
Impact Analysis of Data Placement Strategies on Query Efforts in Distributed
RDF StoresI

Daniel Jankea,∗, Steffen Staaba,b,∗, Matthias Thimma,∗

aUniversität Koblenz-Landau, Institute for Web Science and Technologies, Universitätsstr. 1, 56070 Koblenz, Germany
bUniversity of Southampton, Web and Internet Science Group, Building 32, Highfield Campus, SO17 1BJ Southampton, United Kingdom

Abstract

In the last years, scalable RDF stores in the cloud have been developed, where graph data is distributed over compute
and storage nodes for scaling efforts of query processing and memory needs. One main challenge in these RDF stores
is the data placement strategy that can be formalized in terms of graph covers. These graph covers determine whether
(a) the triples distribution is well-balanced over all storage nodes (storage balance) (b) different query results may
be computed on several compute nodes in parallel (vertical parallelization) and (c) individual query results can be
produced only from triples assigned to few — ideally one — storage node (horizontal containment). We analyse
the impact of three most commonly used graph cover strategies in these terms and found out that balancing query
workload reduces the query execution time more than reducing data transfer over network. To this end, we present
our novel benchmark and open source evaluation platform Koral.

Keywords: Distributed RDF stores, graph partitioning, benchmark

1. Introduction

In the last years, the requirement for RDF stores that can
cope with several trillions of triples has emerged. For
instance, the number of Schema.org-based facts that are
extracted out of the Web have reached the size of three
trillions [2]. Another example is the European Bioinfor-
matics Institute (EMBL-EBI) that would like to convert
its datasets into RDF resulting in a graph consisting of
several trillions of triples. To date no such scalable RDF
store exists and the current EBI RDF Platform can han-
dle only 10 billion triples [3].

We pursue the development of a scalable RDF store in
the cloud, where graph data is distributed over compute
and storage nodes for scaling efforts of query processing
and memory needs. The main challenges to be investi-
gated for such development are: (i) strategies for data
placement over compute and storage nodes, (ii) strate-
gies for distributed query processing, and (iii) strategies
for handling failure of compute and storage nodes. In

IThis paper extends the 6 page workshop paper [1].
∗Corresponding author
Email addresses: danijank@uni-koblenz.de (Daniel Janke),

staab@uni-koblenz.de (Steffen Staab),
thimm@uni-koblenz.de (Matthias Thimm)

this paper, we focus on comparing the performance of
data placement strategies.

Strategies for data placement may be formalized in
terms of graph covers. Each compute and storage node
hosts a graph chunk. Each triple is assigned to (at least)
one graph chunk and the union of all graph chunks de-
fine a (possibly redundant) graph cover. When a query is
requested to an RDF store in the cloud, the query is dis-
tributed over the different compute and storage nodes.
Each node applies the query operators assigned to it on
its local data. If the query requires the combination of
data from different chunks, the required information has
to be transferred between compute nodes.

One graph cover strategy commonly used is the hash
cover that assigns triples to compute and storage nodes
according to the hash value of, e. g., their subject (e. g.,
used by Virtuoso Clustered Edition [4], YARS2 [5, 6],
Clustered TDB [7] and Trinity.RDF [8]). In order to
reduce the number of transferred intermediate results,
hierarchical hash has been proposed as an extension of
the hash cover strategy that computes the hash only on
IRI prefixes [9]. Another commonly used graph cover
strategy is the minimal edge-cut cover that assigns ver-
tices to similarly-sized partitions in a way that the num-
ber of edges connecting vertices assigned to different
partitions is minimised (e. g., used by [10–12]). Fur-

Preprint submitted to Elsevier December 11, 2017

thermore, the vertical cover strategy is inspired by re-
lational databases. It partitions the dataset by storing
all triples with the same property in one table. Finally,
these tables are then distributed among all compute and
storage nodes according to the hash on the property. It
is used by, e. g. HadoopRDF [13], Jena-HBase [14] and
[15]. In order to reduce the number of transferred inter-
mediate results, [11] proposed to replicate triples at the
border of the graph chunks. This idea is also used by
systems like VB-Partitioner [16] and D-SPARQ [17].

