
Ryerson University
Digital Commons @ Ryerson

Theses and dissertations

1-1-2011

Analysis and architecture design of scalable
fractional motion estimation for H.264 encoding
Jasmina Vasiljevic
Ryerson University

Follow this and additional works at: http://digitalcommons.ryerson.ca/dissertations

This Thesis is brought to you for free and open access by Digital Commons @ Ryerson. It has been accepted for inclusion in Theses and dissertations by
an authorized administrator of Digital Commons @ Ryerson. For more information, please contact bcameron@ryerson.ca.

Recommended Citation
Vasiljevic, Jasmina, "Analysis and architecture design of scalable fractional motion estimation for H.264 encoding" (2011). Theses and
dissertations. Paper 709.

http://digitalcommons.ryerson.ca?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F709&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.ryerson.ca/dissertations?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F709&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.ryerson.ca/dissertations?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F709&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.ryerson.ca/dissertations/709?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F709&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:bcameron@ryerson.ca

ANALYSIS AND ARCHITECTURE DESIGN OF

SCALABLE FRACTIONAL MOTION

ESTIMATION FOR H.264/AVC ENCODING

by

Jasmina Vasiljević

A thesis

presented to Ryerson University

in partial fulfillment of the

requirements for the degree of

Master of Applied Science (MASc)

in the Program of

Electrical and Computer Engineering

Toronto, Ontario, Canada, 2011

©Jasmina Vasiljević, 2011

I

AUTHOR'S DECLARATION FOR ELECTRONIC SUBMISSION OF A THESIS

I hereby declare that I am the sole author of this thesis. This is a true copy of the

thesis, including any required final revisions, as accepted by my examiners.

I authorize Ryerson University to lend this thesis to other institutions or individuals

for the purpose of scholarly research.

I further authorize Ryerson University to reproduce this thesis by photocopying or

by other means, in total or in part, at the request of other institutions or individuals

for the purpose of scholarly research.

I understand that my thesis may be made electronically available to the public.

II

Acknowledgments

I would like to thank my wonderful and strong family; my mother who selflessly encouraged,

advised and fought for me every step of the way; my father who instilled in me an unquenchable

thirst for science from a very young age; my brother who leads and inspires by example,

continuously reminding me that no goal is out of reach; and finally to my soul mate, best friend

and my ljljic – Davor Čapalija. I would also like to thank Professor Andy Ye for taking me on as

a student and his help during the course of my study.

III

Abstract

ANALYSIS AND ARCHITECTURE DESIGN OF SCALABLE FRACTIONAL MOTION

ESTIMATION FOR H.264/AVC ENCODING

Jasmina Vasiljević

Master of Applied Science (MASc)

Department of Electrical and Computer Engineering

Ryerson University

Fractional Motion Estimation (FME) is an important part of the H.264/AVC video encoding

standard. FME can significantly increase the compression ratio achievable by video encoders

while improving video quality. However, it is computationally expensive and can consist of over

45% of the total motion estimation runtime. To maximize the performance and hardware

utilization of FME implementations on Field-Programmable Gate Arrays (FPGAs), one needs to

effectively exploit the inherent parallelism in the algorithm. In this work we explore two

approaches to FME algorithm parallelization in order to effectively increase the processing

power of the computing hardware. The first method is referred to as vertical scaling and the

second horizontal scaling. In total, we implemented six scaled FME designs on a Xilinx Virtex-5

FPGA. We found that our best vertically scaled FME design exhibited a speedup of 8x over the

horizontally scaled designs. Additionally, we conclude that scaling vertically within a 4x4 pixel

sub-block is more efficient than scaling horizontally across several sub-blocks. As a result we

were able to achieve higher video resolutions at lower hardware resource costs. In particular, it is

shown that the best vertically scaled design can achieve 30 fps of QSXGA (2560x2048) video

using 4 reference frames with only 25.5K LUTS and 28.7K registers.

IV

Table of Contents

Table of Contents .. IV

List of Tables .. VIII

List of Equations .. X

List of Figures .. XII

Chapter 1 – Introduction ... 1

1.1 Thesis Objectives .. 5

1.2 Thesis Organization .. 7

Chapter 2 – Background and Motivation .. 8

2.1 Introduction to Video .. 8

2.2 Digital Video Compression ... 10

2.3 Variable Block Size Motion Estimation (VBSME) .. 12

2.4 Search Windows and Multiple Reference Frames .. 13

2.5 The Fractional Motion Estimation Algorithm ... 14

2.6 The FME Architecture .. 17

2.7 Hardware Implementation .. 19

2.7.1 Finite Impulse Response Filter .. 19

2.7.2 The 2-D Hadamard Transform ... 20

V

2.8 Motivation ... 22

2.9 Chapter Summary ... 26

Chapter 3 - The Scalable FME Architecture ... 27

3.1 Interpolation Engine.. 31

3.1.1 Horizontal Interpolation Unit ... 31

3.1.2 Vertical Interpolation Unit ... 33

3.2 SATD Processing Unit .. 36

3.2.1 Vertical Scaling of the PU .. 38

3.2.2 Residue Generators .. 40

3.2.3 The 2-D Hadamard Transform ... 41

3.2.4 Absolute Function and Summation .. 44

3.2.5 Horizontal Scaling of the PU ... 45

3.3 Chapter Summary ... 48

Chapter 4 - Design Space Exploration .. 49

4.1 Block Decomposition.. 49

4.1.1 Block Decomposition for Vertically Scaled Designs ... 50

4.1.2 Block Decomposition for Horizontally Scaled Designs ... 54

4.2 Data Redundancy .. 57

4.2.1 Calculating Data Redundancy... 57

4.2.2 Data Redundancy in Vertically Scaled Designs .. 60

VI

4.2.3 Data Redundancy in Horizontally Scaled Designs ... 61

4.3 Hardware Utilization ... 61

4.3.1 Input Data Width Variance .. 62

4.3.2 Throughput Variance .. 63

4.3.3 Vertical Alignment .. 65

4.3.4 Calculating Hardware Utilization .. 67

4.4 Processing Time .. 72

4.5 Chapter Summary ... 73

Chapter 5 – Experimental Evaluation ... 74

5.1 Target Device and Tools .. 74

5.2 Performance Analysis ... 76

5.2.1 Hardware Implementation Results ... 77

5.2.2 Scalability Analysis .. 79

5.2.3 Frequency Analysis .. 86

5.3 Target Video Resolution Specifications .. 88

5.4 Chapter Summary ... 91

Chapter 6 – Concluding Summary .. 92

6.1 Comparative Study .. 93

6.2 Future Work .. 94

Appendix A - Redundancy Analysis and Block Decomposition .. 95

VII

Appendix B – Hardware Utilization of the Interpolation Engine ... 97

Summary of Terms .. 100

Glossary .. 103

References ... 105

VIII

List of Tables

Table 1 - The FME Scaled Designs .. 26

Table 2 - The Block Decomposition Schedule for the [M=1, N=1], [M=2, N=1], [M=4, N=1]

Designs .. 52

Table 3 - The Block Decomposition Schedule for the [M=10, N=1] Design 53

Table 4 - The Block Decomposition Schedule for the [M=1, N=4] Design 54

Table 5 - The Block Decomposition Schedule for the [M=1, N=2] Design 56

Table 6 - Data Redundancy for Six FME Scaled Designs .. 59

Table 7 – Data Redundancy Analysis and Block Decomposition for the [M=1, N=1] Design 60

Table 8 – The Throughput Variance and PU Utilization of the [M=1, N=1] Base Design 65

Table 9 - Hardware Utilization Summary ... 67

Table 10 - Total Number of Clock Cycles Required for Processing 41 Subblocks 73

Table 11- Implementation Results - Xilinx XC5VLX85T FPGA .. 77

Table 12 - Performance Analysis .. 82

Table 13 - Scalability Ranking .. 85

Table 14 - Target Video Resolution ... 90

Table 15 - Comparison to Previous Work ... 93

Table 16 - Redundancy Analysis and Block Decomposition Calculations for the [M=1, N=1],

[M=2, N=1] and [M=4, N=1] Design ... 95

Table 17 - Redundancy Analysis and Block Decomposition Calculations for the [M=10, N=1]

Design ... 95

Table 18 - Redundancy Analysis and Block Decomposition Calculations for the [M=1, N=2]

IX

Design ... 96

Table 19 - Redundancy Analysis and Block Decomposition Calculations for the [M=1, N=4]

Design ... 96

Table 20 – Hardware Utilization of the Interpolation Engine for the [M=10, N=1] Design 97

Table 21 - Hardware Utilization of the Interpolation Engine for the [M=4, N=1] Design 97

Table 22 - Hardware Utilization of the Interpolation Engine for the [M=2, N=1] Design 98

Table 23 - Hardware Utilization of the Interpolation Engine for the [M=1, N=1] Design 98

Table 24 - Hardware Utilization of the Interpolation Engine for the [M=1, N=2] Design 99

Table 25 - Hardware Utilization of the Interpolation Engine for the [M=1, N=4] Design 99

X

List of Equations

Equation 1 - Peak Signal to Noise Ratio ... 1

Equation 2 - Half Pixel Generation ... 15

Equation 3 – Quarter Pixel Generation ... 16

Equation 4 – Generating the SATD Value .. 17

Equation 5 - Half Pixel Range .. 17

Equation 6 – Half and Quarter Pixel Range .. 17

Equation 7 - FIR Filter .. 19

Equation 8 – 1-D Hadamard Transform .. 21

Equation 9 – Hardware Optimized 1-D Hadamard Transform ... 21

Equation 10 - The Running Time of FME .. 24

Equation 11 – Total Number of Macroblocks per Video Frame ... 24

Equation 12 – Percent of Data Redundancy ... 57

Equation 13 – The Total Number of Pixels Processed for all Subblock Types 58

Equation 14 - The Total Number of Pixels Processed for all Subblock Types After Block

Decomposition .. 58

Equation 15 – Interpolation Engine Utilization Example ... 63

Equation 16 - PU Utilization Example ... 64

Equation 17 - IE Utilization for the [M= 2, N=1] Design .. 69

Equation 18 – IE Utilization for the [M= 2, N=1] Design .. 69

Equation 19 - Hardware Utilization Approximation of the Interpolation Engine 70

Equation 20 –Hardware Utilization Approximation for the Processing Unit 71

Thesis%20-%20Final%20-%20408.doc#_Toc313750988
Thesis%20-%20Final%20-%20408.doc#_Toc313750989
Thesis%20-%20Final%20-%20408.doc#_Toc313750990
Thesis%20-%20Final%20-%20408.doc#_Toc313750990
Thesis%20-%20Final%20-%20408.doc#_Toc313750996

XI

Equation 21 – Total Number of Clock Cycles .. 72

Equation 22 – Total Wall Clock Time ... 78

Equation 23 - Macroblocks per Second ... 78

Equation 24 - Cost-Performance Product ... 79

Equation 25 - Linear Scaling in Terms of the Cost-Performace Product 79

Equation 26 - Scalability Properties ... 80

Equation 27 – Relative Hardware Resource Cost ... 81

Equation 28 - Speedup .. 81

Equation 29 - Relative Efficiency ... 81

Equation 30 - Macroblocks per Second .. 89

Equation 31 - Frames per Second ... 89

Thesis%20-%20Final%20-%20408.doc#_Toc313750997
Thesis%20-%20Final%20-%20408.doc#_Toc313750998
Thesis%20-%20Final%20-%20408.doc#_Toc313750999
Thesis%20-%20Final%20-%20408.doc#_Toc313751000
Thesis%20-%20Final%20-%20408.doc#_Toc313751001
Thesis%20-%20Final%20-%20408.doc#_Toc313751002
Thesis%20-%20Final%20-%20408.doc#_Toc313751003
Thesis%20-%20Final%20-%20408.doc#_Toc313751004
Thesis%20-%20Final%20-%20408.doc#_Toc313751005
Thesis%20-%20Final%20-%20408.doc#_Toc313751006
Thesis%20-%20Final%20-%20408.doc#_Toc313751007

XII

List of Figures

Figure 1 - Various Video Formats and Resolutions .. 9

Figure 2 - Motion Estimation ...11

Figure 3 – Encoding a Singe Frame with Different VBSME settings .. 12

Figure 4 - MB and Subblocks Sizes in VBSME ... 13

Figure 5 - Half and Quarter Pixels .. 15

Figure 6 - Motion Estimation Block ... 18

Figure 7 - Pipelined Hardware Implementation of the FIR Filter .. 20

Figure 8 - The Hardware Implementation of the Optimized 1-D Hadamard Transform 21

Figure 9 - The Input Array Sizes for 6 Scaled FME Designs ... 28

Figure 10 - The Scalable FME Architecture ... 30

Figure 11 - The H-IPU Connectivity at Row m and Column n .. 32

Figure 12 – Pixel Interpolation in Stage 1 .. 32

Figure 13 - The nth Scalable V-IPU .. 34

Figure 14 - V-IPU for the [M=10, N=1] Design ... 35

Figure 15 – Pixel Interpolation in Stage 2 .. 36

Figure 16 - The Processing Unit Architecture .. 37

Figure 17 - The Vertically Scaled PU Designs with Various Data Throughput Rates 39

Figure 18 - The Residue Generator ... 40

Figure 19 - 2-D Hadamard Transform .. 41

Figure 20 - Operation of the Transpose Shift Register for the [M=1, N=1] PU 42

Figure 21 - The Absolute Function and Summation Units ... 44

Thesis%20-%20Final%20-%20408.doc#_Toc313751011
Thesis%20-%20Final%20-%20408.doc#_Toc313751012
Thesis%20-%20Final%20-%20408.doc#_Toc313751013
Thesis%20-%20Final%20-%20408.doc#_Toc313751014
Thesis%20-%20Final%20-%20408.doc#_Toc313751015
Thesis%20-%20Final%20-%20408.doc#_Toc313751016
Thesis%20-%20Final%20-%20408.doc#_Toc313751019
Thesis%20-%20Final%20-%20408.doc#_Toc313751021
Thesis%20-%20Final%20-%20408.doc#_Toc313751022
Thesis%20-%20Final%20-%20408.doc#_Toc313751023
Thesis%20-%20Final%20-%20408.doc#_Toc313751025
Thesis%20-%20Final%20-%20408.doc#_Toc313751026
Thesis%20-%20Final%20-%20408.doc#_Toc313751027
Thesis%20-%20Final%20-%20408.doc#_Toc313751028

XIII

Figure 22 - Pixel Layout at the Output of Stage 2 (V-IPUs) ... 45

Figure 23 - Nine Half Pixel Candidate Positions and Their Offset Vectors for One Integer Pixel46

Figure 24 - Mapping a 4x4 Subblock to a Single Set of 9 PUs .. 47

Figure 25 - Decomposition Schedule for a 16 x 16 Block for the [M=1, N=1] Design 51

Figure 26 - 16x16 Block Decomposition and Data Redundancy for the [M=10, N=1] Design ... 53

Figure 27 - Hardware utilization for the [M=1, N=4] design for 16x16, 8x8, and 4x4 blocks 55

Figure 28 - Decomposition Schedule for a 16 x 16 Block for the [M=1, N=2] Design 56

Figure 29 - Timing Diagram for Processing a 4x4 Block Using the [M=1, N=1] Design 64

Figure 30 - Data Alignment for [M=1, N=1], [M=2, N=1], [M=4, N=1] and [M=10, N=1] 66

Figure 31 - LUT Count Compared with Data Throughput ... 78

Figure 32 - Product of Cost and Total Execution Time .. 80

Figure 33 – Measured Overall Relative Utilization and Estimated Utilization 82

Figure 34 – Relevant Utilization and Data Redundancy .. 83

Figure 35 – Relative Utilization and Data Throughput .. 84

Figure 36 - Effect of the Maximum Achievable Frequency on the Design Scalability 87

Figure 37 - Frames per Second at Various Video Resolutions .. 90

Thesis%20-%20Final%20-%20408.doc#_Toc313751030
Thesis%20-%20Final%20-%20408.doc#_Toc313751031

1

Chapter 1 – Introduction

Motion Estimation (ME) is a video compression algorithm that removes spatial and

temporal data redundancy between frames by using motion vectors (MVs) to track the motion of

objects within video footage. Unlike previous encoding algorithms, the H.264/AVC standard

offers the use of Fractional Motion Estimation (FME). This is an engine which fine-tunes MVs

to sub-pixel granularities in order to achieve an enhanced video quality and a better compression

ratio which reduces transfer stream bit-rates as well as the amount of video memory storage.

Compared with previous video compression standards, such as H.263 and MPEG-2, the

H.264/AVC encoding standard can achieve 49% and 64% bit-rate reductions respectively [1]; as

well as a compression rate of 50:1 [53].

There exists a quantitative formal video quality measurement called the Peak Signal to

Noise Ratio – PSNRdB. The PSNRdB depends on the mean squared error (MSE) between an

impaired video frame and the original, based on the following equation:

MSE
PSNR

n

dB

2

10

)12(
log10




Equation 1 - Peak Signal to Noise Ratio

where n is the number of bits per pixel and MSE is the mean squared error [2]. PSNRdB can be

calculated quickly and easily and is a widely used metric to compare the quality of compressed

and decompressed video images. It has been measured that the FME can improve video quality

by +4 dB [3].

2

The FME algorithm is an essential part of the H.264/AVC video compression standard.

However, the FME algorithm is computationally expensive. Due to the high computing demand,

many hardware architectures have been proposed to accelerate the computation of the FME

algorithm. The large range of H.264/AVC engines vary from a free low-end Xilinx soft-core[4],

to high-priced, high-performance designs aimed at the broadcasting industry, targeting custom

FPGA/ASIC systems [5]. Further, the FME has been implemented on a variety of target

architectures, for example: ASIC/FPGA [1][3][6]-[17], hybrid hardware/software systems [18]

and GPUs[18][20].

 The need for scalable high-performance encoding engines with efficient use of hardware

resources have been previously recognized as a need [7][8][9][18][21][22]. These

implementations use systolic arrays in order to achieve flexible scalable designs. They succeeded

in providing a high degree of hardware utilization as well as data throughput rate. The

parameterizable designs [7][8][9] allowed for setting of a variable which controls the size of the

pixel block to be processed. While these designs are capable of handling a range of variable pixel

array sizes, they require the user to commit to particular block dimensions at compile time. These

works do not address the scalability and utilization challenges which arise when processing all 7

variable sized blocks at the same time. In addition, some designs evaluate MVs at a quarter-pixel

resolution [18] in a single step whereas the refinement can be divided into two stages. A two

stage refinement would involve Unnecessary computation can be saved by first evaluating the

best half pixel, followed by refining it to a quarter pixel resolution.

