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Abstract
ASMOV (Automated Semantic Matching of Ontologies with Verification) is a novel algorithm that
uses lexical and structural characteristics of two ontologies to iteratively calculate a similarity
measure between them, derives an alignment, and then verifies it to ensure that it does not contain
semantic inconsistencies. In this paper, we describe the ASMOV algorithm, and then present
experimental results that measure its accuracy using the OAEI 2008 tests, and that evaluate its use
with two different thesauri: WordNet, and the Unified Medical Language System (UMLS). These
results show the increased accuracy obtained by combining lexical, structural and extensional
matchers with semantic verification, and demonstrate the advantage of using a domain-specific
thesaurus for the alignment of specialized ontologies.
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1. Introduction
An ontology is a means of representing semantic knowledge [20], and includes at least a
controlled vocabulary of terms, and some specification of their meaning [43]. Ontology
matching consists in deriving an alignment consisting of correspondences between two
ontologies [8]. Such an alignment can then be used for various tasks, including semantic web
browsing, or merging of ontologies from multiple domains.

Our main motivation lies in the use of ontology matching for the integration of information,
especially in the field of bioinformatics. Nowadays there is a large, ever-growing, and
increasingly complex body of biological, medical, and genetic data publicly available through
the World Wide Web. This wealth of information is quite varied in nature and objective, and
provides immense opportunities to genetics researchers, while posing significant challenges
in terms of housing, accessing, and analyzing these data sets [10]. The ability to seamlessly
access and share large amounts of heterogeneous data is crucial towards the advancement of
genetics research, and requires resolving the semantic complexity of the source data and the
knowledge necessary to link this data in meaningful ways [27]. Semantic representation of the
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information stored in multiple data sources is essential for defining correspondence among
entities belonging to different sources, resolving conflicts among sources, and ultimately
automating the integration process [36]. Ontologies hold the promise of providing a unified
semantic view of the data, and can be used to model heterogeneous sources within a common
framework [25]. The ability to create correspondences between these different models of data
sources is then critical towards the integration of the information contained in them.

In the biomedical and bioinformatics knowledge domain, efforts at deriving ontology
alignments have been aided by the active development and use of vocabularies and ontologies.
The Unified Medical Language System (UMLS) is a massive undertaking by the National
Library of Medicine to create a single repository of medical and biological terminology [4].
Release 2007AB of the UMLS contains over 1.4 million biomedical concepts and 5.3 million
concept names from more than 120 controlled vocabularies and classifications, including the
NCI Thesaurus developed by the National Cancer Institute as a comprehensive reference
terminology for cancer-related applications [18].

In this paper, we describe the Automated Semantic Matching of Ontologies with Verification
(ASMOV) algorithm for ontology matching. Most current approaches handle only tree-like
structures, and use mainly elemental or structural features of ontologies [14]. ASMOV is
designed to combine a comprehensive set of element-level and structure-level measures of
similarity with a technique that uses formal semantics to verify whether computed
correspondences comply with desired characteristics. We begin with a discussion of the current
state of the art in ontology matching. Following, we present a brief definition of the problem
and a general description of the algorithm. Next, we provide details of the similarity measure
calculations, of the semantic verification executed after an alignment is obtained, and of the
conditions for algorithm termination. Then, we provide the results of two sets of experiments;
the first set shows the accuracy of the algorithm against the OAEI 2008 benchmark tests, and
the second set analyzes the results of running the algorithm against two sets of anatomy
ontologies, using both the general-purpose WordNet thesaurus (wordnet.princeton.edu) and
the UMLS Metathesaurus (www.nlm.nih.gov/research/umls/). Finally, the limitations of the
system and the direction of future work are discussed, and our conclusions are stated.

2. Background and Related Work
Ontology matching is an active field of current research, with a vigorous community proposing
numerous solutions. Euzenat and Shvaiko [14] present a comprehensive review of current
approaches, classifying them along three main dimensions: granularity, input interpretation,
and kind of input. The granularity dimension distinguishes between element-level and
structure-level techniques. The input interpretation dimension is divided into syntactic, which
uses solely the structure of the ontologies; external, which exploits auxiliary resources outside
of the ontologies; and semantic, which uses some form of formal semantics to justify results.
The kind of input dimension categorizes techniques as terminological, which works on textual
strings; structural, which deals with the structure of the ontologies; extensional, which analyzes
the data instances; and semantic, which makes use of the underlying semantic interpretation
of ontologies.

Most work on ontology matching has focused on syntactic or structural approaches. Early work
on ontology alignment and mapping focused mainly on the string distances between entity
labels and the overall taxonomic structure of the ontologies. However, it became increasingly
clear that any two ontologies constructed for the same domain by different experts could be
vastly dissimilar in terms of taxonomy and lexical features. Recognizing this, systems such as
FCA-Merge [39] and T-Tree [12] analyze subclass and superclass relationships for each entity
as well as the lexical correspondences, and additionally require that the ontologies have
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instances to improve comparison. PROMPT consists of an interactive ontology merging tool
[35] and a graph based mapping dubbed Anchor-PROMPT [34]. It uses linguistic “anchors”
as a starting point and analyzes these anchors in terms of the structure of the ontologies. GLUE
[11] discovers mappings through multiple learners that analyze the taxonomy and the
information within concept instances of ontologies. COMA [29] uses parallel composition of
multiple element- and structure-level matchers. Corpus-based matching [28] uses domain-
specific knowledge in the form of an external corpus of mappings which evolves over time.
RiMOM [41] discovers similarities within entity descriptions, analyzes instances, entity names,
entity descriptions, taxonomy structure, and constraints prior to using Bayesian decision theory
in order to generate an alignment between ontologies, and additionally accepts user input to
improve the mappings. Falcon-AO [19] uses a linguistic matcher combined with a technique
that represents the structure of the ontologies to be matched as a bipartite graph. IF-Map [22]
matches two ontologies by first examining their instances to see if they can be assigned to
concepts in a reference ontology, and then using formal concept analysis to derive an alignment.
Similarity flooding [32] uses a technique of propagation of similarities along the property
relationships between classes. OLA [15] uses weighted averages between matchers along
multiple ontology features, and introduces a mechanism for computation of entity-set
similarities based on numerical analysis; the approach used in ASMOV for the calculation of
similarities at a lexical, structural and extensional level is similar to OLA, but affording more
flexibility to the design of similarity measure calculations for different features.

In the particular realm of ontology matching in the biological domain, the AOAS system
developed by the U.S. National Library of Medicine [5][44], designed specifically to
investigate the alignment of anatomical ontologies, uses the concept of “anchors” and
implements a structural validation that seeks to find correspondences in relationships between
anchors. Sambo [24] uses a similar approach to lexical and structural matching, and
complements it with a learning matcher based on a corpus of knowledge compiled from
published literature. Notably, both AOAS and SAMBO take advantage of the part-of relation
between entities, widely used in biomedical ontologies but not defined in general languages
such as OWL; such a relation would be modeled as a property in a general ontology.