It is a commonly held belief that query completion is
optimized by approaches that emphasize local compu-
tation such as minimal edge-cut (cf. [11, 12, 16]). The
first major contribution of this paper is to challenge this
assumption by new experiments. Our results indicate
that contrary to commonly held beliefs, query answer-
ing with hash covers may outperform query answering
with, e.g., minimal edge-cut covers since the load on
the different machines is more balanced. Furthermore,
when replicating triples on several computers, the high
number of duplicate computations may overcome the
benefits of the reduced data transfer via network and
lead to a worse query performance.

We have performed our experiments with the aim
to understand interdependencies of the involved query
processing. Thus, we have devised new measures and
do not only compare graph cover strategies in terms of
query processing time, but in addition we investigate the
following dimensions:

• Load time describes the time it takes to create a
graph cover. This is an indicator how well a graph
cover strategy can scale by horizontal scaling of
the cloud.

• Storage balance describes to which extent graph
chunks are of similar size. This is an indicator that
memory needs can be met with increasing data size
by horizontal scaling of the cloud.

• Horizontal containment describes to which extent
computation of individual query results is local to
one (or few) graph chunk(s). This is an indica-
tor that query processing is (to some extent) robust
when the cloud is scaled horizontally.

• Vertical parallelization describes to which extent
different query results may be computed in parallel
on different compute nodes. This is an indicator
that query processing can scale with growing result
set sizes by horizontal scaling of the cloud.

Using these measurements, we derive the second im-
portant contribution of this paper. We discovered from
the analysis of query processing using different graph
cover strategies that vertical parallelization (i.e. a well-

distributed workload) may be more important than hor-
izontal containment (i.e. minimal data transport) for ef-
ficient query processing — even in a commodity net-
work environment (1 GB/s). Furthermore, our analysis
revealed that previous experiments like [11], [16] and
[12] suffered from a setting with highly inefficient meth-
ods for data transfer (i.e. based on the Hadoop/HDFS
infrastructure) (see [18]).

In order to determine to which extent graph cover
strategies lead to efficient query answering, they have
to be implemented and evaluated in distributed RDF
stores. For instance, [8] and [12] evaluate various RDF
stores that use different graph cover strategies, but these
evaluations compared the RDF stores as wholes. Thus,
their results also reflect the effects of, e. g., the differ-
ent indexing strategies and persistence strategies (i. e.,
main memory vs. hard disk) used by the different stores.
In order to focus on the effects of the different graph
cover strategies, other evaluations have used the same
system to measure the execution time ([16] and [19]).
These systems use technologies like Hadoop or HDFS
that cause an overhead for data transfer. To avoid the
bias of this overhead, the third important contribution
of this paper is the flexible open source platform Koral.
It executes queries on arbitrary graph covers and trans-
fers the intermediate results within the network.

In short, the contributions of this paper are:
1. An explanation why previous evaluations con-

cluded that the amount of data transfer caused by a
graph cover strategy is crucial for the query execu-
tion effort (Section 6).

2. An analysis indicating that (i) hash covers outper-
form minimal edge-cut covers and vertical covers,
(ii) vertical parallelization is more important than
horizontal containment and (iii) triple replication
reduces query performance due to a high number
of duplicate computations (Section 5).

3. A benchmark methodology and its implementation
that allows for a detailed understanding of the in-
terdependencies of the graph cover strategy and the
query processing (Section 4).

2. Formalisation of Graph Cover Strategies

In order to illustrate different graph cover strategies, we
use Figure 1 as our running example. The graph rep-
resents the knows relationship between two employees
of the university institute WeST and one employee of
the Leibniz institute GESIS. Additionally, the graph in-
cludes the ownership of the dog Bello. The terms r:, e:,
w:, g:, and f: abbreviate IRI prefixes.

