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a b s t r a c t

We present a description and analysis of the data access challenge in Siemens Energy. We advocate
Ontology Based Data Access (OBDA) as a suitable Semantic Web driven technology to address the
challenge. We derive requirements for applying OBDA in Siemens, review existing OBDA systems and
discuss their limitations with respect to the Siemens requirements. We then introduce the Optique
platform as a suitable OBDA solution for Siemens. The platform is based on a number of novel techniques
and components including a deployment module, BootOX for ontology and mapping bootstrapping, a
query language STARQL that allows for a uniform querying of both streaming and static data, a highly
optimised backend, ExaStream, for processing such data, and a query formulation interface, OptiqueVQS,
that allows to formulate STARQLquerieswithout prior knowledge of its formal syntax. Finally,we describe
our installation and evaluation of the platform in Siemens.

© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The growth of available information in enterprises requires
new efficient methods for data access by domain experts whose
ability to analyse data is at the core of making business decisions.
Current centralised approaches, where an IT expert translates the
requirements of domain experts into Extract–Transform–Load (ETL)
processes to integrate the data and to apply predefined analytical
reporting tools, are too heavy-weight and inflexible [1]. In order
to support interactive data exploration, domain experts therefore
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want to access and analyse available data sources directly, without
IT experts being involved.

This direct data access is particularly important for Siemens
Energy1 that runs several service centres for power plants. The
main task of a service centre is remote monitoring and diagnostics
of many thousand appliances, such as gas and steam turbines,
generators, and compressors installed in plants. Monitoring and
diagnostics are performed by service engineers and are typically
conducted in four steps: (i) engineers receive a notification about a
potential or detected issue with an appliance, (ii) they gather data
relevant to the case, (iii) analyse the data, and finally (iv) report
about ways to address the issue to the appliance owner. Currently,
Step ii of the process is the bottleneck consuming up to 80% of the
overall time needed by the engineer to accomplish the task. The
main reason for this is the exploratory nature of data gathering
that often cannot be accomplished by predefined ETL procedures
and requires new such procedures which can only be done by
highly qualified IT experts. Defining new ETL procedures over non-
trivial data is time consuming and it slows down the diagnostic

1 http://www.energy.siemens.com/.
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process for multiple reasons including the complexity of this task,
the overload of IT experts, and even miscommunication between
them and the engineers—they simply speak different languages
and think in different perspectives.

Enabling direct data access for engineers in Siemens is a chal-
lenging task, primarily due to the Big Data dimensions as well
as the conceptual mismatch between the language and structures
that the engineers use to describe the data, and the way the data is
actually expressed and structured in databases. The data accessible
fromSiemens service centres naturally reflects the variety, volume,
and velocity dimensions of Big Data: it is stored in several thousand
databases possibly undermany different schemata; its size is in the
order of hundreds of terabytes; and it currently grows at an average
rate of 30 GB per day. Regarding the conceptual mismatch, it
occurs because industrial schemata are often integrated from inde-
pendently evolving databases adapted by different organisational
units over years. The result is usually shaped by the IT aspect of
the integration effort rather than the needs of the domain experts
ultimately using the schema. Only IT experts fully understand this
evolving structure of databases and thus currently only they can
write queries over these databases in order to extract information
relevant for engineers.

Ontology Based Data Access (OBDA) [2] has been recently pro-
posed as a means to enhance end-user direct data access. The
key idea behind OBDA is to use ontologies, i.e., semantically rich
conceptual domain models, to mediate between users and data.
Ontologies describe the domain of interest on a higher level of
abstraction and in terms that are clear for domain experts.2 In
OBDA users formulate their information needs as queries using
terms defined in the ontology and ontological queries are then
automatically translated into SQL or some other database query lan-
guages and executed over the data, without an IT expert’s interven-
tion. To this end a set of mappings is maintained that describe the
relationship between the ontological vocabulary and the schema
of the data. Note that OBDA follows the classical data integration
paradigm that requires the creation of a common ‘global’ schema
that consolidates ‘local’ schemata of the integrated data sources
and mappings that define how the local and global schemata are
related [1].

The main benefit of OBDA is that the combination of ontologies
and mappings allows to ‘hide’ the technical details of how the
data is produced, represented, and stored in data sources, and to
show onlywhat this data is about. This allows us to formulate each
Siemens diagnostic task via only one ontological query instead of
a collection of hundreds data queries that today have to be written
or configured by IT specialists. Note that this collection of queries
does not disappear: the automatic translation by an OBDA system
will compute it from the high-level ontological query. Another
important benefit of OBDA is modularity and compositionality of
its assets: each mapping relates one ontological term to the data,
which allows the mappings to be constructed independently and
on demand; and the same ontological term can be used in different
queries, so defining mappings for even a few terms enables the
evaluation of many different ontological queries.

Existing OBDA techniques and systems are tailored towards
queries over static relational data. At the same time, monitoring
and diagnostic routines at Siemens require hybrid queries that
combine live data streams, historical time-stamped information,
and static relational data. In order to meet Siemens requirements,
we had to extend the traditional OBDA to handle hybrid queries
and we shall refer to our approach as Ontology-Based Stream-Static
Data Integration (OBSSDI).

2 Ontologies have become a common and successful mechanism to describe
application domains in, e.g., biology, medicine, and the (Semantic) Web [3]. This
success is partially due to a number of available formal languages for describing
ontologies, including the Web Ontology Language (OWL) standardised by W3C [4].

The first contribution of this work that required a huge effort is:

(i) Assessing Siemens data access needs, and consolidation of
corresponding system requirements.

On the technical side our two main contributions are:

(ii) A query language STARQL that natively supports OBSSDI
hybrid queries and

(iii) A highly efficient and scalable OBSSDI backend ExaStream
to process such queries.

STARQL embeds (a fragment of) SPARQL and has a dedicated
safe temporal first-order logic which allows to formulate many
of the relevant monitoring patterns that arise in industrial use
cases as that of Siemens. In contrast to most of the RDF stream
approaches that extend SPARQL with stream operators, STARQL
does not rely on a simple snap-shot semantics –which has its limits
when handling functionality constraints – but instead provides a
timestamp-preserving window semantics and on top of it a useful
sequencing abstraction which allows for a flexible specification of
window-internal groupings of timestamped RDF tuples. Despite
this additional layer, STARQL queries are feasible (at least in the
case of standard sequencing, see Section 4.1) because, within the
transformation process to queries in the language of the backend
system ExaStream, the abstraction layer can be eliminated with-
out causing significant blowup.

ExaStream is a novel distributed Data Stream Management
System that meets the data processing requirements of Siemens.
ExaStream provides low latency answers to queries on high-
velocity live streams and high-volume static data sources. It is built
as a streaming extension to the SQLite database engine. As a re-
sult, it takes advantage of existing database optimisations that are
blended with several novel optimisation techniques for efficiently
processing analytical queries on streaming and static information.
ExaStream has several important features such as: the ability to
run in a distributed environment that can scale up in order tomeet
user demands; a declarative language, extending the SQL syntax
for querying live streams and relations; native support of user
defined functions with arbitrary user code for executing complex
analytical workflows; and native support for streaming and static
data integration.

Next important contributions of this work are

(iv) a system OptiqueVQS that allows end-users to construct
STARQL queries without any prior knowledge of semantic
technologies and the formal syntax of the language,

(v) a full-fledged implementation of our techniques in the Op-
tique platform and

(vi) both end-user and performance evaluation of the platform
at Siemens.

The paper is organised as follows. In Section 2, we analyse reac-
tive and predictive diagnostics at Siemens and derive six Siemens
direct data access requirements. In Section3,we introduce classical
OBDA, show that it conceptually satisfies the Siemens require-
ments, while the existing OBDA systems are not mature enough to
fulfil the aforementioned six requirements and thus cannot be used
in Siemens. In Section 4, we introduce our OBSSDI components:
syntax and semantics of STARQL queries; how these queries can
be transformed into SQL-like data queries of our backend ExaS-
tream; and how ExaStream processes data queries. In Section 5,
we introduce the Optique platform developed as a part of a large
European project [5–9]. Optique supports STARQL queries, has
ExaStream as one of its backends, offers a native SPARQL query
builder OptiqueVQS, and offers a number of dashboards that we
developed for turbine diagnostics. In Section 6, we present our
deployment of the Optique platform over Siemens data and a user
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evaluation. In Section 7, we present lessons learned, conclusions,
and discuss future work.
Delta from previous publications. This paper extends our previous
publications in several important ways. First, based on our evalu-
ation experience with Siemens, we realised that the stream-only
processing support that we initially developed was not sufficient,
and thus we extended our use-case analysis of [10] by introducing
Requirement 4 (see Section 3.1) about Stream-Static Data Process-
ing; and 5 about a Data StreamManagement System; moreover, in
this submission we give more use-case related explanations and
examples. Second, the section about STARQL extends previously
presented material [10,11] with an in-depth comparison with
existing approaches and systems, as well as with more details
and explanations of the language. Third, most of the ExaStream
techniques and the evaluation over the Siemens data are presented
in this paper for the first time and were not reported in previous
papers [12,13]. Fourth, the OptiqueVQS section is significantly
extended compared to our earlier paper [10] since the system
became much more mature over time. Finally, the Optique imple-
mentation has become much more mature and in particular the
dashboards that we present in this paper have not been published
before.