Certain implementations focused on optimizing the pixel interpolation [23], while others

on the distortion evaluation units [24]. Further, approximation algorithms have been

implemented to simplify the computational complexity FME by abstracting away the need for

3

pixel interpolation [25], although they do suffer a video quality penalty.

A number of works have implemented full support of variable block sizes (VBS)

[1][3][10][16]. They are capable of processing all 7 of the variable sized blocks. Processing of

VBS gives rise to various hardware utilization problems and data flow trade-offs. In addition,

these implementations are not scalable and easily parameterizable. They are capable of

processing 4, 8 or 16 pixels from the same row of a macroblock, thus possessing horizontal

parallelism. We found however, that expanding parallelism only along the row can potentially

degrade hardware utilization. In this work, we explore an increase in parallelism along a column

of pixels as well.

In this work, we perform a scalability study of FME with the goal of gaining performance

while minimizing the use of additional hardware resources. Our target architecture is an FPGA

which is capable of providing custom fine-grain optimizations with regards to parallelization. In

our work, we describe the design and implementation of the Interpolation Engine (IE), as well as

the distortion computation units (Processing Units - PUs). We implement a parameterizable,

scalable design, capable of processing all 7 types of variable block sizes. We implement and

analyze a total of six scalable FME architectures, with our formulated analysis method. In

addition, we present results for both, the IE and the PU together, and analyze their interaction

with respect to data flow, hardware utilization and data redundancy in order to identify the

optimal high-performing FME engine.

Due to the high computing demand, many hardware architectures have been proposed to

accelerate the computation of the FME algorithm. Most of the architectures, however, have been

implemented in Application Specific Integrated Circuit (ASIC) technology. Except for the work

in [15][26], which implements a non-scalable version of FME on FPGAs, limited information

4

exists on performance and algorithm-architecture mapping exploration of the FME onto

reconfigurable technologies. In this work, we perform a scalability study of FME on FPGAs with

the goal of gaining performance while minimizing the use of additional resources.

Scalability is a concept frequently used to indicate the quality of parallel systems. Many

engineering issues emerge when scaling and implementing an algorithm. Many of these issues

are best dealt with at the algorithmic level, rather than by manually modifying the code for each

individual implementation. The fastest scaled implementation can depend on many factors, such

as target architecture, amount of parallelism, software environment and memory hierarchy. A

good understanding of the concept of scalability can be used to select the best algorithm-

architecture combination for a problem. By determining the performance of an algorithm with a

particular architecture and varying amounts of resources, one can determine the maximum

speedup which can be obtained for a minimum amount of additional recourses.

This work provides an insight into the influence of the algorithm on the architecture and

vice-versa to enable us to understand the scalability of the FME algorithm-architecture pair. We

develop and present an empirical approach in order to quantify and evaluate two different

scalability approaches and a total of six scaled FME implementations. We also present our new

innovative approach to FME scalability, vertical scaling, and compare it against the traditional

implementation of horizontal scaling.

The investigation of scalable FME implementations on FPGAs is particularly important

since the programmability of FPGAs encourages design reuse and can greatly enhance the

upgradability of digital systems. Scalability eases the creation of highly flexible FPGA-based

encoding systems which can accommodate a multitude of existing standards as well as support

the emergence of new standards. An efficient scalable FME implementation can be incorporated

5

into a single FPGA solution targeting low cost, low-resolution applications as well as multiple

FPGA designs targeting high performance high-resolution applications.

1.1 Thesis Objectives

The objective of this work is to develop and implement a scalable FME engine. We aim

to analyze the trade scalability trade-offs and quantify them in order to find a suitable scalability

approach.

1.2 Thesis Contributions

In this work, we perform a scalability study of FME by increasing parallelism along a

column of pixels as well as along a row of pixels. We define a set of overhead functions

associated with the different algorithmic and architectural characteristics in order to quantify the

scalability of the FME engine as a parallel system. Based on the results, we design and

implement a scalable high-performance FME algorithm platform. We isolate the algorithmic and

architectural overheads by examining their influence on the processing time and the use of

hardware resources. Our design is then implemented on an FPGA which is capable of providing

custom fine-grain optimizations with regards to parallelization. In summary, our contributions

are four-fold:

1. Introduced a vertical scaling approach

2. Developed hardware utilization analysis metrics for scalable FME designs

3. Performed direct quantitative comparison between vertical and horizontal FME

implementations

6

4. Implemented a parameterizable design, changeable at compile time to instantiate

various scalable FME architectures

We describe the design and implement the Interpolation Engine (IE) and the distortion

computation units (referred to as Processing Units PUs), capable of processing all 7 types of

variable block sizes. The results for both the IE and the PU are presented. Their interaction

between data flow, hardware utilization and data redundancy are analyzed in order to identify the

best configuration for high-performing FME engines. Designs that implement a more complete

H.264/AVC system typically choose an FME architecture that suits a pipeline work balance

between the IME and FME. In order to reduce the clock cycles required to process the 41 sub-

blocks. So far, designers have chosen a faster implementation by increasing parallelism

horizontally. We argue and show that increasing parallelism vertically is significantly more

efficient in terms of hardware resources and achieved throughput, and therefore urge designers to

reconsider their choices taking into account analysis presented in this work. Looking at our

scalability curve and cost-performance product derived in Chapter 5, we conclude that in terms

of resource use the designer is better off choosing any of the three vertically scaled designs over

the horizontally scaled versions. While previous works have implemented a more complete

H.264/AVC system, our work was developed based on a bottom-up approach, starting at

understanding all of the FME design trade-offs. Thus, in future work, the relationship between

integer motion estimation (IME) and FME can be efficiently exploited through the application of

the analytical methods developed in this work.

 Finally, a four page conference paper version of this work was published in [54], and a

journal was published in [55].

7

1.3 Thesis Organization

This thesis is organized as follows. Chapter 2 provides a summary of background

information on video compression as well as a few of the motion estimation features which are

specific and new to the H.264/AVC standard, including the motivation behind our work. Our

newly developed scalable FME architecture is presented in Chapter 3, and Chapter 4 discusses

the design space exploration where we formulate our design evaluation metrics. Chapter 5

presents details of the experimental setup and implementation results, and then moves on to

describe our empirical study of the specific scalability challenges and analysis of performance

trade-offs. Finally, Chapter 6 concludes by summarizing the presented work and related research,

along with future work which can build upon the current results.

8

Chapter 2 – Background and Motivation

This chapter describes video and compression related background, including technical

details required for estimation of computational complexity.

2.1 Introduction to Video

Many digital video formats exist, varying in their target resolutions, colour space,

chrominance sub-sampling ratios and signal sampling frequencies. Figure 1 shows a sample map

of the rich variety of available formats.

9

Figure 1 - Various Video Formats and Resolutions

The mathematical representation of a set of colours is called a colour space [27]. Popular

models are RGB, used in computer graphics, YIQ, YUV or YCbCr, popular in video

broadcasting systems, and CMYK, used in colour printing. The YCbCr format has one

luminance (Y) and two chrominance components (Cb and Cr). The luminance and chrominance

components are quantized as 8-bit data values. The 8-bit luminance value represents a single

unsigned integer byte of data, ranging from 0 to 255, where 0 corresponds to a purely black pixel

and 255 to a purely white pixel [27].

In this work we deal with the luminance component only which is what motion

estimation engines utilize for encoding. This design choice stems from the observation that the

human eye is more sensitive to changes in brightness then colour. What this means is that when

10

humans take in the view of an image as a whole, a lack of colour does not adversely affect the

ability to discern motion.

2.2 Digital Video Compression

Digital video compression is performed by identifying and removing data redundancy in

order to reduce transmission bandwidth and overall file size. This reduction can be achieved on

two separate fronts: spatial, across a search region of a single frame, and temporal, across

multiple frames.

For example, in a single frame, spatial redundancy can be performed on a large consistent

background shade of blue sky. In this case the large repetitive area can be compressed through

the use of various discreet cosine transformations which map an image in terms of its light or

colour intensities [28]. Since this type of compression does not involve motion estimation, this

topic is not examined further.

Temporal compression is achieved through the removal of data repeated over a given

sequence of frames, for example background objects which are not likely to change over the

course of a given footage. Their redundancy can be taken advantage of by transmitting the

object‟s motion from frame to frame, which can result in considerable data compression. The

recording of motion is done in the form of MVs. Consequently, the motion estimation algorithm

is the process of deriving suitable MVs which best describe the movement of objects from one

frame to the next.

Each video frame is processed in terms of macroblocks (MBs), which are a 16x16 pixel

arrays. A frame that is in the process of being encoded is called a current frame. The goal of the

11

ME engine is to describe the current frame in terms of MBs already in the current frame or

within a set of reference frames. The reference frames may come before or after the current

frame as they are all buffered inside a decoder and can be referenced as needed. The ME

algorithm scans potential reference MBs in order to find the most suitable one for the current

MB. Once the ME engine decides on the optimal match, it encodes the current block of pixels as

an MV. The MV is calculated as the spatial and temporal displacement between the current and

reference MBs. Sample MVs are shown in Figure 2.

Figure 2 - Motion Estimation

Notable new features of the H.264/AVC compression standard include Variable Block

Size Motion Estimation (VBSME) and Multiple Reference Frame (MRF) searching. Both of

these features increase the computational complexity by expanding the search space and hence

the required calculations. MRF enables the engine to capture periodic motion across a number of

reference frames and from it extract data redundancy. VBSME has the capability of detecting

motion of smaller objects but can increase the transmission bandwidth in order to deliver a

higher quality stream and finer granularity of motion.

Currently, these techniques have been widely implemented as the basis of the H.264/AVC

video standard. With the optimization and enhancement of these techniques, as well as others,

12

the standard has been able to achieve compression ratios as high as 60:1 as well as improved

video quality [28]. The development of H.264/AVC was done by the International

Telecommunications Union – Telecommunications Standardization Sector (ITU – T) Video

Coding Experts Group (VCEG) and the International Organization for Standardization (ISO)

MPEG committee.

2.3 Variable Block Size Motion Estimation (VBSME)

The technique of matching MBs was used in previous video compression standards, such

as MPEG-2. However, the new H.264/AVC standard introduces VBSME which employs

subblocks smaller than the MB in order to detect finer granularity of motion within a video

sequence. For example, Figure 3 shows the same video frame encoded with three different

thresholds of subblock granularity.

Figure 3 – Encoding a Singe Frame with Different VBSME settings

In general, larger blocks are well suited for representing large areas of consistent motion

and patterns, such as backgrounds. Analysis and experimentation has concluded that a 16 pixel

by 16 pixel square MB size is the best compromise between computational complexity and

13

accuracy [29]. On the other hand, an MB is less likely to be able to precisely describe fine grain

objects which could move in several different directions. Reducing the subblock size increases

the likelihood of all pixels within that subblock having uniform velocity, and hence the MV

being a good fit for the motion of the block. On the other hand, finer granularity comes with an

increase in the amount of required computations as well as the total final MV count contained in

a single frame, which in turn can increase bandwidth.

The H.264/AVC standard specifies that the VBSME takes in an MB as input and

subdivides the block six times to produce a total of 41 subblocks shown in Figure 4. Motion

estimation is then performed on each subblock across multiple reference frames in order to

produce 41 integer MVs.

2.4 Search Windows and Multiple Reference Frames

When searching for possible matches for an MB, the integer motion estimation (IME)

searches through all of the provided reference frames within a designated search window. A

1 16x16 2 8x16 2 16x8 4 8x8

8 4x8 8 8x4 16 4x4

Figure 4 - MB and Subblocks Sizes in VBSME

14

common search window size is 48 pixels high and 63 pixels across, with a corresponding search

range of [-16, +16] vertically and [-24, +23] horizontally, centered on the position of the original

current MB.

Further, since the H.264/AVC specification allows for the encoder to search within

multiple reference frames (MRF), the MB is compared against one search window within each

frame. Commonly, industry applications support the use of at least 4 reference frames, but the

specification for allows up to 16. As such, the real-time design requirement used in this thesis is

4 reference frames for each target video resolution. The advantage of MRF is that it equips the

encoder with the ability to potentially detect periodic motion. Optimal MB matches can be

located within frames that are further away, prior to the immediately previous frame, where

periodic motion occurs. This technique can increase the number of acceptable matches for a

current MB, which in turn improves the compression ratio, as well as the video quality [30].

However, this advantage significantly increases the amount of computations required by the

encoder.

2.5 The Fractional Motion Estimation Algorithm

The input to FME consists of a set of motion vectors from the integer VBSME algorithm

[31].

15

 FME is used to refine the integer MVs at two finer granularities: at half pixel resolution

and quarter pixel resolution. In particular, half pixels are created for reference frames based on

Equation 2, where each pixel is defined as the weighted average of a row of six neighboring

integer pixels or a column of six neighboring half pixels, as shown in Figure 5 - (a). Quarter

pixels, on the other hand, are defined by Equation 3, where each quarter pixel is calculated as the

average of two of its neighboring integer/half pixels as shown in Figure 5 - (b).

 

32

)520205(

32

520205

543210
6

543210
0

hhhhhh
h

iiiiii
h







Equation 2 - Half Pixel Generation

Figure 5 - Half and Quarter Pixels

 i0 i1 i2 i3 i4 i5 h0

 h1

 h2

 h3

 h4

 h6

 h5

 q0

 q1 q3 q2
 h0

 h1 h2

 i0

(a) Pixels at Half Pixel Resolution (b) Pixels at Quarter Pixel Resolution

Integer

Pixel

Half
Pixel

Quarter

Pixel

 q4

16

2

)1(
3;

2

)1(
2

)1(
1;

2

)1(

2010
2

1000
0













hh
q

hh
q

hi
q

hi
q

Equation 3 – Quarter Pixel Generation

 Half and quarter pixels are used to refine the integer motion vectors in two stages. First

FME compares each integer motion vector to eight of its surrounding motion vectors at half pixel

resolution. Here, the Sum of Absolute Transformed Differences (SATDs) is used as a metric

which evaluates the suitability of the subblock. Equation 4 defines the SATD value for a 4x4

subblock. In the equation, Hadamard represents the 2-D Hadamard transform [24], C(i, j)

represents the value of pixel (i, j) in the 4x4 block, x and y represent the horizontal and vertical

displacement (due to the integer motion vector) of the pixel coordinates in the reference frame

with respect to the pixel coordinates in the 4x4 block, R(rx + x + i, ry + y + j) represents the

value of the corresponding pixel (rx + x + i, ry + y + j) in the reference frame, and rx and ry (as

defined in Equation 6) represent the range of motion estimation at half pixel resolution.

 The best motion vector at half pixel resolution is further refined at quarter pixel

resolution based on Equation 3. Here x and y represent the displacement of the reference pixels

with respect to pixels in the 4x4 block at half-pixel resolution, rx and ry (as defined in Equation

6) represent the search range at quarter pixel resolution, and the SATDs of the larger blocks are

similarly defined as the sum of all SATDs of their constituting 4x4 blocks.

17

 


 













































3

0

3

0

)3,3()3,2()3,1()3,0(

)2,3()2,2()2,1()2,0(

)1,3()1,2()1,1()1,0(

)0,3()0,2()0,1()0,0(

)3',3'()2',2'()3',1'()3',0'(

)2',3'()2',2'()2',1'()2',0'(

)1',3'()1',2'()1',1'()1',0'(

)0',3'()0',2'()0',1'()0',0'(

),(

';'

i j

MM

CCCC

CCCC

CCCC

CCCC

M

ryrxRryrxRryrxRryrxR

ryrxRryrxRryrxRryrxR

ryrxRryrxRryrxRryrxR

ryrxRryrxRryrxRryrxR

M

jiMSATD

CRHadamardM

C

R

yryryxrxrx

Equation 4 – Generating the SATD Value

   5.005.05.005.0  ryrx

Equation 5 - Half Pixel Range

   25.0025.025.0025.0  ryrx

Equation 6 – Half and Quarter Pixel Range

2.6 The FME Architecture

 The FME engine takes in as input a series of sets of 41 MVs, previously processed by an

integer VBSME engine, shown in Figure 6. The 41 MVs point to the seven types of variable

18

sized subblocks previously shown in Figure 4. The blocks are sent to the FME engine and

processed in various sized pixel array chunks per clock cycle, depending on the instantiated size

of the scalable FME.

41 motion
vectors

FRACTIONAL
MOTION

ESTIAMTION

Input
video

VARIABLE BLOCK
SIZE INTEGER

MOTION
ESTIMATION

41 x 9
SATD
values

Figure 6 - Motion Estimation Block

19

2.7 Hardware Implementation

 The following section describes two specific hardware implementation techniques used in

this work.

2.7.1 Finite Impulse Response Filter

 The FIR filter is the basic building block of the FME engine and is used to generate half-

pixels based on a weighted sum of its neighboring six integer pixels. In this section we describe

its hardware implementation. The original FIR filter weighted sum is shown in Equation 2. For

the purpose of a hardware implementation, the filter was optimized by pipelining and sharing

resources [3]. The logic is grouped so that the greatest common factors of each weight value are

processed together. In addition, the logic is setup so that the multiplier values are a power of two

and can be implemented as simple shift registers. Figure 7 shows the five stage pipelined data

flow, defined by Equation 7 which is mathematically equivalent to Equation 2.

             32444 41324132500  iiiiiiiiiih

Equation 7 - FIR Filter

20

2.7.2 The 2-D Hadamard Transform

 The 2-D Hadamard transform yields a convenient and fast hardware implementation

because all of its coefficients are either 1 or -1. The pixel bit vectors are transformed into a 2‟s

compliment format. When multiplying by 1, the original pixel bit vector is preserved, and when

multiplying by -1 the bit vector‟s most significant bit is inverted.

 The original equation for the 1-D Hadamard transform is shown in Equation 8, where a, b,

c and d are the four input pixels, and had_out_m_0, had_out_m_1, had_out_m_2, and

had_out_m_3, are the four output pixels. The alike terms are grouped together in order to avoid

redundant calculations resulting in Equation 9 which is mathematically equivalent to Equation 8.

The hardware implementation is shown in Figure 8. The intermediate pipeline Stage 1 of adders

ensures sharing of the like terms for the second stage of adders [24]. This way, only eight adders

are required instead of 12 if the adder structure was designed corresponding to the original

Equation 8.

