
 1

LUBM: A Benchmark for OWL Knowledge Base Systems

Yuanbo Guo, Zhengxiang Pan, and Jeff Heflin

Computer Science & Engineering Department
Lehigh University,

19 Memorial Drive West, Bethlehem, PA18015, USA
Tel: (610) 758-4719
Fax: (610)758-4096

{yug2, zhp2, heflin}@cse.lehigh.edu

This is a revised and extended version of the paper “An Evaluation of Knowledge Base
Systems for Large OWL Datasets” presented at ISWC2004.

 2

Abstract
We describe our method for benchmarking Semantic Web knowledge base systems with
respect to use in large OWL applications. We present the Lehigh University Benchmark
(LUBM) as an example of how to design such benchmarks. The LUBM features an on-
tology for the university domain, synthetic OWL data scalable to an arbitrary size, four-
teen extensional queries representing a variety of properties, and several performance
metrics. The LUBM can be used to evaluate systems with different reasoning capabili-
ties and storage mechanisms. We demonstrate this with an evaluation of two memory-
based systems and two systems with persistent storage.

Keywords
Semantic Web, Knowledge Base System, Lehigh University Benchmark, Evaluation

1. Introduction

Various knowledge base systems (KBS) have been developed for storing, reasoning and
querying Semantic Web information. They differ in a number of important ways. For in-
stance, many KBSs are main memory-based while others use secondary storage to pro-
vide persistence. Another key difference is the degree of reasoning provided by the KBS.
Some KBSs only support RDF/RDFS [44] inferencing while others aim at providing ex-
tra OWL [10] reasoning.
 In this paper, we consider the issue of how to choose an appropriate KBS for a large
OWL application. Here, we consider a large application to be one that requires the proc-
essing of megabytes of data. Generally, there are two basic requirements for such sys-
tems. First, the enormous amount of data means that scalability and efficiency become
crucial issues. Secondly, the system must provide sufficient reasoning capabilities to
support the semantic requirements of the application.

It is difficult to evaluate KBSs with respect to these requirements. In order to evalu-
ate the systems in terms of scalability, we need Semantic Web data that are of a range of
large sizes and commit to semantically rich ontologies. However, there are few such
datasets available on the current Semantic Web. As for the reasoning requirement, the
ideal KBS would be sound and complete for OWL Full. Unfortunately, increased rea-
soning capability usually means an increase in data processing time and/or query re-
sponse time as well. Given this, one might think that the next best thing is to choose a
KBS that is just powerful enough to meet the reasoning needs of the application. How-
ever, this is easier said than done. Many systems are only sound and complete for un-
named subsets of OWL. For example, most description logic (DL) reasoners are com-
plete for a language more expressive than OWL Lite (if we ignore datatypes) but,
ironically, less expressive than OWL DL. As such, although some systems are incom-
plete with respect to OWL, they may still be useful because they scale better or respond
to queries more quickly. Therefore, to evaluate the existing KBSs for the use in those
OWL applications, it is important to be able to measure the tradeoffs between scalability
and reasoning capability.

 3

In light of the above, there is a pressing need for benchmarks to facilitate the
evaluation of Semantic Web KBSs in a standard and systematic way. Ideally we should
have a suite of such benchmarks, representing different workloads. These benchmarks
should be based on well-established practices for benchmarking databases [3, 4, 8, 33],
but must be extended to support the unique properties of the Semantic Web. As a first
step, we have designed a benchmark that fills a void that we consider particularly im-
portant: extensional queries over a large dataset that commits to a single ontology of
moderate complexity and size. Named the Lehigh University Benchmark (LUBM), this
benchmark is based on an ontology for the university domain. Its test data are syntheti-
cally generated instance data over that ontology; they are random and repeatable and can
be scaled to an arbitrary size. It offers fourteen test queries over the data. It also provides
a set of performance metrics used to evaluate the system with respect to the above men-
tioned requirements.

A key benefit of our benchmarking approach is that it allows us to empirically
compare very different knowledge base systems. In order to demonstrate this, we have
conducted an experiment using three different classes of systems: systems supporting
RDFS reasoning, systems providing partial OWL Lite reasoning, and systems that are
complete or almost complete for OWL Lite. The representatives of these classes that we
chose are Sesame, DLDB-OWL, and OWLJessKB, respectively. In addition to having
different reasoning capabilities, these systems differ in their storage mechanisms and
query evaluation. We have evaluated two memory-based systems (memory-based Ses-
ame and OWLJessKB) and two systems with persistent storage (database-based Sesame
and DLDB-OWL). We describe how we have settled on these systems and set up the
experiment in the benchmark framework. We show the experimental results and discuss
the performance of the systems from several different aspects. We also discuss some in-
teresting observations. Based on that, we highlight some issues with respect to the de-
velopment and improvement of the same kind of systems, and suggest some potential
ways in using and developing those systems.

This work makes two major contributions. First, we introduce our methodology for
benchmarking Semantic Web knowledge base systems and demonstrate it using the
LUBM as a specific product. We believe our work could benefit the Semantic Web
community by inspiring and guiding the development of other benchmarks. Secondly,
the experiment we have done could help developers identify some important directions
in advancing the state-of-the-art of Semantic Web KBSs.

The outline of the paper is as follows: Section 2 elaborates on the LUBM. Section 3
describes the aforementioned experiment. Section 4 talks about related work. Section 5
considers issues in applying the benchmark. We conclude in Section 6.

2. Lehigh University Benchmark for OWL

As mentioned earlier, this paper presents a benchmark that is intended to fill a void that
we considered particularly important. The benchmark was designed with the following
goals in mind:

 4

1) Support extensional queries. Extensional queries are queries about the instance data
over ontologies. There already exist DL benchmarks that focus on intensional que-
ries (i.e., queries about classes and properties). However, our conjecture is that the
majority of Semantic Web applications will want to use data to answer questions,
and that reasoning about subsumption will typically be a means to an end, not an end
in itself. Therefore, it is important to have benchmarks that focus on this kind of
query.

2) Arbitrary scaling of data. We also predict that data will by far outnumber ontologies
on the Semantic Web of the future. Here, we use the word “data” to refer to asser-
tions about instances, in other words what is referred to as an ABox in DL terminol-
ogy. In order to evaluate the ability of systems to handle large ABoxes we need to be
able to vary the size of data, and see how the system scales.

3) Ontology of moderate size and complexity. Existing DL benchmarks have looked at
reasoning with large and complex ontologies, while various RDF systems have been
evaluated with regards to various RDF Schemas (which could be considered simple
ontologies). We felt that it was important to have a benchmark that fell between
these two extremes. Furthermore, since our focus is on data, we felt that the ontol-
ogy should not be too large.

It should be noted that these goals choose only one point in the space of possible
benchmarks. We recognize that some researchers may not agree with the importance we
placed on these goals, and would suggest alternative benchmarks. We encourage these
researchers to consider the lessons learned in this work and develop their own bench-
marks.
 Given the goals above, we designed the Lehigh University Benchmark. The first
version [14] of this benchmark was used for the evaluation of DAML+OIL [9] reposito-
ries, but has since been extended to use an OWL ontology and dataset. We introduce the
key components of the benchmark suite below.

2.1. Benchmark Ontology

The ontology used in the benchmark is called Univ-Bench. Univ-Bench describes uni-
versities and departments and the activities that occur at them. Its predecessor is the
Univ1.0 ontology1, which has been used to describe data about actual universities and
departments. We chose this ontology expecting that its domain would be familiar to
most of the benchmark users.

We have created an OWL version of the Univ-Bench ontology2. The ontology is
expressed in OWL Lite, the simplest sublanguage of OWL. We chose to restrict the on-
tology (and also the test data) to OWL Lite since efficient reasoning systems exist for
that language, for example, Racer [17] and Pellet [42]. Note that neither of these sys-
tems is complete for OWL DL.

1 http://www.cs.umd.edu/projects/plus/DAML/onts/univ1.0.daml
2 http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl

 5

For benchmark purposes, we have intentionally included in the ontology specific
language features. For instance, originally the Univ1.0 ontology states that Graduat-
eStudent is a subclass of Student. In creating the Univ-Bench ontology, we have re-
placed that definition with what is shown in Fig. 1 using a restriction. As a result, the
subclass relationship between both the classes GraduateStudent and Student must be in-
ferred using OWL semantics. Moreover, sometimes an inference could be made in mul-
tiple ways. To allow emphasis on description logic subsumption, we have made some
domain constraint changes. For example, we have removed the domain constraint (to
the class Student) of the property takesCourse so that no individuals of GraduateStudent
in the benchmark data can be inferred as an instance of Student without the inference of
the subsumption relationship between both classes from the ontology.