2

g:Dog g:Gesis

g:bello g:wanja

w:daniel w:martin

w:WeST"Daniel" "Martin"

r :type e:employs

e:employsf :givenname

e:ownedBy

f :knows
f :knows

f :knows

f :givenname

f :givenname

"Wanja"

Figure 1: The example graph describing the knows relationships be-
tween some employees of WeST and Gesis.

To formalize the problem, we define RDF graphs like
in [20]. Assume a signature σ = (I, B, L), where I, B
and L are the pairwise disjoint infinite sets of IRIs, blank
nodes and literals, respectively. The union of these sets
is abbreviated as IBL.

Definition 1. The set of all possible RDF triples T for
signature σ is defined by T = (I ∪ B) × I × IBL. An
RDF graph G or simply graph is defined as G ⊆ T. The
set of all vertices contained in graph G is defined by
VG = {v|∃s, p, o : (v, p, o) ∈ G ∨ (s, p, v) ∈ G}.

(s, p, o) ∈ T is also called a triple with subject s, prop-
erty p and object o. To simplify later definitions, the
functions subj(t), obj(t) and prop(t) return the subject,
object or property of triple t, respectively. Likewise, we
use subj(T), obj(T) and prop(T) to refer to the set of
subjects, objects and properties in the triple set T .

In the context of distributed RDF stores, the triples
of a graph have to be assigned to different compute and
storage nodes (in the following, we refer to them more
briefly as compute nodes). The finite set of compute
nodes is denoted as C in the rest of this paper.

Definition 2. Let G denote an RDF graph. Then a graph
cover is a function cover : G → 2C , that assigns each
triple of a graph G to at least one compute node.

Definition 3. The function chunk returns the triples as-
signed to a specific compute node by a graph cover
(graph chunks). It is defined as

chunkcover: C → 2G

chunkcover(c):= {t|c ∈ cover(t)} .

For the description of the n-hop replication two addi-
tional definitions are required.

Definition 4. A graph cover of RDF graph G is subject-
complete, if ∀c ∈ C : ∀ (s, p, o) ∈ chunkcover(c) :
∀ (s, p′, o′) ∈ G : (s, p′, o′) ∈ chunkcover(c).

Example 1: The graph cover shown in Figure 2 is
subject-complete, since all triples with the same
subject are located in the graph chunk of c1 or
c2. A graph cover which is not subject-complete
is shown in Figure 4. In this graph cover the
triple (g:wanja, f:givenname, "Wanja") was assigned to c1
whereas the triple (g:wanja, f:knows,w:daniel) was as-
signed to c2.

Definition 5. A path P is a sequence t0, t1, ..., tn, if ∀i ∈
[0, n] : ti ∈ G ∧ ∀ j ∈ [0, n], j , i : t j , ti and ∀i ∈
[1, n] : ti−1 = (si−1, pi−1, si) ∧ ti = (si, pi, oi). The length
of path P is n + 1.

Example 2: In the example Graph shown in Figure 1,
(w:daniel, f:knows,w:martin) , (w:martin, f:knows, g:wanja)
is a path of length 2.

Beside the graph cover strategies that are described in
the following, there exist other approaches such as the
ones used by Partout [21], COSI [22], [23], WARP [24],
VB-Partitioner [16] and [25] (see Section 6 for more de-
tails). Since these graph cover strategies are only used
by a single system, we focussed our evaluation on the
graph cover strategies that are used most frequently.

Hash Cover
A hash cover assigns triples to chunks according to the
hash value computed on their subjects modulo the num-
ber of compute nodes1. Thus, all triples with the same
subject are located in the same graph chunk. This graph
cover strategy is used, for instance, by Virtuoso Clus-
tered Edition [4], YARS2 [5, 6], ZipG [26], Clustered
TDB [7] and Trinity.RDF [8].

g:Gesis

g:wanja

w:daniel w:martin

"Martin"

e:employs

f :knows f :knows

f :givenname

f :givenname

"Wanja" g:Dog

g:bello

w:daniel

w:martin

w:WeST

"Daniel"

r :type

e:employs

f :givenname

f :knows

c1 c2

g:wanja

e:ownedBy

Figure 2: An example hash cover of the example graph.