2. Siemens monitoring and diagnostic service

Siemens produces a variety of rotating appliances, including gas
and steam turbines, generators, and compressors. These appliances
are complex machines and typically used in different critical pro-
cesses including power generation where each hour of downtime
may cost thousands of euros. Thus, these appliances should be
under constant monitoring that requires an in-depth knowledge
of their components and setup. Siemens provides such monitoring
via service centres and operates over fifty such centres worldwide,
where each centre is responsible for several thousand appliances.
Typical monitoring tasks of a service centre include: (i) reactive
and preventive diagnostics of turbines which is about offline data
analysis applied after a malfunction or an abnormal behaviour
such as vibration, temperature or pressure increase, unexpected
events, or even unexpected shutdowns, of a unit is detected; (ii)
predictive analysis of turbine conditions which is about real-time
data analysis of data streams received from appliances. We now
discuss these monitoring tasks in detail and present requirements
to enhance them.

2.1. Reactive and preventive diagnostics

Reactive diagnostics is usually applied after a malfunction of a
unit has occurred, e.g., the abnormal shutdown of a turbine. Com-
plementarily, the preventive diagnostic task is performed before
a malfunction of a unit, when its abnormal behaviour is detected,
e.g., high vibration or temperature increase. Diagnostic tasks are
triggered either when a customer sends a service ticket claiming
assistance or an automated diagnostic system creates such a ticket.
Fig. 1 depicts a general process triggered when a service ticket
arrives. We now discuss each step of the process in detail.
Arrival of a service ticket. A service ticket typically contains infor-
mation on when a problem occurred and its frequency. In some
cases the ticket isolates the location of the problem in the appliance
and its cause, but often it has no or few details.

Example 1. An example of a reactive monitoring request from a
customer is:

Figure out why the turbine failed to start during the last five
hours, with the goal of checking that there will be no fault of the
turbine. ■
A typical preventive monitoring request could be
Will there be a failure of the turbine after the observed temperature
increase? ■

Fig. 1. High-level view on the turbine service process.

Data acquisition. Service engineers gather relevant data by query-
ing databases that are updated every hour, or on demand, and
contain sensor and event data. In order to support data gathering,
Siemens equips service centres with more than 4000 predefined
queries and query patterns of different complexity. Engineers use
the queries by setting parameters such as time periods, names of
events or sensors, sensor types, etc.

Example 2. Based on the service ticket of Example 1, the engineer
formulates the following information need and has to find appro-
priate queries to cover it:

Return the most frequent start failure and warning messages of
the gas turbine T01 during the last week. Moreover, find analogous
cases of failures for turbines of the same type as T01 in the last three
months. ■

Query result visualisation. Sensor data is visualised with the use
of standard diagrams, and event messages are presented as a
list, i.e., as an Excel spreadsheet, with timestamps and additional
attributes.
Data preprocessing. The queried data is preprocessed using generic
procedures such as sensor check (i.e., whether sensor data quality
is appropriate), threshold and trend analysis. Independent from
the concrete ticket, these preprocessing steps are done manually,
e.g., over the visualised Excel spreadsheets, or using specialised
analytic tools.
Data analysis. The engineer uses sophisticated diagnostic models
and tools for complex analysis, e.g., Principal Component Analysis
or other statistical methods, to detect and isolate the given prob-
lem based on the preprocessed data. Typically, analytical tasks are
executed individually for each ticket. The gathering and analysis
steps are often carried out iteratively, i.e., the results from one
iteration are used to pose additional queries.
Report preparation. This process terminates when an explanation
for the problem in the service ticket is established. In this case
the engineer provides the customer with a report aggregating the
result of the analysis and describing possible further actions.

2.2. Predictive analysis

In predictive analysis, in contrast to the diagnostic process
described above, appliances are continuouslymonitored, i.e., with-
out prior service tickets, using online processing of the incoming
sensor data. The other process steps of predictive analysis are
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similar to the ones described in the previous section, but have to be
applied online to streaming data with minimal user intervention.
The purpose here is to analyse the current condition of an appliance
by combining operating information, system data, specifications of
concrete product lines, and temporal phases of operating regimes.
This information allows to predict whether some parts of an ap-
pliance should be repaired soon, assess risks related to the use
of these parts, and adjust maintenance intervals for each part by
automatically integrating this information into service scheduling,
thus, minimising maintenance cost.

Example 3. For predictive analysis of turbines, the diagnostic
engineer may want to be automatically notified when a turbine
shows repetitive start failures combined with increased vibration
values during its operating time. This can be formulated as follows:

Notify me if a turbine that had more than three start failures in
the last two weeks additionally shows abnormal vibration values
in operative phases. ■

2.3. Siemens requirements

The main bottleneck for diagnostics is the data gathering part,
which takes up to 80% of the overall diagnostic time. The main
reason is that finding the right data for analytics is very hard due to
limitations of predefinedqueries, complexity of data, complexity of
query formulation, and limitation to explicitly stated information.
In Fig. 2we schematically depict the complex process of data access
that requires to determine the right DB location, then the right
schemata, and the corresponding data collectors and controllers
deployed in turbines. Moreover, often diagnostic tasks involve up
to dozens of turbines and thus this process should be done for
each of them. Based on these observations we now derive concrete
requirements that a system for diagnostic processing should fulfil.
R1: Integrated Data Access. Siemens data over which the queries
are formulated naturally reflects the variety, volume, and velocity
dimensions of Big Data. The data is stored in so-called data centres,
each responsible for several thousand appliances such as turbines,
where a typical turbine has about 2000 sensors constantly produc-
ing measurements. This data can be roughly grouped into three
categories: (i) sensor and event data fromappliances; (ii) analytical
data obtained as results of monitoring tasks conducted by service
centres for the last several years; and (iii) miscellaneous data, typi-
cally stored in XML, containing technical description of appliances,
types of configurations for appliances, indicates inwhich databases
information from sensors is stored, history of weather forecasts,
etc. All in all the data is stored in several thousand databases having
a variety of different schemata. The size of the data is in the order of
hundreds of terabytes, e.g., there are about 15GB of data associated
to a single turbine, and they currently grow with the average rate
of 30 GB per day. At the moment there is no unified access point to
the Siemens data and it is required.
R2: Flexible Definition of Queries. Existing predefined queries in
the Siemens query catalogue, about 4000 queries, are often not
sufficient to cover information needs as they are often either too
general, thus yielding an overload of irrelevant information, or too
specific, thus not providing enough relevant data. For gathering
relevant data, service engineers often have to use several queries
and combine their results. When this is not sufficient, existing
queries have to be modified or new queries should be created.
To this end the engineer contacts an IT expert and this leads
to a complex and time-consuming interaction that takes up to
weeks. The reason why it takes so long is miscommunication, high
workload of IT personnel, complexity of query formulation, and
long query execution times. In average up to 35 queries require
modification every month, and up to 10% of queries are changed

throughout a year. Moreover, several new queries are developed
monthly. Therefore, flexible modification and definition of queries
is one of the strong requirements for the improvement of the
diagnostic process.

Example 4. Continuing with the query in Example 2, in order
to answer it first about the turbine T01, the engineer spent two
days and found three queries Q1, Q2, and Q3 which, taken together,
partially answer his information need. All three queries ask about
start failures of some, but not all components. Moreover, Q1 and Q2
ask about T01, while Q3 asks about a cluster of turbines, e.g., T01
and T02 located in the same factory. By tuning parameters of these
queries, the engineer manages to retrieve 70% of relevant answers
with Q1 (since it asks about some parts of the turbine only), and
an overlapping 40% with Q2, giving him a coverage of only 90% of
relevant answers in total. The cluster-based query Q3 covers only
50% of relevant answers for T01 and additionally returns irrelevant
answers about T02. Even though the union of answers from Q1, Q2,
and Q3 gives all the relevant answers, the engineer has to request
the IT staff to produce extra queries: He either needs a query that
retrieves the remaining 10% of answers for the combination of Q1
and Q2, or a query to filter out the irrelevant answers from the
combination of all three queries.

Even in this relatively simple scenario, the engineer will typ-
ically not have enough information on the many DBs involved,
despite the fact that he has a conceptual understanding of the
missing 10% of answers and also understands what to filter out
in the combination of three queries. By contrast, IT support has
a clear picture of all DBs available, but lacks domain knowledge
for expressing the engineer’s information needs. This leads to an
iterative process and query development times in the region of
days. ■

R3: Utilising implicit information. In databases it is typically as-
sumed that only explicit data matters, i.e., the data which is stored
in the system. Froma formal perspective, the so-called closed-world
semantics is adopted, meaning that exactly the information stated
is true, and anything not stated is false. While this perspective
may be valid in the context of controlled systems, completeness
of data is hardly ever the case in practical industry applications
such as the ones in Siemens. Here, the fact that we do not have
a measurement tuple for a certain time point does not mean there
is no measurement. This could be reflected by the so-called open-
world semantics, that allow to derive implicit information from the
data stated explicitly, typically using some forms of background
knowledge. This implicit information logically follows from what
is stated explicitly, and its use can greatly increase the practical
benefit of a diagnostic system.