OWL Code
<owl:Class rdf:ID="GraduateCourse">

<rdfs:label>graduate level Courses</rdfs:label>
<rdfs:subClassOf rdf:resource="#Course" />

</owl:Class>
<owl:Class rdf:ID="GraduateStudent">

<rdfs:label>graduate student</rdfs:label>
<rdfs:subClassOf rdf:resource="#Person" />
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource="#takesCourse" />
<owl:someValuesFrom>

<owl:Class rdf:about="#GraduateCourse" />
</owl:someValuesFrom>

</owl:Restriction>
</rdfs:subClassOf>

</owl:Class>
<owl:Class rdf:ID="Student">

<rdfs:label>student</rdfs:label>
<owl:intersectionOf rdf:parseType="Collection">

<owl:Class rdf:about="#Person" />
<owl:Restriction>

<owl:onProperty rdf:resource="#takesCourse" />
<owl:someValuesFrom>

<owl:Class rdf:about="#Course" />
</owl:someValuesFrom>

</owl:Restriction>
</owl:intersectionOf>

</owl:Class>
Simplified DL Syntax Description
GraduateCourse Course

GraduateStudent Person takesCourse.GraduateCourse
Student �3HUVRQ� takesCourse.Course

Fig. 1. Definition of the classes GraduateStudent and Student

 6

The ontology currently defines 43 classes and 32 properties (including 25 object
properties and 7 datatype properties). It uses OWL Lite language features including in-
verseOf, TransitiveProperty, someValuesFrom restrictions, and intersectionOf. Accord-
ing to a study by Tempich and Volz [34], this ontology can be categorized as a “descrip-
tion logic-style” ontology, which has a moderate number of classes but several
restrictions and properties per class.

2.2. Data Generation and OWL Datasets

Test data of the LUBM are extensional data created over the Univ-Bench ontology. For
the LUBM, we have adopted a method of synthetic data generation. This serves multiple
purposes. As with the Wisconsin benchmark [3, 4], a standard and widely used database
benchmark, this allows us to control the selectivity and output size of each test query.
However, there are some other specific considerations:

1) We would like the benchmark data to be of a range of sizes including considerably
large ones. It is hard to find such data sources that are based on the same ontology.

2) We may need the presence of certain kinds of instances in the benchmark data. This
allows us to design repeatable tests for as many representative query types as possi-
ble. These tests not only evaluate the storage mechanisms for Semantic Web data
but also the techniques that exploit formal semantics. We may rely on instances of
certain classes and/or properties to test against those techniques.

Data generation is carried out by UBA (Univ-Bench Artificial data generator), a tool
we have developed for the benchmark. We have implemented the support for OWL
datasets in the tool. The generator features random and repeatable data generation. A
university is the minimum unit of data generation, and for each university, a set of OWL
files describing its departments are generated. Instances of both classes and properties
are randomly decided. To make the data as realistic as possible, some restrictions are
applied based on common sense and domain investigation. Examples are “a minimum
of 15 and a maximum of 25 departments in each university”, “an undergraduate stu-
dent/faculty ratio between 8 and 14 inclusive”, “each graduate student takes at least 1
but at most 3 courses”, and so forth. A detailed profile of the data generated by the tool
can be found on the benchmark’s webpage.
 The generator identifies universities by assigning them zero-based indexes, i.e., the
first university is named University0, and so on. Data generated by the tool are exactly
repeatable with respect to universities. This is possible because the tool allows the user
to enter an initial seed for the random number generator that is used in the data genera-
tion process. Through the tool, we may specify how many and which universities to
generate.
 Finally, as with the Univ-Bench ontology, the OWL data created by the generator
are also in the OWL Lite sublanguage. As a consequence, we have had to give every in-

 7

dividual ID appearing in the data a type and include in every document an ontology tag
(the owl:Ontology element)3.

2.3. Test Queries

The LUBM currently offers fourteen test queries, one more than when it was originally
developed. Readers are referred to Appendix 1 for a list of these queries. They are writ-
ten in SPARQL [28], the query language that is poised to become the standard for RDF.
In choosing the queries, first of all, we wanted them to be realistic. Meanwhile, we have
mainly taken into account the following factors:

1) Input size. This is measured as the proportion of the class instances involved in the
query to the total class instances in the benchmark data. Here we refer to not just
class instances explicitly expressed but also those that are entailed by the knowledge
base. We define the input size as large if the proportion is greater than 5%, and
small otherwise.

2) Selectivity. This is measured as the estimated proportion of the class instances in-
volved in the query that satisfy the query criteria. We regard the selectivity as high if
the proportion is lower than 10%, and low otherwise. Whether the selectivity is high
or low for a query may depend on the dataset used. For instance, the selectivity of
Queries 8, 11 and 12 is low if the dataset contains only University0 while high if the
dataset contains more than 10 universities.

3) Complexity. We use the number of classes and properties that are involved in the
query as an indication of complexity. Since we do not assume any specific imple-
mentation of the repository, the real degree of complexity may vary by systems and
schemata. For example, in a relational database, depending on the schema design,
the number of classes and properties may or may not directly indicate the number of
table joins, which are significant operations.

4) Assumed hierarchy information. This considers whether information from the class
hierarchy or property hierarchy is required to achieve the complete answer. (We de-
fine completeness in next subsection).

5) Assumed logical inference. This considers whether logical inference is required to
achieve the completeness of the answer. Features used in the test queries include
subsumption, i.e., inference of implicit subclass relationship,
owl:TransitiveProperty, owl:inverseOf, and realization, i.e., inference of the most
specific concepts that an individual is an instance of. One thing to note is that we are
not benchmarking complex description logic reasoning. We are concerned with ex-
tensional queries. Some queries use simple description logic reasoning mainly to
verify that this capability is present.

We have chosen test queries that cover a range of properties in terms of the above
criteria. At the same time, to the end of performance evaluation, we have emphasized

3 In OWL, the notion of the term ontology differs from that in the traditional sense by also including instance data

[32].

 8

queries with large input and high selectivity. If not otherwise noted, all the test queries
are of this type. Some subtler factors have also been considered in designing the queries,
such as the depth and width of class hierarchies4, and the way the classes and properties
chain together in the query.

2.4. Performance Metrics

The LUBM consists of a set of performance metrics including load time, repository size,
query response time, query completeness and soundness, and a combined metric for
query performance. Among these metrics: the first three are standard database bench-
mark metrics—query response time was introduced in the Wisconsin benchmark, and
load time and repository size have been commonly used in other database benchmarks,
e.g. the OO1 benchmark [8]; query completeness and soundness and the combined met-
ric are new metrics we developed for the benchmark. We address these metrics in turn
below.

Load Time

In a LUBM dataset, every university contains 15 to 25 departments, each described
by a separate OWL file. These files are loaded to the target system in an incremental
fashion. We measure the load time as the stand alone elapsed time for storing the speci-
fied dataset to the system. This also counts the time spent in any processing of the on-
tology and source files, such as parsing and reasoning.

Repository Size

Repository size is the resulting size of the repository after loading the specified
benchmark data into the system. Size is only measured for systems with persistent stor-
age and is calculated as the total size of all files that constitute the repository. We do not
measure the occupied memory sizes for the main memory-based systems because it is
difficult to accurately calculate them. However, since we evaluate all systems on a plat-
form with a fixed memory size, the largest dataset that can be handled by a system pro-
vides an indication of its memory efficiency.

Query Response Time

Query response time is measured based on the process used in database benchmarks.
To account for caching, each query is executed for ten times consecutively and the aver-
age time is computed. Specifically, the benchmark measures the query response time as
the following:

For each test query
Open the repository

Execute the query on the repository consecutively for 10 times and com-
pute the average response time. Each time:

4 We define a class hierarchy as deep if its depth is greater than 3, and as wide if its average branching factor is

greater than 3.

 9

Issue the query, obtain the result set, traverse that set sequentially, and
collect the elapsed time

 Close the repository

Query Completeness and Soundness

We also examine query completeness and soundness of each system. In logic, an in-
ference procedure is complete if it can find a proof for any sentence that is entailed by
the knowledge base. With respect to queries, we say a system is complete if it generates
all answers that are entailed by the knowledge base, where each answer is a binding of
the query variables that results in an entailed sentence. However, on the Semantic Web,
partial answers will often be acceptable. So it is important not to measure completeness
with such a coarse distinction. Instead, we measure the degree of completeness of each
query answer as the percentage of the entailed answers that are returned by the system.
Note that we request that the result set contains unique answers.

In addition, as we will show in the next section, we have realized that query sound-
ness is also worthy of examination. With similar argument to the above, we measure the
degree of soundness of each query answer as the percentage of the answers returned by
the system that are actually entailed.

Combined Metric (CM)

The benchmark also provides a metric for measuring query response time and an-
swer completeness and soundness in combination to help users better appreciate the po-
tential tradeoff between the query response time and the inference capability and the
overall performance of the system. Such a metric can be used to provide an absolute
ranking of systems. However, since such a metric necessarily abstracts away details, it
should be used carefully. In order to allow the user to place relative emphasis on differ-
ent aspects, we have parameterized the metric. Changing these parameters can result in
a reordering of the systems considered. Thus, this metric should never be used without
careful consideration of the parameters used in its calculation. We will come back to
this in Section 5.

First, we use an F-Measure [30, 24] like metric to compute the tradeoff between
query completeness and soundness, since essentially they are analogous to recall and
precision in Information Retrieval respectively. In the formula below, Cq and Sq ([0,
1]) are the answer completeness and soundness for query q. determines the relative
weighting between Sq and Cq.

qq

qq
q

SC
SC

F �
�
*

**)1(
2

2

E
E

Next, we define a query performance metric for query q:5

bNTaq
qe

P
��

 /*1

1

5 We introduce a different function from that of our original work [16], since we find that the current one could map

the query time (possibly from zero to infinity) to the continuous range of [0, 1] in a more natural way, and could
give us a more reasonable range and distribution of query performance evaluation of the systems.