1Beside the subject, the property or the object are used to compute
the hash value, for instance, see [16], but the subject-based hash is
chosen most frequently.

3

Example 3: The following hash function produces the
graph cover shown in Figure 2.

∀r ∈ {g:Gesis, g:wanja,w:martin}: hash(r):= 1
∀r ∈ {g:bello,w:WeST,w:daniel}: hash(r):= 2 .

The advantages of the hash cover are that it is easy
to compute and due to a relatively random assignment
of triples to compute nodes the resulting graph chunks
will have similar sizes. The disadvantages are that it
may lead to a high number of exchanged intermediate
results if a query matches with long paths. Since all hash
covers are subject-contained, this graph cover strategy
might be a good choice if the expected queries will only
match with paths of a short length (ideally 1).

Hierarchical Hash Cover.
Inspired by the observations that IRIs have a path
hierarchy and IRIs with a common hierarchy pre-
fix are often queried together, SHAPE [9] uses
an improved hashing strategy to reduce the inter-
chunk queries. First, it extracts the path hier-
archies of all IRIs. For instance, the extracted
path hierarchy of "http://www.w3.org/1999/02/
22-rdf-syntax-ns#type" is "org/w3/www/1999/
02/22-rdf-syntax-ns/type". Then, for each level
in the path hierarchy (e. g., "org", "org/w3", "org/w3/
www", ...) it computes the percentage of triples sharing
a hierarchy prefix. If the percentage exceeds an empir-
ically defined threshold and the number of prefixes is
equal or greater to the number of compute nodes at any
hierarchy level, then these prefixes are used for the hash
cover.

Example 4: Assume the hash is computed on the pre-
fixes gesis and west of the subject IRIs in the example
graph. If the hash function returns 1 for gesis and 2 for
west the resulting hierarchical hash cover is shown in
Figure 3.

In comparison to the hash cover the creation of a hi-
erarchical hash cover requires a higher computational
effort to determine the IRI prefixes on which the hash is
computed. For queries that match with paths in which
the subjects and objects have the same IRI prefix the
number of exchanged intermediate results may be re-
duced. This reduction might come at the cost of a more
imbalanced query workload since only a few chunks
will contain these paths. Thus, the use of the hierar-
chical hash cover might be beneficial (i) if the network
connecting the compute nodes is slow or (ii) if other
functionality such as prefix matching benefits from the
hierarchical hash cover.

Minimal Edge-Cut Cover
The minimal edge-cut cover is a vertex-centred parti-
tioning which tries to solve the k-way graph partitioning
problem as described in [27]. It aims at minimizing the
number of edges between vertices of different partitions
under the condition that each partition contains approx-
imately |VG |

k many vertices. Details about the compu-
tation of k-way graph partitioning and the targeted ap-
proximation can, e.g., be found in [27]. RDF stores like
EAGRE [12], [28] and [11] convert the outcome of the
minimal edge-cut algorithm, i.e., a partitioning of VG,
into a graph cover of G by assigning each triple to the
compute node to which its subject has been assigned.

Example 5: A minimal edge-cut algorithm might assign
the resources g:Dog, g:Gesis, g:bello, g:wanja and "Wanja"
to compute node c1 and all other resources to compute
node c2. For our specific running example the result of
the minimal edge-cut cover strategy is identical to the
results of the hierarchical hash cover strategy depicted
in Figure 3.

In this example there exist two edges connecting ver-
tices assigned to different chunks. One is the f:knows
edge starting at g:wanja and ending at w:daniel. The
other is the f:knows edge starting at w:martin and ending
at g:wanja. Since the subject g:wanja of the first triple is
assigned to c1, this triple is assigned to c1. The subject
of the second triple w:martin is assigned to c2. There-
fore, this triple is assigned to c2.