Pipeline Stage 1

Pipeline Stage 2

Pipeline Stage 3

Pipeline Stage 4

Pipeline Stage 5

+ + +

x 4

-

+
x 4

/32

h0

i4 i5 i1 i3 i2 i0

Figure 7 - Pipelined Hardware Implementation of the FIR Filter

21

dcbamouthad

dcbamouthad

dcbamouthad

dcbamouthad









3___

2___

1___

0___

Equation 8 – 1-D Hadamard Transform

   
   
   
   dcbamouthad

dcbamouthad

dcbamouthad

dcbamouthad









3___

2___

1___

0___

Equation 9 – Hardware Optimized 1-D Hadamard Transform

+ + + +

had_out_m_0 had_out_m_2

 had_out_m_1 had_out_m_3

+ + + +

 a b c d

Pipeline Stage 1

Pipeline Stage 2

Figure 8 - The Hardware Implementation of the Optimized 1-D Hadamard Transform

22

2.8 Motivation

The motivation behind our work is rooted in the complexity requirements of video

processing. This complexity appears on many fronts, such as large memory storage occupancy,

high transmission bandwidth requirements, the number of GIPS for encoding and large amounts

of needed hardware resources. Below we provide sample numbers and requirements for each of

these, some corresponding to the entire H.264/AVC standard, and some for FME in particular.

Next, we formulate a complexity expression with regards to the processing requirements. Our

calculation is expressed in terms of pixel comparisons, which translates to multiple instructions,

the number of which depends on the way the algorithm is coded as well as the targeted device.

We also briefly explain the difference between full-search and fast-search FME algorithms.

Finally, we present a brief introduction into the concept of our new FME scaling approach.

Raw digital video in its uncompressed form requires a considerable amount of storage

space and transmission bandwidth. For example, uncompressed HD video requires 3.12 MB to

store data belonging to a single frame. Capturing a video stream at a real-time rate of 30 fps

requires 93.6 MB of storage for every second of video. This is a relatively large amount. In

comparison, a Blu-ray disk with 100 Giga Bytes of storage capacity would be able to hold only

18 minutes of uncompressed HD video. Similarly, compression plays a large role in today‟s

networked environments where limited bandwidths are present. The H.264/AVC codec can

achieve a 64% bit-rate reduction [1]. To process a large amount of data in real-time video

encoders are required to operate at the rate that digital video streams are captured. The

processing requirement will intensify as high definition resolutions and frame rates increase in

the future. This trend creates a requirement for continuously evolving processing hardware as

23

well as scalable solutions.

The computational requirement of the entire H.264/AVC codec, which FME is part of,

has also been examined. In particular, experimental results using the Joint Video Team Reference

Software (JM7.3) [32], have shown the video encoding algorithm to consume over 80 GIPS,

with a baseline profile Level 2 with CIF
1
 format, 5 reference frames and +/- 16SR

2
 [3]. The FME

has been measured to occupy 45% of the run-time in inter prediction [3]. Similarly, the

computational complexity for the SDTV
3
 and HDTV720p

4
 standards, with 4 reference frames

was measured by iprof software [33] (an instruction level software analyzer) to be 2470 and 3600

GIPS respectively [1], which is beyond the capability of general purpose processors, making

dedicated hardware a necessity.

The FME occupies a large part of the overall H.264/AVC engine. One hardware

implementation of the codec shows the FME consisting of over 400,000 gates, which amounts to

43% of the total chip resources used [1].

Next we explain the difference between full-search and fast-search FME algorithms, which

is necessary to understand our formulation of the computational complexity. Hardware

implementations of the FME algorithm can be classified into two types: fast search [34]-[43] and

full search [1][3][10]-[16] algorithms. Fast search approaches can potentially reduce the

computational complexity through algorithmic optimizations, at certain costs to video quality.

These shortcuts result in irregular memory accesses because the optimizations are designed to be

content dependent. This means that different video streams will result in a range of total

processing times and complexities. As a result fast search is less computationally traceable,

1
 CIF resolution:352x288 in PAL

2
 SR – Search Range

3
 SDTV resolution: 856x480

4
 HDTV720p resolution: 1780x956

24

meaning that it is difficult to measure the exact efficiency of specific computational blocks

because they will differ over various content. Full search algorithms eliminate the unpredictable

data flow by fully exploring the motion estimation search space to produce higher compression

ratios and video quality than fast search algorithms. The focus of this investigation is based on

full search whose computational complexity is not dependent on the video content as it is fitting

with our goal to quantify performance and identify the algorithmic scalability potential.

The following is our complexity analysis of the full-search half-pixel VBS-FME

algorithm. We can define the running time, T, of the FME algorithm by calculating the number of

operations that need to be performed per second, where each operation is considered to be a pixel

comparison between two corresponding pixel locations in the reference and current subblock.

The running time can be expresses in the following form:

fpsMBRriPT frameframexyMB 

Equation 10 - The Running Time of FME

1616

frameframe

frame

heightwidth
MB 

Equation 11 – Total Number of Macroblocks per Video Frame

Where the complexity scales linearly with each of the following variables:

 PMB – number of pixels in a single MB

 i – seven various subblock sizes

 rxy – nine half pixel candidate positions

 Rframe – number of reference frames; range [1, 16]

 fps – frames per second

 MBframe – total number of MBs in a single video frame

25

 widthframe – width of a video frame

 heightframe – height of a video frame

 The full-search half-pixel VBS-FME algorithm has the following fixed values: PMB = 256,

i = 7, rxy = 9. The remaining variables can be set within the encoder to suit the video stream to be

processed as well as the desired compression ratio. A sample setting where Rframe = 4, (widthframe

x heightframe) = 1920x1080 (HDTV) and fps = 30 yields a total of approximately 15.7 x 10
9
 pixel

comparisons per second.

 Having expressed the intense computational complexity trend, it follows to set out to

create algorithms with higher processing bandwidth, yet with efficient design implementation.

Next we describe our approach at scaling the FME algorithms.

 The size of macro/sub-blocks can range from 4x4 to 16x16 pixels, FME hardware must

carefully balance parallelism with hardware utilization. In particular, previous work [1][3][10]-

[16] has implemented designs that can simultaneously process 4, 8 or 16 pixels from a single row

of a macro/subblock at a time. In this work we found that expanding parallelism only along the

row, however, can quickly degrade utilization as the number of simultaneously processed pixels

is increased. Since under-utilized hardware reduces overall efficiency, it is important to create

designs that can increase parallelism while maintaining a high degree of hardware utilization.

 We observe that the parallelism of FME not only can be increased horizontally across a

row of pixels but also vertically along a column of pixels. Designs that increase parallelism in

the vertical direction can potentially provide higher performances while maintaining high

hardware utilization. In this work, we develop a scalable FME algorithm and compare the effect

of horizontal with vertical scaling.

26

Table 1 - The FME Scaled Designs

Type of Scaling Scaled FME Designs Source of Design

Vertical

M=10, N=1 Our work

M=4, N=1 Our work

M=2, N=1 Our work

Base Design M=1, N=1 [13]

Horizontal
M=1, N=2 [15]

M=1, N=4 [16]

Table 1 lists six scaled FME designs addressed in this work. The base and horizontal

design were previously implemented by [15] and [16] respectively. The three vertically scaled

designs have been developed in this research. The new designs are primarily based on the base

design, which was enhanced to form a scalable version. The vertically scaled designs were

enhanced to perform vertical data processing.

2.9 Chapter Summary

 In this chapter we presented the basics of video and video compression algorithms. In

particular we covered the mathematical calculation necessary for the FME algorithm which is

referenced in the later chapters where we introduce our hardware architecture design. The basics

of FME calculations are strongly correlated with design decisions we faced when scaling the

encoder. In addition we described a few techniques used during the hardware implementation as

well as the non-scaled FME architecture. Finally, we conclude the chapter with the motivation

behind our work which is rooted in the complexities of video encoding.

27

Chapter 3 - The Scalable FME Architecture

 This chapter describes the scalable FME architecture core. The description is presented in

a top down approach, starting with the overall data flow of the FME algorithm. We introduce the

architectural components of the FME core followed by how each of them is scaled in the design.

In this work, we employ a scalable full-search FME engine on an FPGA in order to

investigate the tradeoffs between used hardware resources and measured performance. We create

several versions of the FME architecture by introducing two scalable factors, M and N. By

varying these scalable factors we in turn vary the number of pixels simultaneously processed by

the engine per clock cycle, which translates to the amount of instantiated processing hardware.

M and N correspond to the height and width of the input pixel array taken in by the FME

engine every clock cycle. Figure 9 shows the six various sizes of the input pixel array

corresponding to the six scaled FME designs. The array sizes correspond to M x (4N+6) pixels.

These variables determine the total number of pixels that are simultaneously processed by the

system. This in turn determines the amount of resources instantiated for the hardware engine,

trading area and hardware utilization for parallelism and performance. By simultaneously

processing larger pixel arrays, we increase parallelization and reduce the total processing time of

the 41 motion vectors. For example, the horizontally scaled design in Figure 9 - (c) or the

vertically scaled design in (f) will process an 8x8 block in less clock cycles compared to the base

design in Figure 9 - (a).

The base design was previously implemented by [13]. The two horizontally scaled

28

designs, [M=1, N=2] and [M=1, N=4] were implemented by [15] and [16] respectively. Instead

of arbitrary increasing the width of the FME engine, the dimensions were chosen so that they

correspond to the width of various subblocks. The width of the FME input array is incremented

by 4 pixels at a time. This results in a corresponding block width of 4N pixels, which can be

effectively mapped to N 4-pixel wide Hadamard transforms shown in Equation 4. An SATD

value is defined over a 4-pixel wide subblock, which is the smallest common subblock size. For

this reason, processing less than 4-pixels wide chunks in hardware would be inefficient. In our

scalable design, when taking into account the surrounding pixels required for the 6-tap filter, the

total width of the input array is expressed as 4N+6. Overall, the dimensions of each scalable

input pixel array can be expressed M x (4N+6).

a) The base design: [M=1, N=1]
 Input pixel array: [1x10]

b) Horizontally scaled: [M=1, N=2]
Input pixel array: [1x14]

c) Horizontally scaled: [M=1, N=4]
Input pixel array: [1x22]

e) Vertically scaled: [M=4, N=1]*
Input pixel array: [4x10]

d) Vertically scaled: [M=2, N=1]*
 Input pixel array: [2x10]

f) Vertically scaled: [M=10, N=1]*
Input pixel array: [10x10]

 * Vertically scaled with respect to the base design

Figure 9 - The Input Array Sizes for 6 Scaled FME Designs

29

The three vertically scaled designs (d), (e) and (f) in Figure 9 were developed in this

work. The vertically scaled designs increase parallelism by processing multiple rows at the same

time. The design in (d) is capable of handling 20 pixels per clock cycle, whereas the design in (e)

can handle 40. The design in (f) takes in 100 pixels per clock cycle, corresponding to the size

4x4 subblock including all of its surrounding pixels.

The naming convention for our scaling is derived with respect to the base design. When

compared this way, we observe that the designs in (d), (e) and (f) are just as wide as the base

design (a), therefore we consider them to be vertically scaled. Similarly, the designs in (b) and (c)

are the same height as the base design but wider, therefore we consider them to be horizontally

scaled.

The overall structure of the scalable FME architecture is shown in Figure 10. The FME

contains two main components: the Interpolation Engine (IE) and SATD Processing Units (PUs).

The IE is further divided into the horizontal (H-IPU) and vertical interpolation units (V-IPU),

which generate half pixels. After interpolation, the PUs calculate SATD values for the nine

candidate vector half pixel refinement positions.

30

Figure 10 - The Scalable FME Architecture

 The base design was extended in order to integrate scalability across two different axes.

In particular, we modified the IE in order to vary it in width and height corresponding to the

scalable variables. To achieve this we extended the connectivity of its components, such as the

H-IPUs and V-IPUs. Further, we enhanced the V-IPUs in order to enable them to be used in

vertically scaled designs and process multiple rows of pixels per clock cycle. Similarly, in order

to match the vertically increased data throughput, we extended the PU design by adding

resources and altering the operation of its internal structure.

M x (4N+1) Horizontal
Interpolation Units (H-IPU)

(8N+3) Vertical
Interpolation Units (V-IPU)

array of
M x (8N+3)

pixels

array of
(2M+1) x (8N+3)

pixels

9N Processing Units
(PUs) with M Rows of

Throughput

Stage 1

Stage 2

Stage 3

Interpolation Engine

Integer Pixels from
VBSME

array of
M x (4N+6)

pixels

31

Finally, the described design was written in VHDL with an auto-tuning feature, which

enables the user to set the M and N scalable factors at compile time and then instantiates the

resources for the corresponding FME engine, based on the designs shown in Figure 10.

3.1 Interpolation Engine

 The IE takes integer pixels as input and generates interpolated half pixels as output. The

basic building block of the IE is the six-tap Finite Impulse Response (FIR) filter. Multiple FIR

filters are aggregated to compose Vertical (V-IPU) and Horizontal Interpolation Units (H-IPU)

described next.

3.1.1 Horizontal Interpolation Unit

Structurally, our H-IPU design is based on the non-scaled design in [13]. Here each H-

IPU contains a single FIR filter whose connectivity is shown in Figure 11. As previously

described, each FIR filter takes in a row of six adjacent integer pixels as its input and produces

one half pixel as its output. The generated half pixel is positioned between the third and fourth

input pixel. The output pixel array from Stage 1 is passed onto Stage 2 for further half pixel

generation. The entire pixel array output of Stage 1 consists of an array of M x (8N+3) pixels as

shown in Figure 10. In order to align the generated half and original integer pixels in the Stage 1

output array, buffers are placed alongside each H-IPU. Each buffer receives integer pixels and

delays them by five clock cycles, equivalent to the number of processing cycles required by the

32

FIR filters. This way the integer pixels and the half pixels experience the same logic delay and

the row-alignment is preserved for Stage 2 processing.

 In our design the number of H-IPUs in Stage 1 scales with M and N. Instead of being

positioned in a single row, as in the base design, the vertically scalable H-IPU units are arranged

in a 2D grid of size M x (4N+1). This allows the 2D grid to process M rows of pixels per clock

cycle. In the input integer pixel array, each of the M rows of pixels is mapped onto its own row

of H-IPUs for parallel processing. Further, within each row, the 4N+6 integer pixels are mapped

onto 4N+1 H-IPUs.

Figure 11 - The H-IPU Connectivity at Row m and Column n

The scalable 2D grid of H-IPUs makes up Stage 1 of the FME architecture. The H-IPUs

are used to generate multiple variable length rows of half pixels as is shown in Figure 12. The

remaining empty rows are generated by V-IPUs in Stage 2.

H-IPU_m_n

Row
M-1

Row
0

Row
m

n n+1 n+2 n+3 n+4 n+5

H_out_m_2n+1

Pixels
from

row m

5 stage
pipeline
buffer

H_out_m_2n H_out_m_2n+2

 I I I I

 I I I I

H I H I H I H I H

H I H I H I H I H

a) Input to Stage 1 of
FME architecture

b) Output of Stage 1 of
FME architecture

Figure 12 – Pixel Interpolation in Stage 1

33

3.1.2 Vertical Interpolation Unit

Our scalable V-IPU unit is based on the non-scaled V-IPU from the base design

implemented in [13], which contains a single pixel wide FIFO and six FIR filters. Here the V-

IPU receives a single pixel into an 8-bit wide FIFO, while the six FIRs calculate a single half

pixel per clock cycle. The output pixel column is composed of three pixels, an integer pixel

surrounded by two half pixels. One of the half pixels is the newly generated half pixel by the FIR

filter, and the other is a buffered half-pixel from the previous clock cycle. This way every output

column begins and ends with a half pixel which is required for mapping onto the Stage 3 PUs.

Our scalable V-IPU has enhancements which allow it to process multiple rows of pixels

per clock cycle and is shown in Figure 13. First, it contains a variable width and depth FIFO,

which can take in multiple pixels per clock cycle. Second, there are M FIR filters which

simultaneously generate M half pixels. Finally we connect 8N+3 V-IPUs in a row, which make

up Stage 2 of the FME architecture. Here the variable N allows for horizontal scaling while M

varies the resources inside the V-IPU allowing for vertical scaling.

 The scalable FIFO design is shown in Figure 13 - (b). Its size is determined by the

number of input pixels to the V-IPU per clock cycle. In particular, the M filters need to access a

total of M+5 pixels while a V-IPU receives only M input pixels per clock cycle. Consequently,

the FIFO needs to buffer five pixels from the previous cycles – resulting in a total FIFO size of

ceil((M+5)/M) x M pixels, shown in Figure 13 - (b). The width of the FIFO, w, is set to M, the

number of input pixels per clock cycle. The depth, d, is set as the minimal height needed in order

for the FIFO to hold ceil((M+5)/M pixels at width w.

34

Figure 13 - The nth Scalable V-IPU

FIR_0

FIR_M-1

FIR_1

FIFO

V-IPU

(a) V-IPU Architecture

Input column of
pixels from Stage 1

Output column of
pixels to Stage 3

H

H

H

V

V

V

H

V_out_0_n

V_out_1_n

V_out_2_n

V_out_2M-1_n

V_out_2M_n

H_out_0_n H_out_M-1_n

B_(h-1)M+1 B_(h-1)M B_hM-1

B_M-1

B_(h-2)M B_(h-1)M-1

B_0 B_1

B_(h-2)M+1

H_out_1_n

d =
ceil((M+5)/M)

rows

(b) FIFO Implementation and Connectivity

w = M
columns

FIR_0
1 Stage

Pipline

Buffer

FIR_1

5 Stage

Pipeline

Buffer

B_0 B_1 B_2 B_3 B_4 B_5

B_1 B_2 B_3 B_4 B_5 B_6

FIR_M-1

B_M-1

B_M

B_M+1

B_M+2

B_M+3

B_M+4

V_out_1_n

V_out_0_n V_out_2_n

V_out_3_n

V_out_4_n

V_out_2M-1_n

V_out_2M_n

(c) FIR Array Implementation and Connectivity

35

Each clock cycle, M new pixels are received by the FIFO, the rest of the pixels shift

down, and the bottom pixels are sent out and become part of the V-IPU output column. The FIRs

grab the necessary data from the FIFO and produce one half pixel each. The mapping of the

pixels between the FIFO and the FIRs is shown in Figure 13 - (c). The first filter, FIR_0, takes in

the top six pixels from the FIFO, and each subsequent FIR has an input pixel array which is

shifted down by one pixel.

The V-IPU in the [M=10, N=1] FME design is an exception to the previously described

scalable approach for the following reason. In this case the design takes in a 4x4 block of

elementary pixels centered inside a 10x10 subblock of surrounding pixels. The V-IPU generates

half pixels only around the elementary pixels, hence creating a total of only five half pixels.

Therefore, each V-IPU can be reduced by using only five FIR filters, thus saving hardware

resources while increasing data throughput. Similarly, for each clock cycle, within the FIFO the

entire 10 pixels are flushed and replaced by 10 new ones; therefore the FIFO is reduced to a

simple register, 10 pixels in size.