 10

This is an adaptation of the well known sigmoid function. In the formula, Tq is the
response time (ms) for query q and N is the total number of triples in the dataset con-
cerned. To allow for comparison of the metric values across datasets of different sizes,
we use the response time per triple (i.e. Tq/N) in the calculation. a is used to control the
slope of the curve. b shifts the entire graph. In this evaluation, we have chosen a of 500
and b of 5 so that 1) Pq(0) is close enough to one (above 0.99); 2) A response time of
one second for 100,000 triples (roughly the size of the smallest dataset used in our test)
will receive the Pq value of 0.5. These values appear to be reasonable choices for con-
temporary systems. However, as the state-of-the-art progresses and machines become
substantially more powerful, different parameter values may be needed to
better distinguish between the qualities of different systems. Fig. 2 illustrates the func-
tion for the triple size of one million.

Fig. 2. Pq function (a=500, b=5, N=1,000,000)

As will be shown in the next section, some system might fail to answer a query. In

that case, we will use zero for both Fq and Pq in the calculation.
Lastly, we define a composite metric CM of query response time and answer com-

pleteness and soundness as the following, which is also inspired by F-Measure:

¦ � �
� M

q
qq

qq

q FP
FP

wCM
1 2

2

*
**)1(

* D
D

In the above, M is the total number of test queries. wq (¦ �

 M

q qw
1

1) is the weight

given to query q. determines relative weighting between Fq and Pq. Generally speak-
ing, the metric will reward those systems that can answer queries faster, more com-
pletely and more soundly.

2.5. Benchmark Architecture

Fig. 3 depicts the benchmark architecture. We prescribe an interface to be instantiated
by each target system. Through the interface, the benchmark test module requests opera-

 11

tions on the repository (e.g. open and close), launches the loading process, issues que-
ries and obtains the results. Users inform the test module of the target systems and test
queries by defining them in the KBS specification file and query definition file respec-
tively. It needs to be noted that queries are translated into the query language supported
by the system prior to being issued to the system. In this way, we want to eliminate the
effect of query translation on query response time. The translated queries are fed to the
tester through the query definition file. The tester reads the lines of each query from the
definition file and passes them to the system.

Fig. 3. Architecture of the benchmark

The benchmark suite is accessible at http://swat.cse.lehigh.edu/projects/lubm/index.htm.

3. An Evaluation Using the LUBM

In order to demonstrate how the LUBM can be used to evaluate very different knowl-
edge base systems, we describe an experiment. We discuss how we selected the systems,
describe the experiment conditions, present the results, and discuss them.

3.1. Selecting Target Systems

In this experiment, we wanted to evaluate the scalability and support for OWL Lite in
various systems. In choosing the systems, first we decided to consider only non-
commercial systems. Moreover, we did not mean to carry out a comprehensive evalua-
tion of the existing Semantic Web KBSs. Instead, we wanted to evaluate systems with a
variety of characteristics. Since a key point of this work is how to evaluate systems with
different capabilities, we wanted to evaluate representative systems at distinct points in
terms of OWL reasoning capability. Specifically, we considered three degrees of sup-
ported reasoning in the systems under test, i.e. RDFS reasoning, partial OWL Lite rea-
soning, and complete or almost complete OWL Lite reasoning. Finally, we believe a
practical KBS must be able to read OWL files, support incremental data loading, and

KBSn

KBS1

LUBM Suite

Data Generator

Query
Definition

KBS
Specification

Benchmark Data

Test Module

Benchmark Interface Benchmark Interface

 12

provide programming APIs for loading data and issuing queries. As a result, we have
settled on four different knowledge base systems, including two implementations of
Sesame, DLDB-OWL, and OWLJessKB. Below we briefly describe the systems we
have considered along with the reason for choosing or not choosing them.

RDFS Reasoning

For this category of systems, we have considered RDF repositories including Jena,
Sesame, ICS-FORTH RDFSuite [1], Kowari [40], and so on. Since Jena and Sesame are
currently the most widely used, we focused on these two systems.

Jena [37] is a Java framework for building Semantic Web applications. Jena cur-
rently supports both RDF/RDFS and OWL. We have done some preliminary tests on
Jena (v2.1) (both memory-based and database-based) with our smallest dataset (cf. Ap-
pendix 3). Compared to Sesame, Jena with RDFS reasoning was much slower in an-
swering nearly all the queries. Some of the queries did not terminate even after being al-
lowed to run for several hours. The situation was similar when Jena’s OWL reasoning
was turned on.

Due to Jena’s limitations with respect to scalability, we decided to evaluate Sesame
instead. Sesame [5] is a repository and querying facility based on RDF and RDF
Schema. It features a generic architecture that separates the actual storage of RDF data,
functional modules offering operations on those data, and communication with these
functional modules from outside the system. Sesame supports RDF/RDF Schema infer-
ence, but is an incomplete reasoner for OWL Lite. Nevertheless, it has been used on a
wide number of Semantic Web projects. Sesame can evaluate queries in RQL [22],
SeRQL [45], and RDQL [31]. We evaluate two implementations of Sesame, main
memory-based and database-based.

Partial OWL Lite Reasoning

KAON [39] is an ontology management infrastructure. It provides an API for ma-
nipulating RDF models. The suite also contains a library of KAON Datalog Engine,
which could be used to reason with the DLP fragment of OWL. However, that function-
ality is not directly supported by the core of KAON, i.e., its APIs.

Instead, we have selected DLDB-OWL [27], a repository for processing, storing,
and querying OWL data. The major feature of DLDB-OWL is the extension of a rela-
tional database system with description logic inference capabilities. Specifically,
DLDB-OWL uses Microsoft Access® as the DBMS and FaCT [19] as the OWL rea-
soner. It uses the reasoner to precompute subsumption and employs relational views to
answer extensional queries based on the implicit hierarchy that is inferred. DLDB-OWL
uses a language in which a query is written as a conjunction of atoms. The language
syntactically resembles KIF [13] but has less expressivity. Since DLDB uses FaCT to do
TBox reasoning only, we consider it as a system that provides partial OWL Lite reason-
ing support. Note, FaCT and FaCT++ [35] do not directly support ABox reasoning (al-
though it is possible to simulate it), so use of them as stand-alone systems is inappropri-
ate for the extensional queries used by our benchmark.

 13

Complete or Almost Complete OWL Lite Reasoning

OWL reasoning systems such as Racer, Pellet and OWLJessKB fall into this cate-
gory. The first two systems, like FaCT, are based on the tableaux algorithms developed
for description logic inferencing, and additionally support ABox reasoning. Since
DLDB-OWL uses FaCT as its reasoner, we have decided to choose a system with a dif-
ferent reasoning style. Thus we have settled on OWLJessKB.

OWLJessKB [41], whose predecessor is DAMLJessKB [23], is a memory-based
reasoning tool for description logic languages, particularly OWL. It uses the Java Expert
System Shell (Jess) [38], a production system, as its underlying reasoner. Current func-
tionality of OWLJessKB is close to OWL Lite plus some. Thus we have chosen OWL-
JessKB and we evaluate it as a system that supports most OWL entailments.

Although we have decided not to evaluate Racer here, we want to mention that
Haarslev et al. [18] have conducted their own evaluation using the LUBM. They devel-
oped a new query language called nRQL, which made it possible to answer all of the
queries in our benchmark. The results showed that Racer could offer complete answers
for all the queries if required (they have tested Racer on Queries 1 through 13). How-
ever, since it has to perform ABox consistency checking before query answering, Racer
was unable to load a whole university dataset. As a result, they have only loaded up to 5
departments using Racer (v. 1.8) on a P4 2.8GHz 1G RAM machine running Linux.

3.2. Experiment Setup

System Setup
The systems we test are DLDB-OWL (04-03-29 release), Sesame v1.0, and OWL-

JessKB (04-02-23 release). As noted, we test both the main memory-based and data-
base-based implementations of Sesame. For brevity, we hereafter refer to them as Ses-
ame-Memory and Sesame-DB respectively. For both of them, we use the
implementation with RDFS inference capabilities. For the later, we use MySQL
(v4.0.16) as the underlying DBMS since, according to a test by Broekstra and Kampman
[5], Sesame performs significantly better than using the other DBMS PostgreSQL [43].
The DBMS used in DLDB-OWL is MS Access® 2002. We have created a wrapper over
each system as an interface to the test module.

We should point out that we did not optimize any of the systems for purpose of the
experiment. This is for two reasons. First, most Semantic Web KBSs do not provide the
level of customization typically found in databases. This is true even for KBSs that use a
DBMS; such systems typically make decisions for the user with respect to table layout
and index creation. Second, we feel that the variability of Semantic Web data will make
it more difficult to optimize for any specific application. However, if the benchmark is
being used to evaluate systems for a well-defined application, then we encourage users
of the benchmark to use all tools available to optimize the system so that they may con-
duct an evaluation that better reflects the way the system will behave operationally.

 14

Datasets
To identify the dataset, we use the following notation in the subsequent description:

LUBM(N, S): The dataset that contains N universities beginning at University0 and
is generated using a seed value of S.