Semantic techniques for ontology matching have received recent attention in the literature.
Semantic reasoning is by definition deductive, while the process of ontology matching is in
essence an inductive task [14]. Semantic techniques therefore need a preprocessing phase to
provide an initial seeding alignment, which is then amplified using semantic methods. This
initial seeding can be given by finding correspondences with an intermediate formal ontology
used as an external source of common knowledge [1]. Deductive techniques for semantic
ontology matching include those used in S-Match [17], which uses a number of element-level
matchers to express ontologies as logical formulas and then uses a propositional satisfiability
solver to check for validity of these formulas; and CtxMatch [6], which merge the ontologies
to be aligned and then uses description logic techniques to test each pair of classes and
properties for subsumption, deriving inferred alignments.

Semantic techniques have also been used to verify, rather than derive, correspondences. The
approach by Meilicke et.al. [30] uses model-theoretic semantics to identify inconsistencies and
automatically remove correspondences from a proposed alignment. This model, however, only
identifies those correspondences that are provably inconsistent according to a description logics
formulation. The same authors have extended this work to define mapping stability as a
criterion for alignment extraction [31]; the approach in ASMOV introduces additional rules
that seek to find positive verification that consequences implied by an alignment are explicitly
stated in the ontologies.
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3. Ontology Matching Algorithm
3.1 Ontology Matching

In this section, we present a succinct definition of the concepts of correspondences between
entities and ontology matching; the reader is referred to [14] for a more formal definition. An
ontology O contains a set of entities related by a number of relations. Ontology entities can be
divided in subsets as follows: classes, C, defines the concepts within the ontology; individuals,
I, denotes the object instances of these classes; literals, L, represents concrete data values;
datatypes, T, defines the types that these values can have; and properties, P, comprises the
definitions of possible associations between individuals, called object properties, or between
one individual and a literal, called datatype properties. Four specific relations form part of an
ontology: specialization or subsumption, ≤; exclusion or disjointness, ⊥; instantiation or
membership, ∈; and assignment, =.

The Web Ontology Language (OWL), a World Wide Web Recommendation, is fast becoming
the standard formalism for representing ontologies. In particular, the OWL-DL sublanguage
of OWL supports those users who want the maximum expressiveness without losing
computational completeness and decidability [38], by restricting type separation so that the
sets C, P, L, I, and T in the ontology are disjoint. The ASMOV alignment algorithm presented
in this paper assumes that the ontologies to be aligned are expressed in OWL-DL.

The objective of ontology matching is to derive an alignment between two ontologies, where
an alignment consists of a set of correspondences between their elements. Given two
ontologies, O and O’, a correspondence between entities e in O and e’ in O’, which we denote
as 〈e, e’〉, signifies that e and e’ are deemed to be equivalent. Consider the two example
ontologies in fig. 1; based upon the meaning of the labels of the elements, it would be expected
that an ontology matching algorithm will find an alignment that would include, for example,
the correspondences 〈a:Book, b:Volume〉 and 〈a:publishedBy, b:publisher〉.

3.2 ASMOV Algorithm
The ASMOV process, illustrated in the block diagram in fig. 2, is an iterative process divided
into two main components: similarity calculation, and semantic verification. ASMOV receives
as input two ontologies to be matched, such as the two ontologies shown in the example in fig.
1, and an optional input alignment, containing a set of predetermined correspondences.

First, the similarity calculation process computes a similarity value between all possible pairs
of entities, one from each of the two ontologies, and uses the optional input alignment to
supersede any calculated measures; the details of this calculation, including the description of
the different attributes examined for each pair of entities, are provided in Section 4. This process
results in a similarity matrix containing the calculated similarity values for every pair of entities;
partial views of this matrix for the ontologies in fig. 1 are shown in Table 1.

From this similarity matrix, a pre-alignment is extracted, by selecting the maximum similarity
value for each entity. For example, 〈a:Product, b:Volume〉 has the highest value for a:Product,
while 〈a:Book, b:Volume〉 has the highest value for b:Volume; both are included in the pre-
alignment. This pre-alignment is passed through a process of semantic verification, detailed in
Section 5, which eliminates correspondences that cannot be verified by the assertions in the
ontologies, resetting the similarity measures for these unverified correspondences to zero. For
example, the potential correspondence 〈a:Science, b:Recording〉 is eliminated due to the
existence of 〈a:Book, b:Volume〉, because a:Science is a subclass of a:Book, while b:Recording
is not asserted to be a subclass of b:Volume.
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This process results in a semantically verified similarity matrix and alignment, which are then
used to evaluate a finalization condition as detailed in Section 6. If this condition is true, then
the process terminates, and the resulting alignment is final. Fig. 3 shows the alignment obtained
from running the ASMOV process over the ontologies in fig. 1, which includes expected correct
correspondences in terms of our interpretation of the ontologies, such as 〈a:Book,
b:Volume〉, but also includes other correspondences such as 〈a:price, b:year〉 that do not agree
with a human interpretation of their meaning. The accuracy of ASMOV has been evaluated
against a set of well-established tests, as presented in section 7.

4. Similarity Calculations
The ASMOV similarity calculation is based on the determination of a family of similarity
measures which assess the likelihood of equivalence along three different ontology kinds of
input as classified in [14]. The nature of this calculation process is similar to the approach used
in OLA [15], both in its use of a normalized weighted average of multiple similarities along
different ontology facets, and especially in its use of similarities between entity sets. OLA,
however, uses a graph structure to represent the ontology, and performs its set of calculations
based on entity sets identified from this graph; ASMOV uses a more diversified approach,
working from the OWL-DL ontology directly and proposing ad-hoc calculations designed
specifically for each ontology facet. In addition, the ASMOV process is made more tolerant
of the absence of any of these facets in the ontologies to be matched, by automatically
readjusting the weights used in the weighted average calculation. ASMOV also is designed to
accept an input alignment as a partial matching between the ontologies.

At each iteration k, for every pair of entities e ∈ O, e’ ∈ O’, ASMOV obtains a calculated
similarity measure σk(e,e’), as a weighted average of four similarities:

• a lexical (or terminological) similarity, sL(e,e’), using either an external thesaurus or
string comparison;

• two structural similarities:

– a relational or hierarchical similarity sH
k (e,e’), which uses the specialization

relationships in the ontology; and

– an internal or restriction similarity sR
k (e,e’), which uses the established

restrictions between classes and properties.

an extensional similarity, sE
k(e,e’), which uses the data instances in the ontology. The

lexical similarity does not vary between iterations and is therefore calculated only
once, during pre-processing. Consider F={L,E,H,R} to be the set of similarity facets
used in the calculation; σk(e,e’) is computed as

(1)

where wf are weights assigned to each of the features in the calculation. Using fixed weights
presents a problem, as noted in [2]: if a given facet f is missing (e.g., if an entity in an ontology
does not contain individuals), the corresponding similarity value sf

k is marked as undefined,
and its weight wf is changed to zero.
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In addition, ASMOV accepts an optional input alignment Ao as a set of correspondences, Ao
= {〈e,e’〉}, where each correspondence in Ao has a confidence value n0(e,e’). This input
alignment is used to supersede any similarity measures, defining a total similarity measure
sk(e,e’) as follows:

(2)

The initial calculated similarity value between entities, σ0(e,e’), is given by the lexical
similarity between the entities multiplied by the lexical similarity weight. The total similarity
measures for every possible pair of entities e in O and e’ in O’ define a similarity matrix Sk =
{sk(e, e’)} for each iteration k.