Example 5. In our example we have that symptoms of start
failures are already recorded in the DBs, while there is no explicit
indication that there was a start failure. Hence, the engineer has
to query not only for start failures, but also for relevant symptoms.
There are several hundred symptoms of start failures. For example,
symptoms of start failures such as low temperature and pressure
are explicitly recorded, and they implicitly indicate that a start
failure will occur within the next two minutes. ■

R4: Ontology Based Stream-Static Data Processing. Predictive
analysis requires the use of both static information from the past
and streaming information on the current status of appliances.
Access to historical data allows to detect, for instance, seasonal pat-
terns. Continuousmonitoring of the streaming data provides prog-
nosis for keyperformance indicators and countermeasures before a
system shutdown occurs. Currently, service engineers do not have
direct access to streaming data. However, engineers often need to
access event and sensor data from several appliances, and stream
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Fig. 2. Current approach to diagnostics.

processing for each related turbine. One of the requirements for the
predictive analysis is the possibility to integrate sensor and event
streaming data from several turbines and diagnostic centres and
provide the use of continuous queries on data streams.

Example 6. In our example the data relevant for start failures
are live data streams produced by sensors installed in turbines,
relevant sensor data from the past, and turbine structure. ■

R5: Data Stream Management System. All the previously men-
tioned requirements should be accompanied by a backend system
that supports low latency answering of queries on high-velocity
live streams and high-volume static data sources. The aforemen-
tioned system should poses the following features: (i) scalability:
the ability to run in a distributed environment and its capacity
to easily add and remove queries without disrupting existing
query execution; (ii) declarative semantics: the backend system
should provide a declarative language, extending the SQL syntax
and semantics for querying live streams and relations; (iii) user
defined functions: the backend system should natively support user
defined functions with arbitrary user code; (iv) stream and static
data integration: based on its architecture and implementation, the
backend system should natively support streaming and static data
integration.

Summing up on the requirements above, Siemens needs a so-
lution that: naturally integrates streaming and archived data as
well as static information; allows for flexible query definition;
exploits both explicit and implicit data; and allows for effective
data processing.

3. Ontology based data access

Ontology Based Data Access (OBDA) is a prominent approach
for end-user oriented access to databases. OBDA relies on Semantic
Web technologies and it has been heavily studied by the Semantic
Web community [2].

The main idea behind OBDA is to provide a user with access to
the data via an ontology that is specific to the user’s domain. The
ontology can bewritten in someontology language, e.g., in theWeb
Ontology Language OWL 2 standardised by W3C. This ontology
hides from the user technical details about the database schemata
while it exhibits to the user a domain specific vocabulary of classes
and properties i.e., unary and binary predicates, that the user is
familiar with. This vocabulary is related to the database schemata
via mappings, which are declarative specifications, similar to view
definitions in databases. There are several mapping languages
available, e.g., R2RML standardised by W3C. Fig. 3 presents a gen-
eral conceptual diagram illustrating OBDA: its main components
and the workflow of query answering in OBDA systems.

The user formulates queries over ontologies in terms of the
classes and properties. The standard query language for ontologies
is SPARQL 1.1 standardised by W3C. An ontological query Q1 is
evaluated over databases in three steps. First, Q1 is expanded
with relevant information from the ontology in order to retrieve
both explicit and implicit answers from the databases. This is
accomplished by query rewriting, which takes the query Q1 and
the ontology, and produces the query Q2. Note that Q2 is logically
equivalent to Q1 with respect to the ontology while it ‘‘absorbs’’
a fragment of the ontology necessary for retrieving all answers
relevant toQ1. We refer the reader to, e.g., [14], for details on query
rewriting techniques. OBDA systems typically do rewriting of so-
called conjunctive querieswith ontologies that fall in the OWL 2 QL
profile of OWL 2. This profile is specifically tailored for data access
and allows for efficient query processing [14]. At the second step,
the query Q2 is translated using mappings into a query Q3 over the
database schemata, e.g., into SQL when the data is relational. This
step is referred to as unfolding. Finally, Q3 is executed over the data
by a DBMS and the answers are returned to the user.

We now illustrate OBDA on the following example which is
based on the ontology and mappings that we developed for the
Siemens use case. Note that, for the sake of clarity, the example
is based on simplified versions of these ontology and mappings.
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Fig. 3. OBDA: components and a general idea of query processing.

Example 7. The ontology in Fig. 4 says that turbines can be either
gas or diesel. A gas turbine may have the following parts: (i) a
control system that in turn has a control unit of types ART or
ART2, (ii) inner turbine, (iii) lube-oil system that may have several
sensors for measuring pressure, and (iv) gearbox. Moreover, a gas
turbine can be located in a place such as a desert, or a frost, etc. For
the sake of simplicity, we assume that diesel turbines aremodelled
in the same way as the gas ones.

The query in Fig. 4 asks: ‘‘Return the pressuremeasured by sensors
of lube oil systems in turbines.’’ This is an ontological query which
corresponds to Q1 in Fig. 3. This query can be written in SPARQL as
follows:

SELECT ?Measurement
WHERE {?X rdf:type siemens:Turbine.

?X siemens:hasPart ?Y.
?Y rdf:type siemens:LubeOilSystem.
?Y siemens:hasSensor ?Z.
?Z rdf:type siemens:Sensor.
?Z siemens:hasPressure ?Measurement.}

Query rewriting techniques applied to this query and the turbine
ontology produce two more queries that have the same structure,
as Q1, but the first query has Gas Turbine and the second one has
Diesel Turbine in the place of Turbine. The query Q2 is the union of
Q1 with these two queries. In terms of SPARQL, Q2 can be obtained
fromQ1 by substituting the first triple of itsWHERE clausewith the
following expression:

{ ?X rdf:type siemens:Turbine } UNION
{ ?X rdf:type siemens:GasTurbine } UNION

{ ?X rdf:type siemens:DieselTurbine }

There are two mappings in Fig. 4. The left one says how to ‘‘pop-
ulate’’ the property hasPressure: one has to project tuples of the
table Measurement, where the value of the attribute Type is ‘‘pres-
sure’’. The projection on the attribute SensorID gives the subject
and on the attribute Value1 gives the object of hasPressure. The
right mapping says how to ‘‘populate’’ the class LubeOilSystem:
one has to project tuples of the table System where the Purpose
is ‘‘Lubricant Delivery’’ on the SystemID attribute. These mappings
can be used to unfold the SPARQL query Q2 into an SQL query Q3.
We do not give Q3 here due to space limit since this would require
to introduce six more mappings. ■

3.1. How OBDA can help in improving data access in siemens

In Section 2.3, we presented five Siemens data access require-
ments. We will discuss now how OBDA naturally addresses all of
themand thuswebelieve that OBDAhas the potential of improving
data access in Siemens.

OBDA naturally addresses Requirement R1 on integrated data
access since one ontology can mediate the user and several
databaseswith different formats viamappings. Regarding Require-
ment R2 on flexible definition of queries, since ontologies describe
the domain of end users, formulation of queries over ontologies
is conceptually much easier than over databases. Thus, by relying
on intuitive query formulation tools, users can combine existing
queries and write new queries without any knowledge of the
schemata of multiple databases residing behind the ontology. Re-
garding Requirement R3 on utilising implicit information, OBDA
naturally does so via logical reasoning during the query rewriting
process. Regarding Requirement R4 on stream-static data process-
ing, OBDA does not impose any restriction on the type of data to
be integrated. Finally, Regarding Requirement R5 of a data stream
management system, OBDA separates reasoning over queries and
ontologies (that takes place before unfolding) fromdata processing
(that takes place after the unfolding), thus, it opens doors for the
development of highly optimised backends.

Thus, what we need for Siemens is an OBDA system that
(i) supports distributed data processing, (ii) provides a flexible
intuitive query formulation and visualisation support, (iii) relies
on logical reasoning to obtain both explicit and implicit answers,
(iv) accommodates static, streaming, and historic data steams, and
(v) offers a highly efficient backend. As we see next, no such OBDA
system exists.

3.2. Existing OBDA systems and their limitations

We now show that, despite the recent advances in OBDA sys-
tems, they are currently not mature enough to be applied off-the-
shelf in Siemens and both theoretical and practical developments
are required. There are several academic and industrial systems
for OBDA or that are very similar to OBDA in spirit. Mastro [15],
morph-RDB [16], and Ontop [17] support ontology reasoning and
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Fig. 4. Simplified Siemens ontology and mappings, example query.

thus address Requirement R3, while D2RQ [18], OntoQF [19], Vir-
tuoso,3 Spyder,4 and Ultrawrap [20] do not support reason-
ing and thus fail Requirement R3. Moreover, all these systems
fail Requirement R2: Ultrawrap, Ontop, Mastro, and morph-RDB
lack user-oriented query formulation interfaces and query visu-
alisation, since they only provide SPARQL end-points and prede-
fined queries; while OntoQF considers ontology queries as OWL
statements and has no visual query formulation support. Existing
OBDA systems either assume that data is in (static) relational DBs,
e.g [15,17], or streaming, e.g., [21,22] but not of both kinds. Thus,
to the best of our knowledge, there is none that fulfils Requirement
R4. Finally, to the best of our knowledge, no OBDA system supports
backend optimisation as required by R5. For example, Ontop sup-
ports query optimisation during rewriting, but it does not compute
efficient plans for unfolded queries.

We conclude that no OBDA exists that addresses Siemens re-
quirements and can be used as it is. In order to meet Siemens
requirements, we had to extend the traditional OBDA and we refer
to our approach as Ontology-Based Stream-Static Data Integration
(OBSSDI). In the following section we present two main compo-
nents of our proposal: a query language and processing techniques.

