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SUMMARY: In this paper, we propose a fast time-frequency mask technique 

for blind source separation in order to separate a mixture of two input sounds in 
single signal automatically. Mostly previous methods utilize a linear sensor array, 

and therefore they cannot separate symmetrically positioned sources. To 

overcome such problems, we first define two features which are normalized 
level-ratio and phase-difference. Next, we use our method to decrease Direction 

of Arrival (DOA), this can reduce the variance of features so that it can reduces 

iterations of k-means. Finally, according to the clustered features, a mask is 
generated. Our method does not require any prior information or parameter 

estimation and we have made a real demonstration system. We use Signal to 

Distortion Ratio (SDR) and Signal to Interference Ratio (SIR) to compare our 
method. Then we present hardware design. Hardware design uses TSMC 90-nm 

CMOS process. As a cost-effective result, it consumes about 120K gates and 

executes with frequency of 10MHz. The power consumption is only 2.92 mW 
with low power design considerations. 

 

Key words: Blind separation, Time frequency mask, Convolutive BSS, Reduction 
of DOA variance, VLSI Design. 

 

1.Introduction 
 

Blind source separation (BSS) is a technique to 

estimate individual source components from their mixtures at 

multiple sensors. In general, this is a difficult problem due to 

several complicated factors. One reason is that the signal 

reaching a microphone has several noises along with data signal 

such as room reverberations and echoes. The other reason is that 

in some simple mixing models, each recording consists of a sum 

of differently weighted source signals. Furthermore, in many 

real-world applications, such as in acoustics, the mixing process 

is more complex. In such systems, the mixtures are weighted and 

delayed, where each source contributes to the sum with multiple 

delays corresponding to the multiple paths by which an acoustic 

signal propagates to a microphone. Such filtered sums of 

different sources are called convolutive mixtures. In these 

situations, the sources are the desired signals, yet only the 

recordings of the mixed sources are available while the mixing 

process is unknown. Thus, BSS is a challenging problem in real 

room environments. 

Applications of the BSS technique for speech include 

hands-free teleconference systems [1] and automatic conference 

minute generators. More specifically, one promising application 

is a car navigation system [2]. In general, we can distinguish two 

cases depending on the number of N sources and the number of 

M sensors [3]; (i) N>M is the underdetermined BSS and (ii) N≤M 

is the (over-) determined BSS. Since over-determined BSS 

(N<M) can be reduced to determined BSS (N=M), we refer to 

both as determined BSS. Most approaches deal with determined 

BSS, but in reality, BSS is often underdetermined. 

Two approaches have been widely studied and 

employed to solve the BSS problem: one is based on statistics 

such as Independent Component Analysis (ICA) [4], [5] and the 

other approach relies on the sparseness of source signals [6]. As 

shown in Table 1, the method used for solution of statistically 

independent latent variables is called the independent 

components analysis. ICA works well even in a reverberant 

condition in the (over-) determined condition. It takes the 

advantage of high precision, but the robustness can be low. ICA 

can perform in several domains including the time-domain BSS 

[7], frequency-domain BSS [8], and the hybrid time- and 

frequency- domain BSS [9]. 

On the other hand, the sparseness-based approaches are 

attractive because they can cope with the underdetermined 

problem. It takes the advantage of high robustness but the 

precision could be low. The sparseness-based methods can be 

categorized into two main approaches. One method is based on 

Maximum a Posteriori (MAP) estimation [10] [11] where the 

sources are estimated after mixing matrix estimation. And the 

other method is based on binary mask where we can extract each 

signal with time-frequency binary masks [12] [13]. The MAP 

approach investigated the consequence of dealing with complex 

numbers as a result of the time-frequency domain approach. 

Although the combinatorial solution with at least N-M zeros is 

not theoretically justified for complex numbers, its performance 

quality is comparable to or even better than that of the Second-

order Cone Programming (SOCP) solution. In addition, the 

combinatorial solution has the advantage that it is faster for 

solving underdetermined BSS problems with low input/output 

dimensions [10]. 

Binary mask approach is based on Direction of Arrival 

(DOA) estimation for sources and the inter frequency correlation. 

It has the advantages of high robustness and being implemented 

in real time [14]. As shown in Table 1, robustness and 

preciseness are the two key features to evaluate the performance 

of BSS [15]. 

In this paper, an effective algorithm for the BSS of 

speech sources is proposed. It combines time frequency mask 

with decreasing DOA variance in feature extraction. The 

algorithm has the advantage of low complexity and saving more 

storage. In addition, it does not degrade the quality of the 

separated signals. The VLSI architecture of BSS are introduced 

below. In [16], matrix whitening algorithm is proposed for easy 

hardware structure. And [17] talks about convolutive blind 

source separation using TSMC90nm process to implement 

infomax filtering module and scaling factor computation module 

used for BSS. And in [18], a low-power ICA architecture with 

Table 1. Relationship between BSS. 

Approach Method Characteristics Algorithm 

 

 
Sparseness 

MAP 

estimation 

Low 

computation 

[6],[10],[11] 

Binary 
mask 

High robustness, 

low presicion 

[12],[13],[14], 
[15],[19],[20] 

 

Statistics 

ICA 
High preicsion,  

Low robustness 

[4],[5],[7], 

[8],[9],[15] 
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outer-product learning rules is designed for separating method. 