H_out_0_n H_out_9_n

B_9 B_0 B_1

H_out_1_n

(a) FIFO Implementation and Connectivity

FIR_0 FIR_1

B_0 B_1 B_2 B_3 B_4 B_5

B_1 B_2 B_3 B_4 B_5 B_6

FIR_4

B_4

B_5

B_6

B_7

B_8

B_9

V_out_0_n

V_out_1_n

V_out_2_n

V_out_7_n

V_out_8_n

(b) FIR Array Implementation and Connectivity

Figure 14 - V-IPU for the [M=10, N=1] Design

36

 The V-IPUs are used to generate the remaining half pixels which are located in between

the rows of integer pixels, shown in Figure 15. The newly generated half pixels and the FIFO

output pixels make up an output column produced by a single V-IPU. The aggregated columns of

all the V-IPUs make up the output from Stage 2 which is the M x (8N +3) pixel array. Finally, the

output pixel array from Stage 2 is forwarded to Stage 3, to the 9N Processing Units (PUs) for

SATD calculations.

3.2 SATD Processing Unit

 Each PU has two input streams: the 4x4 subblocks from the current frame and the 4x4

subblocks from the reference frame. The current frame is the one to be encoded and the reference

frames are the potential matches for the subblock from the current frame. The PUs function is to

generate SATD values. The SATD represents how good of a match the reference 4x4 pixel

subblock is to the current 4x4 subblock.

Our PU design is based on the non-scalable design previously implemented in [13],

where a single set of 9 PUs processes one row of four pixels per clock cycle. Our scalable

version also encompasses the horizontally scaled PU design implemented in [15] and [16]. Here,

H I H I H I H I H

V V V V V V V V V

V V V V V V V V V

V V V V V V V V V

H I H I H I H I H

H I H I H I H I H

H I H I H I H I H

a) Stage 2 input
pixel array

b) Stage 2 output
pixel array

Figure 15 – Pixel Interpolation in Stage 2

37

2 and 4 sets of PUs were placed adjacently in order to process 8 or 16 elementary pixels at once.

We denoted the horizontal scaling using the N scalable variable which instantiates N adjacent

sets of 9 PUs. Next we enhanced the PU with additional resources which allow it to process

multiple rows of pixels per clock cycle and as a result to be vertically scalable.

The resulting scalable PU architecture is shown in Figure 16. The PU is composed of

three processing blocks: Residue Generators, a 2-D Hadamard Transform and an Absolute

Function with Summation Units. The architecture of each of the parts is described in the next

sections.

M sets of Residue Generator processing
blocks

9N sets of 2-D Hadamard Transform
processing blocks with M rows of

throughput per clock cycle

M sets of Absolute Function and

Summation Units

M x (4N+1) Horizontal
Interpolation Units (H-IPU)

(8N+3) Vertical Interpolation
Units (V-IPU)

9N Processing Units (PUs)
with M Rows of

Throughput

Interpolation Engine

Figure 16 - The Processing Unit Architecture

38

3.2.1 Vertical Scaling of the PU

 Vertical scaling requires an increase in the PUs throughput. To allow for this the PUs are

enriched with additional hardware in order to process the additional rows. In particular, for every

additional row, each PU requires an extra set of residue generators, two extra 1-D Hadamard

transform units, and one absolute value and summation unit. For example, a PU design with a

throughput of two rows per clock cycle is shown in Figure 17 - (b). This PU corresponds to the

[M=2, N=1] design and it calculates one SATD every two clock cycles. The PU design with a

throughput of four rows per clock cycle is shown in Figure 17 - (c), corresponding to [M=4, N=1]

and [M=10, N=1] designs, capable of producing an SATD value every clock cycle.

39

Figure 17 - The Vertically Scaled PU Designs with Various Data Throughput Rates

1x4 Residue Generators
and 1-D Hadamard

1-D Hadamard and
Absolute Sum

1x4 Residue Generators
and 1-D Hadamard

1x4 Residue Generators
and 1-D Hadamard

1-D Hadamard and
Absolute Sum

1-D Hadamard and
Absolute Sum

1x4 Residue Generators
and 1-D Hadamard

1x4 Residue Generators
and 1-D Hadamard

1x4 Residue Generators
and 1-D Hadamard

1x4 Residue Generators
and 1-D Hadamard

1-D Hadamard and
Absolute Sum

1-D Hadamard and
Absolute Sum

1-D Hadamard and
Absolute Sum

1-D Hadamard and
Absolute Sum

re
g

a b c

a

d

a b c

a

d

a

b

c

a

d

a0 b0 c0 d0

a1 b1 c1 d1

a0 b0 c0 d0 a1 b1 c1 d1

a0

b0

c0

d0

a1

b1

c1

d1

e

f

g

h

e f g h

e f g h

e0

f0

g0

h0

e1

f1

g1

h1

e0 f0 g0 h0 e1 f1 g1 h1

e0 f0 g0 h0

e1 f1 g1 h1

a0 b0 c0 d0

a1 b1 c1 d1

a2 b2 c2 d2

a3 b3 c3 d3

a0

b0

c0

d0

a2

b2

c2

d2

a1

b1

c1

d1

a3

b3

c3

d3

(a) Throughput – 1 Row per Cycle (b) Throughput – 2 Rows per Cycle

(c) Throughput – 4 Rows per Cycle

40

3.2.2 Residue Generators

 When we scale vertically we instantiate M sets of Residue Generators in parallel. Each

set of residue generators processes a rows four pixels. Two sets of four pixels are inserted into

the residue generator every clock cycle, as shown in Figure 18. One row of four pixels comes

from the 4x4 subblock from the current frame, and the other from the 4x4 subblock from the

reference frame. The residue generator is composed of four units, each calculating the difference

between the corresponding current and reference frame pixels from the input rows. The output of

the residue generators is passed onto the 2-D Hadamard transform unit.

Residue Generator

2-D Hadamard Transform

Absolute Function and Summation

Units

− − − −

 c_1 c_2 c_3 c_4

 V_out_m_0 V_out_m_2
 V_out_m_1 V_out_m_3

Current
Pixels

Interpolated
Reference

Pixels

 r_m_0 r_m_1 r_m_2 r_m_3

Processing Unit Architecture

Figure 18 - The Residue Generator

41

3.2.3 The 2-D Hadamard Transform

 The 2-D Hadamard transform is implemented in three parts: a single transpose shift

register placed between two sets of 1-D Hadamard transform units, as shown in Figure 19. Each

row of four residue pixels is sequentially processed by the three parts of the 2-D Hadamard

Transform, and the output is passed onto the Absolute Function and Summation Units.

The Transpose Shift Register

 The transpose shift register takes in a 4x4 pixel subblock and outputs its transpose which

is then passed onto the second 1-D Hadamard Transform. Two sample input 4x4 subblocks, A,

are shown in Figure 20 - (b), and the outputted transpose, A
T
, is shown in Figure 20 - (c).

1-D Hadamard Transform

Transpose Shift Register

1-D Hadamard Transform

Residue Generator

2-D Hadamard Transform

Absolute Function and Summation
Units

Figure 19 - 2-D Hadamard Transform

42

Active data bus Not active data bus

2 1 3 4

1

2 3

4

4x4
transpose

register

4x1 pixel

bus

Input
register

Output

register

6 5 7 8

10 9 11 12

2 1

5

3

6 7

4

8

14 13 15 16

18 17 19 20

6 5

9

7

10 11

8

12

1

2 3

4

10 9

13

11

14 15

12

16

2 1

5

3

6 7

4

8

22 21 23 24

12 11

15

18

16 17

22

21

4 3

7

20

8 19

24

23

11 10

14

12

15

16

18

17

3 2

6

4

7 8

20

19

9 13 5 1

26 25 27 28

10 14 6 2

30 29 31 32

11 15 7 3

18 12

16

22

17 21

26

25

20 4

8

24

19 23

28

27

34 33 35 36

12 16 8 4

38 37 39 40

24 20 28 32

22 18

17

26

21

1

25

30

29

24 20

19

28

23 27

32

31

21 17

33

25

34 35

29

35

23 19

18

27

22 26

31

30

 cc. 6 cc. 7 cc. 8 cc. 9 cc. 10
 shift left shift left shift left shift left shift left

26 25

29

27

30 31

28

32

18 17

21

19

22 23

20

24

10 9

13

11

14 15

12

16

2 1

5

3

6 7

4

8

26 25

29

27

30 31

28

32

18 17

21

19

22 23

20

24

11 15

16

7

12 8

3

4

9 13

14

5

10 6

1

2

a) The transpose shift
register architecture

d) Cycle accurate transpose shift register operation

c) OUTPUT: A
T

Transposed
output of two 4x4
pixel subblocks

b) INPUT: A
Two 4x4 pixel
subblocks to be
processed

 cc. 1 cc. 2 cc. 3 cc. 4 cc. 5
 shift left shift down shift down shift down shift down

6

5

8

7

2

1

4

3

row

6

5

8

7

2

1

4

3

row

Figure 20 - Operation of the Transpose Shift Register for the [M=1, N=1] PU

43

 Figure 20 - (c) shows a cycle by cycle sample data flow operation of the transpose shift

register. The operation depicted is for a PU from the [M=1, N=1] design, which produces one

SATD value every four clock cycles, and shifts a single row/column at a time.

 The transpose shift register toggles between a shift-down and a shift-left mode every time

an entire 4x4 subblock has been written into the register. In the shift-down mode, pixels from the

4x4 subblock are written into the register horizontally, as is depicted in Figure 20 - (d), in cc.1 to

cc.5. In general, the register shifts in M rows per clock cycle, while the 4x4 block originally

stored in the transpose shift unit is read out horizontally M rows per clock cycle. This continues

until the entire 4x4 block originally stored in the transpose register unit is completely replaced by

the new 4x4 block. At that time the transpose shift register switches to the shift-left mode. Now

the next 4x4 block is written into the unit vertically 1 column per clock cycle, as is depicted in

Figure 20 – (d), in cc. 6 to 10. In general, the register takes in M columns per clock cycle, while

at the same time the stored 4x4 block is read out vertically M columns at a time.

 The frequency of the switch between shift-down and shift-right modes is determined

upon the throughput, M. The transpose register switches every 4 and 2 clock cycles for the [M=1,

N=1] and [M=2, N=1] designs correspondingly. The [M=4, N=1] and [M=10, N=1] design

process an entire 4x4 pixel array in a single clock cycle, therefore not requiring a transpose shift

register and shift-down/left modes. Instead the 16 pixels are directly mapped between the 1-D

Hadamard Transforms and the absolute function and summation units.

 As we scale the FME architecture to increase data throughput and so the timing of the

switch between the shift modes must be preserved with respect to the transition between adjacent

4x4 subblocks. The effects of this on the scaled designs of FME are discussed in terms of vertical

data alignment in Chapter 4.3.3.

44

3.2.4 Absolute Function and Summation

 We instantiate M sets of absolute function and summation units in parallel. After the

Hadamard transform, the four output pixels pass though the absolute function units, followed by

summation logic. The resulting output value is representative of a single row of four pixels. Four

of these output values are accumulated and summed to produce the final SATD for a single 4x4

subblock. Similarly, to calculate the SATD value of a larger subblock, the SATD values of its

composing 4x4 subblock are accumulated and summed.

Residue Generator

2-D Hadamard Transform

Absolute Function and Summation
Units

| |

 +
+

| | | | | |

+

 ab_0 ab_1 ab_2 ab_3

satd_1

Figure 21 - The Absolute Function and Summation Units

45

3.2.5 Horizontal Scaling of the PU

The number of PUs required to simultaneously calculate all of the SATDs for an array of

pixels is determined by the width of the Stage 3 input pixel array which is of (2M+1) x (8N+3)

size. Rows of (2M+1) x (8N+1) pixels are forwarded to PUs in Stage 3 while the remaining left

most and right most two columns can be stored for later use in the quarter pixel calculations, as

shown in Figure 22. At half pixel resolution, each row of this array contains (8N+3) integer

pixels, out of which 4N are elementary integer subblock pixels belonging to N 4x4 subblocks.

Each SATD is defined over an array of 4x4 pixels was shown in Equation 4. To maximize

parallelism a set of 9 PUs is used to handle the calculation of nine candidate refinement positions

(shown in Figure 23) and their SATD values for one 4x4 block. When scaling horizontally, we

simply instantiate N sets of 9 PUs, which are capable of processing multiple 4x4 subblocks side

by side. The pixels for each 4x4 subblock are mapped onto a single set of nine PUs, and the nine

candidate positions are calculated by the set.

Figure 22 - Pixel Layout at the Output of Stage 2 (V-IPUs)

h

8N+1 Columns (4N Integer Pixels)

i

h

2M+1
Rows

h h h h h h h h h

h i h i h i h i

h i

h h h h h h h h h h

h i h i h i h i

h h h

h i i

h h h

h i i

h i h i h i h i h i

h h h h h h h h h h

h i i

h h h

h

h

h

h

h

h

h

i

h

i

i

h

i

h

i

h

i

h

Columns used for quarter pixel refinement

Half pixel Integer pixel h i

46

 In Figure 24, we show how a single 4x4 subblock with its interpolated half pixels is

mapped onto a single set of nine PUs. Every one of the nine PUs receives an array of 4x4 pixels,

shown in black. The middle PU, #5, receives the original integer pixels. The surrounding eight

PUs receive the shifted and interpolated version of the 4x4 original subblock set. The offset

vectors for the 4x4 block and the nine PUs correspond to the offset vectors for the single integer

pixel and its eight surrounding half pixel candidate positions, shown in Figure 23. Depending on

the vertical design in question, M rows of four pixels are forwarded to the array per clock cycle.

1 2 3

7 8 9

4 5 6

Offset vector

Figure 23 - Nine Half Pixel Candidate Positions and Their Offset Vectors for One Integer Pixel

47

Stage 2 Output 4x4
Array

PU #7 PU #8 PU #9

PU #1 PU #2 PU #3

PU #4 PU #5 PU #6

Half pixel Integer pixel Pixel sent to the
PU

M x N Pixel Bus

Figure 24 - Mapping a 4x4 Subblock to a Single Set of 9 PUs

48

3.3 Chapter Summary

In this chapter we have presented our scalable FME architecture and its two main

components: the IE and the PU. We introduced the basic building block of the IE which is the

FIR filter, and how it is implemented in order to create H-IPUs and V-IPUs. We showed how the

PU is implemented by decomposition into three main parts: Residue Generators, 2-D Hadamard

Transform, Absolute Function and Summation Units. We further explored the data flow between

the IE and PU and the way the pixels map onto sets of 9 PU. We build upon the architecture

details presented in this chapter in order to develop further concepts, such as data alignment with

respect to vertical scaling. In particular we show how vertical alignment is influenced by the

number of clock cycles it takes for the PU‟s 2-D Hadamard Transform to process a set of 4x4

pixels.

49

Chapter 4 - Design Space Exploration

The analysis techniques described in this chapter, along with the comparisons of the FME

engines and their pixel processing schedules, set the stage for the next chapter which analyzes

the overall scalability of each design. We describe factors used to compare the tradeoffs between

the six scaled FME designs. First, we introduce the concept of block decomposition, which leads

into a discussion of data redundancy. Next, we define three factors which influence hardware

utilization: input data variance, throughput variance and vertical alignment, and derive equations

for estimating the overall hardware resource usage. Finally, we calculate and the total number of

clock cycles it takes each engine to process a set of 41 subblocks.

4.1 Block Decomposition

Block decomposition is a method of breaking up the macro/sub-blocks into smaller block

sizes. If the processing hardware is narrower than the subblock width, the subblock must be

decomposed into smaller chunks and the chunks processed sequentially. The next two sections

describe block decomposition approaches for the vertically and horizontally scaled designs.

50

4.1.1 Block Decomposition for Vertically Scaled Designs

The block decomposition approach depends on the width of the FME unit. Consequently,

the base design and two of the vertically scaled designs, [M=2, N=1] and [M=4, N=1], have the

same decomposition schedule. The third vertically scaled design, [M=10, N=1], is an exception

due to inherent additional design requirements, discussed later in this section.

The [M=1, N=1] design is wide enough to process rows of subblocks that are four pixels

wide, plus the six surrounding pixels, three on each side. The macro/sub-blocks that are wider

than four elementary pixels must be decomposed into a series of 4-pixel wide blocks. For

example, Figure 25 shows a decomposition approach for a 16x16 MB. The block is shown with

its surrounding pixels, required by the 6-tap FIR filters, resulting in a total of 22x22 a pixel array.

When the MB is decomposed, each vertical strip, or sweep, contains some elementary block

pixels encircled by surrounding pixels required by the FIR filter. The FIR filter requires six

adjacent integer pixels therefore generating half pixels around the edges of the decomposed

block requires padding of three extra pixels.

The total pixels in all four sweeps amount to a greater number then in the original 22x22

array, which results in redundant processing described in Section 4.2.

51

Figure 25 - Decomposition Schedule for a 16 x 16 Block for the [M=1, N=1] Design

 In Table 2 we show the decomposition approach for all of the other subblock types, for

the same [M=1, N=1] design. The left portion of the table, columns 2 and 3, contains information

about the subblocks in their entirety, where xs-i and ys-i are subblocks dimensions including their

surrounding pixels. The right side of the table, columns 4, 5 and 6, show details of the subblock‟s

decomposition, where xs-dec-i and ys-dec-i represent the block‟s height and width respectively, also

including the surrounding pixels. The si term is the number of decomposed smaller blocks, or the

number of vertical sweeps performed by the IE.

Note that the ys-dec-i value is the same as the height of the block, which determines the

length of each sweep. The xs-dec-i value is the same across all block types because the [M=1, N=1]

FME engine is fit for processing rows that are 10 pixels wide. Consequently, block

decomposition enables processing of wider subblocks with sequential multiple sweeps. For

example, the 16x16 MB requires four sweeps, as shown in Figure 25. On the other hand, the

+ + +

xs-i = 22 pixels xs-dec-i = 10 pixels

(a) A 16x16 MB and
Surrounding Pixels

Additional Pixels
Required by the
Interpolator (Not
Redundant)

Macro/Sub-Block
Pixels

Additional Pixels
Required by the
Interpolator
(Redundant)

(b) Decomposition Schedule for
the 16x16 MB

1 pixel

sweep 1 sweep 2 sweep 3 sweep 4

ys-dec-i = 22
pixels

ys-i = 22
pixels

52

smallest 4x4 block requires only a single sweep.

