig. 11. It contains an
instruction ROM, a main controller, a Type-II UMI, a register file,
and an input/output interface. It differs from the Type-I HECC
processor in both the UMI architecture and storage. The Type-I
HECC processor uses a dual-port RAM, while the Type-II HECC
processor uses a single-port register file.

Besides the multiplier and inverter, the register file makes a
big portion of the area. Reducing area of the register file is the key
step towards a compact implementation. An HECC processor
using affine coordinates requires fewer registers to store inter-
mediate results since no Z coordinates are used. Moreover, it also
reduces the number of intermediate results. Lange and Mishra
studied the register allocation for parallel multipliers [24]. Our
investigation shows that 12 registers are sufficient for scalar
multiplication with flexible base divisor D. Note that the Type-II
UMI has four registers, among which two can be used for storage
when it is not working as an inverter. Thus, we only need 10
registers in the register file. The complete register allocation for
divisor doubling and divisor addition is given in the Appendix.
5.3. Results and comparison

We synthesized the Type-II HECC processor with 130 nm
standard cell library. Table 6 summarizes the area and power of
the proposed design.

Our HECC implementation uses 14.5 kGates and finishes one
scalar multiplication in 136,838 clock cycles. The power consump-
tion, estimated with power compiler, is 13:4 mW when running at
300 kHz. The implementation of [31], using projective coordinates,
requires 266,133 clock cycles for one scalar multiplication. Note that
it is defined on a smaller field and the result does not include data
storage. The power and energy consumption of our design is 65%
lower while it achieves the same throughput.

There are several ECC implementations proposed for RFID tags.
Lee et al. [26] use digit-serial multipliers, while Hein et al. use a
16�16 GFð2Þ multiplier and 32-bit accumulator. Comparing the
implementation in [26], using a 16�16-bit multiplier requires
less area, lower power consumption. On the other hand, it
requires 296k clock cycles, twice as many as Lee’s ECC processor
(and our HECC processor), for one scalar multiplication, and its
energy consumption is about six times higher.

Our HECC processor can meet the requirements for passive
RFID tags in terms of area, power and energy. However, ECC
implementations are still leading in terms of the energy effi-
ciency. This is due to the fact that the computational complexity
of HECC scalar multiplication is higher than ECC.
6. Conclusions

We explore the efficiency of a unified multiplier and inverter data-
path in HECC implementations. Two types of UMI are proposed.
Type-I UMI, which realizes the LSB-first multiplication and right-shift
EEA algorithms, achieves a short critical path delay. Using the Type-I
UMI results in a high performance HECC processor on FPGA. The
Type-II UMI, which realizes the MSB-first multiplication and the left-
shift EEA algorithms, achieves a low footprint. Using the Type-II UMI
results in a lightweight HECC processor for constrained devices. The
use of UMI brings a substantial improvement in terms of area and
performance of HECC implementations.

For applications like RFIDs, physical security is very important.
Known HECC implementations are either based on a binary
scalar multiplication method or NAF. They might be vulnerable
to side-channel attacks. In ECC implementations, Montgomery
ladder is widely used for protection against simple power analy-
sis. A recent work by Gaudry and Lubicz [16] has shown that
scalar multiplication of divisors can also use the Montgomery
ladder. As a future work, we will combine our architecture with
the algorithm proposed by Gaudry and Lubicz.



J. Fan et al. / INTEGRATION, the VLSI journal 44 (2011) 280–289288
Acknowledgments

This work was supported in part by the IAP Programme P6/26
BCRYPT of the Belgian State (Belgian Science Policy), by FWO project
G.0300.07, by the Research Council K.U. Leuven: GOA TENSE (GOA/
11/007), and by the European Commission through the ICT pro-
gramme under contract ICT-2007-216676 ECRYPT II.
Appendix A. Register allocation for divisor doubling and
addition

Register allocation for divisor doubling and divisor addition is
given in Tables A1 and A2.
Table A2
Divisor addition.

Input: {R4,R5,R6,R7}¼D1(¼{u10,u11,v10,v11}),

{R8,R9,R10,R11}¼D0(¼{u00,u01,v00,v01}).