We have created 5 sets of test data6: LUBM(1, 0), LUBM(5, 0), LUBM(10, 0),
LUBM(20, 0), and LUBM(50, 0), which contain OWL files for 1, 5, 10, 20, and 50 uni-
versities respectively, the largest one having over 6,800,000 triples in total. To our
knowledge, prior to this experiment, Sesame has been tested with at most 3,000,000
statements. We have easily exceeded that by virtue of the data generation tool. Note that
in counting the RDF triples in a dataset, we count those from the ontology only once
and for others, we count duplicate triples multiple times.

Query Test

As mentioned earlier, the queries are expressed in SPARQL. However, many Se-
mantic Web KBSs were designed before SPARQL began to take shape. As such, none
of the selected systems currently support SPARQL. Therefore, we manually translate
the fourteen queries into a language supported by each system: RQL for Sesame, Jess
for OWLJessKB, and a KIF-like query language for DLDB-OWL. The translated que-
ries form the query definition file for that system. Note, with one exception explained
below, we do not try to optimize the queries. Instead, we expect that queries are issued
by naïve users and any query optimization must be a function of the KBS.

From preliminary experiments we discovered that the ordering of statements within
a Jess query can affect the response time of OWLJessKB to that query. In fact, a direct
translation of the benchmark queries resulted in poor performance from OWLJessKB.
Even with the one-university dataset it ran out of memory for some queries (e.g., Query
2). However, we were able to reduce the response time by simply reordering the state-
ments so that arbitrary property-related statements precede all type-related statements in
each query. Since this is an optimization that could be trivially automated, we decided
to make this one exception to our rule above.

As another detail, OWLJessKB needs two separate phases to perform a query: de-
fine it and execute it. In the original DAML version of our experiment [15] we pre-
defined the patterns for each test query prior to loading any data. However, we have
subsequently learned that this could lead to worse performance of OWLJessKB. Since
we have found no guidance as to when to or not to use such kinds of patterns, we will
show the results of OWLJessKB with both settings in the subsequent discussion. When
distinction is needed, we will refer to them as OWLJessKB-P and OWLJessKB-NP re-
spectively.

Query response time is collected in the way defined by the benchmark. Note that in-
stead of providing a result set that can be iterated through, Sesame returns data one-at-a-
time in streams and calls back user specified functions upon each result item. Thus we
regard those call backs as the result traverse that is required by the benchmark, and
count them in the query time instead.

6 The version of the data generator is UBA1.6.

 15

Test environment
We have done the test on a desktop computer. The environment is as follows:

 1.80GHz Pentium 4 CPU;
 256MB of RAM; 80GB of hard disk
 Windows XP Professional OS;
 Java SDK 1.4.1; 512MB of max heap size

In order to evaluate OWLJessKB, we needed to adjust this configuration slightly.
With the standard setting for max heap size in Java, the system failed to load the one-
university dataset due to out of memory errors. As a workaround, we increased the
maximum heap size to 1GB, which requests a large amount of virtual memory from the
operating system. This change allowed OWLJessKB to properly load the dataset.

3.3. Results and Discussions

3.3.1. Data Loading
Table 1. Load time and repository sizes

 Dataset File # Total Size
(MB) Triple # Load Time

(hh:mm:ss)
Repository Size

(KB)
DLDB-OWL 00:05:43 16,318
Sesame-DB 00:09:02 48,333

Sesame-Memory 00:00:13 -
OWLJessKB-P 03:16:12 -

OWLJessKB-NP

LUBM
(1, 0) 15 8.6 103,397

02:19:18 -
DLDB-OWL 00:51:57 91,292
Sesame-DB 03:00:11 283,967

Sesame-Memory 00:01:53 -
OWLJessKB

LUBM
(5, 0) 93 54.2 646,128

- -
DLDB-OWL 01:54:41 184,680
Sesame-DB 12:27:50 574,554

Sesame-Memory 00:05:40 -
OWLJessKB

LUBM
(10, 0) 189 110.6 1,316,993

- -
DLDB-OWL 04:22:53 388,202
Sesame-DB 46:35:53 1,209,827

Sesame-Memory - -
OWLJessKB

LUBM
(20, 0) 402 234.8 2,782,419

- -
DLDB-OWL 12:37:57 958,956
Sesame-DB - -

Sesame-Memory - -
OWLJessKB

LUBM
(50, 0) 999 583.6 6,890,933

- -

Table 1 shows the data loading time for all systems and the on-disk repository sizes of
DLDB-OWL and Sesame-DB. Fig. 4 depicts how the load time grows as the dataset size
increases and compares the repository sizes of the two database-based systems.

 16

Fig. 4. Load time and repository sizes. The left hand figure shows the load time. The
right hand figure shows the repository sizes of the database-based systems.

The test results have reinforced scalability as an important issue and challenge for

Semantic Web knowledge base systems. One of the first issues is how large of a dataset
each system can handle. As expected, the memory-based systems did not perform as
well as the persistent storage systems in this regard. OWLJessKB, could only load the 1-
university dataset, and took over 15 times longer than any other system to do so. On the
other hand, we were surprised to see that Sesame-Memory could load up to 10 universi-
ties, and was able to do it in 5% of the time of the next fastest system. However, for 20
or more universities, Sesame-Memory also succumbed to memory limitations.

Using the benchmark, we have been able to test both Sesame-Memory and Sesame-
DB on larger scale datasets than what has been reported so far. The result reveals an ap-
parent problem for Sesame-DB: it does not scale in data loading, as can be seen from
Fig. 4. As an example, it took over 300 times longer to load the 20-university dataset
than the 1-university dataset, although the former set contains only about 25 times more
triples than the later. We extrapolate that it will take Sesame-DB over 3 weeks to finish
loading the 50-university dataset. Therefore, we have decided not to do a test that con-
sumes so many resources.

In contrast, DLDB-OWL displays good scalability in data loading. We suspect the
different performance of the two systems is caused by the following two reasons. First,
to save space, both DLDB-OWL and Sesame map resources to unique IDs maintained
in a table. When a resource is encountered during the data loading, they will look up that
table to determine if it has not been seen before and needs to be assigned a new ID. As
mentioned in [27], querying the ID table every time is very likely to slow down the data
loading as the data size grows. In its implementation, Sesame also assigns every literal
an ID, while DLDB-OWL stores literals directly in the destination tables, which means
Sesame has to spend even more time on ID lookup. Moreover, in order to improve per-
formance, DLDB-OWL caches resource-ID pairs during current loading.

A second reason for the performance difference is related to the way Sesame per-
forms inference. Sesame is a forward-chaining reasoner, and in order to support state-
ment deletions it uses a truth maintenance system to track all deductive dependencies

 17

between statements. As Broekstra and Kampman [6] shows, this appears to affect the
performance significantly if there are many inferred statements or the dataset is fairly
large. We should note that this scalability problem was not as noticeable in our previous
study involving a DAML+OIL benchmark [15]. We believe this is because the current
benchmark ontology replaced all occurrences of daml:domain with rdfs:domain. Unlike
daml:domain, the use of rdfs:domain triggers additional forward-chaining inferences in
Sesame.

3.3.2. Query Response Time
Readers are referred to Appendix 2 for a complete list of query test results including
query response time, number of answers, and query completeness. Fig. 5 and Fig. 6
compares using graphs the query response time of the systems from two different views.
Fig. 5 compares the performance of all the queries with respect to each dataset while Fig.
6 compares the query response time across all the datasets with respect to each query.
Note, in Fig. 5 we use an exponential scale and have reordered the queries to facilitate
presentation. In general, the faster queries are to the left, while the slower ones are to the
right.

Fig. 5. Query response time comparison with respect to each dataset (up to 20 universi-
ties)

In terms of query, the results also lead to some scalability and efficiency concerns.
Sesame-DB was very slow in answering some queries (even for one university), includ-
ing Queries 2, 8, and 9. As for DLDB-OWL, it is the only system that has been tested
with the largest dataset. But one concern is that when it comes to the larger datasets, es-
pecially the 50-university set, DLDB-OWL’ s query time no longer appears linear for

 18

Fig. 6. Query response time comparison between DLDB-OWL, Sesame-DB, Sesame-
Memory, and OWLJessKB-NP with respect to each query

 19

some queries, i.e., Queries 2, 5, 6, 7, 9, and 14. Moreover, it failed to answer Query 2 on
the 50-univeristy dataset after MS Access ran out of temporary space. Regarding OWL-
JessKB, compared to the performance of its predecessor DAMLJessKB in [15], OWL-
JessKB improves its query time greatly at the sacrifice of much longer load time. None-
theless, when OWLJessKB is queried with pre-defined patterns it is still the slowest in
answering thirteen of the queries. It responds to the queries much faster when such pat-
terns are not used, however is still outperformed by one of the database-based systems
for quite a few queries. Compared to other systems, Sesame-Memory is the fastest in
answering almost all the queries. It is also the fastest in data loading. This suggests that
it might be the best choice for data of small scale if persistent storage and OWL infer-
ence is not required.

We have observed that those queries for which Sesame-DB’ s performance goes
down dramatically are common in that they do not contain a specific URI as a subject or
object in the statements. On the other hand, Sesame-DB shows a nice property in an-
swering some other queries like Queries 3, 4, 5, 7, and 8: there was no proportional in-
crease in the response time as the data size grows. We have also noticed a common fea-
ture of these queries, i.e., they have constant number of results over the test datasets.
Whether these are the causes or coincidences is a subject for future work.