Table 2 - The Block Decomposition Schedule for the [M=1, N=1], [M=2, N=1], [M=4, N=1] Designs

Subblock

Type

Before Block

Decomposition
After Block Decomposition Number

of

Vertical

Sweeps

Subblock Dimensions Subblock Dimensions

Width Height New Width New Height

i xs-i ys-i xs-dec-i ys-dec-i si

1 22 22 10 22 4

2 14 22 10 22 2

3 22 14 10 14 4

4 14 14 10 14 2

5 10 14 10 14 1

6 14 10 10 10 2

7 10 10 10 10 1

The [M=10, N=1] design has a different decomposition schedule than the other vertically

scaled designs. The schedule breaks all macro/sub-blocks into 4x4 elementary pixel arrays, or

10x10 pixel arrays including the surrounding pixels. The interpolators process the 10x10 pixel

arrays, one per clock cycle, where the subblock‟s elementary pixels are centered in the middle of

the 10x10 array as shown in Figure 26. In this case, the data fed into the interpolator needs to

match the exact throughput of the PU, due to a vertical alignment requirement explained in

Section 4.3.3. This decomposition results in a significant increase in data redundancy, discussed

in Section 4.2.

In Table 3, note that the xs-dec-i and ys-dec-i are now always 10, and only the si value varies

between block types.

53

Table 3 - The Block Decomposition Schedule for the [M=10, N=1] Design

Subblock

Type

Before Block

Decomposition
After Block Decomposition

Number of

Vertical

Sweeps
Subblock Dimensions Subblock Dimensions

Width Height New Width New Height

i xs-i ys-i xs-dec-i ys-dec-i si

1 22 22 10 10 16

2 14 22 10 10 8

3 22 14 10 10 8

4 14 14 10 10 4

5 10 14 10 10 2

6 14 10 10 10 2

7 10 10 10 10 1

Figure 26 - 16x16 Block Decomposition and Data Redundancy for the [M=10, N=1] Design

xs-i = 22 pixels

ys-dec-i= 10
pixels

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

 cc.

 cc.

 cc.

 cc.

xs-dec-i = 10
pixels

ys-i = 22
pixels

Additional Pixels
Required by the
Interpolator (Not
Redundant)

Macro/Sub-Block
Pixels

Additional Pixels
Required by the
Interpolator
(Redundant)

54

4.1.2 Block Decomposition for Horizontally Scaled Designs

The two horizontally scaled FME designs have a different block decomposition schedule

due to the increased width of the IE.

The widest FME design, [M= 1, N=4] can handle an input row size of 22 pixels, which is

fit for the size of an MB (16x16 + surrounding pixels). Unlike in vertical scaling, in this design,

the MB can be processed without requiring any block decomposition, as is shown in Figure 27 –

(a). The remaining subblock types are also processed without requiring block decomposition. An

additional feature in this design is that the 4-pixel wide subblocks are narrow enough to be

placed side by side, two at a time, as is shown in Figure 27 – (c). This way the processing time

for 4-pixel wide subblocks is halved, while the hardware utilization increased.

Table 4 - The Block Decomposition Schedule for the [M=1, N=4] Design

Subblock

Type

Before Block

Decomposition
After Block Decomposition

Number of

Vertical

Sweeps
Subblock Dimensions Subblock Dimensions

Width Height New Width New Height

i xs-i ys-i xs-dec-i ys-dec-i si

1 22 22 22 22 1

2 14 22 14 22 1

3 22 14 22 14 1

4 14 14 14 14 1

5 10 14 20 7 1

6 14 10 14 10 1

7 10 10 20 5 1

55

Figure 27 - Hardware utilization for the [M=1, N=4] design for 16x16, 8x8, and 4x4 blocks

Similarly, the horizontally scaled [M=1, N=2] FME design requires less block

decomposition then the vertical designs. In this case, all subblocks can be processed in their

entirety, except for the two 16 pixel wide blocks: 16x16 and 16x8. In this case the blocks have to

be decomposed into two vertical sweeps. For example, the MB is decomposed into two parts,

each 14 pixels wide, as is shown in Figure 28.

In general, both of the horizontally scaled designs benefit from the lack of decomposition

by decreasing the amount of clock cycles required to process the subblocks. On the other hand,

processing the less then fitting blocks has disadvantages, such as hardware utilization.

(a) Processing one
16x16 block

(b) Processing one
8x8 block

(c) Processing two 4x4
blocks

10 pixels 10 pixels

14 pixels

22 pixels – fully utilized

4 pixels of
unused

input
bandwidth

4 pixels of
unused

input
bandwidth

2 pixels of

unused input
bandwidth

1

pixel

Additional Pixels
Required by the
Interpolator (Not
Redundant)

Macro/Sub-Block
Pixels

Additional Pixels
Required by the
Interpolator
(Redundant)

56

Table 5 - The Block Decomposition Schedule for the [M=1, N=2] Design

Subblock

Type

Before Block

Decomposition

After Block

Decomposition Number of

Vertical

Sweeps
Subblock Dimensions Subblock Dimensions

Width Height New Width New Height

i xs-i ys-i xs-dec-i ys-dec-i si

1 22 22 14 22 2

2 14 22 14 22 1

3 22 14 14 14 2

4 14 14 14 14 1

5 10 14 10 14 1

6 14 10 14 10 1

7 10 10 10 10 1

Figure 28 - Decomposition Schedule for a 16 x 16 Block for the [M=1, N=2] Design

xs-i = 22 pixels xs-dec-i = 14 pixels

(a) A 16x16 MB and
Surrounding Pixels

Additional Pixels
Required by the
Interpolator (Not
Redundant)

Macro/Sub-Block
Pixels

Additional Pixels
Required by the
Interpolator
(Redundant)

(b) Decomposition Schedule for
the 16x16 MB

1 pixel

sweep 1 sweep 2

ys-dec-i = 22
pixels

ys-i = 22
pixels

+

57

4.2 Data Redundancy

The block decomposition approach leads to redundant calculations done by the IE on the

surrounding pixels belonging to the decomposed sweeps. Data redundancy could potentially

increase local memory bandwidth usage and waste hardware resources filtering the same pixels

twice. The next section explains how we calculate the exact data redundancy percentages for

each of the six FME designs, followed by a discussion on redundancy trends in vertical and

horizontal scaling.

4.2.1 Calculating Data Redundancy

Data redundancy, RM,,N, is the percentage difference between the total number of

processed pixels when all the subblocks are in one piece, Ptotal, and the total number of pixels

when the subblocks are decomposed, Ptotal-dec. For each scaled FME, we calculate percentage of

data redundancy using the following equation:

Where,

RM,N – data redundancy for processing 41 subblocks (in pixels)

Ptotal – total number of pixels processed for all 41 subblocks before block

 decomposition

%100, 


 

total

totaldectotal
NM

P

PP
R

Equation 12 – Percent of Data Redundancy

58

Ptotal-dec – total number of pixels processed for all 41 subblocks after block

 decomposition

Equation 13 shows how to calculate Ptotal. Pblock-i is the total number of integer pixels for

each subblock, in its entirety. It is calculated by multiplying the subblock dimensions which

include the surrounding pixels. Next, we calculate Ptype-i which is the total number of pixels per

subblock type. After block decomposition, we calculate Pblock-dec-i which is the total number of

pixels when taking into account the number of sweeps required as well as the new xs-dec-i and ys-

dec-i values. Similarly as in Equation 14, we calculate the new Ptype-dec-i and Ptotal-dec values.

Where,

xs-i – width of an entire subblock, with surrounding pixels

ys-i – height of an entire subblock, with surrounding pixels

Equation 13 – The Total Number of Pixels Processed for all Subblock Types

Equation 14 - The Total Number of Pixels Processed for all Subblock Types After Block Decomposition
















7

1i

idectypedectotal

iidecblockidectype

iidecsidecsidecblock

PP

bPP

syxP
















7

1i

itypetotal

iiblockitype

isisiblock

PP

bPP

yxP

59

xs-dec-i – width of a decomposed subblock, with surrounding pixels

ys-dec-i – height of a decomposed subblock, with surrounding pixels

Pblock-i – number of pixels processed per single subblock i

Ptype-i – total number of pixels processed for an entire subblock type i

Pblock-dec-i – number of pixels processed per single subblock i after block

 decomposition

Ptype-dec-i – total number of pixels processed for an entire subblock type i after block

 decomposition

si – number of vertical sweeps required for subblock type i

bi – total number of subblocks of type i

Finally, the total data redundancy is calculated as the percentage difference between the

two totals: Ptotal and Ptotal-dec, based on Equation 12. Table 6 shows the total data redundancy

percentages for each of the six scaled designs.

Table 6 - Data Redundancy for Six FME Scaled Designs

Type of Scaling Scaled FME Designs
Data Redundancy

RM, N (%)

Vertical

M=10, N=1 77%

M=4, N=1 31%

M=2, N=1 31%

Base Design M=1, N=1 31%

Horizontal
M=1, N=2 5%

M=1, N=4 0%

60

4.2.2 Data Redundancy in Vertically Scaled Designs

Generally, the block decomposition schedule depends on the width of the FME engine,

although the [M=10, N=1] design is an exception to this trend. The same decomposition schedule

for the [M=1, N=1] design is used for the [M=2, N=1] and [M=4, N=1] designs since their

Interpolation Engines share the same input pixel array width of 10 pixels. Consequently, as

shown in Table 6, all three designs share the same data redundancy of 31%.

Table 7 – Data Redundancy Analysis and Block Decomposition for the [M=1, N=1] Design

Before Block Decomposition After Block Decomposition

Subblock

Type

Number

of

Subblocks

Per Type

Subblock

Dimensions

(With

Surrounding

Pixels)

Pixels Per

Subblock

Total

Pixels Per

Subblock

Type

Subblock

Dimensions

(With

Surrounding

Pixels)

Number

of Vertical

Sweeps

Total

Pixels Per

Subblock

Total

Pixels Per

Subblock

Per Type

Width Height
New

Width

New

Height

i n xs-i ys-i Pblock-i Ptype-i xs-dec-i ys-dec-i si Pblock-dec-i Ptype-dec-i

1 1 22 22 484 484 10 22 4 880 880

2 2 14 22 308 616 10 22 2 440 880

3 2 22 14 308 616 10 14 4 560 1120

4 4 14 14 196 784 10 14 2 280 1120

5 8 10 14 140 1120 10 14 1 140 1120

6 8 14 10 140 1120 10 10 2 200 1600

7 16 10 10 100 1600 10 10 1 100 1600

 Ptotal 6340 Ptotal-dec 8320

In the case of [M=10, N=1], 396 out of 484 integer pixels from the 22x22 array must be

processed twice. The redundancy values for the remaining five subblock types are shown in

column 6 of Table 7. The data redundancy decreases as the size of the subblock decreases

because the extent of the necessary decomposition is reduced. For example, the 8x4 subblock is

61

decomposed into two vertical sweeps of 4x4 subblocks, resulting in only 60 redundantly

processed pixels.

The extensive block decomposition significantly increases the data redundancy. In this

case, decomposition is performed both horizontally and vertically. In the case of the 16x16 MB,

the number of redundantly processed pixels is 1116 as opposed to only 396 as in the [M=1, N=1]

design. Overall, after decomposition, the IE performs a total of 4860 redundant pixel calculations,

and the data redundancy is calculated to be 77%. This is the highest redundancy across all six

scaled FME designs.

4.2.3 Data Redundancy in Horizontally Scaled Designs

As previously mentioned, the IE in the [M=1, N=4] design is wide enough to process all

subblock sizes without any block decomposition. For this design, the data redundancy is 0%, as

none of the pixels have to be processed twice. With respect to data redundancy, this is the best

performing design.

In the case of the [M=1, N=2] design, only two out of seven types of subblocks require

decomposition, resulting in a total of only 300 redundant pixels, and a total data redundancy is

only 5%.

4.3 Hardware Utilization

We scale the FME design in hope to achieve an increase in data throughput and

62

processing speed. Hardware utilization tells us how efficiently we use the additionally

instantiated hardware resources. When scaling the design and increasing the size of the hardware

it is important to keep a high level of resource utilization and in turn achieve the greatest amount

of speed up.

In our design space, the three factors which influence hardware utilization are input data

width variance, throughput variance and vertical alignment. The next three sections explain the

three factors in detail, followed by the derivation of equations used to calculate the hardware

utilization numbers.

4.3.1 Input Data Width Variance

The IE can be potentially fully utilized when its input data bandwidth is fully utilized.

This is the case when the Interpolation Engine‟s input pixel array width is smaller or equal to the

subblock‟s width, as in the vertically scaled designs. For this reason, the Interpolation Engine‟s

utilization for the vertically scaled designs can potentially be 100%. Vertical data alignment

compromises this ideal result in the case of the [M=4, N=1] and [M=2, N=1] designs.

On the other hand, when the IE‟s input pixel array is wider than the subblock width, as is

the case in horizontally scaled designs, some of the hardware is left idle during the processing of

the smaller subblocks.

For example, some of the hardware from the [M=1, N=4] design must sit idle when

processing subblocks that are less than 16 pixels wide. In particular, as shown in Figure 27 - (b),

when processing 8-pixel wide subblocks, the IE (which are designed to process 22 pixels per

63

clock cycle) only process 14 pixels at a time. By only processing 14 pixels, the utilization of the

interpolators, for that particular block, is reduced from 100% to 63%, according to the following

calculation:

%63%100
22

14


pixels

pixels

Equation 15 – Interpolation Engine Utilization Example

In addition only two out of four sets of PUs are utilized at that time. For 4-pixel wide

subblocks, as shown in Figure 27 - (c), the utilization can be increased by processing two

subblocks at a time [16]. The total combined width (20 integer pixels) of each input array,

however, is still less than the maximum capacity of the processing hardware (22 integer pixels

per clock cycle). Similarly, even with the 20-pixel wide input arrays, only two out of four sets of

PUs are utilized.

Overall, the utilization values for the horizontally scaled design‟s IE are decreased to

86% and 79% for [M=1, N=2] and [M=1, N=4] respectively. Their PUs also exhibit a significant

drop in utilization, from the base design‟s 54% to 41% and 33%. Note that the PU utilization

values are a result of a combination of decreased utilization causes, such as vertical alignment

and throughput variance described next.

4.3.2 Throughput Variance

Due to the workload difference between the IE and the PUs, the PUs cannot be fully

utilized even when the IE is. For example, when the [M=1, N=1] design is used to process a 4x4

64

subblock, the interpolators need to process an entire 10x10 array of pixels while the PUs only

need to process the elementary 4x4 pixels. Consequently, the IE becomes the critical path and the

PUs are forced to stall while the 6 rows of surrounding pixels are processed. Similarly, when

processing an 8x4 subblock, the interpolators require 14 clock cycles, while the PUs require only

8 and sit idle for the remaining 6. The timing diagram in Figure 29 illustrates the idle cycles. The

x-axis represents a row number, which is a single pixel height in the case of the [M=1, N=1]

design, meaning that a single row corresponds to a single clock cycle.

Figure 29 - Timing Diagram for Processing a 4x4 Block Using the [M=1, N=1] Design

The effect that throughput variance has on the utilization of the PU depends on the height

of the vertical sweep for each subblock. For the 16x16 block, the vertical sweep has a height of

22 pixels, and during its processing the PU is used 73% of the time, according to the following

calculation:

%73%100
22

16


pixels

pixels

Equation 16 - PU Utilization Example

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
 Row #

Two adjacent 4x4 blocks

Processing Surrounding Pixels Processing Block
Elementary Pixels

Idle
cycles

PU

Interpolator

65

When processing blocks with smaller vertical sweep heights, such as the 4x4, the

utilization is only 40%. The PU utilization numbers for processing of all seven subblock types

are shown in Table 8. Overall, the [M=1, N=1] design achieves a PU utilization of only 54%.

Table 8 – The Throughput Variance and PU Utilization of the [M=1, N=1] Base Design

Subblock

Type

Subblock Dimensions

(With Surrounding

Pixels)

Subblock Dimensions

(Elementary Pixels

Only)

Number

of Vertical

Sweeps

Processing

Time of the

IE (cc.)

Processing

Time of

the PU

(cc.)

PU

Utilization

per

Subblock

Type (%)

i xs-i ys-i xe-i ye-i si Tcc(ye-i) Tcc(ys-i) UPU-i

1 22 22 16 16 4 22 x 4 16 x 4 73

2 14 22 8 16 2 22 x 2 8 x 4 73

3 22 14 16 8 4 14 x 4 8 x 4 62

4 14 14 8 8 2 14 x 2 4 x 4 57

5 10 14 4 8 1 14 x 1 2 x 4 57

6 14 10 8 4 2 10 x 2 2 x 4 40

7 10 10 4 4 1 10 x 1 1 x 4 40

4.3.3 Vertical Alignment

The boundaries between the elementary subblock pixels and the surrounding pixels need

to be aligned with the input pixel array in order to synchronize with the transpose operation of

the various PU designs. Each clock cycle, the input pixel array must be aligned to contain either:

1. no elementary pixels in the entire input pixel array, or

2. some elementary pixels on all of the rows of the input pixel array.

For example, for the [M=2, N=1] design, Figure 30 - (b) shows the array of pixels that are

66

required to calculate the SATD value of a 4x4 subblock. The array is processed in six clock

cycles. As shown, the first set of 2x10 pixels contains a row from the preceding subblock while

the last set of 2x10 pixels contains a row from the subsequent subblock. Consequently pixels

from the 4x4 subblock are completely covered by the two 2x10 input arrays at clock cycles 3 and

4.

Figure 30 - Data Alignment for [M=1, N=1], [M=2, N=1], [M=4, N=1] and [M=10, N=1]

Similarly, for the [M=4, N=1] design, as shown in Figure 30 - (c), two blank rows are

inserted, one into the top and one into the bottom input pixel arrays in order to properly align the

middle 4x10 input pixel array onto the 4x4 elementary pixel subblock. Additional blank rows

are also required when processing the 8x4 and 16x4 subblocks. As shown in Table 9, these

additional rows reduce the interpolator utilization to 87% and PU utilization to 46%. The [M=1,

N=1] design, as shown in Figure 30 - (a), processes one row of 10 pixels every clock cycle.

Consequently, no alignment is necessary since the row either contains a row of subblock pixels

c) [M=4, N=1]

1

2

3

4

5

6

1

2

3

1

3

5

7

9

2

4

6

8

10

 cc.

a) [M=1, N=1]

 cc.

b) [M=2, N=1]

 cc.

A row of pixels
from the previous

input array

A blank row

A blank row

1

 cc.

d) [M=10, N=1]

A row of pixels
from the next
input array

67

or it does not.

Finally, the [M=10, N=1] design in Figure 30 – (d) has a greater amount of block

decomposition allowing its 10x10 input pixel array to be centered around the elementary pixels

and ideally aligned with every clock cycle.