4.1 Lexical Similarity
The lexical feature space consists of all the human-readable information provided in an
ontology. Three such lexical features are considered in OWL ontologies: the id, the label, and
the comment.

4.1.1 Lexical Similarity for Labels and Ids—Let the two labels being compared be l and
l’, belonging respectively to entities (classes or properties) e and e’. ASMOV is capable of
working with or without an external thesaurus; if an external thesaurus is not used, only string
equality is used as a measure. Let Σ denote a thesaurus, and syn(l)the set of synonyms and ant
(l) the set of antonyms of label l; the lexical similarity measure between the labels of e and e’,
sL(e,e’), is then given as follows:

(3)

The similarity measure for synonyms is set slightly lower than the measure for actual string
equality matches, in order to privilege exact matching between terms. Lin(l,l’) denotes the
information-theoretic similarity proposed by Lin in [26]; it provides a good measure of
closeness of meaning between concepts within a thesaurus. The tokenization function tok(l)
extracts a set of tokens from the label l, by dividing a string at punctuation and separation
marks, blank spaces, and uppercase changes; when at least one of the labels to be compared is
not found in the thesaurus, and if they are not exactly equal, the lexical similarity is computed
as the number of overlapping tokens.

ASMOV optionally finds a lexical similarity measure between identifiers of entities e and e’,
sid(e,e’), in the same way as with labels, except that the Lin function is not used; in case that
the identifiers are not found to be synonyms or antonyms, the number of overlapping tokens
is computed. In principle, identifiers in OWL are meant to be unique, and do not necessarily
have a semantic meaning [38], and thus the similarity measurement is made to be more
restrictive.

The lexical similarity measure sL(e,e’) is designed to privilege labels (and ids) that can be found
within the thesaurus used by the system; thus, it avoids using other commonly used metrics
such as string edit or n-grams. While this design choice results in less tolerance for spelling
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mistakes, on the other hand it avoids influencing the matching process with similarities between
identifiers that happen to share the same letters or n-grams. Nevertheless, as part of our future
work, we are exploring the inclusion of non-language-based techniques within a weighted
average with the thesaurus-based measure.

Examples of lexical similarity measures for both labels and ids for some classes in the
ontologies in fig. 1, are provided in Table 2, where the results have been calculated using
WordNet as the thesaurus.

4.1.2 Lexical Similarity for Comments—Comments are processed differently, since they
usually consist of a phrase or sentence in natural language. In this case, we compute the
similarity between the comments of entities e and e’, sc(e,e’), as a variation of Levenshtein
distance but applied to tokens. First, an ordered set of tokens is obtained from the comment of
each of the entities; then, we calculate the number of token operations (insertions, deletions,
and substitutions of tokens) necessary to transform one of the comments into the other. Let x,
x’ be the comments of e, e’ respectively, and let op(x, x’) denote the number of token operations
needed, and tok(x) denote the number of tokens in a comment,

(4)

Consider for example the comments for classes a:Book and b:Volume. The comment for
a:Book is “A written work or composition that has been published, printed on pages bound
together.” For b:Volume, it is “A physical object consisting of a number of pages bound
together.” Each of these phrases is tokenized, where a:Book results in 14 tokens and b:Volume
in 11 tokens. The total number of token operations necessary to transform a token into another
is 10, 7 substitutions and three insertions (or deletions). The lexical similarity for these two
comments then is 1 − (10/14) = 0.286.

4.1.3 Lexical similarity measure calculation—The lexical similarity measure is
calculated as the weighted average of the label, id, and comment similarities. The weights used
in this calculation have been determined experimentally, as label weight wlabel = 0.5, id weight
wid = 0.3, and comment weight wcomment = 0.2. From the results given above, then, the lexical
similarity measure between a:Book and b:Volume can be calculated as 0.849.

4.2 Entity Set Similarity
For the calculation of the structural and extensional similarities, in several cases it is necessary
to determine a single similarity measure for sets of entities; in this section we provide the details
of this calculation. Let E and E’ be a set of entities from ontology O and O’, and let S={s
(e,e’)} denote a matrix containing a set of similarity values from each e ∈ E, e’ ∈ E’. The
procedure to obtain this single measure for these sets is as follows:

• First, a greedy selection algorithm is used to obtain a set of correspondences AS =
{〈ei,e’j〉}. This algorithm iteratively chooses the largest s(ei,e’j) in S and eliminates
every other similarity for ei and e’j from S, until all ei or all e’j are eliminated.

• Next, a similarity measure sset(E,E’,S) is calculated using the following formula:

(5)
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This normalization accounts for any difference in size between E and E’; some entities from
the larger set will not have a correspondence and will reduce the overall similarity measure.
Note that Eq. (5) will always yield values between 0 and 1, since the total number of
correspondences in AS cannot be greater than the average size of the two sets E and E’.

4.3 Relational Similarity
The relational similarity is computed by combining the similarities between the parents and
children of the entities being compared. As classes or properties may contain multiple parents
and children, the similarity calculation is calculated as the average of the similarities of all
parents or children, in order to restrict the results between 0 and 1.

Let e and e’ be two entities belonging to ontologies O and O’ respectively, and let U, U’ be
the sets of entities that are parents of e and e’. Let e = a:Book and e’ = b:Volume; then U =
{a:Product, a:Knowledge_Container} and U’ = {b:Reference, b:Item}. If the sets U and U’ are
both empty, the parent similarity measure between e and e’ is undefined and ignored; if only
one is empty, the measure is 0.0. Otherwise, we construct a parent similarity matrix
UP(k−1)(e,e’) containing the similarity measures at the (k−1)th iteration between each u ∈ U
and u’ ∈ U’. The parent similarity measure sU

k(e,e’) for the kth iteration is then calculated as
sset(U,U’, UP(k−1)(e,e’)). A similar calculation is performed for the children sets, resulting in
the children similarity measure sV

k(e,e’).

The total relational similarity sH
k(e,e’) is then calculated as the weighted sum of the parent and

children similarity calculations; ASMOV uses equal weights for both sets. If both the parent
and children similarity measure are undefined, then the total relational similarity itself is
undefined and ignored. If one of them is undefined, then the other is used as the relational
similarity.

The relational similarity between properties and between individuals is calculated in an
analogous manner; in the case of individuals, the calculation considers the classes to which
individuals are asserted members as their parents. Examples of these calculations for classes,
properties, and individuals are presented in Table 3.

4.4 Internal Similarity
The internal similarity is calculated differently for classes and properties in the ontology.

4.4.1 Internal Similarity for Properties—For properties, the internal similarity sR is
calculated as a weighted sum of the domain and range similarities using equation (1). For the
domain of all properties and for the range of object properties, the similarity is calculated as
the similarity between the classes that define the domain and range. If these consist of the union
of multiple classes, the best matched pair is used. Consider properties p and p’, and let their
domain be dom(p) and dom(p’) respectively. Further, let dom(p) = (c1 ◡…◡ cM), and dom
(p’) = (c’1 ◡…◡ c’N). First, the pair (cm, c’n) with the highest similarity value at the (k−1)th
iteration is chosen; note that if N=M=1, cm = dom(p), cn = dom(p’). The domain similarity for
properties at the kth iteration is then given by

(6)

The range similarity for object properties sRR(p,p’) is calculated analogously. The total internal
similarity for properties is then calculated as the weighted average between the domain and
range similarities; ASMOV uses equal weights for both. To calculate the range similarity of
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two datatype properties p and p’, Wu-Palmer similarity [42] is calculated over the canonical
taxonomy structure of XML Schema datatypes [3].

