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Abstract 
We describe our method for benchmarking Semantic Web knowledge base systems with 
respect to use in large OWL applications. We present the Lehigh University Benchmark 
(LUBM) as an example of how to design such benchmarks. The LUBM features an on-
tology for the university domain, synthetic OWL data scalable to an arbitrary size, four-
teen extensional queries representing a variety of properties, and several performance 
metrics. The LUBM can be used to evaluate systems with different reasoning capabili-
ties and storage mechanisms. We demonstrate this with an evaluation of two memory-
based systems and two systems with persistent storage. 
 
Keywords 
Semantic Web, Knowledge Base System, Lehigh University Benchmark, Evaluation 

1. Introduction 

Various knowledge base systems (KBS) have been developed for storing, reasoning and 
querying Semantic Web information. They differ in a number of important ways. For in-
stance, many KBSs are main memory-based while others use secondary storage to pro-
vide persistence. Another key difference is the degree of reasoning provided by the KBS. 
Some KBSs only support RDF/RDFS [44] inferencing while others aim at providing ex-
tra OWL [10] reasoning. 
 In this paper, we consider the issue of how to choose an appropriate KBS for a large 
OWL application. Here, we consider a large application to be one that requires the proc-
essing of megabytes of data. Generally, there are two basic requirements for such sys-
tems. First, the enormous amount of data means that scalability and efficiency become 
crucial issues. Secondly, the system must provide sufficient reasoning capabilities to 
support the semantic requirements of the application. 

It is difficult to evaluate KBSs with respect to these requirements. In order to evalu-
ate the systems in terms of scalability, we need Semantic Web data that are of a range of 
large sizes and commit to semantically rich ontologies. However, there are few such 
datasets available on the current Semantic Web. As for the reasoning requirement, the 
ideal KBS would be sound and complete for OWL Full. Unfortunately, increased rea-
soning capability usually means an increase in data processing time and/or query re-
sponse time as well. Given this, one might think that the next best thing is to choose a 
KBS that is just powerful enough to meet the reasoning needs of the application. How-
ever, this is easier said than done. Many systems are only sound and complete for un-
named subsets of OWL. For example, most description logic (DL) reasoners are com-
plete for a language more expressive than OWL Lite (if we ignore datatypes) but, 
ironically, less expressive than OWL DL. As such, although some systems are incom-
plete with respect to OWL, they may still be useful because they scale better or respond 
to queries more quickly. Therefore, to evaluate the existing KBSs for the use in those 
OWL applications, it is important to be able to measure the tradeoffs between scalability 
and reasoning capability. 
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In light of the above, there is a pressing need for benchmarks to facilitate the 
evaluation of Semantic Web KBSs in a standard and systematic way. Ideally we should 
have a suite of such benchmarks, representing different workloads. These benchmarks 
should be based on well-established practices for benchmarking databases [3, 4, 8, 33], 
but must be extended to support the unique properties of the Semantic Web. As a first 
step, we have designed a benchmark that fills a void that we consider particularly im-
portant: extensional queries over a large dataset that commits to a single ontology of 
moderate complexity and size. Named the Lehigh University Benchmark (LUBM), this 
benchmark is based on an ontology for the university domain. Its test data are syntheti-
cally generated instance data over that ontology; they are random and repeatable and can 
be scaled to an arbitrary size. It offers fourteen test queries over the data. It also provides 
a set of performance metrics used to evaluate the system with respect to the above men-
tioned requirements. 

A key benefit of our benchmarking approach is that it allows us to empirically 
compare very different knowledge base systems. In order to demonstrate this, we have 
conducted an experiment using three different classes of systems: systems supporting 
RDFS reasoning, systems providing partial OWL Lite reasoning, and systems that are 
complete or almost complete for OWL Lite. The representatives of these classes that we 
chose are Sesame, DLDB-OWL, and OWLJessKB, respectively. In addition to having 
different reasoning capabilities, these systems differ in their storage mechanisms and 
query evaluation. We have evaluated two memory-based systems (memory-based Ses-
ame and OWLJessKB) and two systems with persistent storage (database-based Sesame 
and DLDB-OWL). We describe how we have settled on these systems and set up the 
experiment in the benchmark framework. We show the experimental results and discuss 
the performance of the systems from several different aspects. We also discuss some in-
teresting observations. Based on that, we highlight some issues with respect to the de-
velopment and improvement of the same kind of systems, and suggest some potential 
ways in using and developing those systems. 

This work makes two major contributions. First, we introduce our methodology for 
benchmarking Semantic Web knowledge base systems and demonstrate it using the 
LUBM as a specific product. We believe our work could benefit the Semantic Web 
community by inspiring and guiding the development of other benchmarks. Secondly, 
the experiment we have done could help developers identify some important directions 
in advancing the state-of-the-art of Semantic Web KBSs. 

The outline of the paper is as follows: Section 2 elaborates on the LUBM. Section 3 
describes the aforementioned experiment. Section 4 talks about related work. Section 5 
considers issues in applying the benchmark. We conclude in Section 6. 

2. Lehigh University Benchmark for OWL 

As mentioned earlier, this paper presents a benchmark that is intended to fill a void that 
we considered particularly important. The benchmark was designed with the following 
goals in mind: 
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1) Support extensional queries. Extensional queries are queries about the instance data 
over ontologies. There already exist DL benchmarks that focus on intensional que-
ries (i.e., queries about classes and properties). However, our conjecture is that the 
majority of Semantic Web applications will want to use data to answer questions, 
and that reasoning about subsumption will typically be a means to an end, not an end 
in itself. Therefore, it is important to have benchmarks that focus on this kind of 
query. 

2) Arbitrary scaling of data. We also predict that data will by far outnumber ontologies 
on the Semantic Web of the future. Here, we use the word “data” to refer to asser-
tions about instances, in other words what is referred to as an ABox in DL terminol-
ogy. In order to evaluate the ability of systems to handle large ABoxes we need to be 
able to vary the size of data, and see how the system scales. 

3) Ontology of moderate size and complexity. Existing DL benchmarks have looked at 
reasoning with large and complex ontologies, while various RDF systems have been 
evaluated with regards to various RDF Schemas (which could be considered simple 
ontologies). We felt that it was important to have a benchmark that fell between 
these two extremes. Furthermore, since our focus is on data, we felt that the ontol-
ogy should not be too large. 

It should be noted that these goals choose only one point in the space of possible 
benchmarks. We recognize that some researchers may not agree with the importance we 
placed on these goals, and would suggest alternative benchmarks. We encourage these 
researchers to consider the lessons learned in this work and develop their own bench-
marks. 
 Given the goals above, we designed the Lehigh University Benchmark. The first 
version [14] of this benchmark was used for the evaluation of DAML+OIL [9] reposito-
ries, but has since been extended to use an OWL ontology and dataset. We introduce the 
key components of the benchmark suite below. 

2.1. Benchmark Ontology 

The ontology used in the benchmark is called Univ-Bench. Univ-Bench describes uni-
versities and departments and the activities that occur at them. Its predecessor is the 
Univ1.0 ontology1, which has been used to describe data about actual universities and 
departments. We chose this ontology expecting that its domain would be familiar to 
most of the benchmark users. 

We have created an OWL version of the Univ-Bench ontology2. The ontology is 
expressed in OWL Lite, the simplest sublanguage of OWL. We chose to restrict the on-
tology (and also the test data) to OWL Lite since efficient reasoning systems exist for 
that language, for example, Racer [17] and Pellet [42]. Note that neither of these sys-
tems is complete for OWL DL. 

                                                 
1 http://www.cs.umd.edu/projects/plus/DAML/onts/univ1.0.daml 
2 http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl 
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For benchmark purposes, we have intentionally included in the ontology specific 
language features. For instance, originally the Univ1.0 ontology states that Graduat-
eStudent is a subclass of Student. In creating the Univ-Bench ontology, we have re-
placed that definition with what is shown in Fig. 1 using a restriction. As a result, the 
subclass relationship between both the classes GraduateStudent and Student must be in-
ferred using OWL semantics. Moreover, sometimes an inference could be made in mul-
tiple ways. To allow emphasis on description logic subsumption, we have made some 
domain constraint changes. For example, we have removed the domain constraint (to 
the class Student) of the property takesCourse so that no individuals of GraduateStudent 
in the benchmark data can be inferred as an instance of Student without the inference of 
the subsumption relationship between both classes from the ontology. 