4.3.4 Calculating Hardware Utilization

The combined effect of the three above discussed factors results in the overall hardware

utilization numbers which are shown in Table 9. The utilization of the IE and PUs is examined

individually because the factors which influence them are different. Columns 4 and 6 in Table 9

summarize factors responsible for reducing the hardware utilization from the ideal 100%.

Table 9 - Hardware Utilization Summary

Type of Scaling
Scaled FME

Designs

IE Hardware Utilization PU Hardware Utilization

NMIEU , Source NMPUU , Source

Vertical

M=10, N=1 100% (FULL) 99% (FULL)

M=4, N=1 87%
Vertical

alignment
46%

Throughput variance +

vertical alignment

M=2, N=1 99.8%
Vertical

alignment
54% Throughput variance

Base Design M=1, N=1 100% (FULL) 54% Throughput variance

Horizontal

M=1, N=2 86% Data width 41%
Data width +

throughput variance

M=1, N=4 79% Data width 33%
Data width +

throughput variance

68

Hardware Utilization of the Interpolation Engine

We calculate the hardware utilization of the IE by examining how full the input pixel

array is every clock cycle, across all clock cycles required to process a single set of 41 subblocks.

In this case, the input pixel array is M x (4N+6), as shown in Figure 10. The amount of

utilization of the input pixel array maps directly to the utilization of the available IE hardware.

For example, when the input pixel array is full, all of the IE processing hardware is 100%

utilized. On the other hand, if only half of the input pixel array is populated with pixels to be

processed, the hardware is only 50% utilized for that particular clock cycle.

To calculate the overall IE utilization, first we multiply each input pixel array utilization

value by the number of vertical sweeps per block, si, and the number of blocks per type, bi, in

order to calculate the total number of clock cycles the particular utilization occurs for. Next, this

value is summed across all seven subblock types, shown in the numerator of Equation 19.

Further, the summation is divided by si, and bi in order to achieve the overall average hardware

utilization across all 41 subblocks.

To calculate the exact input pixel array utilization we evaluate the individual horizontal

and vertical utilizations, as shown in Equation 19. The horizontal utilization takes into account

input data width variance. It is calculated as the ratio between the input width of the decomposed

subblock, xs-dec-i, and the width of the IE, 4 x N+6, both in terms of number of pixels.

The vertical utilization approximation value takes into account the effect of vertical

alignment. It is calculated by examining a single vertical sweep length, ys-dec-i. Cys-dec-i is the

69

manually evaluated number of clock cycles it takes to process a single sweep of length ys-dec-i

pixels. This number includes the blank rows used for vertical alignment purposes. The ys-dec-i/M

fraction is the theoretical number of clock cycles it could take the engine to process a sweep of

length ys-dec-i. For example, in Figure 30 - (c), the vertical utilization is the vertical length, ys-dec-i

= 10, divided by the input array height, M = 4. This results in a value of 2.5, which is the number

of clock cycles it could theoretically take the FME to process this block. We label this theoretical

because it is not an integer value and therefore an illegal number of clock cycles, but in this case

valid since it is used as an estimation of hardware utilization. Further, we divide 2.5 by cys-dec-i,

which is in this case 3, to achieve a vertical utilization of:

%83%100
3

5.2


Equation 17 - IE Utilization for the [M= 2, N=1] Design

This percentage accounts for the two blank rows inserted for alignment purposes. An

alternate way of calculating this is by realizing the over three clock cycles and 12 available rows,

only 10 were filled with pixels, again resulting in the same value:

%83%100
12

10


Equation 18 – IE Utilization for the [M= 2, N=1] Design

70

%100

64

%100

%100

__

7

1

7

1

7

1

7

1

7

1

7

1

,










































































 















i

i

i

ii

idecys

idecs

idecs

i

ii

i

ii

i

ii

i

ii

NMIE

bs

bs
c

M

y

N

x

bs

bs
nutilizatio

vertical

nutilizatio

horizontal

bs

bs
nutilizatio

arraypixelinput

U

Equation 19 - Hardware Utilization Approximation of the Interpolation Engine

Where,

UIE-M,N – percentage of hardware utilization of the IE

xs-dec-i – width of a decomposed subblock, with surrounding pixels

ys-dec-i – height of a decomposed subblock, with surrounding pixels

si – number of vertical sweeps required for subblock type i

bi – total number of subblocks of type i

cys-dec-i – number of clock cycles required to process a single sweep of ys-dec-i pixels

The calculations of UIE-M,N for all six designs are shown in Appendix B.

71

Hardware Utilization of the Processing Unit

In FME pipeline, the IE is the critical path, while the PUs work and then have to wait for

further data. In order to calculate PU utilization we have to take into account input throughput

variance. In addition, the horizontally scaled FME designs experience input data width variance

which causes certain PU sets to sit idle when processing smaller blocks.

In Equation 20, in the numerator we calculate the number of clock cycles it would take a

single set of PUs to process a workload of 41 subblocks. We divide this value by N, the number

of available PU sets in the particular design. Further, we divide this value by Tcc-M,N, which is the

total processing time of the IE. This way we achieve the percentage of time the PUs are busy

with respect to the critical path of the IE.

To calculate the workload, for each subblock we evaluate the number of 4x4 blocks it is

composed of, xe-i/4 x ye-i/4. Next we multiply this value by, ceil(4/M), the number of clock cycles

it takes a PU to process each 4x4 subblock based on its throughput.

Where,

UPU-M,N – percentage of hardware utilization of the PU for an FME design M,N

xe-i – width of an entire subblock, elementary pixels only

Equation 20 –Hardware Utilization Approximation for the Processing Unit

%100

4

44

,

7

1

, 































NT

M
ceil

yx

U
NMcc

i

ieie

NMPU

72

ye-i – height of an entire subblock, elementary pixels only

Tcc-M,N – total number of clock cycles required to process 41 subblocks

4.4 Processing Time

As we scale up the design we gain computational processing power and in turn decrease

the total processing time which can be measured in terms of the number of clock cycles it takes

an FME engine to process a single set of 41 motion vectors, shown in Equation 21. We choose to

measure the processing time of a single set of 41 motion vectors because it is the basic building

block of encoding, corresponding to a single MB. The Tcc-M,N value can be used to further

calculate performance numbers for various video sizes, such as target resolutions and frame rates.

Table 10 lists the Tcc-M,N values for the six scaled designs.

Where,

Tcc-M,N – total number of clock cycles required to process 41 subblocks

si – number of vertical sweeps required for subblock type i

bi – total number of subblocks of type i

cys-dec-i – number of clock cycles required to process a single sweep of ys-dec

 pixels

Equation 21 – Total Number of Clock Cycles

 


 
7

1

,

i

iiidecysNMcc bscT

73

Table 10 - Total Number of Clock Cycles Required for Processing 41 Subblocks

Type of Scaling
Scaled FME

Designs
Tcc-M,N

(cc.)

Vertical

M=10, N=1 112

M=4, N=1 240

M=2, N=1 417

Base Design M=1, N=1 832

Horizontal
M=1, N=2 552

M=1, N=4 366

4.5 Chapter Summary

 In this chapter we presented a detailed design space exploration of the scalable FME

architecture. First we introduced the concept of block decomposition, which is elementary in

understanding the processing dataflow of the various sized FME engines. Next we present how

to derive the incurred data redundancy, a consequence of block decomposition. We define three

causes which can vary hardware utilization and we then formulate them into a single equation.

Finally, we calculate the processing time for a single MB in the current frame, in terms of clock

cycles, which becomes one of the elementary components used to derive comparison medians for

the six scaled designs, such as speedup, cost-performance product and relative hardware

utilization.

74

Chapter 5 – Experimental Evaluation

In this chapter we analyze the scalability of the H.264/AVC full-search FME algorithm

on FPGAs by exploring and interpreting the hardware implementation results. We analyze the

hardware resources used, the maximum achievable clock frequency, and the total running times

of each design, and perform comparative analysis by exploring the cost-performance product,

speedup and utilization. Finally, we conclude our analysis by assigning each design an overall

scalability ranking as well as an achievable target video resolution.

5.1 Target Device and Tools

All six designs shown were implemented in VHDL and synthesized using the Xilinx

Synthesis Tool (XST), followed by MAP and PAR in the Xilinx Integrated Software

Environment (ISE), Version 10. The device used was the Xilinx XC5VLX85T [44], speedgrade -

2. The implementation was simulated and tested using custom generated test benches in VHDL

Simili [45].

Xilinx [46] manufactures two main FPGA architecture types of FPGAs: the Virtex and

the Spartan line. The Spartan FPGAs are marketed towards smaller low-cost smaller applications.

The Virtex line is capable of handling computation heavy applications, and is geared towards

more expensive applications requiring maximum performance. The Virtex line is further divided

75

into subcategories specialized in particular processing requirements: the LX, the SX and the FX

[47]. The FX series poses an embedded PowerPC hard-core, meant for software-hardware co-

processing. The SX line is designed for signal processing applications as these chips have a large

number of DSP blocks. The LX series is geared towards raw processing power, containing the

greatest amount of slices. The Virtex line was chosen because it is a very mature device, and it

fits the requirements for real time video processing.

This work was developed on the LX platform. The FME algorithm was implemented

entirely using raw distributed logic, instead of placing arithmetic operations into hard DSP

blocks. This design decision was made based on a few under-utilization concerns. First, the

Virtex 5 DSP48E block [48] is made up of a multiplier followed by an adder. In our design the

FME‟s multipliers have been optimized into adders and shifters, as was shown in the case of the

FIR filter. Similarly, the DSP blocks have 18 and 30 bit vectors and 48 bit output vectors, where

the bit-width of the input pixels in the design is 8 bits, reaching a maximum of 14 bits. Thus

using the DSP blocks would waste the available built in resources and decrease the overall

utilization.

Further, migrating the algorithm implementation from distributed logic into DSP blocks

would require extensive routing between the hard wired blocks which would waste distributed

logic resources, offsetting the logic saved by the use of the hard blocks. A common optimization

of the use of the DSP blocks is the transformation of the data flow from an adder tree to a carry

chain [48] which would spare distributed logic use. But an implementation of this type would not

be a fair comparison to our scaled designs since it requires an extensive algorithmic level

changes as well as hand optimizations.

In addition, optimizing our design on a particular DSP block architecture does not

76

guarantee similar results on a different FPGA device. The hard-block architectures can vary

significantly and even with forward compatibility they can be underutilized [49][50]. The goal of

this project was to keep the design as portable as possible and to allow for deployment on an

evolution on FPGAs.

5.2 Performance Analysis

The overheads in a parallel system that limit its scalability need to be identified in order

to improve parallel algorithm design and the development of efficient high performance parallel

systems. Such overheads may be broadly classified into two components. The first one is

intrinsic to the algorithm itself and in the case of the FME it arises due to factors such as block

decomposition and data redundancy. The second one is due to the interaction between the

algorithm and the architecture it is employed on, and it arises due to work-imbalance, resource

allocation and cost inefficiencies.

We define the notion of overhead functions associated with the different algorithmic and

architectural characteristics in order to quantify the scalability of the FME engine as a parallel

system. We design and implement a scalable high-performance FME algorithm platform that

incorporates these methods for quantifying the overhead functions. We isolate the algorithmic

and architectural overheads and examine their influence on the processing execution time. We

use this system to study the scalability characteristics of six different instantiations on a Xilinx

FPGA.

77

5.2.1 Hardware Implementation Results

First, we define fundamental limiting factors, such as resource use and data throughput.

Next we will present our scalability analysis and evaluation methodology in order to gain insight

into how the system performance is affected by these design tradeoffs.

Table 11- Implementation Results - Xilinx XC5VLX85T FPGA

Type of Scaling
Scaled FME

Designs

Resource Cost fmax-M,N

(MHz)

Data Throughput

LUTM,N (K) REGM,N (K) Tw-M,N (μs) MB/sec*

Vertical

M=10, N=1 25.5 28.7 350 0.3 3,125,000

M=4, N=1 20.7 23.4 250 1 1,041,667

M=2, N=1 12.8 14 337 1.2 808,153

Base Design M=1, N=1 7.5 8.6 328 2.5 394,231

Horizontal
M=1, N=2 14.9 16.7 169 3.3 306,159

M=1, N=4 29.5 32.8 140 2.6 382,514

* MB/sec – macroblocks per second

The ISE Place and Route (PAR) results are shown in Table 11. Columns 3 and 4 show the

amount of hardware resources needed for each scaled design, in terms of Look-Up Table count

(LUTM,N) and registers (REGM,N) and column 5 shows the variation in the maximum achievable

clock frequency.

Data throughput in columns 6 and 7 is examined in order to quantify the performance and

determine what kind of video resolution each design can handle. The computation time of the

full-search FME is picture independent, therefore we define the total wall clock time, Tw-M,N, as

the maximum running time an FME engine takes to process all 41 motion vectors for a single

MB in the current frame and generate the corresponding SATDs. This time is dependent on the

maximum achievable frequency, fmax-M,N, and the number of clock cycles it takes to encode a

single MB, Tcc-M,N, derived in Section 4.4. We calculate Tw-M,N using the following equation:

78

We can calculate data throughput in terms of macroblocks, MBM,N, and how many can be

processed per second by each design. MBM,N depends on the maximum achievable frequency and

the number of clock cycles each engine requires to process a single MB, as shown in Equation 23.

Figure 31 - LUT Count Compared with Data Throughput

Figure 31 shows the throughput compared to the resource use for the six scaled designs.

We observe that the LUT count, rooted at the base design, increases in both directions with

horizontal and vertical scaling. The throughput on the other hand plateaus with horizontal scaling

Equation 22 – Total Wall Clock Time

Equation 23 - Macroblocks per Second

NMcc

NM

NM
T

f
MB

,

,max

,






NMNMccNMw fTT ,max,,  

79

not providing much advantage despite being allocated the additional hardware resources. This is

due to poor hardware utilization, discussed next.

5.2.2 Scalability Analysis

 One approach to quantifying scalability is to examine the cost-performance product – Pw-

M,N, the results of which are graphed in Figure 32 and calculated based on Equation 24. In this

case, cost is the amount of hardware resources used, (number of LUTs), and performance is the

total execution time of 41 vectors for each scaled design, Tw-M,N.

 Generally, we want to minimize the cost-performance product. The base design is used as

the reference to which we compare our designs, and as we scale up, ideally, it is desired that the

increase in cost to be equal to the increase in performance, or a decrease in total execution time.

For example, if the LUT count was doubled and as a result the execution time was halved, the

cost-performance product, would be the same for the base as well as for the particular scaled

design. This is referred to as linear scaling.

Equation 24 - Cost-Performance Product

Equation 25 - Linear Scaling in Terms of the Cost-Performace Product

NMwNMNMw

NMccNMNMcc

TLUTP

TLUTP

,,,

,,,









  BASE

NM

NMSCALED

NMwNMBASE

P
T

LUTP

TLUTP

















2
2

,sec

,

,,

80

On the other hand, if PSCALED is greater than PBASE, then the added resource cost does not yield a

proportional amount of benefit in terms of execution time and we classify this as bad scaling.

Similarly, if PSCALED is less than PBASE, then the achieved speedup is not proportional to what was

paid for in terms of resource cost and we classify this as good scaling.

Figure 32 - Product of Cost and Total Execution Time

 In Figure 32 we show graphed results of the scaled Pw-M,N. With respect to the base design,

the two vertically scaled FMEs outperform linear scaling, while both of the horizontally scaled

designs are distinctly above the linear scaling line and therefore scale poorly. Poor scaling is a

Equation 26 - Scalability Properties

scalingbadPP

scalinglinearPP

scalinggoodPP

BASENM

BASENM

BASENM

_

_

_

,

,

,







81

result of resource underutilization and inefficient use of the additional hardware resources. We

can quantify utilization by examining cost ratios and processing speedup, defined next.

 Relative cost is defined in terms of the FPGA hardware resources used, in terms of LUTs

and registers. The ratio of the increase in cost, CM,N, with respect to the base design [M=1, N=1],

is calculated based on Equation 27 and is shown in Table 12, column 4.

 We define speedup, SM,N, as the ratio between the processing time of the 41 motion

vectors, Tw-M,N, and the processing time of the base design, based on the following equation:

Relative utilization is the ratio between the speedup and increase in cost:

Equation 27 – Relative Hardware Resource Cost

Equation 28 - Speedup

Equation 29 - Relative Efficiency

NM

NM

NMFME
C

S
U

,

,

, 

NM

NM

NM
T

T
S

,sec

1,1sec

,






1,1

,

,




NM

NM

NM
LUT

LUT
C

82

Table 12 - Performance Analysis

Type of

Scaling

Scaled FME

Designs

Speedup

Increase in

Resources

Ratio

Relative

Utilization

SM,N CM,N UFME-M,N

Vertical

M=10, N=1 7.9 3.4 2.33

M=4, N=1 2.7 2.8 0.97

M=2, N=1 2 1.7 1.17

Base Design M=1, N=1 1 1 1

Horizontal
M=1, N=2 0.8 2 0.38

M=1, N=4 0.9 3.9 0.23

Figure 33 – Measured Overall Relative Utilization and Estimated Utilization

 Figure 33 shows the observed implementation-based relative hardware utilization of the

entire FME engine, UFME-M,N, compared with the estimated percentage of utilization of the IE,

83

UIE-M,N and the PU units, UPU-M,N (Section 4.3.4). We observe that the overall utilization is

influenced dominantly by the PU utilization rather than the IE‟s. The PU units consume more

hardware resources in comparison to the IE, and therefore have a greater impact on the overall

utilization results. Secondly, in terms of data flow, the IE is the bottleneck in the FME pipeline,

hence the PUs are forced to stall thus lowering their utilization. Balanced workloads between the

IE and PUs have a positive effect on overall utilization. In the case of the [M=10, N=1] design,

the PUs do not have to stall and their throughput rate is equivalent to that of the IE, hence the

overall design utilization is high.

Figure 34 – Relevant Utilization and Data Redundancy

Figure 34 compares the relative utilization to the previously calculated data redundancy.

We observe that eliminating the unwanted data redundancy is accompanied by an unwanted

reduction in overall utilization. The horizontally scaled designs benefit from low data redundancy,

84

but do not scale as well as the vertical ones.

To further illustrate this trade off, Figure 35 shows the data throughput numbers. Despite

having the highest data redundancy, the [M=10, N=1] design has a significantly larger data

throughput. In particular, at an additional increase in cost of only 25%, this design gains close to

three times the data throughput with respect to the [M=4, N=1] design.

Figure 35 – Relative Utilization and Data Throughput

 In conclusion, we assign a scalability ranking to each of the six designs, based on the

relative utilization, UFME-M,N. Here a value of „1‟ is assigned to the best scaled design [M=10,

N=1], which makes the most use out of its additional resources and achieves the highest

throughput processing performance.