This paper is organized as follows: In ection 2, we 

introduce the background of BSS based on sparseness. In 

Section 3, the proposed structure is introduced. In Section 4, we 

present hardware design. Section 5 presents the experimental 

results of software algorithm and hardware testing, and sections 

6 is conclusion. 

 

2. Background on Sparseness-based BSS 
 

2.1 Sparse component analysis 

 

Switching to the time-frequency domain has the additional 

advantage of making it easier to exploit the time-frequency 

sparseness of speech sources [19]. Sparseness of a signal means 

the places where only a few instances have a value significantly 

different from zero. The higher sparseness in the time-frequency 

domain can be explained by the harmonic structure of speech 

signals. During voiced speech, the energy of a speech signal is 

concentrated around multiples of the speaker’s fundamental 

frequency. Ideally, the frequency bands in between do not carry 

any energy. This means that in the time-frequency domain, only 

a few frequency bins have high values at each time instance, 

while most frequency bins have a value close to zero. This is a 

sparse signal by definition. Together with the frequency 

sparseness and the speaker dependency altogether leads to less 

overlap, which is also known as ‘disjoint’ or W-disjoint 

orthogonality [20], in the time frequency domain. Using a sparse 

signal representation is very important in order to ensure good 

separation performance since the separation is built on the 

assumption of sparse source signals. 

 An example is presented in Fig. 1. We assume there is a 

mixture of music and voice signals. Then, we transform these 

signals to frequency domain by Short Time Fourier Transform 

(STFT) and obtain the spectrogram. In the spectrogram, third 

dimension indicates the amplitude of a particular frequency at a 

specific time represented with color. In the mixture, it is obvious 

that its spectrogram retains the characteristics of voice and music. 

Fig. 1 also illustrates the sparseness of source signals. We can 

observe that the percentage of low energy bins i.e. are blue, are 

more than high energy bin which are red. It proves that the 

frequency bands in between do not carry any energy in ideal 

conditions. And we can distinguish that the red part stands for a 

high intensity of music and purple represents a high intensity of 

voice. In the spectrogram of the mixture, their time-frequency 

bins do not overlap significantly. 

 

2.2 Sparseness-based approaches 

 

The sparseness-based approaches can be divided into two 

main categories. One method is based on MAP estimation [10] 

[11], where the sources are estimated after mixing matrix 

estimation, while the other extracts each signal with time-

frequency binary masks [12]-[13]. The former method includes 

mixing matrix estimation and L1-norm minimization in the 

frequency domain (i.e., for complex numbers), both of which 

still present difficulties [10]. The latter binary mask approach 

has the advantage of fast implementation. 

A basic MAP estimation design is used which is explained 

in [10]. It used two-stage approach consisting of Blind Mixing 

Model Recovery (BMMR) and Blind Source Recovery (BSR). 

A hierarchical cluster is used to estimate the mixing matrix in 

the BMMR step. Eventually the system separates the signals in 

the BSR step. Then, the inverse STFT is applied to obtain time-

domain signals. Among the most important advantages of the 

described hierarchical clustering algorithm, there is a fact that it 

works directly on the sample data in any vector space of 

arbitrary dimensions. The only requirement is the definition of 

a distance measure for the considered vector space. Therefore, it 

can easily be applied to complex valued data that occurs in 

frequency-domain convolutive BSS. No initial values for the 

mixing vectors are required. This means, in particular, that if the 

assumption of clusters with high densities around the mixing 

vectors is true, then the algorithm converges to those clusters. 

In the binary mask approach, the signals are sufficiently 

sparse. Therefore, we can assume that at most one source is 

dominant at each time–frequency slot. If this assumption holds, 

a histogram of the level and frequency of normalized phase 

differences [21] between two sensor observations has N clusters. 

Because an individual cluster in the histogram corresponds to an 

individual source, each signal can be separated by selecting the 

observation signal at time–frequency points in each cluster with 

a binary mask. 

 

3. Proposed Binary Mask Approach on BSS 

 

3.1 Overall System Description 

 

Suppose that N sources are convolutively mixed and observed at 

M sensors. 𝑥𝑥𝑝𝑝(𝑡𝑡) = ��ℎ𝑝𝑝𝑝𝑝(𝑙𝑙)𝑠𝑠𝑝𝑝(𝑡𝑡 − 1) , 𝑝𝑝 = 1, … ,𝑀𝑀𝑁𝑁
   (1) 

Where hpq(l) represents the impulse response from source q to 

sensor p, xp(t) represents the sample from microphone, and sq(t-

l) represents the source signal. We assume that N and M are 

known, and that the sensor spacing is small enough to avoid the 

spatial aliasing problem. The goal is to obtain separated signals 

that are estimations of sources solely from M observations. 

Five steps of binary mask approach are shown in Fig. 2 

which are discussed as following: 

 

Step 1) Signal transformation to the time-frequency domain: the 

signals sampled at frequency fs are converted into frequency-

domain by STFT. As following equation: 
 𝑋𝑋(𝑡𝑡, 𝑓𝑓) = � 𝑤𝑤(𝑡𝑡 − 𝜏𝜏)𝑥𝑥(𝜏𝜏)𝑒𝑒−𝑗𝑗2𝜋𝜋𝜋𝜋𝜋𝜋𝑑𝑑𝜏𝜏∞

−∞       (2) 

 
 

Fig. 1 Time frequency spectrum of mixed input signal. 