Another thing that has drawn our attention is that, unlike the other queries, DLDB
responds to Query 4 on the 50-university dataset even faster than on the 20-university
set. We have redone the test several times and confirmed that the phenomenon is repeat-
able. We have ruled out the following possible causes for this behavior: the query does
not terminate due to an error; the result set is not incorrect; there are no outliers in the
individual runs of the query; and there is no integer overflow in our measurement of
query response time. In addition, we have run the query on another two datasets consist-
ing of 30 universities and 40 universities respectively (we have added these two data
points to the graph for Query 4 in Fig. 6). It turned out that query time monotonically
increases for these two datasets, which makes the 50-university evaluation appear to be
an even stranger outlier. We currently suspect the phenomenon is due to some optimiza-
tion performed by MS Access. We intend to do a further investigation in the future.

This initial research leads to a number of topics for future investigation. One is to
explore the potential relationship between query types and performance of the system.
As shown here, different systems seem to be optimized for different types of queries. Is
it possible to develop a system that efficiently support all queries? As a related issues,
what are the major categories of queries? Finally, what is the best design for interacting
with a DBMS. Sesame-DB implements the main bulk of the evaluation in its RQL query
engine, but has another query engine for the language SeRQL that pushes a lot of the
work down to the underlying DBMS. DLDB-OWL directly translates as much of the
query for the database. Further work should be done to investigate how these design dif-
ferences as well as the underlying DBMS used impact performance.

3.3.3. Query Completeness and Soundness
It was noted before that we have chosen the benchmark test queries according to several
criteria. In addition, we have made effort to make those queries as realistic as possible.

 20

In other words, we want these queries to represent, to some extent, those in the real
world. We are very interested in seeing what queries can be answered by each system.

Fig. 7. Query completeness comparison. We show the results of only the first dataset
since there are only minor or no differences between the five datasets.

Fig. 7 depicts the comparison of query completeness between the systems. As men-
tioned, Sesame is able to address RDF/RDFS semantics while DLDB-OWL and OWL-
JessKB integrate extra OWL inference capability. As the results turned out, all systems
could answer Queries 1 through 5 and Query 14 completely. As we expected, DLDB-
OWL was able to find all the answers for Queries 6 to 10, which requires subsumption
inference in order to get complete results, while Sesame could only find partial or no an-
swers for them. It is interesting to notice that DLDB-OWL and Sesame found complete
answers for Query 5 in different ways: DLDB-OWL made use of subsumption, while
Sesame, although not able to figure out the subsumption, used an rdfs:domain restric-
tion to determine the types of the individuals in the dataset and thus achieved the same
result. OWLJessKB could find all the answers for every query, and was the only system
to answer Queries 11 and 13 completely, which assume owl:TransitiveProperty and
owl:inverseOf inference respectively. Nevertheless, we have discovered that OWL-
JessKB made unsound inferences with respect to some queries. Specifically, it returned
incorrect answers to Queries 4, 6, 8, and 12 because it incorrectly inferred that Lecturer
is a Professor, Employee a Student, and Student a Chair. Our investigation has shown
that this is due to OWLJessKB’ s incorrect handling of intersectionOf. We list in Table 2
the soundness of OWLJessKB for each query.

Table 2. Query soundness of OWLJessKB.
 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Correct answers
/Total answers 4/4 0/0 6/6 34/

41
719
/719

7790/
8330 67/67 7790/

8330
208/
208 4/4 224/

224
15/
540 1/1 5916/

5916
Soundness 100 100 100 83 100 94 100 94 100 100 100 3 100 100

 21

3.3.4. Combined Metric Values
We have calculated the combined metric value (cf. Section 2.4) of each target system
with respect to each dataset. In the evaluation, we set both and to 1, which means we
equally weight query completeness against soundness, and query response time against
completeness and soundness as well. In addition, we equally weight the queries too. Fig.
8 shows the results.

Fig. 8. CM values (a=500, b=5, =1, =1, wi=wj (i,j�1,…,14))

We find that these numerical results are helpful for us to appreciate the overall
query performance of each system. The higher values of Sesame-Memory than Sesame-
DB for the first three datasets and than DLDB-OWL for the 10-university set again sug-
gest that it is a reasonable choice for small scale application if persistent storage is not
required, particularly if completeness is not significant. DLDB-OWL achieves higher
scores across all the datasets than the other database-based system Sesame-DB. This
helps us believe that its extra inference capability is not counterproductive. Although
DLDB-OWL is the only system that could handle the largest dataset, the relatively low
value it gets for that dataset reveals room for improvement. OWLJessKB-NP receives a
comparable value to Sesame-Memory for the smallest dataset. However, the extremely
long load time of OWLJessKB and its failure to load larger datasets emphasize the need
for performance improvement in that regard. Moreover, the significant difference in
scores for OWLJessKB-P and OWLJessKB-NP suggests the necessity of a set of query
writing guidelines for that system.

4. Related Work

To the best of our knowledge, the Lehigh University Benchmark is the first benchmark
for expressive Semantic Web knowledge base systems. Magkanaraki et al. [25] have
conducted a statistical analysis about the size and morphology of RDF schemata. How-
ever their work does not provide a benchmark for evaluating a repository. Alexaki et al.

 22

[2] have developed some benchmark queries for RDF, however, these are mostly inten-
sional queries, while our work is concerned with extensional queries for OWL.

Tempich and Volz [34] have done some preliminary work towards a benchmark for
Semantic Web reasoners. Though their benchmark is still under construction, they ana-
lyze the publicly available ontologies and report them to be clustered into three catego-
ries. According to the characteristics of each category, our Univ-Bench ontology hap-
pens to be a synthetic "description logic-style” ontology, which has a moderate number
of classes but several restrictions and properties per class. Therefore we argue that our
evaluation represents at least a considerable portion of the real world situations. The
other two categories are terminological ontologies and database schema-like ontologies.
We are currently working on extending our benchmark suite to those two categories.

García-Castro and Gómez-Pérez [12] describe a benchmarking methodology for the
WebODE ontology engineering tool. They generated workloads in different sizes and
tested the performances of the API's method calls. Although their work is very useful in
evaluating ontological tools (e.g., editors, alignment tools, etc.), it provides less infor-
mation on how to benchmark KBSs with respect to extensional queries against large
scale instance data. Therefore, our work can be seen as complementary to theirs.

Maynard et al. [26] details the goals, requirements and processes of benchmarking
ontology tools. It provides a good account of how to organize, implement and report a
benchmark suite from the perspectives of software engineering and project management.
When describing the high level requirements in evaluating ontology-based reasoning
tools, they identified two use-cases which have already been covered in the LUBM: con-
cept reasoning and instance retrieval. While this report can serve as a general guideline
for building benchmark suite, our benchmark can be seen as an implementation that fol-
lows those guidelines with emphasis on the issue of scalability.

Our work borrows heavily from existing database benchmarks, including the Wis-
consin benchmark [3, 4], the OO1 benchmark [8], and the SEQUOIA 2000 benchmark
[33]. They are all DBMS-oriented benchmarks and storage benchmarks (vs. visualiza-
tion benchmarks). The LUBM shares in spirit with them methodology and rationale in
terms of the use of synthetic data, some criteria for choosing test queries, and three of
the performance metrics. However, our benchmark is tailored to the evaluation of OWL
knowledge base systems and thus has many unique features. Particularly as shown in the
previous sections, the benchmark contains an ontology, datasets, test queries and criteria
that reflect special concepts, structures and concerns in the Semantic Web area such as
classes and properties, logical completeness vs. system performance, etc. Moreover, our
benchmark is intended to work with any OWL repository, not just database systems.

Some attempts have been made by Elhaik et al. [11] and Horrocks and Patel-
Schneider [21] to benchmark description logic systems. The emphasis of this work is to
evaluate the reasoning algorithms in terms of the tradeoff between expressiveness and
tractability in description logic. Our benchmark is not a description logic benchmark.
We are more concerned about the issue of storing and querying large amounts of data
that are created for realistic Semantic Web systems. In [11] and [21], the benchmark
data are TBoxes and/or ABoxes, which can essentially be viewed as the counterparts of
the ontology and the datasets in our benchmark respectively. In [21] they use both artifi-

 23

cial and realistic TBoxes and use synthetic ABoxes. But the ABoxes in the test are of
fixed sizes. In contrast, our benchmark data can scale to arbitrary size. The ABox is ran-
domly generated in [11]. However, unlike our benchmark data, the ABox is not custom-
izable and repeatable. They also generate the TBox randomly while our benchmark is
based on a realistic ontology.

The W3C Web Ontology Working Group provides a set of OWL test cases [7].
They are intended to provide examples for, and clarification of, the normative definition
of OWL and focus on the completeness and soundness with respect to individual
features. Our benchmark complements these tests. While these tests determine the
capability and correctness of a system, our benchmark evaluates the performance of the
system from different perspectives such as data loading, extensional queries and
scalability.

5. Applying the Benchmark

It should be pointed out that we believe the performance of any given system will vary
depending on the ontology and data used to evaluate it. Thus the LUBM is not meant to
be an overall Semantic Web KBS benchmark. It is a benchmark limited to a particular
domain represented by the ontology it uses. Although as we argued in the previous sec-
tion, the ontology could represent the characteristics of a considerable portion of real
domains, the benchmark does not guarantee the same results for a different domain. For
instance, with an RDF/RDFS-style ontology and instance data, we expect that there
would be some different results for Sesame than that of this experiment. Therefore, we
strongly suggest that the user who is considering using the benchmark first assess the
benchmark ontology to see if it is close enough to his operational domain.