Since the minimal edge-cut cover considers the graph
structure, the creation of the graph cover requires a
high computational effort. The advantage of consider-
ing the graph structure might be a reduced number of
exchanged intermediate results. This would make the
minimal edge-cut cover a good choice if the network
connection between compute nodes is slow.

g:Dog

g:Gesis

g:bello

g:wanja

w:daniel

r :type

e:employs

e:ownedBy

f :knows f :givenname

"Wanja"

g:wanja

w:daniel

w:martin
w:WeST

"Daniel"

"Martin"

e:employs

f :givenname

f :knows

f :knows

f :givenname

c1 c2

e:employs

Figure 3: An example hierarchical hash cover which is also a minimal
edge-cut cover of the example graph.

4

g:Gesisg:wanja

"Martin"

e:employs

f :knows

f :knowsf :givenname

f :givenname

"Wanja"

g:Dogg:bello

w:daniel

w:martin
w:WeST

"Daniel"

r :type

e:employs

f :givenname

e:ownedBy

c1 c2

g:wanja

w:daniel

w:martin

f :knows
e:employs

Figure 4: An example vertical cover of the example graph.

Vertical Cover
The basic idea of the vertical cover originated in [29] to
store RDF data in a relational database so that for each
property a table is created in which all triples with this
property are stored. In the context of distributed RDF
stores, approaches like HadoopRDF [13], Jena-HBase
[14] and [15] distribute the individual tables among the
compute nodes by the hash of their property modulo the
number of compute nodes.
Example 6: The following hash function produces the
graph cover shown in Figure 4.

∀r ∈ {f:givenname, x:employs}: hash(r):= 1
∀r ∈ {f:knows, r:type, e:ownedBy}: hash(r):= 2 .

The vertical cover assigns triples to chunks based on
the hash of their properties. The advantage is that it is
easy to compute but a query that matches with paths of
length l will only match with triples on at most l com-
pute nodes. Thus, this graph cover strategy is likely to
result in an imbalanced workload and a high number of
exchanged intermediate results.

nnn-Hop Replication
Whenever a query combines data from different graph
chunks, intermediate results need to be exchanged be-
tween different compute nodes. To reduce the num-
ber of exchanged intermediate results for a subject-
complete graph cover of graph G, the n-hop replication
strategy extends each of its chunks chi by replicating all
triples contained in some path of length ≤ n in G start-
ing at some subject or object occurring in chi. This way
all queries that match with paths of length ≤ n could
be processed without exchanging intermediate results.
The n-hop replication is used by systems like [11], VB-
Partitioner [16] and D-SPARQ [17].

g:Gesis

g:wanja

w:daniel w:martin

"Martin"

e:employs

f :knows f :knows

f :givenname

f :givenname

"Wanja"

g:Dogg:bello

w:daniel

w:martin

w:WeST"Daniel"

r :type

e:employsf :givenname

f :knows

c1 c2

e:ownedBy

"Daniel"

f :givenname

f :knows g:wanja

"Martin"

f :givenname

"Wanja"

f :givenname

Figure 5: The 2-hop extension of the hash cover in Figure 2.

Example 7: Applying the 2-hop replication ex-
tension on the hash cover in Figure 2 results
in the 2-hop hash cover shown in Figure 5. In
this cover a query could match with the path
(g:bello, e:ownedBy, g:wanja) , (g:wanja, f:knows,w:daniel)
on compute node c2 without the need to exchange inter-
mediate results.

The n-hop replication may reduce the number of
transferred intermediate results at the cost of replicating
triples. This replication will increase the effort to cre-
ate the graph cover and increase the size of the graph
chunks. Furthermore, the replication might cause a
higher computational effort during the query processing
since the replicated triples might lead to duplicate inter-
mediate results. Thus, using the n-hop replication might
be beneficial if the network connecting the intermediate
results is slow and the number of replicated triples is
low.