OWL Code 
<owl:Class rdf:ID="GraduateCourse"> 

<rdfs:label>graduate level Courses</rdfs:label> 
<rdfs:subClassOf rdf:resource="#Course" /> 

</owl:Class> 
<owl:Class rdf:ID="GraduateStudent"> 

<rdfs:label>graduate student</rdfs:label> 
<rdfs:subClassOf rdf:resource="#Person" />  
<rdfs:subClassOf> 

<owl:Restriction> 
<owl:onProperty rdf:resource="#takesCourse" />  
<owl:someValuesFrom> 

<owl:Class rdf:about="#GraduateCourse" />  
</owl:someValuesFrom> 

</owl:Restriction> 
</rdfs:subClassOf> 

</owl:Class> 
<owl:Class rdf:ID="Student"> 

<rdfs:label>student</rdfs:label> 
<owl:intersectionOf rdf:parseType="Collection"> 

<owl:Class rdf:about="#Person" />  
<owl:Restriction> 

<owl:onProperty rdf:resource="#takesCourse" />  
<owl:someValuesFrom> 

<owl:Class rdf:about="#Course" />  
</owl:someValuesFrom> 

</owl:Restriction> 
</owl:intersectionOf> 

</owl:Class> 
Simplified DL Syntax Description 
GraduateCourse Course 

GraduateStudent Person takesCourse.GraduateCourse 
Student �3HUVRQ� takesCourse.Course 

Fig. 1. Definition of the classes GraduateStudent and Student 
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The ontology currently defines 43 classes and 32 properties (including 25 object 
properties and 7 datatype properties). It uses OWL Lite language features including in-
verseOf, TransitiveProperty, someValuesFrom restrictions, and intersectionOf. Accord-
ing to a study by Tempich and Volz [34], this ontology can be categorized as a “descrip-
tion logic-style” ontology, which has a moderate number of classes but several 
restrictions and properties per class. 

2.2. Data Generation and OWL Datasets 

Test data of the LUBM are extensional data created over the Univ-Bench ontology. For 
the LUBM, we have adopted a method of synthetic data generation. This serves multiple 
purposes. As with the Wisconsin benchmark [3, 4], a standard and widely used database 
benchmark, this allows us to control the selectivity and output size of each test query. 
However, there are some other specific considerations: 

1) We would like the benchmark data to be of a range of sizes including considerably 
large ones. It is hard to find such data sources that are based on the same ontology. 

2) We may need the presence of certain kinds of instances in the benchmark data. This 
allows us to design repeatable tests for as many representative query types as possi-
ble. These tests not only evaluate the storage mechanisms for Semantic Web data 
but also the techniques that exploit formal semantics. We may rely on instances of 
certain classes and/or properties to test against those techniques. 

Data generation is carried out by UBA (Univ-Bench Artificial data generator), a tool 
we have developed for the benchmark. We have implemented the support for OWL 
datasets in the tool. The generator features random and repeatable data generation. A 
university is the minimum unit of data generation, and for each university, a set of OWL 
files describing its departments are generated. Instances of both classes and properties 
are randomly decided. To make the data as realistic as possible, some restrictions are 
applied based on common sense and domain investigation. Examples are “a minimum 
of 15 and a maximum of 25 departments in each university”, “an undergraduate stu-
dent/faculty ratio between 8 and 14 inclusive”, “each graduate student takes at least 1 
but at most 3 courses”, and so forth. A detailed profile of the data generated by the tool 
can be found on the benchmark’s webpage. 
 The generator identifies universities by assigning them zero-based indexes, i.e., the 
first university is named University0, and so on. Data generated by the tool are exactly 
repeatable with respect to universities. This is possible because the tool allows the user 
to enter an initial seed for the random number generator that is used in the data genera-
tion process. Through the tool, we may specify how many and which universities to 
generate. 
 Finally, as with the Univ-Bench ontology, the OWL data created by the generator 
are also in the OWL Lite sublanguage. As a consequence, we have had to give every in-
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dividual ID appearing in the data a type and include in every document an ontology tag 
(the owl:Ontology element)3. 

2.3. Test Queries 

The LUBM currently offers fourteen test queries, one more than when it was originally 
developed. Readers are referred to Appendix 1 for a list of these queries. They are writ-
ten in SPARQL [28], the query language that is poised to become the standard for RDF. 
In choosing the queries, first of all, we wanted them to be realistic. Meanwhile, we have 
mainly taken into account the following factors: 

1) Input size. This is measured as the proportion of the class instances involved in the 
query to the total class instances in the benchmark data. Here we refer to not just 
class instances explicitly expressed but also those that are entailed by the knowledge 
base. We define the input size as large if the proportion is greater than 5%, and 
small otherwise. 

2) Selectivity. This is measured as the estimated proportion of the class instances in-
volved in the query that satisfy the query criteria. We regard the selectivity as high if 
the proportion is lower than 10%, and low otherwise. Whether the selectivity is high 
or low for a query may depend on the dataset used. For instance, the selectivity of 
Queries 8, 11 and 12 is low if the dataset contains only University0 while high if the 
dataset contains more than 10 universities. 

3) Complexity. We use the number of classes and properties that are involved in the 
query as an indication of complexity. Since we do not assume any specific imple-
mentation of the repository, the real degree of complexity may vary by systems and 
schemata. For example, in a relational database, depending on the schema design, 
the number of classes and properties may or may not directly indicate the number of 
table joins, which are significant operations. 

4)  Assumed hierarchy information. This considers whether information from the class 
hierarchy or property hierarchy is required to achieve the complete answer. (We de-
fine completeness in next subsection). 

5)  Assumed logical inference. This considers whether logical inference is required to 
achieve the completeness of the answer. Features used in the test queries include 
subsumption, i.e., inference of implicit subclass relationship, 
owl:TransitiveProperty, owl:inverseOf, and realization, i.e., inference of the most 
specific concepts that an individual is an instance of. One thing to note is that we are 
not benchmarking complex description logic reasoning. We are concerned with ex-
tensional queries. Some queries use simple description logic reasoning mainly to 
verify that this capability is present. 

We have chosen test queries that cover a range of properties in terms of the above 
criteria. At the same time, to the end of performance evaluation, we have emphasized 

                                                 
3 In OWL, the notion of the term ontology differs from that in the traditional sense by also including instance data 

[32]. 
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queries with large input and high selectivity. If not otherwise noted, all the test queries 
are of this type. Some subtler factors have also been considered in designing the queries, 
such as the depth and width of class hierarchies4, and the way the classes and properties 
chain together in the query. 

2.4. Performance Metrics 

The LUBM consists of a set of performance metrics including load time, repository size, 
query response time, query completeness and soundness, and a combined metric for 
query performance. Among these metrics: the first three are standard database bench-
mark metrics—query response time was introduced in the Wisconsin benchmark, and 
load time and repository size have been commonly used in other database benchmarks, 
e.g. the OO1 benchmark [8]; query completeness and soundness and the combined met-
ric are new metrics we developed for the benchmark. We address these metrics in turn 
below. 
 
Load Time 

In a LUBM dataset, every university contains 15 to 25 departments, each described 
by a separate OWL file. These files are loaded to the target system in an incremental 
fashion. We measure the load time as the stand alone elapsed time for storing the speci-
fied dataset to the system. This also counts the time spent in any processing of the on-
tology and source files, such as parsing and reasoning. 
 
Repository Size 

Repository size is the resulting size of the repository after loading the specified 
benchmark data into the system. Size is only measured for systems with persistent stor-
age and is calculated as the total size of all files that constitute the repository. We do not 
measure the occupied memory sizes for the main memory-based systems because it is 
difficult to accurately calculate them. However, since we evaluate all systems on a plat-
form with a fixed memory size, the largest dataset that can be handled by a system pro-
vides an indication of its memory efficiency. 
 
Query Response Time 

Query response time is measured based on the process used in database benchmarks. 
To account for caching, each query is executed for ten times consecutively and the aver-
age time is computed. Specifically, the benchmark measures the query response time as 
the following: 

For each test query 
Open the repository 

Execute the query on the repository consecutively for 10 times and com-
pute the average response time. Each time: 

                                                 
4 We define a class hierarchy as deep if its depth is greater than 3, and as wide if its average branching factor is 

greater than 3. 