In addition, we encourage the benchmark user to evaluate the systems by looking at
all the details of the benchmark results with respect to every performance metric. Espe-
cially, the combined metric is only intended to be used for a rough guideline, e.g. to sort
the systems under test into tiers. It should not be considered as a replacement for the
other performance metrics. Moreover, we remind the user to make use of the weights in
the combined metric to reflect his emphasis on different aspects. To give readers a fla-
vor of this, suppose we want to put more emphasis on RDFS queries. To do this, we
could adjust the weights given to the benchmark queries. Here, we show an example of
the extreme case: we equally weight the queries that do not require any inference or only
require RDFS inference (i.e. Queries 1-5, 14) and we assign zero to the weights of the
other queries that require extra OWL reasoning. Fig. 9 shows the result. As can be seen,
the new result is quite different from that in Fig. 8, especially in the comparison be-
tween Sesame and DLDB-OWL.7

7 Note that the actual CM values Sesame-Memory received were very close to 1. Numbers shown in the figure are

rounded off to the two decimal places.

 24

Fig. 9. CM values (a=500, b=5, =1, =1, only Queries 1-5, 14 are considered)

6. Conclusions and Future Work

We presented our work on evaluating knowledge base systems (KBS) with respect to
use in large OWL applications. We have developed the Lehigh University Benchmark
(LUBM) as the first in an eventual suite of benchmarks that would standardize and fa-
cilitate such evaluations. In the LUBM, the Univ-Bench ontology models the university
domain in the OWL language and offers necessary features for evaluation purposes. The
OWL datasets are synthetically created over the ontology. The data generated are ran-
dom and repeatable, and can scale to an arbitrary size. Fourteen test queries are chosen
to represent a variety of properties including input size, selectivity, complexity, assumed
hierarchy information, assumed logical inference, amongst others. A set of performance
metrics are provided, which include load time and repository size, query response time,
query completeness and soundness, and a combined metric for evaluating the overall
query performance. The LUBM is intended to be used to evaluate Semantic Web KBSs
with respect to extensional queries over a large dataset that commits to a single realistic
ontology.

We have demonstrated how the LUBM can be used to conduct an evaluation of
four very different systems, including two memory–based systems (OWLJessKB and
memory-based Sesame) and two systems with persistent storage (database-based Ses-
ame and DLDB-OWL). We tested those systems with 5 sets of benchmark data. To our
knowledge, no OWL experiment has been done with the scale of data used here. The
smallest data size used consists of 15 OWL files totaling 8MB, while the largest data
size consists of 999 files totaling 583MB.

This initial experiment had a number of interesting results. First, we discovered that
the performance of OWLJessKB is extremely sensitive to the ordering of the query
terms, and the system is unsound for OWL files that use owl:intersectionOf. Second,

 25

Sesame’ s load time increases exponentially with the size of data loaded. Third, as ex-
pected we showed that persistent storage systems could handle larger data sizes than
memory-based systems, but we were surprised to discover that Sesame memory could
handle up to 110 MB of input data. Finally, we found that DLDB-OWL and Sesame da-
tabase were each better at different queries.

We caution against using the results of this experiment to make universal pro-
nouncements about the relative quality of different KBSs. As stated earlier, we believe
that different systems will be better suited for different applications. One must deter-
mine if the benchmark is similar enough to a desired workload in order to make predic-
tions about how well it will perform in any given application. Still, we think we can ex-
trapolate some general guidelines even from this simple experiment. Of the systems
tested, DLDB-OWL is the best for large datasets where an equal emphasis is placed on
query response time and completeness, however the system’ s performance declines as
we approach datasets in the 500 MB range. Sesame-Memory is the best when the size is
relatively small (e.g., 1 million triples) and only RDFS inference is required; while for a
somewhat larger dataset (e.g., between 1 and 3 million triples), Sesame-DB may be a
good alternative. OWLJessKB is the best for small datasets when OWL Lite reasoning
is essential, but only after its unsoundness has been corrected. More detailed conclu-
sions will require larger experiments that evaluate more systems and apply different
benchmarks.

There are two logical next steps to this work. The first is to continue to develop dif-
ferent benchmarks that will evaluate different types of workloads. The benchmarks
should contain ontologies that range in size and expressivity, have different profiles of
instance data, and define different types of queries. Of course, determining the most ap-
propriate set of benchmarks for the Semantic Web is still an open question; since the
Semantic Web is still in its infancy, it is hard to predict how it will be used. A related
question is how to rapidly generate scalable data that is representative of a given appli-
cation. We are currently exploring an approach that learns a statistical model of a rela-
tively small set of real-world data, and then uses this model to generate synthetic data.
In addition to developing new benchmarks, we will apply the benchmarks to a more
thorough set of systems. For example, it would be informative to compare DLDB-OWL
to systems with similar capabilities. In particular, these systems include the BOR exten-
sion to Sesame (which integrates it with a DL reasoner), the KAON DLP extension
(which transforms OWL ontologies into disjunctive logic programs), and the Instance
Store [20] (another tool that combines a database and FaCT). Another useful evaluation
would compare memory-based systems that support complex reasoning, including
OWLIM (a Sesame SAIL that supports in-memory OWL Lite reasoning), Hoolet [36]
(an OWL DL reasoner that uses the Vampire [29] theorem prover), and Jena with the
OWL Lite rule set enabled. We believe that such investigations can drive research in
practical, scalable reasoning systems, and that by examining the relative strengths and
weaknesses of different systems, we will learn how to build a better OWL KBS.

 26

Acknowledgements

We thank the anonymous reviewers of this paper for their careful reading and invaluable
comments. In particular, we thank two reviewers for suggestions on how to design fu-
ture benchmarks and on particular systems that we should evaluate.

Some of the material in this paper is based upon work supported by the
Air Force Research Laboratory, Contract Number F30602-00-C-0188 and by
the National Science Foundation (NSF) under Grant No. IIS-0346963. Any
opinions, findings and conclusions or recommendations expressed in this
material are those of the author(s) and do not necessarily reflect the
views of the United States Air Force or NSF.

Appendix 1: Test Queries

We herein describe each query in the SPARQL language. Following that we describe
the characteristics of the query.

Query1
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX ub: <http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl#>
SELECT ?X
WHERE

{?X rdf:type ub:GraduateStudent .
 ?X ub:takesCourse

http://www.Department0.University0.edu/GraduateCourse0}

This query bears large input and high selectivity. It queries about just one class and one
property and does not assume any hierarchy information or inference.

Query2
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX ub: <http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl#>
SELECT ?X, ?Y, ?Z
WHERE

{?X rdf:type ub:GraduateStudent .
 ?Y rdf:type ub:University .
 ?Z rdf:type ub:Department .
 ?X ub:memberOf ?Z .
 ?Z ub:subOrganizationOf ?Y .
 ?X ub:undergraduateDegreeFrom ?Y}

This query increases in complexity: 3 classes and 3 properties are involved. Additionally,
there is a triangular pattern of relationships between the objects involved.

Query3
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

 27

PREFIX ub: <http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl#>
SELECT ?X
WHERE

{?X rdf:type ub:Publication .
 ?X ub:publicationAuthor
 http://www.Department0.University0.edu/AssistantProfessor0}

This query is similar to Query 1 but class Publication has a wide hierarchy.

Query4
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX ub: <http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl#>
SELECT ?X, ?Y1, ?Y2, ?Y3
WHERE

{?X rdf:type ub:Professor .
 ?X ub:worksFor <http://www.Department0.University0.edu> .
 ?X ub:name ?Y1 .
 ?X ub:emailAddress ?Y2 .
 ?X ub:telephone ?Y3}

This query has small input and high selectivity. It assumes subClassOf relationship be-
tween Professor and its subclasses. Class Professor has a wide hierarchy. Another fea-
ture is that it queries about multiple properties of a single class.

Query5
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX ub: <http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl#>
SELECT ?X
WHERE

{?X rdf:type ub:Person .
 ?X ub:memberOf <http://www.Department0.University0.edu>}

This query assumes subClassOf relationship between Person and its subclasses and
subPropertyOf relationship between memberOf and its subproperties. Moreover, class
Person features a deep and wide hierarchy.

Query6
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX ub: <http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl#>
SELECT ?X WHERE {?X rdf:type ub:Student}

This query queries about only one class. But it assumes both the explicit subClassOf re-
lationship between UndergraduateStudent and Student and the implicit one between
GraduateStudent and Student. In addition, it has large input and low selectivity.

Query7
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX ub: <http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl#>
SELECT ?X, ?Y

 28

WHERE
{?X rdf:type ub:Student .
 ?Y rdf:type ub:Course .
 ?X ub:takesCourse ?Y .
 <http://www.Department0.University0.edu/AssociateProfessor0>,
 ub:teacherOf, ?Y}

This query is similar to Query 6 in terms of class Student but it increases in the number
of classes and properties and its selectivity is high.