85

Table 13 - Scalability Ranking

Type of Scaling
Scaled FME

Designs

Scalability

Ranking

Vertical

M=10, N=1 1

M=4, N=1 4

M=2, N=1 2

Base Design M=1, N=1 3

Horizontal
M=1, N=2 5

M=1, N=4 6

When scaling, the increase in performance should ideally be the same as the increase in

cost. The vertically scaled designs outperform this expectation due to the more compact and

efficient high-throughput PU designs. In particular, as discussed in Section 3.2.1, the design

shown in Figure 17 - (c) completely eliminates the transpose shift registers while processing four

rows of pixels per clock cycle. Similarly, the two-row-per-clock-cycle design shown in Figure 17

- (b) requires only half as many transpose shift registers in order to achieve the same

performance as would two instantiations of the one-row-per-clock cycle design shown in Figure

17 - (a).

However, the increase in utilization is partially offset by an increase in data redundancy.

As shown in Table 9, the [M=10, N=1] design has a 100% utilization of the IE as well as the PU.

This design performs the most amount of work, some of which is redundant, but this increase in

computation is compensated by the additional concurrency. Furthermore, the [M=10, N=1]

design is used to process subblocks that are four pixels high, each V-IPU (as shown in Figure 14)

requires only five FIRs (instead of ten) and the FIFO is reduced to 10 pixels. Overall, in terms of

raw clock cycles, the [M=10, N=1] design is the fastest while also consuming the most area.

 The horizontally scaled designs, on the other hand, show a decrease in utilization as

86

expanding parallelism only along the row quickly degrades utilization. Their PU sets do not

simplify with the increase in parallelism, and thus increase in hardware resource use. Also, the

smaller subblocks underutilize the wider instantiated hardware. These results show that it is

important to create designs that can increase parallelism while maintaining a high degree of

hardware utilization and clock frequency.

5.2.3 Frequency Analysis

The maximum achievable clock frequency, fmax-M,N was recorded for each design and was

previously shown in Table 11. The vertically scaled designs consistently achieved higher clock

frequencies than the horizontally scaled ones, as measured by the ISE PAR.

Each scaled design, operating on a single clock frequency, was configured as a separate

project and implemented individually on the FPGA. The XST Optimization Goal (OPT_MODE)

[51] was set to optimize for speed, as opposed to area. This constraint prioritizes the reduction of

logic levels in an attempt to increase frequency.

Within the VHDL code, the instantiation of the individual blocks was done using the

generic statement and the scalable factors M and N. The block structure of the code is identical

to the block structure of the FME algorithm described in Chapter 3. The generation of each of the

six designs was done by simply changing the values of M and N before synthesis. This approach

allowed for consistency between the scaled FME designs, removing the possibility for

performance variations caused by coding style differences. The XST Synthesis Timing Report,

for all six designs, had an identical estimated maximum frequency of 444 MHz, confirming the

87

intended code consistency and unbiased approach.

Figure 36 compares the two cost-performance products, Pw-M,N and Pcc-M,N, where the

former is calculated using the wall clock, Tw-M,N, which takes into account the total running time

required for processing 41 subblocks, and the latter is clock frequency independent. The two

lines show the effect of maximum achievable clock frequency on each design. We observe that

the overall pattern of the two metrics is similar, with one exception: Pcc-M,N monotonically

increases, whereas Pw-M,N has a slight bump in the case of the [M=4, N=1] design. This is due to

a decrease in fmax and which results in a lesser score in terms of the scalability ranking then it

would have had we not taken frequecy into account.

Figure 36 - Effect of the Maximum Achievable Frequency on the Design Scalability

88

The observed critical paths varied between the six designs. For example, the horizontally

scaled designs have wider IEs. The nature of horizontal scaling extends the width of the total

number of FIR filters, thus requiring more data sharing between them. For example, the [M=1,

N=4] IE has 22 input pixels feeding into 17 H-IPUs, where each pixel, an eight bit vector, fans

out to 6 adjacent H-IPUs. These pixel buses cross multiple boundaries of 4x4 subblocks, making

routing a challenge at high clock speeds and large designs. It is difficult to place and route

circuits with high fan-outs while maintaining closely packed logic. The horizontally scaled

designs have a speedup of less the 1 due to the decreased maximum clock frequency. The

vertically scaled designs maintain higher clock frequencies since as the design scales their

signals do not increase in fan-out across the boundaries of the 4x4 subblocks. Vertical scaling of

the IE is based on replication of the base design‟s H-IPU set, not requiring additional data

sharing. Due to the higher clock frequencies and the more efficient use of hardware, the

vertically scaled designs achieve an overall increase in performance.

5.3 Target Video Resolution Specifications

Each video standard has a different resolution as well as frame rate, which translates to a

particular number of MBs that need to be processed per second. We calculate this by dividing the

resolution dimensions by the dimensions of the MB, as is shown in Equation 30.

89

Further, we take into account the time it takes each scaled design to process the 41

subblocks in reference to encoding a single MB, we can calculate the frames per second, fpsM,N,

for each design, for various video resolutions. We also take into account the number of reference

frames used, which in our case is set to 4, but commonly varies from 1 to 16.

Figure 37 shows the calculated fpsM,N for four common video resolutions, within a

reasonable range of less than 100 fps. The [M=10, N=1] design can handle the highest frame

rates, even for the most demanding QSXGA standard.

Equation 30 - Macroblocks per Second

Equation 31 - Frames per Second

frameresNMw

NM

NM
RMBT

f
fps








,

,max

,

MB

frame

MB

frame

res
width

eighth

width

width
MB 

90

 Figure 37 - Frames per Second at Various Video Resolutions

Finally, Table 14 shows the maximum common fpsM,N and videos resolution standards suitable

for each design.

Table 14 - Target Video Resolution

Type of Scaling
Scaled FME

Designs
Target Video Resolution

Vertical

[M=10, N=1] 30fps QSXGA

[M=4, N=1] 30fps 1080p

[M=2, N=1] 50fps 720p

Base Design [M=1, N=1] 60fps VGA

Horizontal
[M=1, N=2] 60fps VGA

[M=1, N=4] 60fps VGA

91

5.4 Chapter Summary

 In this chapter we present the recorded results from the implementation of all six FME

algorithms on a Virtex 5 FPGA. We use these numbers to calculate scalability comparison

metrics, such as the cost-performance product, speedup, relative hardware resource cost, and

finally relative efficiency. Each of these metrics is meant to give us a further insight into the

increase in resource cost and gained processing speed. The cost-performance product showed to

be a valuable comparison metric where we saw how much increased performance we gained

proportional to the increased cost. Here we identified each of the designs as bad, good or linear

scaling. To further understand and quantify the scaling results we went on to define speedup and

relative hardware resource cost, from which we derived the relative efficiency. This result was

representative of the entire design, as opposed to the approximated efficiency of the IE and PU

previously derived.

92

Chapter 6 – Concluding Summary

This chapter summarizes the presented work; it presents a condensed review of related

works, and suggests potential directions for future work.

This work explores the scalability of FME, which is one of the essential components of the

H.264/AVC standard. It has been shown that the H.264/AVC compression standard is capable of

decreasing transfer stream bit-rates by up to 64% and exhibiting a compression ratio of 50:1. The

advanced capability for compression is due to many factors, one of which is FME. Further, it has

been shown that FME can improve video quality by up to +4dB.

6.1 Achieved Objectives

The motivation behind this work was to create a scalable and high performance FME

engine and to develop an empirical approach by which to examine the scalability of the FME as

a parallel system. The thesis defines formal criteria and methodology for evaluating design

requirements such as data throughput, data redundancy, target video fps and resource costs and

utilizations. In addition to examining existing scalable approaches, we developed a novel

approach to scaling the FME engine: vertical scaling. The implemented designs show that

vertical scaling approach can provide equal or better performance when compared with the

traditional horizontal scaling approach. After examining the operational characteristics of the

scaled designs in detail, we conclude overall the vertical scaled designs exhibit much better cost-

performance results as well as overall relative resource efficiencies.

93

6.2 Comparative Study

Table 15 summarizes relevant and comparable FME implementations. The comparison is

narrowed down to works which also implement processing of all 7 variable sized blocks, while

performing a full-search of the MV refinement. In comparison to other implementations, we

observe that our [M=10, N=1] design uses the greatest number of FIR filters, while a moderately

low number of small-sized PUs.

Some works include an IME engine, and as well as a quarter precision FME engine. One

of Chen‟s implementations [13] has four instantiations of the FME engine, one assigned to each

of the four reference frames. Similarly, the designs also vary in implementation technology and

maximum clock frequency. In our study we normalize the comparison by examining the isolated

half-pixel precision unit, independent of the surrounding implementation circumstances.

Table 15 - Comparison to Previous Work

Design
System

Overview

Scaling

Strategy

Target

Architecture

fmax

(MHz)

Input Pixel

Size
of FIRs # of PUs

of FME

cores

Video

Format
fps

M=10, N=1
(Proposed)

FME
(1/2 pixel)

Vertical
Scaling

Virtex-5

FPGA, 25K

LUTs

350 10x10 60
9
(4x4)

1 QSXGA 30

Chen [13]

M=1, N=1

FME

(1/2 pixel)

Base

Design

UMC 0.18
µm, 405K

gates

81 10x1 16
9

(4x4)
4 720x480 30

Mora-
Campos

[15]
M=1, N=2

IME + FME

(1/4 pixel)

Workload

Balance

Virtex-4
FPGA,

8234 slices

100 14x1 44
3 x 9

(4x4)

2 sets of

IEs & Pus
720p 30

Yang [16]

M=1, N=4

FME

(1/4 pixel)

Horizontal

Scaling

TSMC
0.18µm

188K gates

200 22x1 -*
9

(16x16)
-* 1080p 30

Kao [52]
FME

(1/4 pixel)

Workload

Balance

TSMC
0.130 µm

311K gates

154 10x1 -* 2 x 9
3 IEs +

2PUs
1080p 30

* - not specified in the paper

94

6.3 Future Work

 Memory access is a common bottleneck in the H.264/AVC engine. A common design

practice is to pipeline the data between the two motion estimation units, FME and IME [15][1]. It

would be interesting to explore how suitable each of the scaled FME designs is with various IME

blocks and how they fit into the entire H.264/AVC framework. In particular, in terms of the

pipelined data flow it would be interesting to see if the data throughput rates of IME and FME

can be closely matched and the data buffering between the stages minimized. The proposed FME

architectures in this work can be evaluated based on how they perform with respect to memory

efficiency.

 Secondly, the frequency dip in the horizontally scaled designs can potentially be

increased by careful handling and optimizations of the wide fan-outs and data sharing. Register

replication can potentially help reduce the strain on the routing.

 It would be interesting to examine power consumption of each of the six designs. Two

primary sources of power consumption in FPGAs are dynamic power, dissipated due to

switching logic, and static power, dissipated due to leaking current in the device. It would be

interesting to see how the designs with lower utilization consume power, and weather they

exhibit power saving characteristics.

95

Appendix A - Redundancy Analysis and Block Decomposition

Table 16 - Redundancy Analysis and Block Decomposition Calculations for the [M=1, N=1], [M=2, N=1] and [M=4, N=1] Design

Before Decomposition After Decomposition

Subblock
Type

Number
of

Subblocks
Per Type

Subblock Dimensions
(With Surrounding

Pixels) Pixels Per
Subblock

Total Pels
Per

Subblock
Type

Subblock Dimensions
(With Surrounding

Pixels) Number
of Vertical
Sweeps

Total
Pixels Per
Subblock

Total
Pixels Per
Subblock
Per Type Width Height

New
Width

New
Height

i n xs-i ys-i Pblock-i Ptype-i xs-dec-i ys-dec-i si Pblock-dec-i Ptype-dec-i

1 1 22 22 484 484 10 22 4 880 880

2 2 14 22 308 616 10 22 2 440 880

3 2 22 14 308 616 10 14 4 560 1120

4 4 14 14 196 784 10 14 2 280 1120

5 8 10 14 140 1120 10 14 1 140 1120

6 8 14 10 140 1120 10 10 2 200 1600

7 16 10 10 100 1600 10 10 1 100 1600

Ptotal 6340

Ptotal-dec 8320

Table 17 - Redundancy Analysis and Block Decomposition Calculations for the [M=10, N=1] Design

Before Decomposition After Decomposition

Subblock
Type

Number
of

Subblocks
Per Type

Subblock Dimensions
(With Surrounding

Pixels) Pixels Per
Subblock

Total Pels
Per

Subblock
Type

Subblock Dimensions
(With Surrounding

Pixels) Number
of Vertical
Sweeps

Total
Pixels Per
Subblock

Total
Pixels Per
Subblock
Per Type Width Height

New
Width

New
Height

i n xs-i ys-i Pblock-i Ptype-i xs-dec-i ys-dec-i si Pblock-dec-i Ptype-dec-i

1 1 22 22 484 484 10 10 16 1600 1600

2 2 14 22 308 616 10 10 8 800 1600

3 2 22 14 308 616 10 10 8 800 1600

4 4 14 14 196 784 10 10 4 400 1600

5 8 10 14 140 1120 10 10 2 200 1600

6 8 14 10 140 1120 10 10 2 200 1600

7 16 10 10 100 1600 10 10 1 100 1600

Ptotal 6340

Ptotal-dec 11200

96

Table 18 - Redundancy Analysis and Block Decomposition Calculations for the [M=1, N=2] Design

Before Decomposition After Decomposition

Subblock
Type

Number
of

Subblocks
Per Type

Subblock Dimensions
(With Surrounding

Pixels) Pixels Per
Subblock

Total Pels
Per

Subblock
Type

Subblock Dimensions
(With Surrounding

Pixels) Number
of Vertical
Sweeps

Total
Pixels Per
Subblock

Total
Pixels Per
Subblock
Per Type Width Height

New
Width

New
Height

i n xs-i ys-i Pblock-i Ptype-i xs-dec-i ys-dec-i si Pblock-dec-i Ptype-dec-i

1 1 22 22 484 484 14 22 2 616 616

2 2 14 22 308 616 14 22 1 308 616

3 2 22 14 308 616 14 14 2 392 784

4 4 14 14 196 784 14 14 1 196 784

5 8 10 14 140 1120 10 14 1 140 1120

6 8 14 10 140 1120 14 10 1 140 1120

7 16 10 10 100 1600 10 10 1 100 1600

Ptotal 6340

Ptotal-dec 6640

Table 19 - Redundancy Analysis and Block Decomposition Calculations for the [M=1, N=4] Design

Before Decomposition After Decomposition

Subblock
Type

Number
of

Subblocks
Per Type

Subblock Dimensions
(With Surrounding

Pixels) Pixels Per
Subblock

Total Pels
Per

Subblock
Type

Subblock Dimensions
(With Surrounding

Pixels) Number
of Vertical
Sweeps

Total
Pixels Per
Subblock

Total
Pixels Per
Subblock
Per Type Width Height

New
Width

New
Height

i n xs-i ys-i Pblock-i Ptype-i xs-dec-i ys-dec-i si Pblock-dec-i Ptype-dec-i

1 1 22 22 484 484 22 22 1 484 484

2 2 14 22 308 616 14 22 1 308 616

3 2 22 14 308 616 22 14 1 308 616

4 4 14 14 196 784 14 14 1 196 784

5 8 10 14 140 1120 20 7 1 140 1120

6 8 14 10 140 1120 14 10 1 140 1120

7 16 10 10 100 1600 20 5 1 100 1600

Ptotal 6340

Ptotal-dec 6340

97

Appendix B – Hardware Utilization of the Interpolation Engine

Table 20 – Hardware Utilization of the Interpolation Engine for the [M=10, N=1] Design

Subblock
Type

Number of
Subblocks
Per Type

Subblock Dimensions
(With Surrounding Pixels)

Number of
Vertical
Sweeps

Clock
Cycles per

ys-dec-i
Numerator

(Eq. 18)
Denominator

(Eq. 18)

i bi xs-dec-i ys-dec-i si cys-dec-i

1 1 10 10 16 1 16.0 16

2 2 10 10 8 1 16.0 16

3 2 10 10 8 1 16.0 16

4 4 10 10 4 1 16.0 16

5 8 10 10 2 1 16.0 16

6 8 10 10 2 1 16.0 16

7 16 10 10 1 1 16.0 16

sum: 112 sum: 112

M = 10

4*N + 6 = 10

UIE-M,N = 100%

Table 21 - Hardware Utilization of the Interpolation Engine for the [M=4, N=1] Design

Subblock
Type

Number of
Subblocks
Per Type

Subblock Dimensions
(With Surrounding Pixels)

Number of
Vertical
Sweeps

Clock
Cycles per

ys-dec-i
Numerator

(Eq. 18)
Denominator

(Eq. 18)

i bi xs-dec-i ys-dec-i si cys-dec-i

1 1 10 22 4 6 3.7 4

2 2 10 22 2 6 3.7 4

3 2 10 14 4 4 7.0 8

4 4 10 14 2 4 7.0 8

5 8 10 14 1 4 7.0 8

6 8 10 10 2 3 13.3 16

7 16 10 10 1 3 13.3 16

sum: 55 sum: 64

M = 4

4*N + 6 = 10

UIE-M,N = 86%

98

Table 22 - Hardware Utilization of the Interpolation Engine for the [M=2, N=1] Design

Subblock
Type

Number of
Subblocks
Per Type

Subblock Dimensions
(With Surrounding Pixels)

Number of
Vertical
Sweeps

Clock
Cycles per

ys-dec-i
Numerator

(Eq. 18)
Denominator

(Eq. 18)

i bi xs-dec-i ys-dec-i si cys-dec-i

1 1 10 22 4 11 4.0 4

2 2 10 22 2 11 4.0 4

3 2 10 14 4 7 8.0 8

4 4 10 14 2 7 8.0 8

5 8 10 14 1 7 8.0 8

6 8 10 10 2 5 16.0 16

7 16 10 10 1 5 16.0 16

sum: 64 sum: 64

M = 2

4*N + 6 = 10

UIE-M,N = 100%

Table 23 - Hardware Utilization of the Interpolation Engine for the [M=1, N=1] Design

Subblock
Type

Number of
Subblocks
Per Type

Subblock Dimensions
(With Surrounding Pixels)

Number of
Vertical
Sweeps

Clock
Cycles per

ys-dec-i
Numerator

(Eq. 18)
Denominator

(Eq. 18)

i bi xs-dec-i ys-dec-i si cys-dec-i

1 1 10 22 4 22 4 4

2 2 10 22 2 22 4 4

3 2 10 14 4 14 8 8

4 4 10 14 2 14 8 8

5 8 10 14 1 14 8 8

6 8 10 10 2 10 16 16

7 16 10 10 1 10 16 16

sum: 64 sum: 64

M = 1

4*N + 6 = 10

UIE-M,N = 100%

99

Table 24 - Hardware Utilization of the Interpolation Engine for the [M=1, N=2] Design