 
 

 

STFT adds a shifted window function w(t) to Fourier 

Transform to divide the signal into several blocks then every 

block is transformed by Fourier Transform. 

 

Step 2) Feature extraction: If the sources are sufficiently sparse, 

separation can be realized by gathering the time-frequency 

points. To estimate such time-frequency points, some features 

are calculated by using the frequency-domain observation 

signals. Furthermore, feature is a vector that consists of certain 

geometric features. Generally, previous methods utilized the 

level ratio and/or phase difference between observations as their 

features. 
 

Step 3) Clustering: The clustering criterion is to minimize the 

total sum of the Euclidean Distances (ED) between cluster 

members and their centroids. Features are grouped into N 

clusters where N is the number of possible sources. Here we use 

k-means algorithm. Therefore, the clustering procedure will be 

automated and simplified. In this paper, N is set to 2. 

 

Step 4) Next, the separated signals are estimated based on the 

clustering results. We can design a time–frequency domain 

binary mask that extracts the time–frequency points of each 

cluster. If some of the features belong to one group, we set M (f, 

t) = 1, otherwise 0, and the mask is generated. Then, we multiply 

the binary mask to the mixture spectrogram. In the same time, it 

separates the signal. 

 𝑀𝑀𝑘𝑘(𝑓𝑓, 𝑡𝑡) = �1,𝛩𝛩(𝑓𝑓, 𝑡𝑡) ∈ 𝐶𝐶𝑘𝑘
0, 𝑜𝑜𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑤𝑤𝑒𝑒𝑠𝑠𝑒𝑒           (3) 

 𝑦𝑦𝑘𝑘(𝑓𝑓, 𝑡𝑡) = 𝑀𝑀𝑘𝑘(𝑓𝑓, 𝑡𝑡)𝑥𝑥𝑝𝑝(𝑓𝑓, 𝑡𝑡)          (4) 
 

Step 5) Separated signal reconstruction: At the end of the flow 

in Fig. 2, the output y(t) is obtained by employing an ISTFT and 

the overlap-and-add method. 

 

3.2 Proposed Modified Feature Extraction 

 

Traditional feature extraction is usually applied with k-

means algorithm. It assumes that the distributions of isotropic 

variance, the level of ratios and the phase differences should 

have similar variances. Here we propose a modified feature 

extraction which introduces the reduction of DOA variance 

during feature extraction. After applying this method, iterations 

of k-means clustering can be decreased. Generally, features can 

be summarized as: 
 Θ(f, t) = ��|𝑥𝑥2(𝑓𝑓, 𝑡𝑡)|

|𝑥𝑥1(𝑓𝑓, 𝑡𝑡)|
, 𝑎𝑎𝑒𝑒𝑎𝑎 |𝑥𝑥2(𝑓𝑓, 𝑡𝑡)|

|𝑥𝑥1(𝑓𝑓, 𝑡𝑡)|
��𝑇𝑇     (5) 

 

Such features represent geometric information on sources and 

sensors if the sources are sufficiently sparse. Let us assume that 

the mixing process is expressed as: 
 

ℎ𝑗𝑗𝑘𝑘 ≈ 𝜆𝜆𝑗𝑗𝑘𝑘𝑒𝑒𝑥𝑥𝑝𝑝�−𝑗𝑗2𝑓𝑓𝜏𝜏𝑗𝑗𝑘𝑘�        (6) 
 

If the sources are sparse, then the feature vector becomes: 
 Θ(f, t) = �𝜆𝜆2𝑘𝑘𝜆𝜆1𝑘𝑘 ,−2𝜋𝜋𝑓𝑓(𝜏𝜏2𝑘𝑘 − 𝜏𝜏1𝑘𝑘)�𝑇𝑇       (7) 

 

To avoid  frequency dependency in the phase 

difference, some authors have employed a frequency 

normalization that involves dividing the phase difference by 2πf 
or 2πfc-1d where c is the propagation velocity and d is the sensor 

spacing. The latter gives the DOA of sources if the sensor 

spacing d is given correctly. If we do not use such frequency 

normalization, then we have to solve the permutation problem 

among frequencies after clustering the features. Moreover, 

frequency normalization makes it possible to apply the method 

to short data without significant performance degradation. Thus, 

we have to find a feature that leads to accurate centroid estimates 

blindly. 

Some method applies level ratio for evaluation [20], 

which is listed in equation (8). Another method which concerns 

the normalization of level ratio is listed in equation (9). These 

two types are manipulated for two sources and two microphones 

case, where d is the space between microphones and c is the 

sound velocity. Arakia et al. [22] mentioned that although these 

equations are similar, the feature of Type_B can achieve better 

performance than Type_A. It is found that when the feature is 

normalized, the level ratios as seen in feature of Type_B can 

prevent such outliers. Another reason is that the phase term of 

Type_A feature is too small, and his is more important and more 

fatal. For multivariate clustering with the k-means algorithm, the 

level ratios and phase differences should have similar variances. 

This is because the k-means assumes distributions of isotropic 

variance. However, the phase term of Type_A feature is far 

smaller than the level ratio. The poor performance of Type_A 

feature results is due to lack of balance between the level ratio 

and phase difference terms. With the feature of Type_B, where 

the phase is divided by 2πfc-1d, the phase difference becomes 

larger, and achieves good performance with the k- means 

algorithm. 
 