3. Formalisation of Query Execution Strategy

For the impact analysis done in this paper we have ex-
tended a state-of-the-art asynchronous execution mech-
anisms such as realised in TriAD [10]. The exten-
sions render the query execution mechanism indepen-
dent from the underlying graph cover. In order to for-
malise our query execution mechanism in Section 3.2
we first introduce the required formal definitions of a
small subset of the standard query language SPARQL
in the next section. This section contains only common
definitions to provide the notions for Section 3.2. The
formal proof of the completeness and correctness of our
execution strategy can be found in [30].

5

3.1. SPARQL
We define the used SPARQL core as done in [31],

[32] and [33]. For this definition the infinite set of vari-
ables V that is disjoint from IBL is required. In order
to distinguish the syntax of variables from other RDF
terms, they are prefixed with ?. The syntax of SPARQL
is defined as follows.

Definition 6. A triple pattern is a member of the set
TP = (I ∪ L ∪ V) × (I ∪ V) × (I ∪ L ∪ V).

Definition 7. A basic graph pattern (BGP) is a
1. triple pattern.
2. a conjunction B1.B2 of two BGPs B1 and B2.

Definition 8. A SELECT query is defined as
SELECT W WHERE {B} with W ⊆ V and B a BGP.

Example 8: The following SELECT query returns the
names of all persons known by employees of WeST that
own the dog Bello. It contains a basic graph pattern
that concatenates four triple patterns. In the following
examples ?v1 <f:knows> ?v2 is abbreviated as tp1, ?v2
<f:givenname> ?v3 as tp2 and so on. All following ex-
amples in this section will refer to this query.

SELECT ?v3 WHERE {
?v1 <f:knows> ?v2.
?v2 <f:givenname> ?v3.
<w:WeST> <e:employs> ?v1.
<gs:bello> <e:ownedBy> ?v2

}

Before the semantics of a SPARQL query can be de-
fined, some additional definitions are required. In the
following Q represents the set of all SPARQL queries.

Definition 9. The function var : Q → V returns the set
of variables occurring in a SPARQL query. It is defined
as:

1. var(tp) is the set of variables occurring in triple
pattern tp.

2. var(B1.B2) := var(B1)∪var(B2) for the conjunction
of the two BGPs B1 and B2.

3. var(SELECT W WHERE {B}) := W ∩ var(B) for W ⊆
V and B a BGP.

Definition 10. A variable binding is a partial function
µ : V 7→ IBL. The set of all variable bindings is O.

The abbreviated notation µ(t) with t ∈ TP means that
the variables in t are substituted according to µ.
Example 9: The following three partial functions are
variable bindings, that assign values to some variables.
µ1 would be an intermediate result produced by the

first triple pattern of the example query in example 8
whereas µ2 and µ3 would be produced by the second
triple pattern.

µ1 = {(?v1,w:martin) , (?v2, g:wanja)}
µ2 = {(?v2, g:wanja) , (?v3, "Wanja")}
µ3 = {(?v2,w:martin) , (?v3, "Martin")}

Definition 11. Two variable bindings µi and µ j are
compatible, denoted by µi ∼ µ j, if ∀?x ∈ dom(µi) ∩
dom(µ j) : µi(?x) = µ j(?x).2

Example 10: The variable bindings µ1 and µ2 from ex-
ample 9 are compatible since in both variable bindings
g:wanja is assigned to ?v2 which is the only variable oc-
curring in the domains of both variable bindings. µ1 and
µ3 as well as µ2 and µ3 are not compatible because they
assign different values to common variables.

Definition 12. The join of two sets of variable bindings
Ω1 and Ω2 is defined as
Ω1 on Ω2 = {µ1 ∪ µ2|µ1 ∈ Ω1 ∧ µ2 ∈ Ω2 ∧ µ1 ∼ µ2}.
The variables contained in dom(µ1) ∩ dom(µ2) are
called join variables.