 9 

Issue the query, obtain the result set, traverse that set sequentially, and 
collect the elapsed time 

  Close the repository 
 
Query Completeness and Soundness 

We also examine query completeness and soundness of each system. In logic, an in-
ference procedure is complete if it can find a proof for any sentence that is entailed by 
the knowledge base. With respect to queries, we say a system is complete if it generates 
all answers that are entailed by the knowledge base, where each answer is a binding of 
the query variables that results in an entailed sentence. However, on the Semantic Web, 
partial answers will often be acceptable. So it is important not to measure completeness 
with such a coarse distinction. Instead, we measure the degree of completeness of each 
query answer as the percentage of the entailed answers that are returned by the system. 
Note that we request that the result set contains unique answers. 

In addition, as we will show in the next section, we have realized that query sound-
ness is also worthy of examination. With similar argument to the above, we measure the 
degree of soundness of each query answer as the percentage of the answers returned by 
the system that are actually entailed. 
 
Combined Metric (CM) 

The benchmark also provides a metric for measuring query response time and an-
swer completeness and soundness in combination to help users better appreciate the po-
tential tradeoff between the query response time and the inference capability and the 
overall performance of the system. Such a metric can be used to provide an absolute 
ranking of systems. However, since such a metric necessarily abstracts away details, it 
should be used carefully. In order to allow the user to place relative emphasis on differ-
ent aspects, we have parameterized the metric. Changing these parameters can result in 
a reordering of the systems considered. Thus, this metric should never be used without 
careful consideration of the parameters used in its calculation. We will come back to 
this in Section 5. 

First, we use an F-Measure [30, 24] like metric to compute the tradeoff between 
query completeness and soundness, since essentially they are analogous to recall and 
precision in Information Retrieval respectively. In the formula below, Cq and Sq ( [0, 
1]) are the answer completeness and soundness for query q.  determines the relative 
weighting between Sq and Cq. 
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5 We introduce a different function from that of our original work [16], since we find that the current one could map 

the query time (possibly from zero to infinity) to the continuous range of [0, 1] in a more natural way, and could 
give us a more reasonable range and distribution of query performance evaluation of the systems. 
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This is an adaptation of the well known sigmoid function. In the formula, Tq is the 
response time (ms) for query q and N is the total number of triples in the dataset con-
cerned. To allow for comparison of the metric values across datasets of different sizes, 
we use the response time per triple (i.e. Tq/N) in the calculation. a is used to control the 
slope of the curve. b shifts the entire graph. In this evaluation, we have chosen a of 500 
and b of 5 so that 1) Pq(0) is close enough to one (above 0.99); 2) A response time of 
one second for 100,000 triples (roughly the size of the smallest dataset used in our test) 
will receive the Pq value of 0.5. These values appear to be reasonable choices for con-
temporary systems. However, as the state-of-the-art progresses and machines become 
substantially more powerful, different parameter values may be needed to  
better distinguish between the qualities of different systems. Fig. 2 illustrates the func-
tion for the triple size of one million. 

 
Fig. 2. Pq function (a=500, b=5, N=1,000,000) 

 
As will be shown in the next section, some system might fail to answer a query. In 

that case, we will use zero for both Fq and Pq in the calculation. 
Lastly, we define a composite metric CM of query response time and answer com-

pleteness and soundness as the following, which is also inspired by F-Measure: 
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In the above, M is the total number of test queries. wq (¦ �
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given to query q.  determines relative weighting between Fq and Pq. Generally speak-
ing, the metric will reward those systems that can answer queries faster, more com-
pletely and more soundly. 

2.5. Benchmark Architecture 

Fig. 3 depicts the benchmark architecture. We prescribe an interface to be instantiated 
by each target system. Through the interface, the benchmark test module requests opera-
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tions on the repository (e.g. open and close), launches the loading process, issues que-
ries and obtains the results. Users inform the test module of the target systems and test 
queries by defining them in the KBS specification file and query definition file respec-
tively. It needs to be noted that queries are translated into the query language supported 
by the system prior to being issued to the system. In this way, we want to eliminate the 
effect of query translation on query response time. The translated queries are fed to the 
tester through the query definition file. The tester reads the lines of each query from the 
definition file and passes them to the system. 

 
Fig. 3. Architecture of the benchmark 

 
The benchmark suite is accessible at http://swat.cse.lehigh.edu/projects/lubm/index.htm. 

3. An Evaluation Using the LUBM 

In order to demonstrate how the LUBM can be used to evaluate very different knowl-
edge base systems, we describe an experiment. We discuss how we selected the systems, 
describe the experiment conditions, present the results, and discuss them. 

3.1. Selecting Target Systems 

In this experiment, we wanted to evaluate the scalability and support for OWL Lite in 
various systems. In choosing the systems, first we decided to consider only non-
commercial systems. Moreover, we did not mean to carry out a comprehensive evalua-
tion of the existing Semantic Web KBSs. Instead, we wanted to evaluate systems with a 
variety of characteristics. Since a key point of this work is how to evaluate systems with 
different capabilities, we wanted to evaluate representative systems at distinct points in 
terms of OWL reasoning capability. Specifically, we considered three degrees of sup-
ported reasoning in the systems under test, i.e. RDFS reasoning, partial OWL Lite rea-
soning, and complete or almost complete OWL Lite reasoning. Finally, we believe a 
practical KBS must be able to read OWL files, support incremental data loading, and 
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provide programming APIs for loading data and issuing queries. As a result, we have 
settled on four different knowledge base systems, including two implementations of 
Sesame, DLDB-OWL, and OWLJessKB. Below we briefly describe the systems we 
have considered along with the reason for choosing or not choosing them. 
 
RDFS Reasoning 

For this category of systems, we have considered RDF repositories including Jena, 
Sesame, ICS-FORTH RDFSuite [1], Kowari [40], and so on. Since Jena and Sesame are 
currently the most widely used, we focused on these two systems. 

Jena [37] is a Java framework for building Semantic Web applications. Jena cur-
rently supports both RDF/RDFS and OWL. We have done some preliminary tests on 
Jena (v2.1) (both memory-based and database-based) with our smallest dataset (cf. Ap-
pendix 3). Compared to Sesame, Jena with RDFS reasoning was much slower in an-
swering nearly all the queries. Some of the queries did not terminate even after being al-
lowed to run for several hours. The situation was similar when Jena’s OWL reasoning 
was turned on. 

Due to Jena’s limitations with respect to scalability, we decided to evaluate Sesame 
instead. Sesame [5] is a repository and querying facility based on RDF and RDF 
Schema. It features a generic architecture that separates the actual storage of RDF data, 
functional modules offering operations on those data, and communication with these 
functional modules from outside the system. Sesame supports RDF/RDF Schema infer-
ence, but is an incomplete reasoner for OWL Lite. Nevertheless, it has been used on a 
wide number of Semantic Web projects. Sesame can evaluate queries in RQL [22], 
SeRQL [45], and RDQL [31]. We evaluate two implementations of Sesame, main 
memory-based and database-based. 
 
Partial OWL Lite Reasoning 

KAON [39] is an ontology management infrastructure. It provides an API for ma-
nipulating RDF models. The suite also contains a library of KAON Datalog Engine, 
which could be used to reason with the DLP fragment of OWL. However, that function-
ality is not directly supported by the core of KAON, i.e., its APIs. 

Instead, we have selected DLDB-OWL [27], a repository for processing, storing, 
and querying OWL data. The major feature of DLDB-OWL is the extension of a rela-
tional database system with description logic inference capabilities. Specifically, 
DLDB-OWL uses Microsoft Access® as the DBMS and FaCT [19] as the OWL rea-
soner. It uses the reasoner to precompute subsumption and employs relational views to 
answer extensional queries based on the implicit hierarchy that is inferred. DLDB-OWL 
uses a language in which a query is written as a conjunction of atoms. The language 
syntactically resembles KIF [13] but has less expressivity. Since DLDB uses FaCT to do 
TBox reasoning only, we consider it as a system that provides partial OWL Lite reason-
ing support. Note, FaCT and FaCT++ [35] do not directly support ABox reasoning (al-
though it is possible to simulate it), so use of them as stand-alone systems is inappropri-
ate for the extensional queries used by our benchmark. 
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Complete or Almost Complete OWL Lite Reasoning 

OWL reasoning systems such as Racer, Pellet and OWLJessKB fall into this cate-
gory. The first two systems, like FaCT, are based on the tableaux algorithms developed 
for description logic inferencing, and additionally support ABox reasoning. Since 
DLDB-OWL uses FaCT as its reasoner, we have decided to choose a system with a dif-
ferent reasoning style. Thus we have settled on OWLJessKB. 