Type_A : Θ(f, t) = ��|𝑥𝑥2(𝜋𝜋,𝑡𝑡)|

|𝑥𝑥1(𝜋𝜋,𝑡𝑡)|
,
12𝜋𝜋𝜋𝜋 𝑎𝑎𝑒𝑒𝑎𝑎 |𝑥𝑥2(𝜋𝜋,𝑡𝑡)|

|𝑥𝑥1(𝜋𝜋,𝑡𝑡)|
��𝑇𝑇      (8) 

Type_B : Θ(f, t) = ��|𝑥𝑥2(𝜋𝜋,𝑡𝑡)|𝐴𝐴(𝜋𝜋,𝑡𝑡)
,

12𝜋𝜋𝜋𝜋𝑐𝑐−1𝑑𝑑 𝑎𝑎𝑒𝑒𝑎𝑎 |𝑥𝑥2(𝜋𝜋,𝑡𝑡)|

|𝑥𝑥1(𝜋𝜋,𝑡𝑡)|
��𝑇𝑇   (9) 

 

We choose Type_B and the feature extraction formula are 

described as following: 
 Θ𝐿𝐿(f, t) = �|𝑥𝑥2(𝑓𝑓, 𝑡𝑡)|𝐴𝐴(𝑓𝑓, 𝑡𝑡) �                          (10) 

 Θ𝑃𝑃(f, t) = � 1𝛼𝛼𝜋𝜋 𝑎𝑎𝑒𝑒𝑎𝑎 �|𝑥𝑥2(𝜋𝜋,𝑡𝑡)|

|𝑥𝑥1(𝜋𝜋,𝑡𝑡)|
��                     (11)  

 

Where α = 2π𝑐𝑐−1𝑑𝑑 
 

A(f, t) = �|𝑥𝑥1(𝑓𝑓, 𝑡𝑡)|2 + |𝑥𝑥2(𝑓𝑓, 𝑡𝑡)|2         (12) 
 

 

Thus, the feature is expressed as: 
 

Feature

Extraction
Clustering ISTFTSTFT

x(t) X(f,t) Ɵ(f,t) Mk(f,t)Mask

Design

Ck Yk(f,t) s(t)

 
Fig. 2 Functional block of binary mask approach. 

 



 
 𝛩𝛩(f, t) = 𝛩𝛩𝐿𝐿(𝑓𝑓, 𝑡𝑡)𝑒𝑒𝑥𝑥𝑝𝑝[𝑗𝑗𝛩𝛩𝑃𝑃(𝑓𝑓, 𝑡𝑡)]             (13) 
 

Then, normalize the feature by: 
 Θ�(f, t)← 𝛩𝛩(𝑓𝑓, 𝑡𝑡) 𝛩𝛩|(𝑓𝑓, 𝑡𝑡)|⁄                         (14) 

 

3.3 Reduction of DOA variance 

 

Even though we normalized features in order to make level ratio 

and phase difference have similar variance, the variance of the 

phase difference is still very small. Thus, we propose the 

reduction of DOA variance [11]. The equation is shown as 

following: θ� = √𝜀𝜀 ∗ 𝜃𝜃 + �1 − √𝜀𝜀�𝑢𝑢        (15) 

 

The variance 𝜎𝜎2 can be adjusted by ε as shown below: 

 𝜎𝜎�2 = ε𝜎𝜎2      (16) 

 
Where μ is the mean of phase difference, θ is the phase 
difference, and σ is set to 0.5. The advantage of this method is 
that it will decrease the iterations of k-means. 

The procedure of k-means is first setting initial centroids 

and then assigning the data to the nearest centroid. During this 

step, it will engender clusters. Afterwards, the centroid of a 

cluster will be recalculated. Then, we can repeat these steps until 

it converges. Since k-means uses the distance information to 

assign data to the nearest centroid and the variance of phase term 

is still larger than the level ration term, we can reduce the 

variance of phase term. Thus, the total sum of distance decreases 

and the average iteration of clustering is reduced. 
 

4. Hardware design 
 

In hardware design, the first module is combined by STFT 

and ISTFT in one module, second module i.e. cluster module is 

combined by k-means and binary mask. Therefore, we have 

three main modules; STFT/ISTFT, feature extraction and cluster 

and buffer memory. First source signal is converted to frequency 

domain using FFT-based processing. The features generated by 

the feature extraction module are used in cluster module. The 

cluster module is executed for several iterations, which means 

that feature will go as input into the cluster module for several 

times. Therefore, buffer memory is needed. By using ISTFT, the 

signal is transformed back to time domain. The architecture is 

shown in Fig. 3. The detailed explanation of these architectures 

is provided below. 