4. Our OBSSDI components

In this section we present our OBSSDI Components. First, we
present the language STARQL: its syntax, semantics, and how
we turn STARQL ontological queries into data queries. Then,
we present our backend ExaStream tailored towards answering
STARQL queries.

4.1. STARQL Query Language

Recent efforts on temporalised [23,24] and streamified [25–32]
OBDA systems provide first steps towards handling temporal and
streaming data in industrial applications. However, none of these
approaches satisfies the requirements of the Siemens use case:

3 http://virtuoso.openlinksw.com/.
4 http://www.revelytix.com/content/spyder.

either there is no implemented and/or optimised engine or the
engine is still not fully developed (see the benchmark tests in [33]).
Belowwe give a comparative overview over recent RDF engines in-
cluding our stream-temporal submodule of the Optique platform.

Streaming and Temporal ontology Access with a Reasoning-based
Query Language (STARQL) [11,34–37] offers a query framework
allowing to deal with streams of timestamped RDF triples on the
background of mappings and an ontology. The development of
STARQL was inspired by the Siemens use-case requirements. The
STARQL query language framework and the prototype streaming
engine enjoy the following features:
Expressivity. STARQL allows to express typical mathematical, sta-
tistical, and event pattern features needed in real-timemonitoring
scenarios. In spite of its expressivity, answering STARQL queries is
still efficient since these can be transformed into relational stream
queries.
Neat semantics. STARQL comes with formal syntax and semantics.
The latter one uses certain-answer semantics [2] and on top of that,
first-order logic semantics as in model checking, thereby combin-
ing open and closed-world reasoning. A snapshot semantics for
window operators [38] is extended with a sequencing semantics
that can handle integrity constraints such as functionality asser-
tions.
Orthogonality. Both inputs and outputs of STARQL queries are
timestampedRDF triples. Therefore, triples, coming from the result
of one query, can be used as input when constructing another
query.
Scope locality. While producing a STARQL query, one can select
an ontology and streams over which the query will be evaluated.
This feature can be important in different cases, e.g., in the case
of failure testing, where one is interested in querying only the
streams stemming from sensors that are (or are not) suspected to
be broken.
Library functions. Often-used query patterns can be stored in a
special library and re-used during query construction.
Same interface for historic and stream data. Roughly the same
STARQL queries can be used to query historic data (timestamped
data in a DB) or to query real-time streams.

Now we illustrate the STARQL framework by example.

http://virtuoso.openlinksw.com/
http://www.revelytix.com/content/spyder
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Example 8. Consider the preventive monitoring request from
Example 1. To fulfil it, the following sub-task should be performed:
‘‘Detect a monotonic increase from the temperature sensor ’’. We now
see how this detection can be done within the STARQL framework.

First, assume that the data stream S_Msmt is being received
from the sensor; its sub-stream that contains data received during
the first five seconds is as follows:

{{s0 :val 90}<0s>, {s0 :val 93}<1s>,
{s0 :val 94}<2s>, {s0 :val 92}<3s>,
{s0 :val 93}<4s>, {s0 :val 95}<5s>}. (1)

This data is in the form of timestamped RDF triples. For example,
the first triple{s0 :val 90}<0s> says that at the timepoint ‘‘0s’’
the sensor s0 sent the value 90.

Consider the following STARQL query fulfilling the task:

CREATE STREAM S_out_1 AS
CONSTRUCT {s0 rdf:type RMInc}<NOW>
FROM S_Msmt [NOW-2s, NOW] -> 1s
SEQUENCE BY StdSeq AS SEQ
HAVING FORALL i < j IN SEQ, ?x, ?y:

IF {s0 :val ?x}<i>
AND {s0 :val ?y}<j> THEN ?x <= ?y

Intuitively, the structure of the query is as follows:

(i) The HAVING clause specifies that the sensor’s value should
monotonically increase.

(ii) The FROM clause tells that the query performs its check every
second, considering only the data from the stream S_Msmt in
the last two seconds.

(iii) The SEQUENCE BY clause groups the output triples using
some standard method StdSeq.

(iv) The CREATE clause declares the query’s output stream
S_out_1.

(v) The CONSTRUCT clause determines the format of the times-
tamped RDF triples in the output stream. For instance,
the output stream corresponding to the input data stream
from Eq. (1) is

{{s0 rdf:type RMInc}<0s>,
{s0 rdf:type RMInc}<1s>,
{s0 rdf:type RMInc}<2s>,
{s0 rdf:type RMInc}<5s>} (2)

where RMInc stands for Recent Monotonic Increase, so the
timestamped RDF triple {s0 rdf:type RMInc}<2s> des-
ignates that the sensor s0 has been experiencing a mono-
tonic increase for the last two seconds, from 0s to 2s. (As in
SPARQL, instead of the CONSTRUCT keyword one can also use
SELECT if the output is to consist only of tuples of variable
bindings).

Under the OBDA approach, data are stored in relational form
and not in RDF format. Hence, the STARQL engine operates on the
virtual stream S_Msmt induced by mappings from some actual
relational streaming source. ■

In order to assess the STARQL capabilities and functionalities,
we have extended the overview tables in [39] to contain all rele-
vant streaming query languages (that we are aware of). The results
are shown in Tables 1 and 2.

Table 1 provides a comparison of streaming languages with
respect to various SPARQL characteristics and features. While all
languages support basic functionalities like union, join, optional
and filter, some of them (including STARQL) have already incor-
porated SPARQL 1.1 expressiveness with IF clauses, aggregations,

arithmetic expressions (not listed here) andmore. Furthermore, all
of them, except from EP-SPARQL (which is more based on events
than time), are supporting temporal windows, though only three
of them support triple windows.

The specific streaming capabilities and operators of each query
language are presented in Table 2. We can identify two groups of
query languages, which differ in the management of time and of
temporal operators in general.

On the one hand, we have a group that allows access to times-
tamps by functions on each triple or object within windows. Those
include SPARQLStream, C-SPARQL, and STARQL. While SPARQL-
Stream uses reified time with additional axioms and STARQL a
non-reified version with a semantics of temporal states, C-SPARQL
uses an in-between approach offering temporal functions on ob-
jects for retrieving their timestamps. The latter could lead to in-
consistencies, if an object occurs several times inside a window in
different temporal states.

On the other hand, we find a group of languages that are
developed with respect to temporal sequences and specific se-
quencing operators like in EP-SPARQL, TEF-SPARQL, and STARQL
that are tailored for complex event processing (CEP). Though EP-
SPARQL is different from the two other approaches as it is a
more CEP based language, they all share the possibility to define
temporal sequences with operators. EP-SPARQL extends SPARQL
by four new binary operators: SEQ, EQUALS, OPTIONALSEQ and
EQUALSOPTIONAL; while TEF-SPARQL defines temporal facts and
STARQLmakes use of its special HAVING clause.

Finally, STARQL offers several new operators with functionali-
ties that have not been included in previous systems. See Table 2
for these features. All columns except for the column ‘‘W-to-S
operator’’ are self-explaining. W-S refers to the three operators
Rstream, Istream, and Dstream of [38] that describe different
ways of creating and outputting a stream from window contents.
Rstream outputs every triple in the window, Istream only out-
puts triples inserted into the window, and Dstream outputs only
deleted ones. Next to cascaded streams, which can be seen as
temporal sub-queries, STARQL offers the possibility of querying
historically recorded data or even comparing them to a live stream
(see [13,44]). Those different kinds of input streams (possibly using
different kinds of window widths and slides) can additionally be
synchronised in STARQL by one or more pulse functions, allowing
for a regular query output for possibly asynchronous input. More-
over, due to the integration of optimised UDFs from ExaStream
(such as an optimised version of the correlation function), STARQL
offers themain components for an analytics awareOBDA approach
as described in [43].

Besides a comparative presentation of the (language) function-
alities of STARQL, we give a comparative presentation of relevant
implementation features of the STARQL engine in Table 3. Most
of RDF systems mentioned above rely on native implementations
of query processors. CQELS for example reimplements functional-
ities, which do already exist in DSMS and therefore can be seen
as standalone engine. EP-SPARQL is based on logical programming
and backward chaining, but is also implemented from scratch.
Finally, C-SPARQL relies on an internal DSMS, but has no flexibility
for mappings or rewritings.

The only two systems using an OBDA approach with mappings
and a flexible back end are SPARQLStream and STARQL. As they
both rely on external DSMS, they also both suffer from the same
disadvantages. Query rewriting and translation of results can be
expensive, while the expressiveness of the underlying systems
restricts the input of the RDF streaming queries. Nevertheless,
OBDA approaches can rely on various backend optimisations to
accelerate query processing.
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Table 1
Comparison of RDF-stream query languages (Part 1).

Name Data Model Union, Join, Optional, Filter IF expression Aggregate Property paths Time windows Triple windows

Streaming SPARQL [25] RDF streams Yes No No No Yes Yes
C-SPARQL [40,40,41] RDF streams Yes Yes Yes Yes Yes Yes
CQELS [29] RDF streams Yes No Yes No Yes No
SPARQLStream [27,39,42] (Virtual) RDF streams Yes Yes Yes Yes Yes No
EP-SPARQL [30] RDF streams Yes No Yes No No No
TEF-SPARQL [32] RDF streams Yes No Yes No Yes Yes
STARQL [35–37,43] (virtual) RDF streams Yes Yes Yes No Yes No

Table 2
Comparison of RDF-stream query languages (Part 2).