1. R0:¼R5þR9; 2. R1:¼R0nR0; 3. R1:¼R1nR4;

4. R2:¼R5nR0; 5. R3:¼R8þR4; 6. R2:¼R2þR3;

7. R3:¼R3nR2þR1; 8. R6:¼R6þR10; 9. R1:¼R2nR6;

10. R7:¼R7þR11; 11. R6:¼R7þR6; 12. R0:¼R5þR9;

13. R7:¼R0nR7; 14. R2:¼R2þR0; 15. R6:¼R2nR6þR1;

16. R6:¼R7nR5þR6; 17. R6:¼R7þR6; 18. R7:¼R4nR7þR1;

19. R2:¼R3nR6; 20. R2:¼1/R2; 21. R6:¼R6nR6;

22. R6:¼R6nR2; 23. R2:¼R3nR2; 24. R3:¼R3nR2;

25. R4:¼R4þR3; 26. R7:¼R7nR2; 27. R0:¼R9þR5;

28. R5:¼R7þR5; 29. R7:¼R7þR0; 30. R4:¼R5nR7þR4;

31. R7:¼R7þR0; 32. R1:¼R9nR7þR8; 33. R4:¼R4þR1;

34. R5:¼R3nR3; 35. R3:¼R8nR7; 36. R4:¼R0nR5þR4;

37. R5:¼R0þR5; 38. R7:¼R9þR7; 39. R7:¼R7þR5;

40. R0:¼R5nR7þR4; 41. R0:¼R0þR1; 42. R7:¼R4nR7þR3;

43. R0:¼R0nR6þR11; 44. R6:¼R7nR6þR10; 45. R7:¼R0þ1;

Return: {R4,R5,R6,R7}¼D1þD0.

Table A1
Divisor doubling.

Input: {R4,R5,R6,R7}¼ D1(¼{u10,u11,v10,v11}).

1. R3:¼R4nR4; 2. R4:¼R5nR5þf3; 3. R6:¼R6nR6þf0;

4. R6:¼1/R6; 5. R6:¼R6nR3; 6. R2:¼R4nR6;

7. R0:¼R2þR5; 8. R5:¼R6nR6; 9. R1:¼R6þR4 ;

10. R4:¼R0nR0þR6; 11. R2:¼R1nR2þf2; 12. R2:¼R6nR5þR2;

13. R7:¼R7nR7þR2; 14. R6:¼R1nR4þR3;

Return: {R4,R5,R6,R7}¼2nD1.
References

[1] ISO/IEC 18000-1:2004, Information technology—radio frequency identifica-
tion for item management. Part 3: parameters for air interface communica-
tions at 13.56 MHz.

[2] Y. Asano, T. Itoh, S. Tsujii, Generalised fast algorithm for computing multi-
plicative inverses in GF(2m), Electronics Letters 25 (10) (1989) 664–665.

[3] R. Avanzi, Aspects of hyperelliptic curves over large prime fields in software
implementations, CHES, Lecture Notes in Computer Science, vol. 3156,
Springer, 2004, pp. 148–162.

[4] R. Avanzi, N. Thériault, Z. Wang, Rethinking low genus hyperelliptic Jacobian
arithmetic over binary fields: interplay of field arithmetic and explicit
formula, Journal of Mathematical Cryptology 2 (2008) 227–255.

[5] R.M. Avanzi, H. Cohen, C. Doche, G. Frey, T. Lange, K. Nguyen, F. Vercauteren,
Handbook of Elliptic and Hyperelliptic Curve Cryptography, CRC Press, 2005.

[6] D.J. Bernstein, T. Lange, eBACS: ECRYPT benchmarking of cryptographic
systems, 2010 /http://bench.cr.yp.to/S.

[7] T. Beth, D. Gollman, Algorithm engineering for public key algorithms, IEEE
Journal on Selected Areas in Communications 7 (4) (1989) 458–466.

[8] N. Boston, T. Clancy, Y. Liow, J. Webster, Genus two hyperelliptic curve
coprocessor, CHES 2002, Lecture Notes in Computer Science, vol. 2523,
Springer, 2003, pp. 400–414.
[9] R.P. Brent, H.T. Kung, Systolic VLSI arrays for polynomial GCD computation,
IEEE Transactions on Computers 33 (8) (1984) 731–736.

[10] D.G. Cantor, Computing in the Jacobian of a hyperelliptic curve, Mathematics
of Computation 48 (1987) 95–101.