 

4.1 Architecture of Fast Fourier Transform 

 

The transformation between time domain and frequency 

domain of the discrete Fourier transform (DFT) can be expressed 

as equation (19) and equation (20),  

 𝑋𝑋[𝑘𝑘] = �𝑥𝑥[𝑛𝑛]𝑊𝑊𝑁𝑁𝑘𝑘𝑘𝑘𝑁𝑁−1
𝑘𝑘=0 , 𝑘𝑘 = 0,1, … ,𝑁𝑁 − 1         (19) 

 𝑋𝑋[𝑛𝑛] =
1𝑁𝑁�𝑋𝑋[𝑘𝑘]𝑊𝑊𝑁𝑁−𝑘𝑘𝑘𝑘𝑁𝑁−1
𝑘𝑘=0 , 𝑘𝑘 = 0,1, … ,𝑁𝑁 − 1  (20) 

 

where xn and Xk are the signals in time domain and frequency 

domain respectively. In this work, N is set as 512. When the 

period is power of 2, we can use radix-2 Fast Fourier transform 

(FFT) algorithn to compute discrete Fourier transform [23], [24]. 

We separate the points of Xk into even and odd point. After 

serveral computation, the equations of the DFT can be simplifed 

as equation (21) and (22): 

 

𝑋𝑋[2𝑒𝑒] = ��𝑥𝑥[𝑛𝑛] + 𝑥𝑥 �𝑛𝑛 +
𝑁𝑁
2
��𝑊𝑊𝑁𝑁2𝑘𝑘𝑛𝑛

𝑁𝑁2−1
𝑘𝑘=0               (21) 

 

𝑋𝑋[2𝑒𝑒 + 1] = ��𝑥𝑥[𝑛𝑛] − 𝑥𝑥 �𝑛𝑛 +
𝑁𝑁
2
��𝑊𝑊𝑁𝑁2𝑘𝑘𝑛𝑛

𝑁𝑁2−1
𝑘𝑘=0       (22) 

 

where  is called twiddle factor. Equation (21) 

can be regarded as the sum of the first N/2 points and the last N/2 

points, and then discrete Fourier transform is computed for N/2 

points. Similarly, equation (22) can also be regarded as the 

subtraction of the first N/2 points and the last N/2 points, and 

then computation of discreate Fourier transform for N/2 points. 

In this study, we use 512-points radix-2 memory based FFT 

architecture as shown in Fig. 4. In STFT module, we have one 

buterfly unit, coefficient generater and single-port SRAM. The 

size of SRAM is 512 words. The control decides the 

forward/inverse FFT opteration and generates the address which 

is required by RAM and coefficient generater for access. The 

cofficient generater includes window function and sin(cos) 

function that output the windowing and twiddle factor for further 

butterfly processing. Then the butterfly processing perform the 

complex arithmetic operations for the data of RAM and the 

twiddle factor. The RAM stores the input data as well as the 

temporary computed data and also play the role of the cache. The 

outputs of the FFT/IFFT results are also stored in the RAM for 

access. 

Nknjkn
N eW /2π−− =

 
 

Fig. 3 Architecture diagram of BSS. 

 

 
 

Fig. 4 Architecture diagram of STFT. 



 
 

 Maclaurin series expansions and the symmetric and 

periodic properties of the trigonometric functions are used to 

simplify the transform operation. In order to  reduce the 

hardware complexity, our FFT processors have employed the 

Maclaurin series architecture to perform windowing and twiddle 

factor operations. It also has potential advantage of low 

switching activity for low-power operations. 

Here, we use fourth-order Maclaurin series for the 

approximation of , which is given as follows: 

 

cos(∅) = 1 − ∅2
2!

+
∅4
4!
− ∅6

6!
+⋯ ≈ 1 − ∅2

2!
+
∅4
4!

     (23) 

 
A block diagram of the proposed architecture based on the 

fourth-order Maclaurin series [25] is shown in Fig. 5. Input 

signal is simultaneously computed for four arguments ( ,

, , ) so that one of the four arguments 

can fall within the range of 0 to . The controller module 

produces the ‘select’ signal that selects corresponding argument 

to be selected as the output of the multiplexer. Also the controller 

module outputs the ’SIGN’ signal, which is dependent on the 

value of input . Absolute result of STFT will be changed to 

the negative value if the ‘SIGN’ is high. 
 
4.2 Architecture of Feature Extraction 

 

 Now we set two source signals, i.e., X1 and X2 and these 

two source signals are complex numbers generated by FFT 

module. The equations are formula(10), (11), (12) and (13) 

where X1 and X2 are two input signals. The proposed hardware 

architecture for feature extraction is showed in Fig. 6. ROM can 

output the frequency normalization which involves dividing the 

phase difference by 1 i.e. 1/ . 
The input X1 and X2 are both complex numbers, we 

compute the sita, remainder, square and divider function of input 

signals with the CORDIC (COordinate Rotation DIgital 

Computer) architecture [26]. Here sin, cos functions use 

architecture of fourth-order Maclaurin series. In   ‘sita, 

remainder, square and divider function’ module uses seven 

segment linear approximation to produce the value by CORDIC. 

CORDIC is the acronym of a trigonometric algorithm for 

Coordinate Rotation Digital Computer. It was first introduced by 

Jack Volder [27] and later extended by Walther [28]. It only 

consists of shifts and add. However, it can generate solutions for 

trigonometric and some transcendental functions. This 

algorithm is derived from the general provided rotation 

transform:  �𝑋𝑋𝑖𝑖+1 = 𝑋𝑋𝑖𝑖 − 𝜇𝜇𝑑𝑑𝑖𝑖𝑌𝑌𝑖𝑖2−𝑖𝑖𝑌𝑌𝑖𝑖+1 = 𝑌𝑌𝑖𝑖 − 𝑑𝑑𝑖𝑖𝑋𝑋𝑖𝑖2−𝑖𝑖𝑍𝑍𝑖𝑖+1 = 𝑍𝑍𝑖𝑖 − 𝑑𝑑𝑖𝑖𝜃𝜃𝑖𝑖         (24) 

 

CORDIC method can be generalized by introducing a 

parameter μ and redefining the dedicated angle serials. Through 
these modifications, algorithm is extend to perform more 
functions. The graphical representation and architectural 

mapping for a single step of CORDIC rotation are shown in Fig. 