Name W-to-S operator Cascading streams Intra window time Sequencing Synchronized pulse Historic data

Streaming SPARQL RStream No No No No No
C-SPARQL RStream No Yes No No No
CQELS RStream No No No No No
SPARQLStream RStream, IStream, DStream No Yes No No No
EP-SPARQL RStream No No Yes No No
TEF-SPARQL RStream No No Yes No No
STARQL RStream Yes Yes Yes Yes Yes

Table 3
Comparison of RDF stream engines.

Language Input Execution Query optimization Stored data Reasoning

Streaming SPARQL RDF streams Physical stream algebra Static plan optimization Yes No

C-SPARQL RDF streams DSMS based evaluation with
triple store

Static plan optimization Internal triple store RDF entailment

CQELS RDF streams RDF stream processor Adaptive query processing
operators

Stored linked data No

SPARQLStream Relational streams External query processing Static algebra optimizations,
host evaluator specific

Data source
dependent

No

EP-SPARQL RDF streams Logic programming, backward
chaining rules

No No RDFS, Prolog
equivalent

TEF-SPARQL RDF streams Yes No Yes Yes

STARQL Relational streams External query processing Static algebra optimizations,
host evaluator specific

Datasource
dependent

Yes (DL-LiteA)

4.2. Streaming and static relational data processing

The queries produced by the STARQL translator are processed
and answered by Optique’s dedicated Data Stream Management
System (DSMS), ExaStream. ExaStream has been designed for effi-
ciently processing on both static and streaming information and
the corresponding queries produced by the STARQL engine. It is
embedded in Exareme,5 a system for elastic large-scale dataflow
processing on the cloud [45,46] that has been publicly available as
an open source project under theMIT Licence.We give a short pre-
sentation on some key aspects of ExaStream, for a more detailed
description, the user may refer to [12].
DataModel. An ExaStream topologydescribes the flowof streaming
and static records between computational nodes. Computational
nodes are logical processing units that have one or more live-
stream or static-data inputs and one output. They execute a set
of operations on their input to produce the corresponding output.
Computational nodes can be classified as either having exclusively
live-stream inputs, exclusively static-data inputs, and hybrid inputs.
Similarly they can be classified to being streaming or static, based
on the form of their output.
Declarative Semantics for Computations. Computational nodes may
perform several operations ondata streams such as filtering, aggre-
gation, joining, and interacting with data sources and databases,
to produce the desired output. ExaStream takes advantage of
existing Database Management technologies and optimisations by

5 https://www.exareme.org.

providing a declarative language, namely SQL⊕, extending the SQL
syntax and semantics for querying live streams and relations. In
contrast to most DSMSs, the user does not need to consider low-
level details of query execution. Instead, the system’s query planner
is responsible for choosing an optimal plan depending on the
query, the available stream/static data sources, and the execution
environment. ExaStream’s optimiser makes it possible to process
SQL⊕ queries that blend streams with static and historical data
(e.g., archived streams).

In order to incorporate the algorithmic logic for transforming
SQL into SQL⊕ several operators and statements have been imple-
mented:

(i) Create Stream: The create stream statement allows to add a
new computational node to our topology that outputs a live
stream.

(ii) TimeSlidingWindow: The specific operator, implemented as
a user defined function, groups tuples from the same time
window and associates them with a unique window identi-
fier corresponding to the Wid attribute.

(iii) WCache:WCache creates the indexing structures for answer-
ing efficiently equality constraints on the Wid and Time
attributes when processing infinite streams. WCache will
then produce results to multiple queries accessing different
streams.

Architecture & Implementation. ExaStream supports parallelism by
allocating processing across different workers in a distributed en-
vironment. Its architecture is shown in Fig. 5. Queries are registered

https://www.exareme.org


Please cite this article in press as: E. Kharlamov, et al., Semantic access to streaming and static data at Siemens, Web Semantics: Science, Services and Agents on theWorld
Wide Web (2017), http://dx.doi.org/10.1016/j.websem.2017.02.001.

10 E. Kharlamov et al. / Web Semantics: Science, Services and Agents on the World Wide Web ( ) –

Fig. 5. Distributed Stream Engine Architecture.

through the Gateway Server. Each registered query passes through
the ExaStream parser and then is fed to the Scheduler module.
The Scheduler places data and compute operators (including UDFs
and relational plans) on worker nodes based on each worker’s
load. These operators are executed by an SQLite6 database engine
instance running on each worker.

ExaStream offers different types of parallelism depending on
the type of operations performed within a query. Inter-query par-
allelism is supported for queries with an exclusively streaming
input. This means that all the operations of a single query are
executed on the same worker, while parallelism is achieved by
distributing queries across workers. For computational nodes with
a static input, ExaStream provides intra-query parallelism. This
means that each operation of a query is distributed on multiple
workers.

The ExaStream system natively supportsUser Defined Functions
(UDFs)with arbitrary user code. The engine blends the execution of
UDFs together with relational operators using Just-In-Time tracing
compilation techniques. This greatly speeds-up the execution as
it reduces context switches, and most importantly, only the rel-
evant execution traces are used, allowing the engine to perform
optimisations at runtime that are not possible when the query is
pre-compiled.UDFs allow to express very complex dataflows using
simple primitives. Communication with external sources, window
partitioning on data streams, and data mining algorithms such as
the Locality-Sensitive Hashing technique [47] for computing the
correlation between values of multiple streams are implemented
as UDFs.

5. The Optique platform for Siemens

The Optique platform [5] is an end-to-end OBDA solution,
i.e., it supports the whole OBDA cycle from deployment to query-
answering visualisation. Optique platform integrates a number of
existing systems and provides several new components. It was
tested with various use cases, including Norwegian Petroleum
Directorate Fact Pages [48], Statoil [49] and demonstrated in
[50–53].7 We now give an overview of the platform. Details on

6 https://www.sqlite.org.
7 Optique demo video: www.youtube.com/user/optiqueproject/playlists.

the architecture and the individual components of the platform
can be found in [8,53] and by following the references given below.
Optique is a commercial platform,8 while some of its components
are available under open-source licences.

5.1. Optique platform

The Optique platform allows to: create and edit mappings;
create, edit, and import ontologies [54–59]; integrate several re-
lational databases and data streams; formulate and visualise one
time and continuous queries; efficiently process both static and
streaming information; and browse query results. Thus, the Op-
tique platform satisfies all the Siemens system Requirements R1–
R5. Note that the current version of Optique provides full support
of distributed query processing on streaming and static informa-
tion, in contrast to the Optique system described in [10].

The query formulation, transformation, execution, and answer
visualisation procedures are performed in a sequence of stages
presented in Fig. 6:

(i) Query Formulation: After the system is deployed, the under-
lying data sources can be queried via our query formulation
tool OptiqueVQS. OptiqueVQS allows to compose queries
by navigating over the system’s ontology and constructing
simple graphs corresponding to queries for standard ontolo-
gies or their streaming/geospatial extensions. Graphs are
internally translated byOptiqueVQS to STARQL expressions,
i.e. queries designed to retrieve information from streaming
ontologies.

(ii) Query Transformation: The aforementioned expressions are
sent to the corresponding query transformation engine for
processing. The processing includes rewriting against the
ontology and further unfolding into relational queries based
on the corresponding mappings [60]. STARQL expressions
(i) on historical data are rewritten and unfolded to pure SQL
queries; (ii) on streaming data are rewritten and unfolded
to SQL⊕ queries by the STARQL2SQL⊕ query transformation
engine [36]. SQL⊕ is an extension of standard SQL with
operators for stream handling.

(iii) Query Execution: In the query execution phase: (i) SQL his-
torical queries are executed by the database management
system that stores the historical information; (ii) SQL⊕

streaming queries are executed by ExaStream, a system for
large scale elastic stream processing on the cloud that uses
parallelism to cope with the huge data sets provided by
Siemens.

(iv) Visualisation & Analysis: Resulting query answers are visu-
alised using templates andwidgets such as tables, timelines,
maps, charts, etc., depending on the data modalities. In
order to support analytical tasks required by turbine diag-
nostics, we developed a native integration of Optique with
KNIME9 ,10 data analytics system to streamline query an-
swers into analytics, and a configurable plug-in for R analyt-
ics.11

The Optique platform implementation is based on the Informa-
tion Workbench (IWB) [61], a generic and extensible platform for
semantic data management which provides a rich infrastructure

8 https://www.fluidops.com/en/company/research/optique.
9 KNIME, the Konstanz Information Miner, is an open source data analytics,

reporting and integration platform. KNIME integrates various components for
machine learning and data mining through its modular data pipelining concept.
A graphical user interface allows assembly of nodes for data preprocessing (ETL:
Extraction, Transformation, Loading), for modelling and data analysis and visuali-
sation.
10 https://www.knime.org/.
11 https://www.r-project.org/.

https://www.sqlite.org
http://www.youtube.com/user/optiqueproject/playlists
https://www.fluidops.com/en/company/research/optique
https://www.knime.org/
https://www.r-project.org/
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Fig. 6. System Architecture.

for our platform. We now focus on parts of the Optique platform
that are tailored towards Siemens: OptiqueVQS and diagnostic
dashboards.