Table 4 illustrates two examples for the calculation of internal similarity for properties, one
for object properties and the other for datatype properties with multiple domain classes.

4.4.2 Internal Similarity for Classes—For classes, the internal similarity sR
k(c,c’) for the

kth iteration is calculated by taking into account the similarities of all local property restrictions
associated to a class, considering the similarity between the properties themselves, and the
cardinality and value restrictions for these properties. Let c and c’ be two classes belonging to
ontologies O and O’, and let P(c) and P(c’) be the sets of properties whose domain includes
c and c’ respectively. If both P(c) and P(c’) are empty, the internal similarity between c and
c’ is undefined and ignored in the calculation of equation (1). Otherwise, for each pair of
properties pm ∈ P(c) and p’n∈P(c’), we calculate a property restriction similarity
sRP

k(pm,p’n) as the weighted average of three values:

• The first value, s(k−1)(pm,p’n), is the similarity between the two properties at the (k
−1)th iteration.

• The second value, scard(pm,pn), is a measure of the agreement in cardinality
restrictions: if the two properties are restricted to the same minimum and maximum
cardinality, this measure is 1.0, otherwise, it is 0.0.

• The third value, svalue(pm,p’n), is a measure of the similarity in value restrictions. Two
types of value restrictions are considered: restrictions on particular property values,
called enumerations, and restrictions on the class of the allowable values, which are
called range restrictions. If one of the property value restrictions is defined as an
enumeration of possible individual values, and the other is not, the value restriction
similarity measure is 0.0. If both are enumerations, then this measure is calculated as
the proportion of the enumerated individuals that match from one property restriction
to another with respect to the total number of possible matches. If neither property
being compared is restricted by enumerations, then their value restriction similarity
measure is calculated by comparing the classes defined by the range restriction on the
properties, as in the case of property internal similarity detailed in subsection 4.4.1
above.

We then construct an property restriction similarity matrix Rk(c,c’), containing all
sRP

k(pm,p’n) between each pm ∈ P(c) and p’n ∈ P(c’), and calculate the relational similarity
measure sR

k(c,c’) = sset(P(c),P(c’),Rk(c,c’)). Table 5 shows an example of the calculation of
internal class similarity between a:Book and b:Volume.

4.4.3 Internal Similarity for Individuals—Let d.p denote the value of property p for
individual d; the internal similarity sR

k(d,d’) between two individuals d and d’ is calculated by
comparing the values of their properties, as follows:

• For any two datatype properties p and p’ with values for d and d’ respectively, a value
similarity svalue

k(d,p,d’,p’) is set to s(k−1)(p,p’), the total similarity between the
properties at the previous iteration, if their corresponding values are lexically
equivalent, otherwise it is set to undefined.

• For any two object properties p and p’ with values O and O’ for d and d’ respectively,
a value similarity svalue

k(d,p,d’,p’) is set to s(k−1)(O,O’), the total similarity between
O and O’ at the previous iteration.

The similarities between properties then define a matrix Svalue(d, d’). Let P(d) and P’(d’) be
the sets of both datatype and object property values for d and d’; then the relational similarity
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between the individuals is calculated using the entity set similarity evaluation algorithm as
sR

k(d,d’) = sset(P(d),P’(d’), Svalue(d, d’)). Table 6 shows the calculation of similarity between
individuals a:b2 and b:my2.

4.5 Extensional Similarity
4.5.1 Extensional Similarity between Classes—The extensional similarity measure for
two classes is calculated in the same way as the children hierarchical similarity. Let I(c) and
I’(c’) be the sets of individuals members of classes c and c’, and let IS(k−1)(c,c’) be the similarity
matrix formed by the total similarity values for each pair of individuals d ∈ I(c), d’ ∈ I(c’).
The extensional similarity measure for classes c and c’ is then given by sD

k(c,c’) = sset(I(c),I
(c’), IS(k−1)(c,c’)). An example calculation for classes a:Male and b:Writer is shown in Table
7.

4.5.2 Extensional Similarity between Properties—To determine extensional similarity
between properties, all individuals that contain a value for a given property are analyzed to
determine a list of possible matches. Only properties which are both object or both datatype
can have an extensional similarity; otherwise, the similarity is undefined.

Given two properties p in O and p’ in O’, let the sets I(p) and I(p’) denote the set of individuals
that contain one or more values for each property, and let I’ denote the set of all individuals in
O’. Further, for a given individual d, let d.p denote the value of the property p for individual
d. The individual similarity calculation is performed by finding a set of individual
correspondences BD = {〈d.p, d’.p’’〉}, d ∈ I(p), d’ ∈ I’. A correspondence belongs to BD if

• for p and p’´ object properties, sk(d.p, d’.p’’), the total similarity measure between
individuals d.p and d’.p’’ at the previous iteration, is greater than zero.

• for p and p’’ datatype properties, d.p and d’.p’’ are lexically equivalent.

A second set AD ⊆ BD, is obtained by restricting it to correspondences where the property at
the second individual p’’ = p’. Then, the individual similarity between properties p and p’,
sD

k(p,p’), is given by the ratio of the sizes of sets AD and BD.

In the example in fig. 1, there are three different values for the property a:authoredBy: a:brussel,
a:acamus, and a:myourcenar. Each of these values has a non-zero similarity at iteration 1 with
one individual each from ontology b: b:Bertrand_Russel, b:Albert_Camus, and
b:Marguerite_Yourcenar. Each of these occurs once as the value of b:writtenBy, and
b:Bertrand_Russel occurs additionally as a value for b:subject. The individual similarity
between a:authoredBy and b:writtenBy is then 0.75.

5. Semantic Verification Process
5.1 Pre-alignment Extraction

In order to perform semantic verification, a pre-alignment Bk is first extracted from the
similarity matrix Sk that results from the similarity calculations. This pre-alignment is obtained
using a greedy algorithm as follows. A correspondence 〈e, e’〉 is inserted into the alignment
Bk if it has not been previously eliminated through the process of semantic verification, and if
sk(e,e’) is maximal to within a similarity threshold λ either for e or for e’; that is, if there does
not exist an ei such that 〈ei,e’〉 has not been eliminated and |sk(ei,e’) − sk(e,e’)| ≤ λ, or there
does not exist an e’j such that 〈e,e’j〉 has not been eliminated and |sk(e,e’j) − sk(e,e’)| ≤ λ. Note
that if two elements ea and eb have similarity values such that |sk(ea,e’) − sk(eb,e’)| ≤ λ, then
both 〈ea, e’〉 and 〈eb, e’〉 are inserted into the pre-alignment.
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5.2 Semantic Verification
The pre-alignment Bk is then passed through a process of semantic verification, designed to
verify that certain axioms inferred from an alignment are actually asserted in an ontology,
removing correspondences that lead to inferences that cannot be verified. It is important to
underline that the idea is not to find semantically invalid or unsatisfiable alignments, but rather
to remove correspondences that are less likely to be satisfiable based on the information present
in the ontologies. This approach is similar to the notion of mapping instability defined in
[31], where mappings are considered to be stable when subsumptions implied by the merge of
the mapped ontologies and their mapping can be verified in the ontologies themselves. It is
also similar to the approach used in [23] to derive ontology fragments based on an existing
alignment by verifying subsumptions as well as domain and range axioms. In addition to these
axioms, ASMOV uses equivalence and disjointness relationships.