7. Here the circular CORDIC architecture computes 

trigonometric function and magnitude of a vector whereas the 

linear mode of CORDIC architecture computes linear functions 

such as multiplication and division. 

)cos(φ

φ φ
φπ − πφ − φπ −2

2/π

φ

α

 
 

Fig. 5 Architecture diagram of fourth-order Maclaurin series. 

 
 

Fig. 6 Architecture diagram of feature extraction. 

 
 

Fig. 7 Illustration of the Circular CORDIC. 

 
 

Fig. 8 Block diagram of the K-means. 



 
 
 

4.3 Architecture of Clustering 

 

The proposed k-means hardware architecture is for two 

dimensional input and two clusters in this work. Fig. 8 shows the 

block diagram of the proposed k-means module. The data 

vectors are serial input to the system. In the beginning, we select 

the first two input vectors as the initial centroids of the two 

clusters. The input vectors are sent as input to the distance 

(processing element) PE to compute the distance between input 

vectors and every centroid. The information of distance in 

distance PE is compared with the results, which describes the 

cluster to which input vector belongs. The compared results are 

added to the summation of the relevant cluster accordingly and 

fed into update centroid. The update centroid computes the new 

centroid by dividing the sum values with data count value, and 

then new centroid is sent back to the PE. 

Now, the circuit architecture and computation of the 

modules in k-means architecture [29] will be introduced, which 

include PE and update centroid architectures. The design is 

based on scalability. The scalable design can be easily extended 

and used for more cluster numbers without designing whole 

design again. 

The architecture for distance computing is important, where 

we call it as processing element. In PE, and we use Euclidean 

distances as the distance which calculates the absolute value of 

the subtraction of two input values to represent the distance 

between two inputs. The proposed PE have two inputs, where 

one is the input vector, while the other is the clustering centroid. 

Fig. 9 shows the architecture of the PE, which includes two 

distance PEs and the Vector Delay Line. Two distance PEs are 

used to calculate the distances between input vectors and each 

of the two centroids to find the nearest centroid of an input vector 

in one cycle. The “EM” modules in Fig. 9 is capable of 

computing the Euclidean distance. Two dimensions of input 

vectors and centroids can be processed simultaneously by this 

module. 

Next, the hardware architecture for the Update Centroid is 

showed in Fig. 10. The module is designed to sum up the vectors 

in the same cluster and sum up the new centroid. First, Update 

Centroid add up the value of the vectors in every dimension 

separately. It can add up values of same dimension with 

multiplexers. As all of the input vectors in the cluster sum are 

classified, Update Centroid divides the sum values by the 

number of the vectors in the cluster. After completion of 

processing, the module outputs the updated new clustering 

centroids.  

 

5. Results and Discussion 
 

5.1 Software Experimental Results 

 

The real world experiment environment is shown in Fig. 

11. We utilize two omnidirectional microphones with 4.5 cm 

spacing (Audio-Technica AT9900). The distance between the 

microphones and sources is 100 cm. The angle between two 

speakers and microphones is 100°. 

The diagram of every process for BSS based on binary 

mask is shown in Fig. 12. At the beginning, we input a stereo 

mixture recorded by Audio-Technica AT9900. The sampling 

rate was 8 kHz and the STFT frame size was 512 with 256 

overlapping points. Than we transform stereo mixture signal into 

time- frequency domain by STFT. After normalize features, we 

apply k-means to clustering. Next, the binary mask is generated 

by the centroids of the clustered results. Finally, we use binary 

mask on time- frequency spectrum to separate the mixed signal. 

Take the female-male mixture from TIMIT database as an 

 
 

Fig. 9 Architecture of the Processing Element. 

 
 

Fig. 10 Architecture diagram of Update Centroid. 

 
 

Fig. 11 The whole system design in real environment. 

 
 

Fig. 12 The procedure of binary mask approach. 



 
 

example, where we compare the number of iterations for the 

original k- means clustering and the number of iterations of it  

In order to compare the result of the original clustering and 

proposed method for every mixture, we repeat the clustering five 

times, each with a new set of initial cluster centroid positions. 

Table 2 shows the typical simulations where the sounds are 

mixed with several people. These three cases are widely used to 

demonstrate the feasibility of blind source separation. In Table 

2, we can observe that after reducing DOA variance, the 

iterations are lower. 

 

Referring to the quality issue, there are two criteria to measure the 

separated result by utilizing BSS_EVAL [30]. One is Signal to 

Distortion Ratio (SDR) and the other one is Signal to 

Interference Ratio (SIR), where Starget is source signal; einterf, enoise, 

and eartif are interferences, noise, and artifacts error terms, 

respectively. 