5.2. Visual query formulation with OptiqueVQS

The Optique platform allows domain experts to formulate and
pose queries via a visual query formulation system, called Op-
tiqueVQS [62–67]. Queries, formulated via OptiqueVQS, are auto-
matically translated to the underlying query language (i.e., SPARQL
or STARQL) and sent to the query transformation module. In
the context of the Siemens use case, OptiqueVQS has been ex-
tended to support STARQL to allow formulation of streaming
queries [64,68,69].OptiqueVQS is composed of a front-end (i.e., in-
terface) and backend component feeding the interface with ontol-
ogy fragments.
Interface.OptiqueVQS is a widget-based user-interfacemashup (UI
mashup) [62,70], that is, individual communicating widgets are
the building blocks of OptiqueVQS. This approach offers flexibility,
modularity, and adaptability and enables us to combine multiple
representation paradigms, such as forms, diagrams and icons [71],
and interaction paradigms, such as schema navigation, range se-
lection, and matching [71].

In the Siemens use case, a user interacts with OptiqueVQSwith
five widgets:

(i) The first widget (W1), see the bottom left hand side of Fig. 7,
is a menu-based widget and allows the user to navigate
through concepts of an ontology by selecting relationships
between them.

(ii) The second widget (W2), see the top side of Fig. 7, is
a diagram-based widget and presents typed variables as
nodes and object properties as arcs. It gives an overview of
the query formulated so far.

(iii) The third widget (W3), see the bottom right hand side of
Fig. 7, is a form-based widget and presents the attributes of
a selected concept for selection and projection operations.
Dynamic attributes (that is attributes that change over time)
are coloured in blue.

(iv) The fourth widget (W4) is a form-based widget [68], see
Fig. 8, and it lets the user configure parameters for temporal
queries. W4 is available from a ‘‘Stream’’ button (see Fig. 7)
as soon as the query involves dynamic attributes.

(v) The fifth widget (W5) is a tabular widget, see Fig. 9, that
allows to select a template for the temporal query, and to
register the user query for execution. In the case of SPARQL,
this widget is used to present example results and provide
functionality for sorting and aggregation operations, such as
sum, max, min, and average.

A typical query formulation process begins with selecting a
starting concept (called kernel) from W1. Each selected concept
appears in W2 as a variable node and the attributes of the selected
concept appear in W3. The concept chosen last automatically be-
comes the active node (called pivot) and the user can change it
either by adding a new node through W1 or by clicking on an
already existing node in W2. Once there is an active node in W2,
W1 does not present a pure list of concepts any more, but it lists
object property and range concept pairs pertaining to the active
node. The user can add asmany branches as he/shewishes by using
W1 and W2, and add constraints and select attributes for output
using the form elements presented in W3.

If a dynamic attribute is involved in the query, OptiqueVQS
switches to STARQLmode and a button named ‘‘Stream’’ appears to
activate the parameter configuration widget. Once the user clicks
on the ‘‘Result Overview’’ button, the template selectionwidget ap-
pears. The user can also save/load andmodify queries throughW2.
Hence, OptiqueVQS splits the formulation of streaming queries
into two steps where the user has to specify which data streams
are of interest, corresponding to the static part in the WHERE clause,
and what is to be done to the specified streams. The interface for
the latter allows users to pick from a list of options that include
range checks, gradient checks, and spikes, and cover a large part
of the query tasks needed day to day. Adding more options, or
changing the queries produced for each, are simple programming
tasks.

OptiqueVQS is free from any technical jargon, for example
related to OWL and STARQL. It employs a simplified tree-shaped
query representation and distributes functionality to different
widgets with respect to the accord between the functionality,
interaction, and representation paradigms (i.e., tabular widget for
template selection, and menu-based widget for navigation). Op-
tiqueVQS supports tree-shaped conjunctive queries and a frag-
ment of STARQL. Currently, STARQL queries correlating different
dynamic attributes and queries involving cycles, negation, and
disjunction are not supported.
Backend. The front-end communicates with the backend via a
REST API that returns a JSON object according to the performed
request. It is mainly responsible for accessing and serving ontology
fragments to the interface, as a user interacts with the system, and
for dealingwith the query log anddata to improve user experience.

The main component of OptiqueVQS’s backend is a graph pro-
jector [63,65], which feeds OptiqueVQS’s widgets in order to en-
able a graph-based navigation over an ontology during query for-
mulation. Graphs are effective mechanisms to navigate, construct,
and communicate complex topological structures for end users.
It is also well-known that the majority of end-user queries are
conjunctive, and thus, in the semantic web setting, they could
naturally be seen as graphs since we are dealing with unary and
binary predicates only. However, note that OWL 2 axioms do not
have a natural correspondence to a graph. Even when a set of
range/domain axioms naturally suggest a graph, to the best of our
knowledge there is no standard means to translate it to a graph.
Therefore, we need a technique to extract a suitable graph-like
structure from a set of OWL 2 axioms. For this purpose, we have
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Fig. 7. OptiqueVQS interface—dynamic properties are coloured in blue. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

Fig. 8. OptiqueVQS interface—parameter selection.
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Fig. 9. OptiqueVQS interface –template selection and the generated STARQL query.

adapted a technique called navigation graph [72–79]. OptiqueVQS
uses the OWL 2 reasoner HermiT [80] to build the navigation graph
(e.g., extraction of classification) in order to consider both explicit
and implicit knowledge defined in an ontology.

The backend also provides for a data sampler component al-
lowing us to enrich an ontology with additional axioms to capture
values that are frequently used and rarely changed. This includes
the list of values and numerical ranges in an OWL data property
range. Such an approach allows presenting attributes in different
types, such as sliders, multi-select boxes, date pickers etc., with
respect to the underlying data. Moreover, the backend maintains
a query log for ranking and suggesting query extensions as a user
formulates a query, that is, the W1 and W3 list concepts and
properties adaptively with respect to a partial query given at any
time [81].

5.3. Diagnostic dashboards and integration with Siemens analytics

In order to address diverse needs of end users we developed
a flexible wiki-based Diagnostic Dashboard that can be easily cus-
tomised by end users themselves. Result visualisation widgets
allow the user to visualise query answers, inspect query results,
do incremental query refinement, and export the relevant result
fragments to external diagnostic tools. Moreover, the widgets sup-
port monitoring of incoming data streams and query answers for
continuous queries over these streams. In Fig. 10 we present three
examples of our visualisation widgets.

The D1 part of Fig. 10 shows the sensor data inspection screen
for one specific turbine. Here, the user has chosen a turbine of
interest and reviews data of the previous 24 h. The main chart in
the centre contains thermocouple data, i.e., mostly temperature
readings along the gas path of the turbine, starting from the air inlet
through the burner stage to the exhaust. Without going into detail

the chart suggests that the turbine of interest has been shut down
and re-started numerous times in the first quarter of the day. After
that it appears that the day has continued uneventful, at least in
terms of the temperature profile.

If a specific sensor in the overview exhibits missing values,
unusual trends, or an inadmissible number of outliers then the
service engineer can inspect that sensor on a higher level of detail
in the single-sensor view depicted on the top-right of Fig. 10 and
annotatedwithD2. The dashboard shows three views: the live data
stream from the sensor in question, historic data as chosen by the
user, and a configurable plug-in for R analytics. The comparison
betweenhistoric and live data can be used for ruling out any persis-
tent or recurring abnormalities in the sensor readings. Conversely,
all in-depth statistical analysis of sensor data can be performed
and inspected in the R view. Here the underlying statistics can be
configured from a library of common analytics solutions.

The lower part of Fig. 10, annotated D3, contains other turbine
monitoring dashboardswith various kinds of aggregateddata. Note
that just like the raw data views above, these aggregated views
are configured by choosing an appropriate query from the query
catalogue—with the query again formulated against the turbine
knowledge model rather than the actual data sources. Depending
on the type of data (e.g., time series data, appliance structure),
a suitable visualisation paradigm has to be selected (e.g., pivot
table, trend diagram, histogram). The diagnostic dashboard can
also choose the representation paradigm for query answers auto-
matically by analysing the corresponding SPARQL query.

Since a wide range of Siemens diagnostics tasks are realised
using KNIME, we have also developed a KNIME extension that
gives access to Optique from KNIME analytical workflows and
streamline answers computed by Optique directly into KNIME. In
Fig. 11we present a screenshot of a diagnostic task implemented in
KNIMEand in Fig. 12 is the zoomof Fig. 11 in a fragment relevant for
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Fig. 10. Diagnostic dashboards.

analytics. In Fig. 11 one can see that the data layer is disconnected
from the analytics layer by the Optique semantic layer and shown
only for orientation, that is, the data from the DBs go first through
the OBDA platform and only then analytics are applied on it. One
can add a new semantic OBDA data source to the system using
either a SPARQL or STARQL query against the Optique platform.

In Fig. 12 there is an example SPARQL query over the OBDA
platform. The data produced by this query are then used to com-
pute key performance indicators (KPI) and to check for outage in
the turbines. Observe that the node of the work-flow diagram
that corresponds to KPI computation is defined using KNIME rules
that rely on the standard KNIME syntax while they are formulated
against the ontological concepts. These rules say that a turbine is
deemed to be in service at any time if either it is a gas turbine or
a turbo compressor that satisfies extra conditions. In the former
case these conditions say that the sensor signal of the rotor speed
sensor should have readings above its characteristic operational
speed value, the main flame sensor reading should show that the
flame is on, and the turbine should generate power, i.e., Power

Sensor should be above the value characteristic for that turbine
while generating power. In the latter case the conditions are that
the generated pressure should be at or above the nominal pressure
specified for the machine.