OWLJessKB [41], whose predecessor is DAMLJessKB [23], is a memory-based 
reasoning tool for description logic languages, particularly OWL. It uses the Java Expert 
System Shell (Jess) [38], a production system, as its underlying reasoner. Current func-
tionality of OWLJessKB is close to OWL Lite plus some. Thus we have chosen OWL-
JessKB and we evaluate it as a system that supports most OWL entailments. 

Although we have decided not to evaluate Racer here, we want to mention that 
Haarslev et al. [18] have conducted their own evaluation using the LUBM. They devel-
oped a new query language called nRQL, which made it possible to answer all of the 
queries in our benchmark. The results showed that Racer could offer complete answers 
for all the queries if required (they have tested Racer on Queries 1 through 13). How-
ever, since it has to perform ABox consistency checking before query answering, Racer 
was unable to load a whole university dataset. As a result, they have only loaded up to 5 
departments using Racer (v. 1.8) on a P4 2.8GHz 1G RAM machine running Linux. 

3.2. Experiment Setup 

System Setup 
The systems we test are DLDB-OWL (04-03-29 release), Sesame v1.0, and OWL-

JessKB (04-02-23 release). As noted, we test both the main memory-based and data-
base-based implementations of Sesame. For brevity, we hereafter refer to them as Ses-
ame-Memory and Sesame-DB respectively. For both of them, we use the 
implementation with RDFS inference capabilities. For the later, we use MySQL 
(v4.0.16) as the underlying DBMS since, according to a test by Broekstra and Kampman 
[5], Sesame performs significantly better than using the other DBMS PostgreSQL [43]. 
The DBMS used in DLDB-OWL is MS Access® 2002. We have created a wrapper over 
each system as an interface to the test module. 

We should point out that we did not optimize any of the systems for purpose of the 
experiment. This is for two reasons. First, most Semantic Web KBSs do not provide the 
level of customization typically found in databases. This is true even for KBSs that use a 
DBMS; such systems typically make decisions for the user with respect to table layout 
and index creation. Second, we feel that the variability of Semantic Web data will make 
it more difficult to optimize for any specific application. However, if the benchmark is 
being used to evaluate systems for a well-defined application, then we encourage users 
of the benchmark to use all tools available to optimize the system so that they may con-
duct an evaluation that better reflects the way the system will behave operationally. 
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Datasets 
To identify the dataset, we use the following notation in the subsequent description: 

LUBM(N, S): The dataset that contains N universities beginning at University0 and 
is generated using a seed value of S. 

We have created 5 sets of test data6: LUBM(1, 0), LUBM(5, 0), LUBM(10, 0), 
LUBM(20, 0), and LUBM(50, 0), which contain OWL files for 1, 5, 10, 20, and 50 uni-
versities respectively, the largest one having over 6,800,000 triples in total. To our 
knowledge, prior to this experiment, Sesame has been tested with at most 3,000,000 
statements. We have easily exceeded that by virtue of the data generation tool. Note that 
in counting the RDF triples in a dataset, we count those from the ontology only once 
and for others, we count duplicate triples multiple times. 
 
Query Test 

As mentioned earlier, the queries are expressed in SPARQL. However, many Se-
mantic Web KBSs were designed before SPARQL began to take shape. As such, none 
of the selected systems currently support SPARQL. Therefore, we manually translate 
the fourteen queries into a language supported by each system: RQL for Sesame, Jess 
for OWLJessKB, and a KIF-like query language for DLDB-OWL. The translated que-
ries form the query definition file for that system. Note, with one exception explained 
below, we do not try to optimize the queries. Instead, we expect that queries are issued 
by naïve users and any query optimization must be a function of the KBS. 

From preliminary experiments we discovered that the ordering of statements within 
a Jess query can affect the response time of OWLJessKB to that query. In fact, a direct 
translation of the benchmark queries resulted in poor performance from OWLJessKB. 
Even with the one-university dataset it ran out of memory for some queries (e.g., Query 
2).  However, we were able to reduce the response time by simply reordering the state-
ments so that arbitrary property-related statements precede all type-related statements in 
each query. Since this is an optimization that could be trivially automated, we decided 
to make this one exception to our rule above. 

As another detail, OWLJessKB needs two separate phases to perform a query: de-
fine it and execute it. In the original DAML version of our experiment [15] we pre-
defined the patterns for each test query prior to loading any data. However, we have 
subsequently learned that this could lead to worse performance of OWLJessKB. Since 
we have found no guidance as to when to or not to use such kinds of patterns, we will 
show the results of OWLJessKB with both settings in the subsequent discussion. When 
distinction is needed, we will refer to them as OWLJessKB-P and OWLJessKB-NP re-
spectively. 

Query response time is collected in the way defined by the benchmark. Note that in-
stead of providing a result set that can be iterated through, Sesame returns data one-at-a-
time in streams and calls back user specified functions upon each result item. Thus we 
regard those call backs as the result traverse that is required by the benchmark, and 
count them in the query time instead. 
                                                 
6 The version of the data generator is UBA1.6. 
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Test environment 
We have done the test on a desktop computer. The environment is as follows: 

 1.80GHz Pentium 4 CPU; 
 256MB of RAM; 80GB of hard disk 
 Windows XP Professional OS; 
 Java SDK 1.4.1; 512MB of max heap size 

In order to evaluate OWLJessKB, we needed to adjust this configuration slightly. 
With the standard setting for max heap size in Java, the system failed to load the one-
university dataset due to out of memory errors. As a workaround, we increased the 
maximum heap size to 1GB, which requests a large amount of virtual memory from the 
operating system. This change allowed OWLJessKB to properly load the dataset. 

3.3. Results and Discussions 

3.3.1. Data Loading 
Table 1.  Load time and repository sizes 

 Dataset File # Total Size 
(MB) Triple # Load Time 

(hh:mm:ss) 
Repository Size 

(KB) 
DLDB-OWL 00:05:43 16,318 
Sesame-DB 00:09:02 48,333 

Sesame-Memory 00:00:13 - 
OWLJessKB-P 03:16:12 - 

OWLJessKB-NP 

LUBM 
(1, 0) 15 8.6 103,397 

02:19:18 - 
DLDB-OWL 00:51:57 91,292 
Sesame-DB 03:00:11 283,967 

Sesame-Memory 00:01:53 - 
OWLJessKB 

LUBM 
(5, 0) 93 54.2 646,128 

- - 
DLDB-OWL 01:54:41 184,680 
Sesame-DB 12:27:50 574,554 

Sesame-Memory 00:05:40 - 
OWLJessKB 

LUBM 
(10, 0) 189 110.6 1,316,993 

- - 
DLDB-OWL 04:22:53 388,202 
Sesame-DB 46:35:53 1,209,827 

Sesame-Memory - - 
OWLJessKB 

LUBM 
(20, 0) 402 234.8 2,782,419 

- - 
DLDB-OWL 12:37:57 958,956 
Sesame-DB - - 

Sesame-Memory - - 
OWLJessKB 

LUBM 
(50, 0) 999 583.6 6,890,933 

- - 
 
Table 1 shows the data loading time for all systems and the on-disk repository sizes of 
DLDB-OWL and Sesame-DB. Fig. 4 depicts how the load time grows as the dataset size 
increases and compares the repository sizes of the two database-based systems. 
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Fig. 4. Load time and repository sizes. The left hand figure shows the load time. The 
right hand figure shows the repository sizes of the database-based systems. 

 
The test results have reinforced scalability as an important issue and challenge for 

Semantic Web knowledge base systems. One of the first issues is how large of a dataset 
each system can handle. As expected, the memory-based systems did not perform as 
well as the persistent storage systems in this regard. OWLJessKB, could only load the 1-
university dataset, and took over 15 times longer than any other system to do so. On the 
other hand, we were surprised to see that Sesame-Memory could load up to 10 universi-
ties, and was able to do it in 5% of the time of the next fastest system. However, for 20 
or more universities, Sesame-Memory also succumbed to memory limitations. 

Using the benchmark, we have been able to test both Sesame-Memory and Sesame-
DB on larger scale datasets than what has been reported so far. The result reveals an ap-
parent problem for Sesame-DB: it does not scale in data loading, as can be seen from 
Fig. 4. As an example, it took over 300 times longer to load the 20-university dataset 
than the 1-university dataset, although the former set contains only about 25 times more 
triples than the later. We extrapolate that it will take Sesame-DB over 3 weeks to finish 
loading the 50-university dataset. Therefore, we have decided not to do a test that con-
sumes so many resources. 