Example 11: The join of the two variable bind-
ings sets {µ1} and {µ2, µ3} from example 9 pro-
duces a result set only containing the variable bind-
ing {(?v1,w:martin) , (?v2, g:wanja) , (?v3, "Wanja")} be-
cause only µ1 and µ2 are compatible.
[32] and [33] define the semantics of a SPARQL query
as follows:

Definition 13. The evaluation of a SPARQL query Q
over an RDF Graph G, denoted by JQKG, is defined re-
cursively as follows:

1. If tp ∈ TP then JtpKG =

{µ| dom(µ) = var(tp) ∧ µ (tp) ∈ G}.
2. If B1 and B2 are BGPs, then JB1.B2KG = JB1KG on

JB2KG.
3. If W ⊆ V and B is a BGP, then

JSELECT W WHERE {B}KG = project(W, JBKG) ={
µ|W |µ ∈ JBKG

}
.3

3.2. Query Execution Strategy
In order to compare arbitrary graph cover strategies, a

distributed query execution strategy is required that can
also deal with replicated triples. For its formal defini-
tion we first define query execution trees. In order to in-
crease the comprehensibility, we first define our graph-
cover-independent distributed query execution strategy

2dom(µ) refers to the set of variables of this binding.
3µ|W means that the domain of µ is restricted to the variables in W.

6

without taking care of replicated triples. Thereafter, we
extend this query execution strategy to benefit of triple
replication. Finally, we discuss the limitations of our
query execution strategy.

Query Execution Trees
The execution of a query requires the translation of a
SPARQL query into a query execution tree. This tree
defines the individual operations and their execution se-
quence. Thereby, each node of the query execution tree
consists of three components: (i) the name of the op-
eration to be executed, (ii) the set of variables that are
bound in the resulting variable bindings and (iii) the set
of child operations.

Definition 14. Let Lnode be the set of node labels and
Υ = Lnode × 2V × 2Υ the set of all query execution trees,
then a query execution tree of a query Q, denoted as
〈〈Q〉〉, is defined recursively as follows:

1. If tp ∈ TP then 〈〈tp〉〉 = (tp, var(tp),∅).
2. If B1 and B2 are BGPs, then 〈〈B1.B2〉〉 =

(join, var(B1) ∪ var(B2), {〈〈B1〉〉, 〈〈B2〉〉}).
3. If W ⊆ V and B is a BGP, then
〈〈SELECT W WHERE {B}〉〉 = (project,W, 〈〈B〉〉).

Definition 15. The variables common for all child trees
of a query execution tree are defined as follows.

cVars : Υ→ 2V

cVars((l,W,Children)) :=
⋂

(l′,W′,Children′)∈Children

W ′ .

Example 12: Figure 10b shows a graphical representa-
tion of one query execution tree for the example query
from example 8. The following query execution tree
represents the first join in its mathematical representa-
tion. It has the two child trees

(
tp, {?v1, ?v2} ,∅

)
and(

tp, {?v2, ?v3} ,∅
)
. Their common variables are {?v2}.(

join, {?v1, ?v2, ?v3} , {(
tp, {?v1, ?v2} ,∅

)
,(

tp, {?v2, ?v3} ,∅
)

})

Distributed Query Execution Strategy Ignoring
Triple Replication
Our distributed query execution strategy aims to bene-
fit from the vertical parallelization and horizontal con-
tainment capabilities provided by the underlying graph
cover. Therefore, query results that can be produced

by triples contained in only one graph chunk should be
computed on the compute node storing the chunk with-
out causing additional data transfer. In order to approx-
imate this goal, each compute node executes all opera-
tions of the query execution tree. Whenever a query op-
eration produces an intermediate variable binding, it has
to be decided whether the succeeding join can be pro-
cessed locally or on a different compute node. This de-
cision is defined by the join responsibility of a resource
which is assigned to a join variable of the succeeding
join.

Definition 16. The join responsibility of a resource is a
function jResp : IBL→ C that assigns each resource to
a compute node.