Observe that due to ontologies each occurrence of ‘‘Range-
MaxValue’’ in the KNIME rules is a different type of value read
from the static configuration data of the machine and this can be
encoded using property hierarchy. Indeed, for the latter case one
can achieve it by stating that ‘‘RunningSpeedConfigValue’’ is a sub-
property or ‘‘RangeMaxValue’’ and in the latter case that ‘‘Main-
FlameOnSignal’’ is a sub-property of ‘‘RangeMaxValue’’. Moreover,
an advantage of such OBDA-backed KNIME diagrams is that one
can talk about specific values in turbines and even compressors
of different types at an abstract level, without giving details of
such appliances. Finally, observe that KNIME has a sophisticated
reporting functionality which we exploit in our system: the last
node in the work-flow diagram, called Data to Report, summarises
the KPI for all turbines across a specific fleet and builds a ready-to-
use report for them.
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Fig. 11. Optique integration with KNIME.

6. Evaluation of Optique at Siemens

In order to demonstrate the potential of OBDA in enhancing
data access in Siemens we did a preliminary deployment of the
Optique OBDA platform over Siemens data and conducted a pre-
liminary user study. We now give details of our experience.

6.1. Siemens ontology

We start with the ontology that we developed for Siemens; it is
a critical component of our deployment which we used in both our
evaluations. Development of an industrial ontology is a non-trivial
task [82,83]. Although there are ontologies describing machinery
with sensors, e.g., the Semantic Sensor Network (SSN) ontology [84],
we could not use them: for our use case, they are too generic and
overloaded with irrelevant terms, moreover, they miss required
terms. Therefore, we constructed our ontologies being guided by
the best practices of the SSN ontology. Our ontologies characterise
Siemens database schemata of sensor and event data and abstract
away from representations varying across data sources. Moreover,
our ontologies aremanually enrichedwith the domain information
encoded in multiple semiformal and informal models available at
Siemens.Wedeveloped three ontologies: (i) the turbine, (ii) sensor,
and (iii) diagnostic ontology.

The turbine ontology describes the internal structure of a tur-
bine, i.e., it lists all its parts, functional units, and their hierar-
chy. For example, it models that every Turbine must have a
ControlSystem and a Generator, and that LiquidFuelPump
is a part of a LubOilSystem. The ontology contains 60 classes
and 15 object and datatype properties. There are three central
classes in this ontology: (i) Turbine class for modelling product
families of appliances, (ii) Component for modelling a hierarchy of
subclasses defining the types of components that turbines are con-
structed of, using relations such as hasPart and hasDirectPart,
(iii)FunctionalUnit for defining functional interrelation of com-
ponents, i.e., important blocks of an appliance, such as GasPath,
FuelSystem and others, aswell as components belonging to these
functional units.

The sensor ontology lists and categorises types of sensors and
measuring devices mounted in a turbine as well as their de-
ployment, measurement properties, such as accuracy and preci-
sion, and other related information. For example, it models that
each sensor is mounted at some turbine’s component or func-
tional unit, or that a sensor of a specific type does only produce
observations of a given type. The ontology contains 40 classes
and 20 properties. The main class Sensor covers all types of
measuring devices, e.g., GasDetector, TemperatureSensor.
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Fig. 12. Optique integration with KNIME.

Further branching on classes gives more detailed characteristics
information on them, e.g., temperature sensors could measure:
BurnerTipTemperature, InletTemperature,
CompressorExitTemperature, etc.

The diagnostics ontology formalises relationships betweenmea-
surements and events generated by turbine’s sensors and con-
trol units, as well as typical symptoms of faults in turbines. For
example, it models that each diagnosis has to be assigned to a
turbine or its component, and must be supported by some symp-
toms. The ontology contains 30 classes and 10 properties. The
core classes are Observation and Diagnosis connected with a
relation indicatesAt for listing symptoms for each diagnosis.

Each of the three ontologies can be used independently and
we have also developed an ontology that integrates the three.
The turbine and sensor ontologies are expressed in OWL 2 QL, a
tractable profile of the OWL 2 ontology language and therefore
can be used straightforwardly in our OBDA setting. The diagnostics
ontology must be represented in a richer ontology language: OWL
2 DL. An example of a diagnostic axiom that cannot be expressed
in OWL 2 QL is: ‘‘If Turbine has Failure F1, then there must be
a Symptom S1 in Turbine Component C1’’. To support answering
diagnostic queries using OBDA, we provided an approximation of
the ontology into OWL 2 QL.

6.2. Visual query formulation

Requirements. A set of site visits and user interviews have been
conducted to collect design requirements. The information needs

in the query catalogue were translated into actual queries, re-
sulting in 40 queries, which were then analysed accordingly [63].
The following three main dimensions [71] have been taken into
consideration for the design and implementation of OptiqueVQS:

(i) User synopsis: The target group at Siemens are domain ex-
perts, who have extensive domain knowledge. However a
number of domain experts lack technical skills and knowl-
edge such as on databases, programming, and query lan-
guages.

(ii) Interaction synopsis: The demand for information is frequent
and information needs are varied. Moreover, domain ex-
perts often have unpredictable needs in terms of the data
they are interested in extracting.

(iii) Task synopsis: Domain experts’ information needs are often
structurally complex, requiring to join multiple relations.

We have conducted a literature survey [85,86] to identify
best practices and design patterns. The survey revealed that a
multi-paradigm design combining multiple representation and
interaction paradigms is key to address a broad range of user
groups having frequent, unpredicted and sophisticated informa-
tion needs [71,87]. According to a framework proposed by Catarci
et al. [71], the following requirement has been reached:

Design: Provide a multi-paradigm user-interface having a
diagram-based paradigm in the core supported by form-based
and iconic representation paradigms.
Regarding the target expressiveness level, our goal is to address

frequently neededquery types that are comparatively less complex
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Fig. 13. A linear conjunctive query formulated by domain experts in the Siemens experiment.

Fig. 14. A tree-shaped conjunctive query formulated by domain experts in the Siemens experiment.

for end users. According to the Siemens query catalogue, 70% of
queries are tree-shaped conjunctive queries. Therefore, we are led
to the following requirement:

Expressiveness: Primarily support the formulation of tree-
shaped conjunctive queries.
Finally, data sources at Siemens have a temporal dimension,

leading to the following requirement:
Support: Provide domain specific components to address
temporal-stream data sources.
OptiqueVQS meets all these requirements as it combines mul-

tiple representation and interaction paradigms through various
widgets including twowidgets for stream-temporal querying. Cur-
rently, 65% of the queries in the query catalogue are supported by
OptiqueVQS, that is, tree-shaped conjunctive queries (i.e., exclud-
ing queries with negation).
Evaluation. Two user experiments have been conducted with do-
main experts at Siemens to measure the efficiency and effective-
ness of domain experts with OptiqueVQS [63–65,68]. We provide
an overview of the experiments and results in the following.

The first experiment is based on non-temporal queries and
relies on the diagnostic ontology, while the second experiment
is based on temporal queries with the turbine ontology. Four
respectively three users took part in the experiments. None of
the participants had knowledge of semantic web technologies.
Participants completed the following tasks during the experiment,
given at most three attempts for each task, while being observed
by an observer. The first half of the tasks have been used in the
first experiment while the second half were used in the second
experiment. The last three tasks are temporal.

(i) Find all assemblies that exist in the system.
(ii) Show all messages that turbine ‘‘NA0101/01’’ generated

from ‘‘01.12.2009’’ to ‘‘02.12.2009’’.
(iii) Show all turbines that sent a message containing the text

‘‘Trip’’ between ‘‘01.12.2009’’ and ‘‘02.12.2009’’.
(iv) Show all event categories known to the system.
(v) Show all turbines that sent a message category ‘‘Shutdown’’

between ‘‘01.12.2009’’ and ‘‘02.12.2009’’.
(vi) Display all trains that have a turbine and a generator.
(vii) Display all turbines together with the temperature sensors

in their burner tips. Be sure to include the turbine name and
the burner tags.

(viii) For the turbine named ‘‘Bearing Assembly’’, query for tem-
perature readings of the journal bearing in the compressor.
Display the reading as a simple echo.

(ix) For a train with turbine named ‘‘Bearing Assembly’’, query
for the journal bearing temperature reading in the genera-
tor. Display readings as a simple echo.

Fig. 15. Effect of parallelism on live-stream queries.

(x) For the turbine named ‘‘Burner Assembly’’, query for all
burner tip temperatures. Display the readings if they in-
crease monotonically.