In contrast, DLDB-OWL displays good scalability in data loading. We suspect the 
different performance of the two systems is caused by the following two reasons. First, 
to save space, both DLDB-OWL and Sesame map resources to unique IDs maintained 
in a table. When a resource is encountered during the data loading, they will look up that 
table to determine if it has not been seen before and needs to be assigned a new ID. As 
mentioned in [27], querying the ID table every time is very likely to slow down the data 
loading as the data size grows. In its implementation, Sesame also assigns every literal 
an ID, while DLDB-OWL stores literals directly in the destination tables, which means 
Sesame has to spend even more time on ID lookup. Moreover, in order to improve per-
formance, DLDB-OWL caches resource-ID pairs during current loading. 

A second reason for the performance difference is related to the way Sesame per-
forms inference. Sesame is a forward-chaining reasoner, and in order to support state-
ment deletions it uses a truth maintenance system to track all deductive dependencies 
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between statements. As Broekstra and Kampman [6] shows, this appears to affect the 
performance significantly if there are many inferred statements or the dataset is fairly 
large. We should note that this scalability problem was not as noticeable in our previous 
study involving a DAML+OIL benchmark [15]. We believe this is because the current 
benchmark ontology replaced all occurrences of daml:domain with rdfs:domain. Unlike 
daml:domain, the use of rdfs:domain triggers additional forward-chaining inferences in 
Sesame. 

3.3.2. Query Response Time 
Readers are referred to Appendix 2 for a complete list of query test results including 
query response time, number of answers, and query completeness. Fig. 5 and Fig. 6 
compares using graphs the query response time of the systems from two different views. 
Fig. 5 compares the performance of all the queries with respect to each dataset while Fig. 
6 compares the query response time across all the datasets with respect to each query. 
Note, in Fig. 5 we use an exponential scale and have reordered the queries to facilitate 
presentation. In general, the faster queries are to the left, while the slower ones are to the 
right. 
 

 
Fig. 5. Query response time comparison with respect to each dataset (up to 20 universi-
ties) 

In terms of query, the results also lead to some scalability and efficiency concerns. 
Sesame-DB was very slow in answering some queries (even for one university), includ-
ing Queries 2, 8, and 9. As for DLDB-OWL, it is the only system that has been tested 
with the largest dataset. But one concern is that when it comes to the larger datasets, es-
pecially the 50-university set, DLDB-OWL’ s query time no longer appears linear for  
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Fig. 6. Query response time comparison between DLDB-OWL, Sesame-DB, Sesame-
Memory, and OWLJessKB-NP with respect to each query 
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some queries, i.e., Queries 2, 5, 6, 7, 9, and 14. Moreover, it failed to answer Query 2 on 
the 50-univeristy dataset after MS Access ran out of temporary space. Regarding OWL-
JessKB, compared to the performance of its predecessor DAMLJessKB in [15], OWL-
JessKB improves its query time greatly at the sacrifice of much longer load time. None-
theless, when OWLJessKB is queried with pre-defined patterns it is still the slowest in 
answering thirteen of the queries. It responds to the queries much faster when such pat-
terns are not used, however is still outperformed by one of the database-based systems 
for quite a few queries. Compared to other systems, Sesame-Memory is the fastest in 
answering almost all the queries. It is also the fastest in data loading. This suggests that 
it might be the best choice for data of small scale if persistent storage and OWL infer-
ence is not required. 

We have observed that those queries for which Sesame-DB’ s performance goes 
down dramatically are common in that they do not contain a specific URI as a subject or 
object in the statements. On the other hand, Sesame-DB shows a nice property in an-
swering some other queries like Queries 3, 4, 5, 7, and 8: there was no proportional in-
crease in the response time as the data size grows. We have also noticed a common fea-
ture of these queries, i.e., they have constant number of results over the test datasets. 
Whether these are the causes or coincidences is a subject for future work. 

Another thing that has drawn our attention is that, unlike the other queries, DLDB 
responds to Query 4 on the 50-university dataset even faster than on the 20-university 
set. We have redone the test several times and confirmed that the phenomenon is repeat-
able. We have ruled out the following possible causes for this behavior: the query does 
not terminate due to an error; the result set is not incorrect; there are no outliers in the 
individual runs of the query; and there is no integer overflow in our measurement of 
query response time. In addition, we have run the query on another two datasets consist-
ing of 30 universities and 40 universities respectively (we have added these two data 
points to the graph for Query 4 in Fig. 6). It turned out that query time monotonically 
increases for these two datasets, which makes the 50-university evaluation appear to be 
an even stranger outlier. We currently suspect the phenomenon is due to some optimiza-
tion performed by MS Access. We intend to do a further investigation in the future. 

This initial research leads to a number of topics for future investigation. One is to 
explore the potential relationship between query types and performance of the system. 
As shown here, different systems seem to be optimized for different types of queries. Is 
it possible to develop a system that efficiently support all queries? As a related issues, 
what are the major categories of queries? Finally, what is the best design for interacting 
with a DBMS. Sesame-DB implements the main bulk of the evaluation in its RQL query 
engine, but has another query engine for the language SeRQL that pushes a lot of the 
work down to the underlying DBMS. DLDB-OWL directly translates as much of the 
query for the database. Further work should be done to investigate how these design dif-
ferences as well as the underlying DBMS used impact performance. 

3.3.3. Query Completeness and Soundness 
It was noted before that we have chosen the benchmark test queries according to several 
criteria.  In addition, we have made effort to make those queries as realistic as possible. 
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In other words, we want these queries to represent, to some extent, those in the real 
world. We are very interested in seeing what queries can be answered by each system. 

 
Fig. 7. Query completeness comparison. We show the results of only the first dataset 
since there are only minor or no differences between the five datasets. 
 
Fig. 7 depicts the comparison of query completeness between the systems. As men-
tioned, Sesame is able to address RDF/RDFS semantics while DLDB-OWL and OWL-
JessKB integrate extra OWL inference capability. As the results turned out, all systems 
could answer Queries 1 through 5 and Query 14 completely. As we expected, DLDB-
OWL was able to find all the answers for Queries 6 to 10, which requires subsumption 
inference in order to get complete results, while Sesame could only find partial or no an-
swers for them. It is interesting to notice that DLDB-OWL and Sesame found complete 
answers for Query 5 in different ways: DLDB-OWL made use of subsumption, while 
Sesame, although not able to figure out the subsumption, used an rdfs:domain restric-
tion to determine the types of the individuals in the dataset and thus achieved the same 
result. OWLJessKB could find all the answers for every query, and was the only system 
to answer Queries 11 and 13 completely, which assume owl:TransitiveProperty and 
owl:inverseOf inference respectively. Nevertheless, we have discovered that OWL-
JessKB made unsound inferences with respect to some queries. Specifically, it returned 
incorrect answers to Queries 4, 6, 8, and 12 because it incorrectly inferred that Lecturer 
is a Professor, Employee a Student, and Student a Chair. Our investigation has shown 
that this is due to OWLJessKB’ s incorrect handling of intersectionOf. We list in Table 2 
the soundness of OWLJessKB for each query. 

Table 2. Query soundness of OWLJessKB. 
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

Correct answers 
/Total answers 4/4 0/0 6/6 34/ 

41 
719 
/719 

7790/ 
8330 67/67 7790/ 

8330 
208/ 
208 4/4 224/ 

224 
15/ 
540 1/1 5916/ 

5916 
Soundness 100 100 100 83 100 94 100 94 100 100 100 3 100 100 
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3.3.4. Combined Metric Values 
We have calculated the combined metric value (cf. Section 2.4) of each target system 
with respect to each dataset. In the evaluation, we set both  and  to 1, which means we 
equally weight query completeness against soundness, and query response time against 
completeness and soundness as well. In addition, we equally weight the queries too. Fig. 
8 shows the results. 