Query8
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX ub: <http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl#>
SELECT ?X, ?Y, ?Z
WHERE

{?X rdf:type ub:Student .
 ?Y rdf:type ub:Department .
 ?X ub:memberOf ?Y .
 ?Y ub:subOrganizationOf <http://www.University0.edu> .
 ?X ub:emailAddress ?Z}

This query is further more complex than Query 7 by including one more property.

Query9
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX ub: <http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl#>
SELECT ?X, ?Y, ?Z
WHERE

{?X rdf:type ub:Student .
 ?Y rdf:type ub:Faculty .
 ?Z rdf:type ub:Course .
 ?X ub:advisor ?Y .
 ?Y ub:teacherOf ?Z .
 ?X ub:takesCourse ?Z}

Besides the aforementioned features of class Student and the wide hierarchy of class
Faculty, like Query 2, this query is characterized by the most classes and properties in
the query set and there is a triangular pattern of relationships.

Query10
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX ub: <http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl#>
SELECT ?X
WHERE

{?X rdf:type ub:Student .
 ?X ub:takesCourse

<http://www.Department0.University0.edu/GraduateCourse0>}

 29

This query differs from Query 6, 7, 8 and 9 in that it only requires the (implicit) sub-
ClassOf relationship between GraduateStudent and Student, i.e., subClassOf relation-
ship between UndergraduateStudent and Student does not add to the results.

Query11
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX ub: <http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl#>
SELECT ?X
WHERE

{?X rdf:type ub:ResearchGroup .
 ?X ub:subOrganizationOf <http://www.University0.edu>}

Query 11, 12 and 13 are intended to verify the presence of certain OWL reasoning capa-
bilities in the system. In this query, property subOrganizationOf is defined as transitive.
Since in the benchmark data, instances of ResearchGroup are stated as a sub-
organization of a Department individual and the later suborganization of a University
individual, inference about the subOrgnizationOf relationship between instances of Re-
searchGroup and University is required to answer this query. Additionally, its input is
small.

Query12
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX ub: <http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl#>
SELECT ?X, ?Y
WHERE

{?X rdf:type ub:Chair .
 ?Y rdf:type ub:Department .
 ?X ub:worksFor ?Y .
 ?Y ub:subOrganizationOf <http://www.University0.edu>}

The benchmark data do not produce any instances of class Chair. Instead, each Depart-
ment individual is linked to the chair professor of that department by property headOf.
Hence this query requires realization, i.e., inference that that professor is an instance of
class Chair because he or she is the head of a department. Input of this query is small as
well.

Query13
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX ub: <http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl#>
SELECT ?X
WHERE

{?X rdf:type ub:Person .
 <http://www.University0.edu> ub:hasAlumnus ?X}

Property hasAlumnus is defined in the benchmark ontology as the inverse of property
degreeFrom, which has three subproperties: undergraduateDegreeFrom, mastersDegree-
From, and doctoralDegreeFrom. The benchmark data state a person as an alumnus of a
university using one of these three subproperties instead of hasAlumnus. Therefore, this

 30

query assumes subPropertyOf relationships between degreeFrom and its subproperties,
and also requires inference about inverseOf.

Query14
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX ub: <http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl#>
SELECT ?X
WHERE {?X rdf:type ub:UndergraduateStudent}

This query is the simplest in the test set. This query represents those with large input
and low selectivity and does not assume any hierarchy information or inference.

Appendix 2: Query Test Results

Table 3 lists query test results including query response time, number of answers and
completeness.

Appendix 3: Initial Test Results of Jena

Tables 4 to 6 show the initial test results of Jena (v2.1). We have tested Jena both based
on the main memory (Jena-Memory) and using a MySQL database backend (Jena-DB).
The benchmark queries were expressed in RDQL. We have tested Jena only with the
smallest dataset. Unsurprisingly, when its RDFS reasoning was turned on, Jena’ s per-
formance was exactly the same as Sesame’ s in terms of query completeness and sound-
ness. However, Jena was much slower in answering most of the queries than Sesame.
For some of the queries, Jena did not terminate even after being allowed to run for sev-
eral hours. In this experiment we have used a timeout of 2 hours.

When Jena was used with its OWL inferencing, it could answer even smaller num-
ber of queries within the time limit. We speculate that the poor performance of Jena is
because its rule-based reasoners are less optimized for a semantically complex ontology
like Univ-Bench.

In order to investigate its query completeness and soundness with respect to the test
queries, we have tested Jena with OWL reasoning on a single department file. This has
allowed Jena to answer more queries within a reasonable time and noticeably, Jena
could answer all those queries (including Queries 11-13) completely and correctly.

 31

Table 3. Query test results 8
LUBM(1,0) LUBM(5,0) LUBM(10,0) LUBM(20,0) LUBM

(50,0)

Q
ue

ry
 System &

 Dataset

 Metrics

D
L

D
B

-
O

W
L

Se
sa

m
e-

D
B

Se
sa

m
e-

M
em

or
y

O
W

L

Je
ss

K
B

-P

O
W

L

Je
ss

K
B

-
N

P

D
L

D
B

-
O

W
L

Se
sa

m
e-

D
B

Se
sa

m
e-

M
em

or
y

D
L

D
B

-
O

W
L

Se
sa

m
e-

D
B

Se
sa

m
e-

M
em

or
y

D
L

D
B

-
O

W
L

Se
sa

m
e-

D
B

D
L

D
B

-
O

W
L

Time(ms) 59 46 15 9203 200 226 43 37 412 40 106 887 96 2211
Answers 4 4 4 4 4 4 4 4 4 4 4 4 4 1

Completeness 100 100 100 100 100 100 100 100 100 100 100 100 100
Time(ms) 181 51878 87 116297 3978 2320 368423 495 14556 711678 1068 392392 1474664 failed
Answers 0 0 0 0 9 9 9 28 28 28 59 59 - 2

Completeness 100 100 100 100 100 100 100 100 100 100 100 100 -
Time(ms) 218 40 0 13990 164 2545 53 1 5540 59 0 11956 56 36160
Answers 6 6 6 6 6 6 6 6 6 6 6 6 6 3

Completeness 100 100 100 100 100 100 100 100 100 100 100 100 100
Time(ms) 506 768 6 211514 8929 2498 823 4 5615 762 4 14856 881 10115
Answers 34 34 34 34* 34 34 34 34 34 34 34 34 34 4

Completeness 100 100 100 100 100 100 100 100 100 100 100 100 100
Time(ms) 617 2945 17 5929 475 4642 3039 17 11511 3214 17 27756 3150 135055
Answers 719 719 719 719 719 719 719 719 719 719 719 719 719 5

Completeness 100 100 100 100 100 100 100 100 100 100 100 100 100
Time(ms) 481 253 48 1271 112 4365 1517 251 11158 3539 543 28448 12717 151904
Answers 7790 5916 5916 7790* 48582 36682 36682 99566 75547 75547 210603 160120 519842 6

Completeness 100 76 76 100 100 76 76 100 76 76 100 76 100
Time(ms) 478 603 3 128115 67 2639 606 4 7028 634 4 18073 657 121673
Answers 67 59 59 67 67 59 59 67 59 59 67 59 67 7

Completeness 100 88 88 100 100 88 88 100 88 88 100 88 100
Time(ms) 765 105026 273 164106 4953 3004 108384 262 5937 108851 264 13582 103779 39845
Answers 7790 5916 5916 7790* 7790 5916 5916 7790 5916 5916 7790 5916 7790 8

Completeness 100 76 76 100 100 76 76 100 76 76 100 76 100
Time(ms) 634 34034 89 87475 2525 7751 256770 534 19971 460267 1123 57046 1013951 323579
Answers 208 103 103 208 1245 600 600 2540 1233 1233 5479 2637 13639 9

Completeness 100 50 50 100 100 48 48 100 49 49 100 48 100
Time(ms) 98 20 1 141 4 1051 36 0 2339 40 0 5539 50 15831
Answers 4 0 0 4 4 0 0 4 0 0 4 0 4 10

Completeness 100 0 0 100 100 0 0 100 0 0 100 0 100
Time(ms) 48 65 1 1592 45 51 73 1 61 84 3 78 82 143
Answers 0 0 0 224 0 0 0 0 0 0 0 0 0 11

Completeness 0 0 0 100 0 0 0 0 0 0 0 0 0
Time(ms) 62 4484 12 11266 162 78 4659 14 123 4703 12 310 4886 745
Answers 0 0 0 15* 0 0 0 0 0 0 0 0 0 12

Completeness 0 0 0 100 0 0 0 0 0 0 0 0 0
Time(ms) 200 4 1 90 1 2389 9 1 5173 12 1 11906 21 34854
Answers 0 0 0 1 0 0 0 0 0 0 0 0 0 13

Completeness 0 0 0 100 0 0 0 0 0 0 0 0 0

Time(ms) 187 218 42 811 20 2937 1398 257 7870 38319 515 19424 11175 106764

Answers 5916 5916 5916 5916 36682 36682 36682 75547 75547 75547 160120 160120 393730 14

Completeness 100 100 100 100 100 100 100 100 100 100 100 100 100

8 The numbers marked with * do not count any incorrect answers returned by the system (refer to Table 2)
9 This is an adjusted value from the original experiment [16], in which the query time was much longer. This was be-

cause the OS was increasing virtual memory at the time of the query. We have updated the result without the affect
of that operation.