Let O and O’ be two ontologies, let Bk be a pre-alignment between O and O’, and let B12=
{〈e1, e’1〉, 〈e2, e’2〉} be an alignment consisting of a single pair of correspondences, B12 ⊆
Bk. Consider OMto be an ontology defined by the merge of O, O’, and B12, where the
correspondences in B12 are transformed into equivalence axioms. Suppose that an axiom α
involving only entities in O can be inferred in OM from the relations derived from the
correspondences in B12; B12 is said to be verified in O if α is independently asserted by O. If
B12 cannot be verified, the correspondence with the lowest confidence value is eliminated from
Bk and set in a list of removals, with the other correspondence stated as the cause for elimination;
if both correspondences have the same measure, neither is eliminated.

Let e1, e2 be two distinct entities in O, and e’1, e’2 distinct entities in O’. The following kinds
of inferences are examined by the ASMOV semantic verification process:

• Multiple-entity correspondences: A multiple-entity correspondence, illustrated in fig.
4(a), occurs when an alignment contains both 〈e1,e’1〉 and 〈e2,e’1〉. Such an alignment
implies that (e1 = e2), so if this axiom is not asserted, the alignment cannot be verified.

• Crisscross correspondences: Suppose that e2 • e1 and e’2 • e’1. A crisscross
correspondence, shown in fig. 4(b), occurs when an alignment contains both
〈e1,e’2〉 and 〈e2,e’1〉: [(e2 • e1) ∧ (e1 = e’2) ∧ (e2 = e’1) ∧ (e’2 • e’1)] implies both
(e1 = e2) and (e’1 = e’2). If both equivalences are not actually asserted in O or O’
respectively, then the alignment cannot be verified.

• Disjointness-subsumption contradiction: Suppose that (e2 • e1) and (e’2 ⊥ e’1). If an
alignment contains both 〈e1,e’2〉 and 〈e2,e’1〉, this implies (e2 ⊥ e1) and (e’2 • e’1),
which are both invalid and therefore cannot be verified. This contradiction is
illustrated in fig. 4(c); note that since (e2 = e1) → (e2 • e1), this also holds for
equivalences.

• Subsumption and equivalence incompleteness: If an alignment contains both
〈e1,e’1〉 and 〈e2,e’2〉, then (e2 • e1) and (e’2 • e’1) mutually imply each other;
subsumption incompleteness occurs when one of the two is not asserted in its
corresponding ontology, as shown in fig. 4(d). Equivalence incompleteness is similar.

• Domain and range incompleteness: Let c, c’ be classes and p, p’ be properties in O
and O’ respectively, let dom(p) denote the domain of a property p, and suppose c ∈
dom(p). If an alignment contains both 〈c,c’〉 and 〈p,p’〉 this implies (c’ ∈ dom(p);
domain incompleteness occurs when this axiom cannot be verified, as illustrated in
fig. 4(e). A similar entailment exists for ranges.

Every unverified correspondence is added to a list of removals; then, all existing unverified
correspondences are checked to determine whether the cause of elimination subsists, removing
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correspondences from the list if the cause has disappeared. If at least one correspondence is
newly unverified or at least one previously unverified correspondence has been removed from
the list of removals, then a new pre-alignment is extracted from the existing similarity matrix,
and the semantic verification process is restarted from this new pre-alignment. Otherwise, the
semantically verified alignment Ak and matrix Tk are obtained, the first by removing all
unverified correspondences from the pre-alignment Bk provided as input to the semantic
verification process, and the second by resetting to zero the similarity values of all unverified
correspondences in the list of removals.

6. Algorithm Termination and Convergence
6.1 Finalization Condition

The semantically verified alignment Ak and matrix Tk are subjected to the evaluation of a
finalization condition, in order to determine whether the algorithm should terminate, or whether
a new iteration should be started by recomputing the similarity values. Two finalization
conditions are potentially used to determine when the iterative process should stop. The most
stringent condition requires that the resulting matrix Tk be repeated to within the same similarity
threshold λ used for pre-alignment extraction in section 5.1; that is, that for some iteration x <
k, and for every sk(e,e’) in Tk sx(e,e’) in Tx, |sx(e,e’) − sk(e,e’)|≤ λ.

In practice, we have found that it is enough to require that the resulting alignment be repeated,
that is, that for some iteration x < k, Ax = Ak. Although it cannot be guaranteed that this looser
condition will necessarily result in the same alignment as if the matrix itself were repeated, we
posit that for most practical cases the results will be very similar, at a much lesser processing
cost.

Due to the iterative nature of the ASMOV alignment algorithm, it is important to determine if
these finalization conditions guarantee its termination. For this, we determine that under most
circumstances the algorithm converges, and that this convergence guarantees termination. We
also show that if a cyclic condition is encountered, termination is also ensured.

6.2 Convergence without Semantic Verification
We first examine the case where no correspondences are ever eliminated through the semantic
verification processes. To prove convergence, we will show that the similarities increase
monotonically and have an upper bound. Assuming that for iteration k > 0, for any e in O, e’
in O’, sk(e,e’) ≥ s(k−1) (e,e’), an investigation of each of the similarity calculations shows that
s(k+1)(e,e’) ≥ sk(e,e’), since all calculations are based either on values that remain constant
throughout iterations, or on the similarities between two related entities, which cannot decrease.
For example, the parent relational similarity measure is based on the similarity measures of
the parents at the previous iteration, which cannot decrease. Thus, the total similarity measure
cannot decrease. Now observe that the initial calculated similarity value σ0(e,e’) = wL ·
sL(e,e’); from eq. (1) it is clear that σ0(e,e’) is the lowest possible value that any sk(e,e’) may
take. Since similarity values are upper-bound to 1.0, sk(e,e’) converges to some s∞(e,e’) ≤ [1
− wL (1 − sL(e,e’))]. The use of a non-zero threshold λ in the stringent finalization check
described in section 3.2 ensures that the algorithm terminates, since for large enough k, |
sk+1(e,e’) − sk(e,e’)| ≤ λ. Since equivalent matrices generate equivalent alignments, the looser
finalization check also guarantees termination.

6.3 Convergence with Semantic Verification
When an unverified correspondence is eliminated, the similarity measure of this
correspondence, which was some positive value at the previous iteration, is forced to 0.0. This
in turn could cause other similarity measures to decrease in value. As long as these eliminated
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correspondences are not restored, then the algorithm will eventually converge for the reasons
espoused in section 6.1.

It is possible that “unverified hunting” situations arise, however, especially for ontologies that
are not well modeled or those from very different knowledge domains. Suppose the example
in fig. 5, where a crisscross correspondence is discovered in the first iteration in (a). The second
iteration finds a new set of correspondences as in (b), and eliminates 〈a:Author, b:Writer〉 in
favor of 〈a:Human, b:Female〉; since 〈a:Author, b:Writer〉 is no longer a correspondence, this
could lead again to the matching in (a). Under this situation, it is possible that the algorithm
does not converge, but rather that it enters a cyclic situation. Provided that the similarity
threshold λ is non-zero, the number of possible matrices is finite, and therefore the algorithm
is guaranteed to terminate. The number of possible alignments is also finite, even if the
threshold is zero, therefore termination is also ensured under the looser condition. Note that
termination will occur much faster, under a cyclic situation, by requiring only that an alignment
be repeated.