 
Fig. 8. CM values (a=500, b=5, =1, =1, wi=wj (i,j�1,…,14)) 

We find that these numerical results are helpful for us to appreciate the overall 
query performance of each system. The higher values of Sesame-Memory than Sesame-
DB for the first three datasets and than DLDB-OWL for the 10-university set again sug-
gest that it is a reasonable choice for small scale application if persistent storage is not 
required, particularly if completeness is not significant. DLDB-OWL achieves higher 
scores across all the datasets than the other database-based system Sesame-DB. This 
helps us believe that its extra inference capability is not counterproductive. Although 
DLDB-OWL is the only system that could handle the largest dataset, the relatively low 
value it gets for that dataset reveals room for improvement. OWLJessKB-NP receives a 
comparable value to Sesame-Memory for the smallest dataset. However, the extremely 
long load time of OWLJessKB and its failure to load larger datasets emphasize the need 
for performance improvement in that regard. Moreover, the significant difference in 
scores for OWLJessKB-P and OWLJessKB-NP suggests the necessity of a set of query 
writing guidelines for that system. 

4. Related Work 

To the best of our knowledge, the Lehigh University Benchmark is the first benchmark 
for expressive Semantic Web knowledge base systems. Magkanaraki et al. [25] have 
conducted a statistical analysis about the size and morphology of RDF schemata. How-
ever their work does not provide a benchmark for evaluating a repository. Alexaki et al. 
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[2] have developed some benchmark queries for RDF, however, these are mostly inten-
sional queries, while our work is concerned with extensional queries for OWL. 

Tempich and Volz [34] have done some preliminary work towards a benchmark for 
Semantic Web reasoners. Though their benchmark is still under construction, they ana-
lyze the publicly available ontologies and report them to be clustered into three catego-
ries. According to the characteristics of each category, our Univ-Bench ontology hap-
pens to be a synthetic "description logic-style”  ontology, which has a moderate number 
of classes but several restrictions and properties per class. Therefore we argue that our 
evaluation represents at least a considerable portion of the real world situations. The 
other two categories are terminological ontologies and database schema-like ontologies. 
We are currently working on extending our benchmark suite to those two categories. 

García-Castro and Gómez-Pérez [12] describe a benchmarking methodology for the 
WebODE ontology engineering tool. They generated workloads in different sizes and 
tested the performances of the API's method calls. Although their work is very useful in 
evaluating ontological tools (e.g., editors, alignment tools, etc.), it provides less infor-
mation on how to benchmark KBSs with respect to extensional queries against large 
scale instance data. Therefore, our work can be seen as complementary to theirs. 

Maynard et al. [26] details the goals, requirements and processes of benchmarking 
ontology tools. It provides a good account of how to organize, implement and report a 
benchmark suite from the perspectives of software engineering and project management. 
When describing the high level requirements in evaluating ontology-based reasoning 
tools, they identified two use-cases which have already been covered in the LUBM: con-
cept reasoning and instance retrieval. While this report can serve as a general guideline 
for building benchmark suite, our benchmark can be seen as an implementation that fol-
lows those guidelines with emphasis on the issue of scalability. 

Our work borrows heavily from existing database benchmarks, including the Wis-
consin benchmark [3, 4], the OO1 benchmark [8], and the SEQUOIA 2000 benchmark 
[33]. They are all DBMS-oriented benchmarks and storage benchmarks (vs. visualiza-
tion benchmarks). The LUBM shares in spirit with them methodology and rationale in 
terms of the use of synthetic data, some criteria for choosing test queries, and three of 
the performance metrics. However, our benchmark is tailored to the evaluation of OWL 
knowledge base systems and thus has many unique features. Particularly as shown in the 
previous sections, the benchmark contains an ontology, datasets, test queries and criteria 
that reflect special concepts, structures and concerns in the Semantic Web area such as 
classes and properties, logical completeness vs. system performance, etc. Moreover, our 
benchmark is intended to work with any OWL repository, not just database systems. 

Some attempts have been made by Elhaik et al. [11] and Horrocks and Patel-
Schneider [21] to benchmark description logic systems. The emphasis of this work is to 
evaluate the reasoning algorithms in terms of the tradeoff between expressiveness and 
tractability in description logic. Our benchmark is not a description logic benchmark. 
We are more concerned about the issue of storing and querying large amounts of data 
that are created for realistic Semantic Web systems. In [11] and [21], the benchmark 
data are TBoxes and/or ABoxes, which can essentially be viewed as the counterparts of 
the ontology and the datasets in our benchmark respectively. In [21] they use both artifi-
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cial and realistic TBoxes and use synthetic ABoxes. But the ABoxes in the test are of 
fixed sizes. In contrast, our benchmark data can scale to arbitrary size. The ABox is ran-
domly generated in [11]. However, unlike our benchmark data, the ABox is not custom-
izable and repeatable. They also generate the TBox randomly while our benchmark is 
based on a realistic ontology. 

The W3C Web Ontology Working Group provides a set of OWL test cases [7]. 
They are intended to provide examples for, and clarification of, the normative definition 
of OWL and focus on the completeness and soundness with respect to individual 
features. Our benchmark complements these tests. While these tests determine the 
capability and correctness of a system, our benchmark evaluates the performance of the 
system from different perspectives such as data loading, extensional queries and 
scalability. 

5. Applying the Benchmark 

It should be pointed out that we believe the performance of any given system will vary 
depending on the ontology and data used to evaluate it. Thus the LUBM is not meant to 
be an overall Semantic Web KBS benchmark. It is a benchmark limited to a particular 
domain represented by the ontology it uses. Although as we argued in the previous sec-
tion, the ontology could represent the characteristics of a considerable portion of real 
domains, the benchmark does not guarantee the same results for a different domain. For 
instance, with an RDF/RDFS-style ontology and instance data, we expect that there 
would be some different results for Sesame than that of this experiment. Therefore, we 
strongly suggest that the user who is considering using the benchmark first assess the 
benchmark ontology to see if it is close enough to his operational domain. 

In addition, we encourage the benchmark user to evaluate the systems by looking at 
all the details of the benchmark results with respect to every performance metric. Espe-
cially, the combined metric is only intended to be used for a rough guideline, e.g. to sort 
the systems under test into tiers. It should not be considered as a replacement for the 
other performance metrics. Moreover, we remind the user to make use of the weights in 
the combined metric to reflect his emphasis on different aspects. To give readers a fla-
vor of this, suppose we want to put more emphasis on RDFS queries. To do this, we 
could adjust the weights given to the benchmark queries. Here, we show an example of 
the extreme case: we equally weight the queries that do not require any inference or only 
require RDFS inference (i.e. Queries 1-5, 14) and we assign zero to the weights of the 
other queries that require extra OWL reasoning. Fig. 9 shows the result. As can be seen, 
the new result is quite different from that in Fig. 8, especially in the comparison be-
tween Sesame and DLDB-OWL.7 

                                                 
7 Note that the actual CM values Sesame-Memory received were very close to 1. Numbers shown in the figure are 

rounded off to the two decimal places. 
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Fig. 9. CM values (a=500, b=5, =1, =1, only Queries 1-5, 14 are considered) 

6. Conclusions and Future Work 

We presented our work on evaluating knowledge base systems (KBS) with respect to 
use in large OWL applications. We have developed the Lehigh University Benchmark 
(LUBM) as the first in an eventual suite of benchmarks that would standardize and fa-
cilitate such evaluations. In the LUBM, the Univ-Bench ontology models the university 
domain in the OWL language and offers necessary features for evaluation purposes. The 
OWL datasets are synthetically created over the ontology. The data generated are ran-
dom and repeatable, and can scale to an arbitrary size. Fourteen test queries are chosen 
to represent a variety of properties including input size, selectivity, complexity, assumed 
hierarchy information, assumed logical inference, amongst others. A set of performance 
metrics are provided, which include load time and repository size, query response time, 
query completeness and soundness, and a combined metric for evaluating the overall 
query performance. The LUBM is intended to be used to evaluate Semantic Web KBSs 
with respect to extensional queries over a large dataset that commits to a single realistic 
ontology. 

We have demonstrated how the LUBM can be used to conduct an evaluation of 
four very different systems, including two memory–based systems (OWLJessKB and 
memory-based Sesame) and two systems with persistent storage (database-based Ses-
ame and DLDB-OWL). We tested those systems with 5 sets of benchmark data. To our 
knowledge, no OWL experiment has been done with the scale of data used here. The 
smallest data size used consists of 15 OWL files totaling 8MB, while the largest data 
size consists of 999 files totaling 583MB. 

This initial experiment had a number of interesting results. First, we discovered that 
the performance of OWLJessKB is extremely sensitive to the ordering of the query 
terms, and the system is unsound for OWL files that use owl:intersectionOf. Second, 
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Sesame’ s load time increases exponentially with the size of data loaded. Third, as ex-
pected we showed that persistent storage systems could handle larger data sizes than 
memory-based systems, but we were surprised to discover that Sesame memory could 
handle up to 110 MB of input data. Finally, we found that DLDB-OWL and Sesame da-
tabase were each better at different queries. 