[11] T. Clancy, FPGA-based hyperelliptic curve cryptosystems, Invited paper
presented at AMS Central Section Meeting, April 2003.

[12] Explicit-formulas database /http://www.hyperelliptic.org/EFDS.
[13] W. Diffie, M.E. Hellman, New directions in cryptography, IEEE Transactions

on Information Theory 22 (1976) 644–654.
[14] G. Elias, A. Miri, T.H. Yeap, On efficient implementation of FPGA-based

hyperelliptic curve cryptosystems, Computers and Electrical Engineering 33
(5–6) (2007) 349–366.

[15] G. Elias, A. Miri, T.H. Yeap, High-performance FPGA-based hyperelliptic curve
cryptosystems, in: The Proceeding of the 22nd Biennial Symposium on
Communications, May 2004.

[16] P. Gaudry, D. Lubicz, The arithmetic of characteristic 2 Kummer surfaces and of
elliptic Kummer lines, Finite Fields and Their Applications 15 (2) (2009) 246–260.

[17] H. Kim, T.J. Wollinger, Y. Choi, K. Chung, C. Paar, Hyperelliptic curve
coprocessors on a FPGA, WISA 2004, Lecture Notes in Computer Science,
vol. 3325, Springer, 2004, pp. 360–374.

[18] M.A. Hasan, V.K. Bhargava, Bit-serial systolic divider and multiplier for finite
fields GF(2m), IEEE Transactions on Computers 41 (8) (1992) 972–980.

[19] D. Hein, J. Wolkerstorfer, N. Felber, ECC is ready for RFID a proof in silicon,
SAC 2008, Lecture Notes in Computer Science, vol. 5381, Springer, 2008,
pp. 401–413.

[20] D.E. Knuth, The Art of Computer Programming, vol. 2, Addison-Wesley, 1981.
[21] N. Koblitz, Elliptic curve cryptosystem, Mathematics of Computation 48

(1987) 203–209.
[22] N. Koblitz, Hyperelliptic cryptosystems, Journal of Cryptology 1 (3) (1989)

129–150.
[23] T. Lange, Formulae for arithmetic on genus 2 hyperelliptic curves, Journal of

AAECC 15 (5) (2005) 295–328.
[24] T. Lange, P.K. Mishra, SCA resistant parallel explicit formula for addition

and doubling of divisors in the Jacobian of hyperelliptic curves of genus 2,
INDOCRYPT, Lecture Notes in Computer Science, vol. 3797, 2005,
pp. 403–416.

[25] T. Lange, M. Stevens, Efficient doubling on genus two curves over binary
fields, SAC 2004, Lecture Notes in Computer Science, vol. 3357, Springer,
2004, pp. 170–181.

[26] Y.K. Lee, K. Sakiyama, L. Batina, I. Verbauwhede, Elliptic-curve-based security
processor for RFID, IEEE Transactions on Computers 57 (11) (2008) 1514–1527.

[27] V. Miller, Uses of elliptic curves in cryptography, in: H.C. Williams (Ed.),
CRYPTO’85, Lecture Notes in Computer Science, vol. 218, Springer-Verlag,
1985, pp. 417–426.

[28] J. Pelzl, Hyperelliptic cryptosystems on embedded microprocessors, Master’s
Thesis, Ruhr-Universitat Bochum, September 2002.

[29] R.L. Rivest, A. Shamir, L. Adleman, A method for obtaining digital signatures and
public-key cryptosystems, Communications of the ACM 21 (2) (1978) 120–126.

[30] Y. Sakai, K. Sakurai, Design of hyperelliptic cryptosystems in small character-
istic and a software implementation over F2n , ASIACRYPT, Lecture Notes in
Computer Science, vol. 1514, Springer, 1998, pp. 80–94.

[31] K. Sakiyama, Secure design methodology and implementation for embedded
public-key cryptosystems, Ph.D. Thesis, Katholieke Universiteit Leuven,
Belgium, 2007.

[32] K. Sakiyama, L. Batina, B. Preneel, I. Verbauwhede, Superscalar coprocessor
for high-speed curve-based cryptography, CHES 2006, Lecture Notes in
Computer Science, vol. 4249, Springer, 2006, pp. 415–429.