Subblock
Type

Number of
Subblocks
Per Type

Subblock Dimensions
(With Surrounding Pixels)

Number of
Vertical
Sweeps

Clock
Cycles per

ys-dec-i
Numerator

(Eq. 18)
Denominator

(Eq. 18)

i bi xs-dec-i ys-dec-i si cys-dec-i

1 1 14 22 2 22 2.0 2

2 2 14 22 1 22 2.0 2

3 2 14 14 2 14 4.0 4

4 4 14 14 1 14 4.0 4

5 8 10 14 1 14 5.7 8

6 8 14 10 1 10 8.0 8

7 16 10 10 1 10 11.4 16

sum: 37.1 sum: 44

M = 1

4*N + 6 = 14

UIE-M,N = 84%

Table 25 - Hardware Utilization of the Interpolation Engine for the [M=1, N=4] Design

Subblock
Type

Number of
Subblocks
Per Type

Subblock Dimensions
(With Surrounding Pixels)

Number of
Vertical
Sweeps

Clock
Cycles per

ys-dec-i
Numerator

(Eq. 18)
Denominator

(Eq. 18)

i bi xs-dec-i ys-dec-i si cys-dec-i

1 1 22 22 1 22 1.0 1

2 2 14 22 1 22 1.3 2

3 2 22 14 1 14 2.0 2

4 4 14 14 1 14 2.5 4

5 4* 20 14 1 14 3.6 4

6 8 14 10 1 10 5.1 8

7 8* 20 10 1 10 7.3 8

sum: 22.8 sum: 29

M = 1

4*N + 6 = 22

UIE-M,N = 79%

* the number of these subblocks is halved because they are placed into the IE two at a time

100

Summary of Terms

PMB – number of pixels in a single MB

i – seven various subblock sizes in VBSME

rxy – nine half pixel candidate positions

Rframe – number of reference frames; range: [1,16]

widthframe – width of a single video frame

heightframe – height of a single video frame

fps – frames per second

M – vertical scalable FME variable

N – horizontal scalable FME variable

RM,N – data redundancy for processing 41 subblocks (in pixels)

Ptotal – total number of pixels processed for all 41 subblocks before block

decomposition

Ptotal-dec – total number of pixels processed for all 41 subblock types after block

 decomposition

xs-i – width of an entire subblock, with surrounding pixels

ys-i – height of an entire subblock, with surrounding pixels

xs-dec-i – width of a decomposed subblock, with surrounding pixels

ys-dec-i – height of a decomposed subblock, with surrounding pixels

Pblock-i – number of pixels processed per single subblock i

Ptype-i – total number of pixels processed for an entire subblock type i

101

Pblock-dec-i – number of pixels processed per single subblock after block

decomposition

Ptype-dec-i – total number of pixels processed for an entire subblock type i after

block decomposition

si – number of vertical sweeps required for subblock type i

bi – total number of subblocks of type i

UPU-M,N – percentage of hardware utilization of the PU for an FME design M,N

 – percentage of hardware utilization of the IE for an FME design M,N

xs-dec-i – width of a decomposed subblock, with surrounding pixels

ys-dec-i – height of a decomposed subblock, with surrounding pixels

cys-dec-i – number of clock cycles required to process a single sweep of ys-dec

pixels

xe-i – width of an entire subblock, elementary pixels only

ye-i – height of an entire subblock, elementary pixels only

Tcc-M,N – total number of clock cycles required to process 41 subblocks

Tw-M,N – total wall clock time required to process 41 subblocks

LUTM,N – measured hardware cost in terms of FPGA LUTs

REGM,N – measured hardware cost in terms of FPGA registers

fmax-M,N – maximum achievable clock frequency

MBM,N – data throughput in terms of MBs

Pw-M,N – cost-performance product of based on the wall clock time it takes to

process 41 subblocks

Pcc-M,N – cost-performance product of based on the number of clock cycles it

102

takes to process 41 subblocks

PSCALED – cost-performance product of a scaled design

PBASE – cost-performance product of a base design

CM,N – increase in cost with respect to the base design

SM,N – speedup with respect to the base design

UFME-M,N – hardware utilization of the entire FME, relative to the base design

MBres – the number of MBs in a single frame of a particular video resolution

103

Glossary

ME – Motion Estimation

FME – Fractional Motion Estimation

IME – Integer Motion Estimation

PSNR – Peak Signal to Noise Ratio

MSE – Mean Squared Error

FPGA – Field Programmable Gate Array

ASIC – Application Specific Integrated Circuit

MV – Motion Vector

VBSME – Variable Block Size Motion Estimation

MRF – Multiple Reference Frame

H.264/AVC – video compression standard

AVC – Advance Video Coding

MB – macroBlock

subblock – a block of pixels smaller then the MB

pel – pixel

SATD – Sum of Absolute Transformed Differences

HD – High Definition

SDTV – Standard Definition Television

HDTV – High Definition Television

104

codec – video compression engine

IE – Interpolation Engine

PU – Processing Unit

V-IPU` – Vertical Interpolation Units

H-IPU – Horizontal Interpolation Units

FIR – Finite Impulse Response

FIFO – First In First Out

cc. – clock cycles

105

References

[1] T. Chen, S. Chien, Y. Huang, C. Tsai, C. Chen, T. Chen, and L. Chen, “Analysis and

Architecture Design of an HDTV720p 30 Frames/s H.264/AVC Encoder,” IEEE

Transactions on Circuits and Systems for Video Technology, Vol. 16, No. 6, June 2006,

pp. 673-688.

[2] Iain, E. G. R.,: H.264 and MPEG-4 Video Compression: Video Coding for Next

generation Multimedia. Wiley (2003)

[3] T. Chen, Y. Huang, and L. Chen, “Fully Utilized and Reusable Architecture for

Fractional Motion Estimation for H.264/AVC,” in Proc. of the IEEE International

Conference on Acoustics, Speech, and Signal Processing, Montreal, Canada, May 2004,

pp. 9-12.

[4] Xilinx soft-core DS602,

http://www.xilinx.com/support/documentation/ip_documentation/h264_cabac_prodbrief

_ds602.pdf; last accessed 2010

[5] http://www.4i2i.com/; last accessed 2010

[6] Corrêa, M.M.; Schoenknecht, M.T.; Agostini, L.V, “A High Performance Hardware

Architecture for the H.264/AVC Halfpixel Motion Estimation Refinement,” 23rd

Symposium on Integrated Circuits and Systems Design (SBCCI), 2010.

[7] T. Dias, N. Roma, and L. Sousa, “Fully Parameterizable VLSI Architecture for Sub-

Pixel Motion Estimation with Low Memory Bandwidth Requirements,” November 2005.

[8] N. Roma and L. Sousa, “Parameterizable Hardware Architectures for Automatic

Synthesis of Motion Estimation Processors,” in Proceedings of the IEEE Workshop on

Signal Processing Systems - Design and Implementation (SiPS’01), Antwerpen -

Belgium, Sept. 2001, pp. 428–439.

[9] L. De Vos and M. Stegherr, "Parameterizable VLSI Architectures for the Full-Search

Block-Matching Algorithm", IEEE Trans. Circuits Syst., vol. 36 , pp.1309 - 1316 ,

1989.

[10] T. Chen, Y. Huang, and L. Chen, “Analysis and Design of Macroblock Pipelining for

H.264/AVC VLSI Architecture,” in Proc. of IEEE International Symposium on Circuits

and Systems, Vancouver, Canada, May 2004, pp. 273-276.

http://www.4i2i.com/

106

[11] T. Chen, C. Lian, and L. Chen, "Hardware Architecture Design of an H.264/AVC Video

Codec," in Proc. of Asia and South Pacific Design Automation Conference, Yokohama,

Japan, January 2006, pp. 750-757.

[12] Y. Chen, T. Chuang, C. Tsai, Y. Chen, and L. Chen, “A Cost-Efficient Residual

Prediction VLSI Architecture for H.264/AVC Scalable Extension,” in Proc. of Picture

Coding Symposium, Lisboa, Portugal, November 2007, pp. 13-17.

[13] Y. Chen, T. Chen, S. Chien, Y. Huang, and L. Chen, “VLSI Architecture Design of

Fractional Motion Estimation for H.264/AVC,” Journal of Signal Processing Systems,

Vol. 53, No. 3, December 2008, pp. 335-347.

[14] M. Shao, Z. Liu, S. Goto, T. Ikenaga, “Lossless VLSI Oriented Full Computation

Reusing Algorithm for H.264/AVC Fractional Motion Estimation, ” IEICE

Transactions on Fundamentals of Electronics, Communications, and Computer Sciences,

Vol. E90-A, No. 4, April 2007, pp. 756-763.

[15] A. Maro-Campos, F. Ballester-Merelo, M. Martinez-Peiro, and J. Canals-Esteve,

“High Parallel-Pipeline Integer-Pel and Fractional-Pel Motion Estimation VLSI

Architectures for H.264/AVC,” in Proc. of SPIE: VLSI Circuits and Systems III, May

2007, Maspalomas, Spain, pp. 659010-1--659010-11.

[16] C. Yang, S. Goto, and T. Ikenaga, “High Performance VLSI Architecture of Fractional

Motion Estimation in H.264 for HDTV,” in Proc. IEEE International Symposium on

Circuits and Systems, Island of Kos, Greece, May 2006, pp. 2605-2608.

[17] S. Oktem, I. Hamzaoglu, "An Efficient Hardware Architecture for Quarter-Pixel

Accurate H.264 Motion Estimation", in Proc of the 10th Euromicro Conference

onDigital System Design Architectures, Methods and Tools, 2007, pp. 444-447

[18] F. Urban , R. Poullaouec , J.-F. Nezan and O. Deforges, "H.264 Fractional Motion

Estimation Refinement: A Real-Time and Low Complexity Hardware Solution for HD

Sequences", Proc. 15th EUSIPCO, pp. 836 2007.

[19] Urban F., Poulaouec R., Nezan J-F., D é forges O., “A Flexible Heterogeneous

Hardware/Software Solution for Real-Time High-Definition H.264 Motion Estimation,”

IEEE Transactions on Circuits and Systems for Video Technology, Vol. 18, Num. 12,

Pp. 1781-1785, 2008.

[20] W.N. Chen, H.M. Hang, “H.264/AVC Motion Estimation Implementation on Compute

Unified Device Architecture (CUDA) ” , Multimedia and Expo, 2008 IEEE

International Conference on, pp.697-700, June 23 2008-April 26 2008

[21] Yeo, H., & Hu, Y.H. (1995). “A Novel Modular Systolic Array Architecture for Full-

Search Block Matching Motion Estimation” , IEEE Transactions on Circuits and

Systems for Video Technology, 5(5), 407-416.

107

[22] M.-Y. Hsu, H.-C. Chang, Y.-C. Wang, L.-G. Chen, “Scalable Module-Based

Architecture for MPEG-4 BMA Motion Estimation”, 2000, Dept. Elect. Eng., National

Taiwan Univ.

[23] Corr a, M.M., Schoenknecht, M.T., Dornelles, R.S., Agostini, L.V., “A High

Performance Hardware Architecture for the H.264/AVC Half-Pixel Interpolation Unit”,

Programmable Logic Conference , March 2010, pg 81 – 86.

[24] T. Wang, Y. Huang, H. Fang, and L. Chen, “Parallel 4x4 2D Transform and Inverse

Transform Architecture for MPEG-4 AVC/H.264,” in Proc. of IEEE International

Symposium on Circuits and systems, May 2003, pp. 800–803.

[25] Sayed, Mohammed S. Badawy, Wael Jullien, Graham "Interpolation-Free Fractional-

Pixel Motion Estimation Algorithms with Efficient Hardware Implementation", Journal

of Signal Processing Systems, 2010

[26] S. Oktem, I. Hamzaoglu, "An Efficient Hardware Architecture for Quarter-Pixel

Accurate H.264 Motion Estimation", in Proc of the 10th Euromicro Conference on

Digital System Design Architectures, Methods and Tools, 2007, pp. 444-447

[27] K.Jack, “A Handbook for the Digital Engineer: Video Demystified”, LLH Technology

Publishing, Eagle Rock, VA, 2001

[28] Cliff Wootton, “A Practical Guide to Video and Audio Compression From Sprockets

and Rasters to Macro Blocks”, Elsevier Inc., 2003.

[29] Peter Kuhn, “Algorithms, Cimplexity Analysis and VLSI Architectures for MPEG-4

Motion Estimation”, Kluwer Academic Publishers, 1999.

[30] LSI Logic Inc. , “H.264/MPEG-4 AVC Video Compression Tutorial”, 2003

[31] T. Wiegand, G. Sullivan, G. Bjontegaard, A. Luthra, “Overview of the H.264/AVC

Video Coding Standard,” IEEE Transactions on Circuits and Systems for Video

Technology, Vol. 13, No. 7, July 2003, pp. 560-576.

[32] Joint Video Team Reference Software JM7.3,

http://iphome.hhi.de/suehring/tml/download/; last accessed 2009

[33] Iprof ftp server. [Online]. Available: ttp://iphome.hhi.de/suehring/tml/download; last

accessed 2009

[34] W. Chao, T. Chen, Y. Chang, C. Hsu, and L. Chen, “Computationally Controllable

Integer, Half, and Quarter-Pel Motion Estimation for MPEG-4 Advanced Simple

Profile”, in Proc. Of the International Symposium on Circuits and Systems, Bangkok,

Thailand, May 2003, pp. II788–II791.

108

[35] J. Suh and J. Jeong, “Fast Sub-pixel Motion Estimation Techniques Having Lower

Computational Complexity”, IEEE Transactions on Consumer Electronics, Vol. 50, No.

3, August 2004, pp. 968-973.

[36] Z. Chen, J. Xu, Y. He, and J. Zheng, “Fast Integer-Pel and Fractional-Pel Motion

Estimation for H.264/AVC, ” Journal of Visual Communication and Image

Representation, Vol. 17, No. 2, April 2006, pp. 264–290.

[37] L. Yang, K. Yu, J. Li, and S. Li, “Prediction-Based Directional Fractional Pixel

Motion Estimation for H.264 Video Coding,” in Proc. of the IEEE International

Conference on Acoustics, Speech, and Signal Processing, Philadelphia, PA, March 2005,

pp. II901–II904.

[38] L. Zhang, W. Gao, “ Improved FFSBM Algorithm and Its VLSI architecture for

Variable Block Size Motion Estimation of H.264,” in Proc. of the International

Symposium on Intelligent Signal Processing and Communication Systems, Hong Kong,

December 2005, pp. 445-448.

[39] J. Chang and J. Leou, “A Quadratic Prediction Based Fractional-Pixel Motion

Estimation Algorithm for H.264,” in Proc. of the IEEE International Symposium on

Multimedia, Irvine, CA, December 2005, pp. 491-498.

[40] Y. Wang, C. Cheng, and T. Chang, “A Fast Algorithm and Its VLSI Architecture for

Fractional Motion Estimation for H.264/MPEG-4 AVC Video Coding, ” IEEE

Transactions on Circuit and Systems for Video Technology, Vol. 17, No. 5, May 2007,

pp. 578-583.

[41] J. Jung, G. Jin, and H. Lee, “Early Termination and Pipelining for Hardware

Implementation of Fast H.264 Intraprediction Targeting Mobile HD Applications,”

EURASIP Journal on Advances in Signal processing, Vol.2008, pp. 1-19.

[42] Z. Liu, S. Goto, and T. Ikenaga, “ Content-Aware Fast Motion Estimation for

H.264/AVC,” IEICE Transactions on Fundamentals of Electronics, Communications,

and Computer Sciences, Vol.E91-A, No.8, August 2008, pp. 1944-1952.

[43] Y. Song, Y. Ma, Z. Liu, T. Ikenaga, and S. Goto, “Hardware-Oriented Direction-

Based Fast Fractional Motion Estimation Algorithm in H.264/AVC,” in Proc. of the

IEEE International Conference on Multimedia and Expo, Hannover, Germany, June

2008, pp. 1009-1012.

[44] UG190 - Virtex-5 FPGA User Guide,

http://www.xilinx.com/support/documentation/user_guides/ug190.pdf; last accessed

2010

[45] http://www.symphonyeda.com/products.htm; last accessed 2010

http://www.symphonyeda.com/products.htm

109

[46] www.xilinx.com; last accessed 2010

[47] DS100 – Virtex-5 Family Overview,

http://www.xilinx.com/support/documentation/data_sheets/ds100.pdf; last accessed

2010

[48] Virtex-5 FPGA XtremeDSP Design Considerations

http://www.xilinx.com/support/documentation/user_guides/ug193.pdf; last accessed

2010

[49] Virtex 6 FPGA DSP48E1 Slice

http://www.xilinx.com/support/documentation/user_guides/ug369.pdf; last accessed

2010

[50] Sparten-6 FPGA DSP48A1 Slice

http://www.xilinx.com/support/documentation/user_guides/ug389.pdf; last accessed

2010

[51] XST User Guide http://www.xilinx.com/itp/xilinx9/books/docs/xst/xst.pdf; last accessed

2010

[52] C.-Y. Kao, C.-L. Wu, Y.-L. Lin, “A High-Performance Three Engine Architecture for

H.264/AVC Fractional Motion Estimation”, IEEE Trans. Very Large Scale Integr. Syst.

18 (2010) 662–666.

[53] Kane Computing Ltd. Application Note

http://www.kanecomputing.co.uk/pdfs/compression_ratio_rules_of_thumb.pdf; last

accessed 2010

[54] J. Vasiljevic, A. Ye, “A Scalability Study of Fractional Motion Estimation for H.264

Encoding”, in Proc. of the IEEE 18th Canadian Conference on Electrical and Computer

Engineering, pp. 1–5.

[55] J.Vasiljevic, A. Ye, “Analysis and Architecture Design of Scalable Fractional Motion

Estimation for H.264 Encoding”, Integration, the VLSI Journal, 2011

http://www.xilinx.com/support/documentation/user_guides/ug389.pdf
http://www.xilinx.com/itp/xilinx9/books/docs/xst/xst.pdf
http://www.kanecomputing.co.uk/pdfs/compression_ratio_rules_of_thumb.pdf

	Ryerson University
	Digital Commons @ Ryerson
	1-1-2011

	Analysis and architecture design of scalable fractional motion estimation for H.264 encoding
	Jasmina Vasiljevic
	Recommended Citation