7. Experimental Results
A prototype of ASMOV has been implemented as a Java application. Using this prototype,
two sets of experiments were carried out. The first set of experiments was done using the 2008
benchmark series of tests created by the Ontology Alignment Evaluation Initiative (OAEI)
[7], in order to determine the accuracy of the ASMOV algorithm. The second set of experiments
was performed using the NCI Thesaurus (describing the human anatomy) and the Adult Mouse
Anatomy ontologies, which are also part of the OAEI 2008 contest, in order to analyze the
algorithm using different thesauri.

The experiments were carried out on a PC running SUSE Linux Server with two quad-core
Intel Xeon processors (1.86 GHz), 8 GB of memory, and 2×4MB cache.

7.1 Evaluation of Accuracy
The goal of ontology matching is to generate an alignment that discovers all correct
correspondences, and only correct correspondences, where correctness is judged with respect
to a human interpretation of meaning. In some cases, either incorrect correspondences are
discovered, or correct correspondences are not. For example, in fig. 3, the correspondence
〈a:price, b:year〉 is incorrect in terms of our interpretation of the meaning of “price” and “year.”
Nevertheless, since these two concepts are not antonyms, since their structural characteristics
are similar, and since there do not exist semantic clues to reject their equivalence, the
correspondence is included by ASMOV in the alignment.

To evaluate accuracy of ontology matching, it is necessary to quantify both the number of
correct correspondences not found, and the number of incorrect correspondences found. This
is done by using a gold standard alignment between two ontologies previously derived by
human experts, running the algorithm on the ontologies, and then calculating precision (p), the
percentage of gold standard correspondences that exist within the extracted alignment, recall
(r), the percentage of correct extracted correspondences that exist within the gold standard,
and F1, the harmonic mean of precision and recall. Let G be the gold standard alignment, and
A be the alignment extracted by the ontology matching algorithm,

(7)
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We have evaluated the accuracy of ASMOV using the well-established OAEI benchmark series
of tests, in their 2008 version, and we have compared these results with those of other
algorithms that competed in the OAEI challenge. These tests are confined to the domain of
bibliographic references (BibTeX). The benchmark tests start from a reference ontology to a
multitude of alterations. As ontologies may be modeled in a different manner by different
developers, the variations between the tests highlight how well the algorithm would perform
in the real world.

Fig. 6 graphs these values for ASMOV against all other entrants in the OAEI 2008 campaign.
As mentioned in the OAEI 2008 results [7], ASMOV was one of the three best performing
systems; this mirrors our success during the OAEI 2007 evaluations [13]. The total time
required to run all benchmarks was 76 sec., an order of magnitude improvement over our 2007
implementation [21]. Total memory used to run these tests was 23.5MB, including the Java
Virtual Machine.

The OAEI 2008 benchmark tests are divided into ten levels of difficulty, where the most
difficult tests have less information on which to base an alignment; we have run experiments
to determine F1 for each of these sets of benchmarks. Furthermore, to gauge the effect of our
semantic verification process, we have run the experiments both using the full ASMOV
implementation, as well as using a system without the semantic verification. The results of
these experiments are shown graphically in fig. 7. It can be clearly seen that, as expected, the
accuracy of ASMOV decreases as the tests become more difficult. It can also be seen from the
plot of the difference between the two measures, shown in fig. 7 as a line graph with the scale
on the right axis, that the semantic verification process produces an important improvement
on the overall F1 measure, and that this improvement is more significant for matching situations
where there are sparse cues available.

To better analyze the influence of the various matchers used in ASMOV in the overall accuracy,
we have also run the algorithm using only one of the four similarity matchers at a time, without
semantic verification; the lexical matcher is always used as seeding value for the iterative
algorithm. The results of these tests are shown in fig. 8. It can clearly be seen that the
combination of all four matchers produces a more accurate result than the use of any individual
matcher. It is interesting to note that most of the accuracy is still being given by the entity-level
lexical matching, while the other matchers act as complements to enhance precision and/or
recall.

7.2 Comparison of Alignments using UMLS and WordNet
The implementation of the ASMOV ontology alignment algorithm contemplates the use of a
standardized thesaurus adapter application programming interface (API), to enable the
interchangeability of thesauri and therefore the use of the algorithm in different domains. This
thesaurus adapter API has been derived from the implementation of the Java WordNet library
(http://jwn.sourceforge.net/), an open-source implementation for connectivity to WordNet
version 2.0. The interface used in this library has been expanded and modified to incorporate
features from WordNet 2.1, as well as to allow for the implementation of other thesauri.

This API contains six interfaces: Dictionary database, Index word, Synonym set, Word,
Pointer, and Pointer type.

• Dictionary database: this interface is a bridge between the application and the lexical
reference database, providing independence from the actual database implementation.
It exposes one method that lets an application lookup index words from the underlying
database.
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• Index word: the index word is the text being queried, tagged with its synonym sets
and its part-of-speech (POS). Depending on the implementation of the thesaurus, the
text may actually represent a combination of words, such as “heart attack”.

• Synonym set: A synonym set represents a concept and contains a set of words that are
alternative names for that concept. A synonym set can also contain a description that
describes it in a human readable format.

• Word: the word interface wraps a word, its description and its intended meaning
through a synonym set.

• Pointer: a pointer encodes a semantic relationship between words. These relationships
are directional, with a source, a target and a pointer type.

• Pointer type: this interface describes a type of semantic relationship between
concepts. Each thesaurus defines its own set of pointer types through this interface;
at a minimum, a thesaurus adapter must provide a synonym, antonym, hypernym (or
parent), and hyponym (or child) relationship.

We have implemented this standardized API for two different thesauri: WordNet and the
UMLS Metathesaurus. The implementation for WordNet has been achieved by updating the
existing JWordNet library. In the case of the UMLS Metathesaurus, the implementation of the
API leverages the Java library created by the UMLS in order to retrieve concepts. Thus, the
implementation of the Dictionary database interface queries the UMLS library in order to
retrieve a set of concepts associated with a given text. These concepts represent synonym sets
and are combined to form a UMLS Index word. Since concepts in UMLS are non-linguistic
entities, no POS is tagged to the Index word. Concepts in UMLS are tied to their various names;
each of these names is wrapped by the implementation of the word interface.

Since UMLS does not provide an antonym relationship between concepts, the UMLS thesaurus
adapter for ASMOV investigates whether two concepts are related in some way, either as
synonyms, hypernym-hyponym, or by some of the other UMLS relationships such as the
‘related’ relationship. If no relationship other than ‘sibling’ is found, then the two concepts are
treated as if they were antonyms for purposes of the lexical similarity calculation, to avoid
mapping closely related but antonymous concepts such as ‘Man’ and ‘Woman’. This antonymy
assumption is similar to the strong disjointness assumption used in [37] for correcting
ontologies. Currently, it is only used in ASMOV to provide completeness to UMLS; however,
this assumption could be more widely applicable for semantic verification, as discussed under
Future Work.