We caution against using the results of this experiment to make universal pro-
nouncements about the relative quality of different KBSs. As stated earlier, we believe 
that different systems will be better suited for different applications. One must deter-
mine if the benchmark is similar enough to a desired workload in order to make predic-
tions about how well it will perform in any given application. Still, we think we can ex-
trapolate some general guidelines even from this simple experiment. Of the systems 
tested, DLDB-OWL is the best for large datasets where an equal emphasis is placed on 
query response time and completeness, however the system’ s performance declines as 
we approach datasets in the 500 MB range. Sesame-Memory is the best when the size is 
relatively small (e.g., 1 million triples) and only RDFS inference is required; while for a 
somewhat larger dataset (e.g., between 1 and 3 million triples), Sesame-DB may be a 
good alternative. OWLJessKB is the best for small datasets when OWL Lite reasoning 
is essential, but only after its unsoundness has been corrected. More detailed conclu-
sions will require larger experiments that evaluate more systems and apply different 
benchmarks. 

There are two logical next steps to this work. The first is to continue to develop dif-
ferent benchmarks that will evaluate different types of workloads. The benchmarks 
should contain ontologies that range in size and expressivity, have different profiles of 
instance data, and define different types of queries. Of course, determining the most ap-
propriate set of benchmarks for the Semantic Web is still an open question; since the 
Semantic Web is still in its infancy, it is hard to predict how it will be used. A related 
question is how to rapidly generate scalable data that is representative of a given appli-
cation. We are currently exploring an approach that learns a statistical model of a rela-
tively small set of real-world data, and then uses this model to generate synthetic data. 
In addition to developing new benchmarks, we will apply the benchmarks to a more 
thorough set of systems. For example, it would be informative to compare DLDB-OWL 
to systems with similar capabilities. In particular, these systems include the BOR exten-
sion to Sesame (which integrates it with a DL reasoner), the KAON DLP extension 
(which transforms OWL ontologies into disjunctive logic programs), and the Instance 
Store [20] (another tool that combines a database and FaCT). Another useful evaluation 
would compare memory-based systems that support complex reasoning, including 
OWLIM (a Sesame SAIL that supports in-memory OWL Lite reasoning), Hoolet [36] 
(an OWL DL reasoner that uses the Vampire [29] theorem prover), and Jena with the 
OWL Lite rule set enabled. We believe that such investigations can drive research in 
practical, scalable reasoning systems, and that by examining the relative strengths and 
weaknesses of different systems, we will learn how to build a better OWL KBS. 
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Appendix 1: Test Queries 

We herein describe each query in the SPARQL language. Following that we describe 
the characteristics of the query. 

Query1 
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> 
PREFIX ub: <http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl#> 
SELECT ?X  
WHERE 

{?X rdf:type ub:GraduateStudent . 
  ?X ub:takesCourse 

http://www.Department0.University0.edu/GraduateCourse0} 

This query bears large input and high selectivity. It queries about just one class and one 
property and does not assume any hierarchy information or inference. 

Query2 
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> 
PREFIX ub: <http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl#> 
SELECT ?X, ?Y, ?Z 
WHERE 

{?X rdf:type ub:GraduateStudent . 
  ?Y rdf:type ub:University . 
  ?Z rdf:type ub:Department . 
  ?X ub:memberOf ?Z . 
  ?Z ub:subOrganizationOf ?Y . 
  ?X ub:undergraduateDegreeFrom ?Y} 

This query increases in complexity: 3 classes and 3 properties are involved. Additionally, 
there is a triangular pattern of relationships between the objects involved. 

Query3 
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> 
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PREFIX ub: <http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl#> 
SELECT ?X 
WHERE 

{?X rdf:type ub:Publication . 
  ?X ub:publicationAuthor  
        http://www.Department0.University0.edu/AssistantProfessor0} 

This query is similar to Query 1 but class Publication has a wide hierarchy. 

Query4 
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> 
PREFIX ub: <http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl#> 
SELECT ?X, ?Y1, ?Y2, ?Y3 
WHERE 

{?X rdf:type ub:Professor . 
  ?X ub:worksFor <http://www.Department0.University0.edu> . 
  ?X ub:name ?Y1 . 
  ?X ub:emailAddress ?Y2 . 
  ?X ub:telephone ?Y3} 

This query has small input and high selectivity. It assumes subClassOf relationship be-
tween Professor and its subclasses. Class Professor has a wide hierarchy. Another fea-
ture is that it queries about multiple properties of a single class. 

Query5 
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> 
PREFIX ub: <http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl#> 
SELECT ?X 
WHERE 

{?X rdf:type ub:Person . 
  ?X ub:memberOf <http://www.Department0.University0.edu>} 

This query assumes subClassOf relationship between Person and its subclasses and 
subPropertyOf relationship between memberOf and its subproperties. Moreover, class 
Person features a deep and wide hierarchy. 

Query6 
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> 
PREFIX ub: <http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl#> 
SELECT ?X WHERE {?X rdf:type ub:Student} 

This query queries about only one class. But it assumes both the explicit subClassOf re-
lationship between UndergraduateStudent and Student and the implicit one between 
GraduateStudent and Student. In addition, it has large input and low selectivity. 

Query7 
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> 
PREFIX ub: <http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl#> 
SELECT ?X, ?Y 
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WHERE  
{?X rdf:type ub:Student . 
  ?Y rdf:type ub:Course . 
  ?X ub:takesCourse ?Y . 
  <http://www.Department0.University0.edu/AssociateProfessor0>,    
   ub:teacherOf, ?Y} 

This query is similar to Query 6 in terms of class Student but it increases in the number 
of classes and properties and its selectivity is high. 

Query8 
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> 
PREFIX ub: <http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl#> 
SELECT ?X, ?Y, ?Z 
WHERE 

{?X rdf:type ub:Student . 
  ?Y rdf:type ub:Department . 
  ?X ub:memberOf ?Y . 
  ?Y ub:subOrganizationOf <http://www.University0.edu> . 
  ?X ub:emailAddress ?Z} 

This query is further more complex than Query 7 by including one more property. 

Query9 
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> 
PREFIX ub: <http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl#> 
SELECT ?X, ?Y, ?Z 
WHERE 

{?X rdf:type ub:Student . 
  ?Y rdf:type ub:Faculty . 
  ?Z rdf:type ub:Course . 
  ?X ub:advisor ?Y . 
  ?Y ub:teacherOf ?Z . 
  ?X ub:takesCourse ?Z} 

Besides the aforementioned features of class Student and the wide hierarchy of class 
Faculty, like Query 2, this query is characterized by the most classes and properties in 
the query set and there is a triangular pattern of relationships. 

Query10 
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> 
PREFIX ub: <http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl#> 
SELECT ?X 
WHERE 

{?X rdf:type ub:Student . 
  ?X ub:takesCourse 

<http://www.Department0.University0.edu/GraduateCourse0>} 
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This query differs from Query 6, 7, 8 and 9 in that it only requires the (implicit) sub-
ClassOf relationship between GraduateStudent and Student, i.e., subClassOf relation-
ship between UndergraduateStudent and Student does not add to the results. 

Query11 
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> 
PREFIX ub: <http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl#> 
SELECT ?X 
WHERE 

{?X rdf:type ub:ResearchGroup . 
  ?X ub:subOrganizationOf <http://www.University0.edu>} 

Query 11, 12 and 13 are intended to verify the presence of certain OWL reasoning capa-
bilities in the system. In this query, property subOrganizationOf is defined as transitive. 
Since in the benchmark data, instances of ResearchGroup are stated as a sub-
organization of a Department individual and the later suborganization of a University 
individual, inference about the subOrgnizationOf relationship between instances of Re-
searchGroup and University is required to answer this query. Additionally, its input is 
small. 

Query12 
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> 
PREFIX ub: <http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl#> 
SELECT ?X, ?Y 
WHERE 

{?X rdf:type ub:Chair . 
  ?Y rdf:type ub:Department . 
  ?X ub:worksFor ?Y . 
  ?Y ub:subOrganizationOf <http://www.University0.edu>} 

The benchmark data do not produce any instances of class Chair. Instead, each Depart-
ment individual is linked to the chair professor of that department by property headOf. 
Hence this query requires realization, i.e., inference that that professor is an instance of 
class Chair because he or she is the head of a department. Input of this query is small as 
well. 