In the first experiment, a total of 18 tasks was completed by
the participants. Correct completion rate was 88% and first at-
tempt correct completion rate was 72%. In average, a task took
1.5 attempts and 132 s to complete. In the second experiment, a
total of 15 tasks were completed by the participants with 100%
correct completion rate and 66% first-attempt correct completion
rate. In average, a task took 1.3 attempts and 103 s to complete.
Figs. 13 and 14 represent tasks (vii) and (ix) respectively. The
results suggest that domain experts could translate their informa-
tion needs into queries with high effectiveness and efficiency by
using OptiqueVQS. One prominent wish from the domain experts
is dynamic filtering of attributes in W3 with respect to active con-
straints. This is analogous to faceted search where facets and facet
values are filtered and removed as constraints added or relaxed.
Such an approach requires amechanism for active interactionwith
the underlying data, which could also be precomputed offline and
stored in the ontology as annotations.

6.3. Performance demonstration

The aim of the performance demo was to showcase how query
distribution to multiple workers can accelerate the overall execu-
tion time of different analytic queries that involve live-stream and
hybrid operations. Siemens engineers were exhibited the system’s
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Fig. 16. Effect of parallelism on hybrid queries.

capabilities based on two predefined test queries and by being able
to adjust several parameters related to the underlying queries and
resources.
Demonstration setting. We deployed our system to the MindSphere
Siemens Cloud for Industry12 Infrastructure and used up to 128 vir-
tual machines (VMs) each having a 2.100GHz processor with two
cores and 4GB ofmainmemory.We used streaming and static data
that contain measurements produced by 100,000 thermocouple
sensors installed in 950 Siemens power generating turbines.
Test queries. For the performance demonstration, the following two
STARQL queries were adopted: Query I: This query calculates the
Pearson correlation between two live streams. Query II: This query
computes the Pearson correlation of a live stream with a varying
number of archived streams.

We demonstrated performance related to different types of
parallelism:
Parallelism between live streams. This demo focused on the effect
of accelerating live-stream operations by distributing the load to
multiple worker nodes via inter-query parallelism. Query I could
be executed (i) for a varying number of 1 to 1024 of concurrent
queries between different pairs of live streams; (ii) for a fixed
window size of 60 tuples; (iii) on non-overlapping windows; (iv)
using 128 ExaStream worker nodes. The window throughput was
measured as the number of stream tuples that were processed per
sec. Recall that each nodewas equippedwith a two-core processor.
Siemens engineers could see, as in Fig. 15, that initially the overall
throughput of the system increased linearly with the number of
queries. This was because ExaStream utilised the available work-
ers and distributed the load evenly among them.When the number
of queries reached the number of cores available (256) the max-
imum throughput of 4, 250, 226 tuples/s could be observed. From
that point onward, the additional queries injected in Exareme
resulted in multiple queries sharing the same core and, as a result,
the cumulative throughput decreased.
Parallelism between live & archived streams. For complex analytics
such as the Pearson correlation, the ExaStream backend permits to
accelerate queries by distributing the load amongmultiple worker
nodes. In the second demo, Siemens engineers executed test Query
II: (i) on a varying, from 1 to 16, number of available VM-worker;
(ii) for a fixed live-stream velocity of 1 tuple/min; (iii) for a fixed
window size of 1 hour which corresponds to 60 tuples of measure-
ments per window; (iv) and the current live stream window was

12 http://www.industry.siemens.com/services/global/en/portfolio/plant-data-
services/cloud-for-industry/pages/default.aspx.

measured against 100,000 archived ones. As in Fig. 16, Siemens
engineers could observe a significant decrease in the overall win-
dow processing time as the number of VM-workers increased.
ExaStream distributed the archived relations between different
worker nodes. Each node computed the Pearson coefficient be-
tween its subset of archived measurements and the live stream.
As the number of archived windows was much greater than the
number of available workers, intra-query parallelism resulted in
significant decrease of the time required to perform the operation.

7. Lessons learned, conclusion, and future work

Lessons leaned. We organised a series of workshops with service
engineers in Siemens (each was attended by up to ten people) to
present ourOptiqueOBSSDI systemand to evaluate the potential of
using Optique in Siemens business units. Theworkshopswere held
in two locations: at the Siemens service centre in Lincoln, UK, and
Siemens AG in Munich, Germany. During the workshops we got
important feedback from engineers that reinforced and guided our
further development of the platform. In particular, the end users
were asked to assess the system with respect to the requirements
of Section 2. We now summarise the feedback.

The users gave a positive feedback on how the proposed so-
lution addressed Requirement R1 on the integrated data access:
information from different sources is integrated and can be ac-
cessed through one ontology and visualised in the diagnostics
dashboard. The users provided also a very positive feedback about
the query formulation components of Requirement R2 and high-
lighted that these facilities may greatly simplify and accelerate
the process of query construction. In particular, by using the VQS
interface the users were able to specify even complex queries
from the query catalogue in a very intuitive way, which currently
requires extensive SQL know-how as well as in-depth knowledge
about the database schemata. Additionally, component sugges-
tions on refinements and/or generalisations of the terms used
in the query, additional terms and constraints, helped the users
in understanding the querying capabilities of the platform and
in constructing queries—which was highly valued by the users.
Likewise, we received good comments on the possibility to derive
implicit information using the logical reasoning—thereby satisfy-
ing Requirement R3. The hybrid stream-static data support defined
in Requirement R4 which is addressed by introducing STARQL
query framework was highly welcomed as an important feature
for realising predictive maintenance in future. Finally, though not
visible to end-users, Requirement R5 that demands for a DSMS
backend providing low latency answers to queries on high-velocity
live streams and high-volume static data sources is crucial for the
functionality of the Optique platform.
Conclusion. In this paper we presented OBSSDI, a promising
paradigm that extends classical OBDA for a direct and highly
efficient end-user access to streaming, historic, and static data.
We have also shown how OBSSDI could enhance such access in
Siemens in the context of turbine diagnostics. We derived five
requirements that an OBSSDI solution should fulfil in order to be
deployed in Siemens and showed that, while the previous research
and system development established the theoretical basis and
demonstrated viability of OBDA, a number of limitations have to be
solved before industrial deployment of such systems. Our OBSSDI
solution developed within the Optique project satisfies the five
Siemens requirements.

Our novel techniques behind the Optique OBSSDI system are
generic and can be applied in any scenario that requires integrated
and efficient semantic access to time-stamped and static data. We
see this work as an important step towards ontology based data
access systems of a new generation. Moreover, we believe that
our Siemens experience should be valuable for both theoretical

http://www.industry.siemens.com/services/global/en/portfolio/plant-data-services/cloud-for-industry/pages/default.aspx
http://www.industry.siemens.com/services/global/en/portfolio/plant-data-services/cloud-for-industry/pages/default.aspx
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and practical Semantic Web researchers since it opens a number
of avenues for future theoretical research and shows important
practical limitations of existing systems.
Future Work. We have observed that OWL 2 QL, the profile of
OWL 2 that is specifically tailored towards OBDA, is not sufficient
to capture important industrial domain knowledge. For example,
OWL 2 QL allows for axioms with existential quantification on the
right hand side, while it is often the case that for Siemens such
axioms are not natural and universal quantification is required. An
important future work would be to understand how ODBA can be
based on ontologies that are not OWL 2 QL and to develop practical
approximation algorithms for query answering in this context.
Another important observation was that diagnostic tasks required
by Siemens often require computation of aggregate values, such
as, averages of temperature values reported by sensors. Such com-
putation requires to extract from databases and transfer a lot of
sensor data which is then used only for aggregation, e.g., one often
has to transfer thousands of temperature values just to compute
one average value.Webelieve that it is important to enhanceOBDA
with a capability to push such aggregate computations down to
data sources and avoid expensive data transfer. This can already be
done by encoding aggregation in mappings, but we do not find it
satisfactory since this makes OBDA systems query dependent. We
expect a better way to enhance OBDA with aggregation capabili-
ties.

Regarding the query language, to reach 100% coverage of the
Siemens query catalogue we plan to further extend STARQL func-
tionality in order to support awider range of aggregate and analytic
functions. These functions will be implemented as UDFs in the
Exareme backend and will be incorporated to the STARQL query
language semantics. Furthermore, additional sequencing strate-
gies based on machine learning techniques are planned to be
implemented. These will enable the use of STARQL for predictive
diagnostics. In regard to back end optimisations, an initial line of
work has been presented in the literature [12]. A central objective
in cloud computing is to maintain the utilisation of the cloud high,
using only the resources that are really needed for the described
workload. Thus, our future work involves the adaptive adjustment
of ExaStream’s topology to meet the requirements of a varying
workload. We further intend to extend our optimiser, so that it
supports join reordering on the fly, whenever the rate of input
streams changes. This involves constantly monitoring the incom-
ing streams andmaking the appropriate changes on join orders and
the related index structures whenever beneficial. Regarding the
integration with the Siemens infrastructure, an important prac-
tical next step for us is to improve the diagnostics dashboards
by allowing for automatic report generation, that incorporates
marketing or business intelligence queries, e.g., ‘‘Return all gas
turbine of a particular product line sold after 2006’’.We also plan to
improve Optique’s integration with KNIME by organising STARQL
and SPARQL queries defining OBDA data sources in a tool-box
of KNIME connectors in a spirit of a query catalogue. Regarding
OptiqueVQS, our futurework is provenance computation for query
answers and computation of suggestions for query repairs, e.g., if
a query returns an empty answer set, then the users would like to
know why it is the case and how the query can be reformulated
to obtain answers. We also plan to increase the expressiveness of
OptiqueVQS gradually without compromising from the usability.
This includes simpler forms of negation, disjunction, and cycles as
well as ability to correlate multiple temporal-stream properties.
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