Additionally, it is well-known that UMLS exhibits some semantic inconsistencies, in particular
circular hierarchical relations [33], which causes problems when calculating some lexical
similarity measures such as Lin [26]; where there exists a circular hierarchy, it is not possible
to determine which of the elements within the circularity is actually the root. For these tests,
we have used the naïve approach outlined in [33] in order to resolve eq. (3) when terms are
neither synonyms nor antonyms. This approach works well in order to find a common
hypernym between two terms even if circular relations are found. However, the distance from
this common hypernym to the root of the thesaurus may not be computable. In order to avoid
this issue, we have used a subset of the UMLS Metathesaurus containing only references to
the NCI Thesaurus; this ensured that all concepts retrieved would have the ‘NCI Thesaurus’
concept (C1140168) as the common root concept. We have manually verified that all terms
involved in the tests have at least one path to this root. The implementation of the formal
approach outlined in [33] is a matter of future work.

Alignment results using these two different thesauri have been compared using two real-world
anatomy ontologies: a subset of the NCI Thesaurus encoding the human anatomy, and the Adult
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Mouse Anatomy developed by the Jackson Laboratory Mouse Genome Informatics. We have
specifically used the versions of these ontologies presented for evaluation at the OAEI 2007
and 2008 challenges; the authors in [5] present a report on an alignment of previous versions
of these ontologies using other techniques.

The accuracy of ASMOV using UMLS Metathesaurus and WordNet is shown in Table 8. This
overall accuracy evaluation of the algorithm using both thesauri was computed through
independent testing by the evaluators of the OAEI challenge. Total time elapsed for the
execution of ASMOV was 3 hours and 50 min., using 600MB of memory. As can be
appreciated, the accuracy of ASMOV using UMLS for these specialized anatomy ontologies
is substantially greater than its accuracy using the generic WordNet thesaurus. This result
illustrates the advantages to be gained from the use of domain-specific knowledge in order to
enhance ontology alignments. In order to explore the accuracy of these mappings further, we
analyzed a sample set of mappings from [5], and results from the partial alignments provided
by OAEI 2008.

7.2.1 Sample of Ontology Correspondences—In [5], some examples of correct
correspondences and one example of an incorrect correspondence between terms in previous
versions of these two ontologies are presented by the authors. We have tabulated these
mappings in Table 9, comparing them with the mappings obtained by ASMOV using both
UMLS and WordNet. As can be seen, UMLS as a thesaurus provides much better results for
this small sample. While we believe this higher accuracy is partially due to the fact that the
lexical features in the NCI anatomy are codified as concepts in UMLS, the ability to find
accurate correspondences in the mouse anatomy is the result of the help provided by the UMLS
Metathesaurus in relating medical and biological concepts not found in WordNet.

7.2.2 Partial Alignments—For the OAEI 2008 challenge, a partial alignment for these two
ontologies was given, to be used as input for one of the tasks for this test. This partial alignment
contained all correspondences considered trivial, i.e., those that could be found by simple string
comparison, and a set of 54 non-trivial correspondences [7]. The evaluation for the task using
partial alignments was done by the OAEI committee as follows: consider Gp to be the partial
alignment provided, G to be the full reference alignment, and A to be the alignment obtained
by the system under evaluation. Then, the precision and recall are calculated for an alignment
A − Gp, against a gold standard A − G. The results obtained for ASMOV are shown in Table
10. While the results obtained leave substantial margin for improvement, we should note that
there was a marked increase in the overall accuracy of the system when using a partial
alignment.

In order to investigate further the performance of ASMOV against the OAEI anatomy tests,
we used the provided partial alignment as a gold standard, We then ran ASMOV using two
different combinations of weights: the first set is the one used for the OAEI contest, which had
to be the same set as those used for the benchmark, and the second set was derived
experimentally to improve accuracy. The results of this further investigation are presented in
Table 11; it is clear that the variation in weights resulted in a substantial increase in correct
correspondences found. Nevertheless, there is still an important number of correspondences
that were not found in this partial alignment. We believe that the main cause for this is the
semantic verification process, and more specifically in the evaluation of subsumption
incompleteness between entities that have multiple parents. Some correspondences are being
eliminated unless all possible assertions of subsumption exist; this condition seems too
stringent, and needs to be reevaluated. In addition, other systems such as SAMBO make use
of more of the semantic knowledge included within UMLS, especially the relation part-of; this
shows an important avenue for improvement to ASMOV’s semantic verification. The OAEI
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organizers have offered to open their reference alignment after the 2008 challenge; this will
enable us to make a more in-depth analysis of this issue.

8. Limitations and Future Work
The evaluations of ASMOV presented in the Experimental Results section show the potential
of our algorithms in deriving useful alignments even when relatively little information is
present in the ontologies being matched. In particular, we have been able to show that the
combination of similarity matchers in multiple dimensions, with a process for semantic
verification of the resulting alignments, results in a system with high accuracy. Nevertheless,
there is room for continued improvement in our algorithms. In the following sections, we
present some of the limitations of our current algorithm implementation, and the direction of
our ongoing work.

8.1 Evaluation of other OAEI Results
The OAEI anatomy test results show that, under dissimilar ontologies, the accuracy of ASMOV
is reduced. We believe this is mostly due to stringiness in the semantic verification process;
further evaluation is merited in this regard.

In addition, we should note that ASMOV participated in three additional tracks in both OAEI
2007 and OAEI 2008: the directory tests, the fao tests, and the conference tests. All these tests
are blind; thus, it is difficult to make comprehensive evaluations of the results. The results for
the directory tests show that ASMOV had the highest precision but low recall. We believe this
may be because the semantic verification process is eliminating too many potential
correspondences, in particular where multiple entities in one ontology are being mapped to a
single entity in the other ontology without an equivalence assertion; if corroborated, this may
show that the multiple-entity verification is too strict, and it also may show that ontology pre-
processing may be required. In the fao tests, we did not report any correspondences found; this
was due to our understanding that correspondences should be reported only on classes. After
re-running these tests to include matching of individuals, we found a substantial number of
correspondences in most of the tests; however, it was not possible to verify which of these are
actually correct with respect to the gold standard. The conference tests do not have a complete
reference alignment, and the evaluations are being done over tentative alignments. The results
from 2008 show that ASMOV had the best accuracy of the three systems that were able to
complete this test.

We should further note that ASMOV did not participate in the multilingual directory
(mldirectory), library, and very large crosslingual resources (vlcr) tests during OAEI 2008. In
the first case, this non-participation was because we have not yet implemented an interface to
a multilingual thesaurus, without which the mldirectory test would have given poor results. In
the case of library and vlcr, these tests are designed using the SKOS ontology language, while
ASMOV is specifically designed to work with OWL-DL.

8.2 Computational cost and complexity
The implementation of ASMOV used in the OAEI 2008 tests produced an improvement of an
order of magnitude with respect to our 2007 implementation. Nevertheless, the run time of
over 3 hours for the anatomy tests still suggests that improvements in execution efficiency are
needed.