Query13 
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> 
PREFIX ub: <http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl#> 
SELECT ?X 
WHERE 

{?X rdf:type ub:Person . 
  <http://www.University0.edu> ub:hasAlumnus ?X} 

Property hasAlumnus is defined in the benchmark ontology as the inverse of property 
degreeFrom, which has three subproperties: undergraduateDegreeFrom, mastersDegree-
From, and doctoralDegreeFrom. The benchmark data state a person as an alumnus of a 
university using one of these three subproperties instead of hasAlumnus. Therefore, this 
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query assumes subPropertyOf relationships between degreeFrom and its subproperties, 
and also requires inference about inverseOf. 

Query14 
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> 
PREFIX ub: <http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl#> 
SELECT ?X 
WHERE {?X rdf:type ub:UndergraduateStudent} 

This query is the simplest in the test set. This query represents those with large input 
and low selectivity and does not assume any hierarchy information or inference. 

Appendix 2: Query Test Results 

Table 3 lists query test results including query response time, number of answers and 
completeness. 

Appendix 3: Initial Test Results of Jena 

Tables 4 to 6 show the initial test results of Jena (v2.1). We have tested Jena both based 
on the main memory (Jena-Memory) and using a MySQL database backend (Jena-DB). 
The benchmark queries were expressed in RDQL. We have tested Jena only with the 
smallest dataset. Unsurprisingly, when its RDFS reasoning was turned on, Jena’ s per-
formance was exactly the same as Sesame’ s in terms of query completeness and sound-
ness. However, Jena was much slower in answering most of the queries than Sesame. 
For some of the queries, Jena did not terminate even after being allowed to run for sev-
eral hours. In this experiment we have used a timeout of 2 hours. 

When Jena was used with its OWL inferencing, it could answer even smaller num-
ber of queries within the time limit. We speculate that the poor performance of Jena is 
because its rule-based reasoners are less optimized for a semantically complex ontology 
like Univ-Bench.  

In order to investigate its query completeness and soundness with respect to the test 
queries, we have tested Jena with OWL reasoning on a single department file. This has 
allowed Jena to answer more queries within a reasonable time and noticeably, Jena 
could answer all those queries (including Queries 11-13) completely and correctly. 
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Table 3. Query test results 8 
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Time(ms) 59 46 15 9203 200 226 43 37 412 40 106 887 96 2211 
Answers 4 4 4 4 4 4 4 4 4 4 4 4 4 1 

Completeness 100 100 100 100 100 100 100 100 100 100 100 100 100 
Time(ms) 181 51878 87 116297 3978 2320 368423 495 14556 711678 1068 392392 1474664 failed 
Answers 0 0 0 0 9 9 9 28 28 28 59 59 - 2 

Completeness 100 100 100 100 100 100 100 100 100 100 100 100 - 
Time(ms) 218 40 0 13990 164 2545 53 1 5540 59 0 11956 56 36160 
Answers 6 6 6 6 6 6 6 6 6 6 6 6 6 3 

Completeness 100 100 100 100 100 100 100 100 100 100 100 100 100 
Time(ms) 506 768 6 211514 8929 2498 823 4 5615 762 4 14856 881 10115 
Answers 34 34 34 34* 34 34 34 34 34 34 34 34 34 4 

Completeness 100 100 100 100 100 100 100 100 100 100 100 100 100 
Time(ms) 617 2945 17 5929 475 4642 3039 17 11511 3214 17 27756 3150 135055 
Answers 719 719 719 719 719 719 719 719 719 719 719 719 719 5 

Completeness 100 100 100 100 100 100 100 100 100 100 100 100 100 
Time(ms) 481 253 48 1271 112 4365 1517 251 11158 3539 543 28448 12717 151904 
Answers 7790 5916 5916 7790* 48582 36682 36682 99566 75547 75547 210603 160120 519842 6 

Completeness 100 76 76 100 100 76 76 100 76 76 100 76 100 
Time(ms) 478 603 3 128115 67 2639 606 4 7028 634 4 18073 657 121673 
Answers 67 59 59 67 67 59 59 67 59 59 67 59 67 7 

Completeness 100 88 88 100 100 88 88 100 88 88 100 88 100 
Time(ms) 765 105026 273 164106 4953 3004 108384 262 5937 108851 264 13582 103779 39845 
Answers 7790 5916 5916 7790* 7790 5916 5916 7790 5916 5916 7790 5916 7790 8 

Completeness 100 76 76 100 100 76 76 100 76 76 100 76 100 
Time(ms) 634 34034 89 87475 2525 7751 256770 534 19971 460267 1123 57046 1013951 323579 
Answers 208 103 103 208 1245 600 600 2540 1233 1233 5479 2637 13639 9 

Completeness 100 50 50 100 100 48 48 100 49 49 100 48 100 
Time(ms) 98 20 1 141 4 1051 36 0 2339 40 0 5539 50 15831 
Answers 4 0 0 4 4 0 0 4 0 0 4 0 4 10 

Completeness 100 0 0 100 100 0 0 100 0 0 100 0 100 
Time(ms) 48 65 1 1592 45 51 73 1 61 84 3 78 82 143 
Answers 0 0 0 224 0 0 0 0 0 0 0 0 0 11 

Completeness 0 0 0 100 0 0 0 0 0 0 0 0 0 
Time(ms) 62 4484 12 11266 162 78 4659 14 123 4703 12 310 4886 745 
Answers 0 0 0 15* 0 0 0 0 0 0 0 0 0 12 

Completeness 0 0 0 100 0 0 0 0 0 0 0 0 0 
Time(ms) 200 4 1 90 1 2389 9 1 5173 12 1 11906 21 34854 
Answers 0 0 0 1 0 0 0 0 0 0 0 0 0 13 

Completeness 0 0 0 100 0 0 0 0 0 0 0 0 0 

Time(ms) 187 218 42 811 20 2937 1398 257 7870 38319 515 19424 11175 106764 

Answers 5916 5916 5916 5916 36682 36682 36682 75547 75547 75547 160120 160120 393730 14 

Completeness 100 100 100 100 100 100 100 100 100 100 100 100 100 

 

                                                 
8 The numbers marked with * do not count any incorrect answers returned by the system (refer to Table 2) 
9 This is an adjusted value from the original experiment [16], in which the query time was much longer. This was be-

cause the OS was increasing virtual memory at the time of the query. We have updated the result without the affect 
of that operation. 
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Table 4. Load time of Jena 
 Dataset Load Time (hh:mm:ss) 

Jena-Memory 
(RDFS reasoning) 00:00:12 

Jena-DB 
(RDFS reasoning) 00:30:45 

Jena-Memory 
(OWL reasoning) 00:00:13 

Jena-DB 
(OWL reasoning) 

LUBM 
(1, 0) 

00:32:27 

 
Table 5. Query response time of Jena. 

       Query 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

Jena-
Memory 
(RDFS) 

160 time-
out 215 51 585 215 272951 time-

out 
time-
out 209 14 4 203 220 

Jena-DB 
(RDFS) 5715 time-

out 13110 2860 24356 479 timeout time-
out 

time-
out 11562 536 1048 11731 2095 

Jena-
Memory 
(OWL) 

time-
out 

time-
out 3929 time-

out 
time-
out 

time-
out timeout time-

out 
time-
out timeout time-

out timeouttimeout 251 

Jena-DB 
(OWL) 

time-
out 

time-
out 52818 time-

out 
time-
out 

time-
out timeout time-

out 
time-
out timeout time-

out timeouttimeout 2289 

  
Table 6. Query completeness and soundness of Jena. 

                           Query 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

Completeness 100 100 100 100 76 88 0 0 0 0 100 Jena 
(RDFS, one 
university) Soundness 100 

n/a 
100 100 100 100 100 

n/a n/a 
100 100 100 100 100 

Completeness 100 100 100 100 100 78 88 78 38 0 0 0 0 100 Jena 
(RDFS, one 
department) Soundness 100 100 100 100 100 100 100 100 100 100 100 100 100 100 

Completeness 100 100 100 100 100 100 100 100 100 Jena 
(OWL, one 
department) Soundness 100 

n/a 
100 100 100 100 

n/a n/a n/a n/a 
100 100 100 100 

n/a: not applicable due to timeout 
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