 32

Table 4. Load time of Jena
 Dataset Load Time (hh:mm:ss)

Jena-Memory
(RDFS reasoning) 00:00:12

Jena-DB
(RDFS reasoning) 00:30:45

Jena-Memory
(OWL reasoning) 00:00:13

Jena-DB
(OWL reasoning)

LUBM
(1, 0)

00:32:27

Table 5. Query response time of Jena.

 Query 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Jena-
Memory
(RDFS)

160 time-
out 215 51 585 215 272951 time-

out
time-
out 209 14 4 203 220

Jena-DB
(RDFS) 5715 time-

out 13110 2860 24356 479 timeout time-
out

time-
out 11562 536 1048 11731 2095

Jena-
Memory
(OWL)

time-
out

time-
out 3929 time-

out
time-
out

time-
out timeout time-

out
time-
out timeout time-

out timeouttimeout 251

Jena-DB
(OWL)

time-
out

time-
out 52818 time-

out
time-
out

time-
out timeout time-

out
time-
out timeout time-

out timeouttimeout 2289

Table 6. Query completeness and soundness of Jena.

 Query 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Completeness 100 100 100 100 76 88 0 0 0 0 100 Jena
(RDFS, one
university) Soundness 100

n/a
100 100 100 100 100

n/a n/a
100 100 100 100 100

Completeness 100 100 100 100 100 78 88 78 38 0 0 0 0 100 Jena
(RDFS, one
department) Soundness 100 100 100 100 100 100 100 100 100 100 100 100 100 100

Completeness 100 100 100 100 100 100 100 100 100 Jena
(OWL, one
department) Soundness 100

n/a
100 100 100 100

n/a n/a n/a n/a
100 100 100 100

n/a: not applicable due to timeout

References

[1] S. Alexaki et al. The RDFSuite: Managing Voluminous RDF Description Bases. In Proc. of the
2nd International Workshop on the Semantic Web (SemWeb’ 01), in conjunction with the Tenth
International World Wide Web Conference (WWW10), 2001.

[2] S. Alexaki et al. On Storing Voluminous RDF Description: The case of Web Portal Catalogs. In
Proc. of the 4th International Workshop on the Web and Databases, 2001.

[3] D. Bitton, D. DeWitt, and C. Turbyfill. Benchmarking Database Systems, a Systematic Ap-
proach. In Proc. of the 9th International Conference on Very Large Data Bases, 1983.

 33

[4] D. Bitton. and C. Turbyfill. A Retrospective on the Wisconsin Benchmark. In Readings in Da-
tabase Systems, Second Edition, Morgan Kaufman 1994, pp180-299.

[5] J. Broekstra and A. Kampman. Sesame: A Generic Architecture for Storing and Querying RDF
and RDF Schema. In Proc. of the 1st International Semantic Web Conference (ISWC2002),
2002.

[6] J. Broekstra and A. Kampman. Inferencing and Truth Maintenance in RDF Schema: exploring a
naive practical approach. In Workshop on Practical and Scalable Semantic Systems (PSSS),
2003.

[7] J.J. Carroll and J.D. Roo ed. OWL Web Ontology Test Cases, W3C Recommendation 10 Feb-
ruary 2004, http://www.w3.org/TR/2004/REC-owl-test-20040210/

[8] R.G.G. Cattell. An Engineering Database Benchmark. In the Benchmark Handbook for Data-
base and Transaction Processing Systems, Morgan Kaufman 1991, pp247-281.

[9] D. Connolly et al. DAML+OIL (March 2001) Reference Description.
http://www.w3.org/TR/daml+oil-reference

[10] M. Dean and G. Schreiber ed. OWL Web Ontology Language Reference, W3C
Recommendation 10 February 2004. http://www.w3.org/TR/2004/REC-owl-ref-20040210/

[11] Q. Elhaik, M-C Rousset, and B. Ycart. Generating Random Benchmarks for Description Logics.
In Proc. of the 1998 Description Logic Workshop (DL’ 98), 1998.

[12] R. García-Castro and A. Gómez-Pérez. A Benchmark Suite for Evaluating the Performance of
the WebODE Ontology Engineering Platform. In Proc. of the 3rd International Workshop on
Evaluation of Ontology-based Tools, 2004.

[13] M. Gensereth and R. Fikes. Knowledge Interchange Format. Stanford Logic Report Logic-92-1,
Stanford Univ. http://logic.standford.edu/kif/kif.html

[14] Y. Guo, J. Heflin, and Z. Pan. Benchmarking DAML+OIL Repositories. In Proc. of the 2nd In-
ternational Semantic Web Conference (ISWC2003), 2003.

[15] Y. Guo, Z. Pan, and J. Heflin. Choosing the Best Knowledge Base System for Large Semantic
Web Applications. In Proc. of the 13th International World Wide Web Conference (WWW2004)
- Alternate Track Papers & Posters, 2004.

[16] Y. Guo, Z. Pan, and J. Heflin. An Evaluation of Knowledge Base Systems for Large OWL
Datasets. In Proc. of the 3rd International Semantic Web Conference (ISWC2004), 2004.

[17] V. Haarslev and R. Möller. Racer: A Core Inference Engine for the Semantic Web. In Work-
shop on Evaluation on Ontology-based Tools, the 2nd International Semantic Web (ISWC2003),
2003.

[18] V. Haarslev, R. Möller, and M. Wessel. Querying the Semantic Web with Racer + nRQL. In
Proc. of the Workshop on Description Logics 2004 (ADL2004).

[19] I. Horrocks. The FaCT System. In Automated Reasoning with Analytic Tableaux and Related
Methods International Conference (Tableaux’ 98), 1998.

[20] I. Horrocks et al. The instance store: DL reasoning with large numbers of individuals. In Proc.
of the 2004 Description Logic Workshop (DL2004), 2004.

[21] I. Horrocks and P. Patel-Schneider. DL Systems Comparison. In Proc. of the 1998 Description
Logic Workshop (DL’ 98), 1998.

[22] G. Karvounarakis, S. Alexaki, V. Christophides, D. Plexousakis, and M. Scholl. RQL: A De-
clarative Query Language for RDF. In Proc. of the Eleventh International World Wide Web
Conference (WWW'02), 2002.

[23] J.B. Kopena and W.C. Regli. DAMLJessKB: A Tool for Reasoning with the Semantic Web. In
Proc. of the 2nd International Semantic Web Conference (ISWC2003), 2003.

[24] D.D. Lewis. A sequential algorithm for training text classifiers: Corrigendum and additional
data. SIGIR Forum, 29(2), 13-19, 1995.

[25] A. Magkanaraki et al. Benchmarking RDF schemas for the Semantic Web. In Proc. of the 1st
International Semantic Web Conference (ISWC2002), 2002.

 34

[26] D. Maynard et al. D2.1.4: Definition of a Methodology, General Criteria, and Benchmark Suites
for Benchmarking Ontology Tools. EU-IST Network of Excellence (NoE) IST-2004-507482
KWEB, 2005.

[27] Z. Pan and J. Heflin. DLDB: Extending Relational Databases to Support Semantic Web Queries.
In Workshop on Practical and Scalable Semantic Systems, the 2nd International Semantic Web
Conference (ISWC2003), 2003.

[28] E. Prud’hommeaux and A. Seaborne ed. SPARQL Query Language for RDF, W3C Working
Draft 19 April 2005. http://www.w3.org/TR/2005/WD-rdf-sparql-query-20050419/

[29] A. Riazanov and A. Voronkov. The Design and Implementation of Vampire. AI Communica-
tions, 15(2-3):91–110, 2002.

[30] C. J. van Rijsbergen. Information Retireval. Butterworths, London, 1979.
[31] A. Seaborne. RDQL - A Query Language for RDF, W3C Member Submission 9 January 2004.

http://www.w3.org/Submission/2004/SUBM-RDQL-20040109/
[32] M.K. Smith, C. Welty, and D.L. McGuinness ed. OWL Web Ontology Language Guide, W3C

Recommendation 10 February 2004. http://www.w3.org/TR/2004/REC-owl-guide-20040210/
[33] M. Stonebraker et al. The SEQUIOA 2000 Storage Benchmark. In Proc. of the 1993 ACM

SIGMOD International Conference on Management of Data, 1993.
[34] C. Tempich and R. Volz. Towards a benchmark for Semantic Web reasoners–an analysis of the

DAML ontology library. In Workshop on Evaluation on Ontology-based Tools, the 2nd Interna-
tional Semantic Web Conference (ISWC2003), 2003.

[35] FaCT++. http://owl.man.ac.uk/factplusplus/
[36] Hoolet. http://owl.man.ac.uk/hoolet/
[37] Jena – A Semantic Web Framework for Java. http://jena.sourceforge.net/
[38] Jess: the Rule Engine for the Java Platform. http://herzberg.ca.sandia.gov/jess
[39] KAON: The KArlsruhe ONtology and Semantic Web tool suite. http://kaon.semanticweb.org/
[40] Kowari. http://www.kowari.org/
[41] OWLJessKB: A Semantic Web Reasoning Tool.

http://edge.cs.drexel.edu/assemblies/software/owljesskb/
[42] Pellet OWL Reasoner. http://www.mindswap.org/2003/pellet/
[43] PostgreSQL. http://www.postgresql.org
[44] Resource Description Framework (RDF). http://www.w3.org/RDF/
[45] The SeRQL query language. http://www.openrdf.org/doc/users/ch06.html