[33] P. Schaumont, I. Verbauwhede, A component-based design environment for
esl design, IEEE Design & Test of Computers 23 (5) (2006) 338–347.

[34] L. Song, K.K. Parhi, Low-energy digit-serial/parallel finite field multipliers,
Journal of VLSI Signal Processing Systems 19 (2) (1998) 149–166.

[35] T. Wollinger, Software and hardware implementation of hyperelliptic curve
cryptosystems, Ph.D. Thesis, Ruhr-University Bochum, Germany, 2004.

[36] T. Wollinger, Computer architectures for cryptosystems based on hyperellip-
tic curves, Master’s Thesis, Worcester Polytechnic Institute, Worcester,
Massachusetts, May 2001.

[37] Z. Yan, D.V. Sarwate, Z. Liu, High-speed systolic architectures for finite field
inversion, Integration, VLSI Journal 38 (3) (2005) 383–398.
Junfeng Fan received the BS and MS degrees in electrical engineering from
Zhejiang University, China, in 2003 and 2006, respectively. Since 2006, he has
been a Ph.D. student in the Electrical Engineering Department (ESAT), Katholieke
Universiteit Leuven (KU Leuven), Belgium. His research interests include computer
arithmetics, with special focus on efficient implementations for Public Key
Cryptography (PKC). He is also interested in physical security of embedded
systems and secure design methodologies.
Lejla Batina is an assistant professor at Radboud University Nijmegen in The
Netherlands and a postdoctoral researcher at the research group COSIC in the
Electrical Engineering Department of the Katholieke Universiteit Leuven, Belgium.

http://bench.cr.yp.to/
http://www.hyperelliptic.org/EFD


J. Fan et al. / INTEGRATION, the VLSI journal 44 (2011) 280–289 289
She received her M.Sc. degree in Mathematics from the University of Zagreb,
Croatia in 1995 and Ph.D. degree in engineering from the K.U. Leuven in 2005. She
also studied and worked as a research assistant at the Technical University of
Eindhoven, The Netherlands from 1999 to 2001. Her research interests include
efficient arithmetic for cryptographic algorithms, secure implementations of
cryptographic algorithms, side-channel security, lightweight cryptography e.g.
crypto for RFIDs, sensor net works, etc.
Ingrid Verbauwhede received the electrical engineering degree and Ph.D. degree
from the Katholieke Universiteit Leuven (KU Leuven), Belgium, in 1991. From 1992
to 1994, she was a postdoctoral researcher and visiting lecturer at the Electrical
Engineering and Computer Sciences Department, University of California, Berke-
ley. From 1994 to 1998, she worked for TCSI and ATMEL in Berkeley, California.
In 1998, she joined the faculty of University of California, Los Angeles (UCLA). She
is currently a professor at the KU Leuven and an adjunct professor at UCLA. At KU
Leuven, she is a codirector of the Computer Security and Industrial Cryptography
(COSIC) Laboratory. Her research interests include circuits, processor architec-
tures, and design methodologies for real-time embedded systems for security,
cryptography, digital signal processing, and wireless communications. This
includes the influence of new technologies and new circuit solutions on the
design of next-generation systems on chip. She was the program chair of the Ninth
International Workshop on Cryptographic Hardware and Embedded Systems
(CHES 07), the 19th IEEE International Conference on Application specific Systems,
Architectures and Processors (ASAP 08), and the ACM/IEEE International Sympo-
sium on Low Power Electronics and Design (ISLPED 02). She was also the general
chair of ISLPED 2003. She was a member of the executive committee of the 42nd
and 43rd Design Automation Conference (DAC) as the design community chair.
She is a senior member of the IEEE.


	Design and design methods for unified multiplier and inverter and its application for HECC
	Introduction
	Previous work
	Hyperelliptic curve cryptography
	Field arithmetic
	Multiplication
	Inversion


	Unified multiplier and inverter
	High-throughput UMI and HECC processor
	Type-I UMI architecture
	Digit-serial UMI

	Type-I HECC processor
	Results and comparison


	Lightweight UMI and HECC processor for RFID
	Type-II UMI
	Type-II HECC processor: low-footprint
	Results and comparison

	Conclusions
	Acknowledgments
	Register allocation for divisor doubling and addition
	References