While a formal derivation of computational complexity for ASMOV is beyond the scope of
this paper, we present here an initial analysis. Let O and O’ be the ontologies being matched,
and let N and N’ be the number of entities in O and O’ respectively. Further, consider that most
similarity calculations between two entities e ∈ O and e’ ∈ O’ entail the comparison of entity
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subsets related to e and e’. It is reasonable to assume that in most cases the size of each of these
entity subsets is much smaller than N and N’. For example, for the relational similarity
calculation between e and e’, the size of the parent and children sets of e and e’ can be assumed
to be much smaller than the overall size of each ontology. With this assumption, such
comparisons can be approximated as constant time with respect to the size of the ontologies.
Thus, the overall complexity for each similarity calculation can be approximated as O(N·N’).

The complexity of the semantic verification process can be estimated by recognizing that this
entails the comparison between pairs of entities from each ontology. The total number of pairs
of entities in O is N(N−1)/2; thus, the upper bound on this process is O(N2·N’2).

These processes are repeated iteratively until a finalization condition is reached. The above
two results show that each iteration for ASMOV is performed in polynomial time. As has been
noted in section 6, the algorithm converges under most circumstances, but may encounter
cyclical conditions under others. The total number of iterations required for termination
depends especially on the internal characteristics of the ontologies being aligned. An upper
bound for the number of iterations is given by either the number of possible matrices or
alignments; the latter is a much smaller number, but both are exponential over the number of
terms in the ontologies. This indicates that the number of iterations that ASMOV needs to
execute must be closely studied in order to reduce computational cost. With this aim, then, we
are currently performing a formal evaluation of the complexity of the ontology matching
problem and of ASMOV in particular.

8.3 Direction of ongoing work
Our ongoing work is focused on the improvement in the performance and capabilities of
ASMOV. One interesting avenue of exploration is the preprocessing of ontologies to reduce
the number of required iterations; [40] have examined the performance of ASMOV and other
systems under such preprocessing, obtaining some evidence that it could increase accuracy. A
particular type of preprocessing is the semantic clarification by pinpointing detailed in [37],
which could be used to provide more comprehensive information within the ontologies and
thus enhance the process of semantic verification.

We are also investigating the expansion of the semantic rules used for semantic verification,
especially where it concerns sets of more than two correspondences; pairwise verification is
only an approximation of an overall verification of the resulting alignment [31]. Also, the
method used for the extraction of the initial pre-alignment is being further examined.

In terms of the similarity calculations, we are studying the inclusion of non-language-based
techniques in the lexical similarity, such as the combination of cosine similarity and Jaro-
Winkler functions presented in [9]. We are working to improve and streamline the
implementation of ASMOV, and we are researching and designing capabilities to allow the
algorithm to work with larger ontologies through partitioning algorithms. In addition, we are
developing mechanisms to implement a more formal approach to resolve circular relations in
the UMLS Metathesaurus adapter. Finally, ASMOV, coupled with algorithms for ontology
creation and for semantic querying, is currently being applied in the development of a system
for the integration of heterogeneous biological and biomedical data sources.

9. Conclusion
In this paper, we have presented the ASMOV ontology matching algorithm, including a
detailed discussion of the calculations used to determine similarity between two entities from
different ontologies. We have also shown that the algorithm converges to a solution. The
experimental results presented illustrate that ASMOV outperforms most existing ontology
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matching algorithms, and obtains accuracy values for the OAEI 2008 benchmarks on par with
the best system in the contest. We have also shown that the process of semantic verification
enhances the performance of the system, especially under sparser information in the ontologies
to be matched. Additional experimental results demonstrate the adaptability of ASMOV
through the use of a thesaurus adapter API. Tests on the alignment of a human anatomy with
a mouse anatomy ontology show that the use of a specialized thesaurus such as UMLS
significantly improves the alignment of ontologies of a particular knowledge domain. There
are still important avenues for the further improvement in the performance of ASMOV, in
particular, the pre-processing of ontologies to provide more complete information for semantic
verification.
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Fig. 1. Example Ontologies
Entities are identified by their id; where the label is different, it is shown in parenthesis.
Comments for entities are not shown. Subsumption is indicated by a directional arrow;
equivalence by a bidirectional arrow, and disjointness by a dotted arrow. Cardinalities are
shown next to each property. (a) shows the classes and properties of the ontology; (b) shows
individuals belonging to each ontology. The ontologies themselves and graphical notation are
based on an example in [14], modified to illustrate multiple inheritance, compound property
domains, disjointness, multiple cardinalities, and individual matching.
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Fig. 2. ASMOV Block Diagram
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Fig. 3. Example Alignments
(a) shows the alignment obtained by ASMOV between classes and properties of the ontology;
(b) shows alignment between individuals.
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Fig. 4. Kinds of semantic verification inferences
(a) Multiple-entity correspondences; (b) crisscross correspondences; (c) disjointness-
equivalence contradiction; (d) subsumption incompleteness: 〈a:Pocket, b:Novel〉 is kept, while
〈a:Science, b:Recording〉 is eliminated; (e) domain and range incompleteness: 〈a:Author,
b:Writer〉 is kept, while 〈a:Author, b:Publishing_House〉 is eliminated.
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Fig. 5. Example of unverified hunting situation
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Fig. 6. Accuracy of ASMOV vs. OAEI 2008 entrants
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Fig. 7. Effect of semantic verification on accuracy, by level of difficulty
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Fig. 8. Effect of matchers on accuracy
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Table 2
Examples of lexical similarity calculations

a: b: sid slabel Notes

Book Volume 0.99 0.99 Same id and label, both synonyms.

CD CD 1.0 0.99 Labels are “CD” for a:CD, and “Certificate of Deposit” for b:CD.

Book Reference 0.0 0.955 Not synonyms, but closely related

Male Female 0.0 0.0 Antonyms (as example only: b:Female does not exist in example
ontologies).
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Table 7
Extensional similarity calculation for classes a:Male and b:Writer

(a) matrix of similarity values for instances in previous iteration ; (b) correspondences derived by the entity set
similarity calculation. The resulting extensional class similarity sR

k(a:Male,b:Writer) = 0.171. Note the reduction
effect due to the existence of a third individual in ontology b:.

(a)

Bertrand_
Russel

Albert_
Camus

Margoeme
_

Yourcenar

acamus 0.074 0.213 0.074

brussel 0.213 0.074 0.074

(b)

a: b: Similarity

acamus Albert_Camus 0.213

brussel Bertrand_Russel 0.213
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Table 8
Accuracy for OAEI Anatomy test

WordNet UMLS

Precision 0.431 0.787

Recall 0.453 0.652

F1 0.442 0.713
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Table 10
OAEI Anatomy Test results for ASMOV using partial alignments

Without
Partial

Using
Partial

Precision 0.339 0.402

Recall 0.258 0.254

F1 0.293 0.312
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Table 11
Total number of correspondences found for partial alignment in Anatomy test

The standard weights used were wL = 0.2, wH = 0.3, wR = 0.4, wE = 0.1, wlabel = 0.5, wid = 0.3, wcomment = 0.2.
The optimized weights used were wL = 0.4, wH = 0.1714, wR = 0.2571, wE = 0.15, wlabel = 0.58, wid = 0.12,
wcomment = 0.3.

Standard Weights Optimized Weights

Correct Correspondences Found 855 891

Correspondences Found But Not in Gold Standard 407 431

Correspondences in Gold Standard Not Found 114 78

Precision 0.678 0.674

Recall 0.882 0.920
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