SIR = 10log10 �𝑠𝑠𝑡𝑡𝑡𝑡𝑛𝑛𝑡𝑡𝑡𝑡𝑡𝑡�2�𝑒𝑒𝑡𝑡𝑡𝑡𝑛𝑛𝑡𝑡𝑡𝑡𝑡𝑡�2          (17) 

 
 

SDR = 10log10 �𝑠𝑠𝑡𝑡𝑡𝑡𝑛𝑛𝑡𝑡𝑡𝑡𝑡𝑡�2�𝑒𝑒𝑖𝑖𝑘𝑘𝑡𝑡 𝑡𝑡𝑛𝑛𝜋𝜋 + 𝑒𝑒𝑘𝑘𝑛𝑛𝑖𝑖𝑐𝑐𝑡𝑡 + 𝑒𝑒𝑡𝑡𝑛𝑛𝑡𝑡𝑖𝑖𝜋𝜋�2       (18) 

 

The SIR determines the ratio of energies of the desired 

signal and the interference in the separated signal. SIR is highly 

influenced by filtration of the measured signal, which might be 

misleading, especially in audio separation. The SDR provides a 

supplementary criterion of SIR that reflects the difference 

between the desired and the estimated signal in the mean-square 

sense. SDR is highly sensitive to the filtering, which may give a 

rigid evaluation for methods which apply a long separation filter. 

The experimental results for SIR and SDR are shown in 

Table 2. It shows that the proposed method provides almost the 

same quality when compared with the original BSS. 

We further perform some evaluation at aspect of whole 

system. Table 3 illustrates the computational time analysis for 

the binary mask approach for STFT, feature extraction, k-means, 

binary mask and ISTFT. For Table 3, 30 seconds source signal 

is used, and it is averaged over three testing mixtures in terms of 

different genders. In order to evaluate the performance of 

different positions between sources and microphones, we built 

this experiment for the female-male case. In Table 4 and in Fig. 

13, different angle of source signal are present, most of the 

average number of iterations are smaller. 

 

5.2 Hardware Experimental Results 

Table 3. Computational time analysis for binary mask approach 
Execution Time 

(second) 
 

STFT 
Feature extraction k- means Binary mask  

Total 

Original 1.87 [20] 0.28 [20] 3.31 0.10 5.56 

Proposed 1.83 0.23 2.52 0.10 4.68 

 

Table 2. Comparison of original and proposed method at DOA difference 100° for speeches. 

 Two speakers Average iterations for K-means 
Average SIR(dB) Average SDR(dB) 

 

Original 

Clustering 

Female-Female 21.7 14.8 2.8 

Female-Male 26.6 15.5 3.3 

Male-Male 21.2 12.1 1.1 

Average 23.2 14.1 2.4 

 

Proposed 

Method 

Female-Female 15.5 14.3 2.9 

Female-Male 19.4 15.1 3.2 

Male-Male 16.4 12.2 0.9 

Aervage 17.1 13.9 2.3 

 

Table 4. Comparison of original and proposed method under various positions. 

 Two speakers Average iterations 
for K-means Average 

SIR(dB) 

Average 

SDR(dB) 

20° Original Clustering 33.8 4.9 -2.1 
Proposed Method 21.8 4.5 -2.3 

40° Original Clustering 30.4 12.1 0.7 
Proposed Method 26.6 13.7 0.6 

60° Original Clustering 22.2 12.1 2.9 
Proposed Method 19.6 12.1 2.9 

80° Original Clustering 26.2 12.9 3.4 
Proposed Method 17.8 12.6 3.5 

100° Original Clustering 26.6 15.5 3.3 
Proposed Method 19.4 15.1 3.2 

120° Original Clustering 25 12.6 2.1 
Proposed Method 22 12.6 1.9 

140° Original Clustering 18.2 11.7 2.1 
Proposed Method 22.2 12.4 2.2 

160° Original Clustering 23.8 11.3 0.8 
Proposed Method 18.4 11.7 0.7 

 



 
 

 In Fig. 14, the result of the hardware blind source 

separation for every mixture is shown with different DOA and 

different noise sources. Totally five different sources are used as 

noise. The first one, male-female speaking, is a common 

simulation in BSS. In our noise reduction application, we 

include more realistic source as noise and simulate them. These 

sources include car driving, the piano and wind sound. The 

sampling rate of the source signal is 7350 Hz and the window 

size is 512 with 256 overlapping points. 

This BSS chip is implemented using TSMC 90nm 

technology and the cell-based design flow. Fig. 15 shows the 

layout view of the chip. ASIC chip contains 84 I/O pads. We use 

single-port memory which have 69 Kbits. Total gate count is 

119.71k without memory. The total size of core and die is 1.095 

x 1.095m2 and 1.655 x 1.655 m2 respectively. With power supply 

of 1.0V, the design achieves 10 MHz; in addition, the power 

dissipation is 2.92 mW at 10 MHz. Table 5 summarizes the chip 

specifications. 

 Table 6 lists several implementation results of BSS 

systems. To eliminate the process factor, the power consumption 

of each design has been normalized to 90 nm technology by the 

following equation [31]: 
 𝑃𝑃𝑜𝑜𝑤𝑤𝑒𝑒𝑒𝑒𝑘𝑘𝑛𝑛𝑛𝑛𝑛𝑛𝑡𝑡𝑛𝑛𝑖𝑖𝑛𝑛𝑡𝑡𝑑𝑑 = 𝑃𝑃𝑜𝑜𝑤𝑤𝑒𝑒𝑒𝑒 × � 1.0𝑉𝑉𝑜𝑜𝑙𝑙𝑡𝑡𝑎𝑎𝑎𝑎𝑒𝑒�2 × � 90𝑃𝑃𝑒𝑒𝑜𝑜𝑐𝑐𝑒𝑒𝑠𝑠𝑠𝑠� 

 

Throughput =
𝑠𝑠𝑡𝑡𝑛𝑛𝑝𝑝𝑛𝑛𝑡𝑡−𝑝𝑝𝑡𝑡𝑛𝑛−𝑐𝑐ℎ𝑡𝑡𝑘𝑘𝑘𝑘𝑡𝑡𝑛𝑛×𝑠𝑠𝑡𝑡𝑐𝑐𝑛𝑛𝑘𝑘𝑑𝑑×16𝑏𝑏𝑖𝑖𝑡𝑡×2×2×𝐶𝐶ℎ𝑖𝑖𝑝𝑝−𝜋𝜋𝑛𝑛𝑡𝑡𝑝𝑝𝑓𝑓𝑡𝑡𝑘𝑘𝑐𝑐𝑓𝑓𝑡𝑡𝑥𝑥𝑡𝑡𝑐𝑐𝑓𝑓𝑡𝑡𝑖𝑖𝑛𝑛𝑘𝑘−𝑐𝑐𝑓𝑓𝑐𝑐𝑛𝑛𝑡𝑡  

 
In the circuit simulation, "second" is the length of the sound 

signal (second), each of our sample is 16 bits, two "2" represent 

the overlap 256 and two-channel. Our design achieves frequency 

of 10MHz. Input of 5 second sound signal needs 4685568 cycles 

 
 
Fig. 13 Comparison of average iterations in K-means clustering for original and 
proposed method. 

 

 
 

Fig. 14: SIR result for hardware blind source separation 

 
 

Fig. 15 Chip layout of BSS. 

Table 5. Chip Specification of BSS. 

Item Specification 

Technology TSMC 90nm 

Voltage 1.0V / 3.3V (Core / IO) 

Operation frequency 10MHz 

Chip area 1.095 x 1.095m2 

Core area 1.655 x 1.655 m2 

Gate count 119.71K 

Memory requirement 69Kbits 

Power consumption 2.92 mW 

Total pins 84 pins 

 

Table 6. Comparisons of Chip Specification. 

 J.C. Wang [32] L.-D. Van [33] K.-K. Shyu [34] C.-M. Kim [35] This work 

Application Speech ECG EEG Speech Speech 

Algorithm FastICA FastICA ICA ICA DOA 

Technology TSMC 90 UMC 90 FPGA Hynix 0.35um TSMC 90 

Channels 4 8 4 - 2 

Samples per channel - 256 - - 512 

Speed(MHz) 100 100 68 - 10 

Power(mW) 54.86 16.35 - 14.5 2.92 

Gate count(K) 199 272 315 - 119.71 

Memory(bit) - 68K 24K 42K 69K 

Core size 0.54x0.54 1.22x1.22 - - 1.09x1.09 

Power normalized 54.86 mW 16.35 mW - 0.34 mW 2.92 mW 

 



 
 
to process data and execution time is 0.5 seconds. Throughput 

of the design is 5.0196Mbps. 

 In Table 6, we compare four chips with our work. In [32], 

they use FastICA for speech separation and the technology is 

TSMC90. FastICA is also used by [33]. And in [34], ICA is used 

for EEG signal separation on FPGA. In the other hand, [35] 

implemented ICA method on chip with Hynix 0.35um technique. 

 

6. Conclusions 
 

In this paper, a fast binary mask approach for blind source 

separation is proposed. First, we input the time domain signal 

and transform it to the time-frequency domain with STFT. 

Second, we utilize feature extraction to obtain geometric 

information and the formula. With the aid of the reduction of 

DOA variance, we decrease the variance of features in order to 

obtain lower iterations of k-means clustering. Finally, according 

to the clustered features, a time frequency mask is generated. 

Our method does not require any prior information or parameter 

estimation. Experimental results with various mixtures are 

simulated in real environments to verify the effectiveness of the 

proposed method. We further perform the experiment on real 

time application which is based on source separation situation 

and acting as a noise reduction system. It is worth mentioning 

that the proposed method has low average number of iterations 

and low total sum of distance. Furthermore, the performance is 

slightly improved in terms of average SIR and SDR. Finally, 

hardware simulation of the proposed chip is performed by 

Verilog language. 
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Figure 1

Time frequency spectrum of mixed input signal.

Figure 2

Functional block of binary mask approach.



Figure 3

Architecture diagram of BSS.

Figure 4

Architecture diagram of STFT.



Figure 5

Architecture diagram of fourth-order Maclaurin series.



Figure 6

Architecture diagram of feature extraction.

Figure 7

Illustration of the Circular CORDIC.



Figure 8

Block diagram of the K-means.

Figure 9

Architecture of the Processing Element.



Figure 10

Architecture diagram of Update Centroid.



Figure 11

The whole system design in real environment.



Figure 12

The procedure of binary mask approach.

Figure 13



Comparison of average iterations in K-means clustering for original and proposed method.

Figure 14

SIR result for hardware blind source separation

Figure 15

Chip layout of BSS.