In order to benefit from the horizontal containment of
a graph chunk, the actual join responsibility assignment
is based on the occurrence of resources in the different
graph chunks. A resource r is assigned to the compute
node who stores the graph chunk containing r at the sub-
ject position most frequently. If r does not occur at the
subject position, the occurrence at the object and predi-
cate position defines its join responsibility.

Example 13: Assume the example hash cover from
Figure 2. The join responsibilities for the different
resources are:

∀r ∈ {g:Gesis, g:wanja,w:martin, "Wanja", "Martin", f:knows,
f:givenname}: jResp(r) := c1
∀r ∈ {g:bello,w:WeST,w:daniel, r:type, e:employs, g:Dog,

e:ownedBy, "Daniel"}: jResp(r) := c2 .

Since a join operation may consist of more than one
join variable, one of these variables needs to be se-
lected deterministically in order to determine the com-
pute node responsible for the join processing. There-
fore, we assume an arbitrary but fixed strict total order
<V is defined on V (e.g., a lexicographic order on the
variable names). With its help we can extract the least
variable out of the set of all join variables.

In order to simplify the definition of the distributed
query execution strategy, we define a function that ex-
tracts from all intermediate results produced by a query
operation on a compute node the set of all variable bind-
ings that should be transferred to a dedicated compute
node c. This decision is based on the join responsibil-
ity of the resource bound to the join variable but there
exists two corner cases: (i) empty variable bindings are
transferred to all compute nodes and (ii) if the join is
a Cartesian product (i.e., no join variable exists), then
the variable binding is sent to the first compute node.
Therefore, we assume an arbitrary but fixed strict total

7

order <C is defined on C (e.g., a lexicographic order on
the IP addresses of the compute nodes).

Definition 17. Let <S be a strict total order defined on
a set S , then the minimum is defined as follows.

min<S : 2S → S

min<S (Ŝ) := s, iff Ŝ , ∅ ∧ s ∈ Ŝ

∧ ∀s′ ∈ Ŝ : s′ , s⇒ s < s′ .

Definition 18. The route function extracts all variable
bindings from a set of variable bindings Ω̂ that will be
processed on a compute node c. For an arbitrary but
fixed join responsibility function jResp, it is defined as
follows.

route : C × Υ × O → O

route(c, qet, Ω̂) :=
{
µ ∈ Ω̂

∣∣∣µ = ∅

∨
(
cVars(qet) = ∅ ∧ c = min<C (C)

)
∨ (cVars(qet) , ∅

∧ jResp(µ(min<V (cVars(qet)))) = c
)}

.

Example 14: If we execute the triple pattern ?v1
<f:knows> ?v2 from the query in example 8 on com-
pute node c1 of the example hash cover in Figure 2, the
variable binding µ1 = {(?v1, g:wanja), (?v2,w:daniel)}
is produced as shown in Figure 6. The succeeding
join operation will join on variable ?v2. µ1 maps ?v2
on the IRI w:daniel. The join responsibility for this
IRI was assigned to jResp(w:daniel) = c2. Therefore,
route(c2, 〈〈tp1.tp2〉〉, {µ1}) = {µ1} will identify µ1 to be
transferred to compute node c2.

The triple pattern ?v2 <f:givenname>
?v3 will create the variable binding µ2 =

{(?v2,w:daniel), (?v3, "Daniel")} on compute node
c2. The succeeding join operation will join on variable
?v2. µ2 maps this variable on the same IRI as µ1. Thus,
route(c2, 〈〈tp1.tp2〉〉, {µ2}) = {µ2} will identify µ2 to be
joined on the same compute node c2 on which it was

c1

c2

on

on

µ1 = {(?v1, g:wanja), (?v2,w:daniel)}

µ2 = {(?v2,w:daniel), (?v3, "Daniel")}

Jtp1K
c1
cover

Jtp2K
c1
cover

Jtp1K
c2
cover

Jtp2K
c2
cover

Figure 6: An illustration of the distributed join.

produced. Since now, both compatible mapping µ1 and
µ2 are assigned to the same join operation on the same
compute node, they can be joined.

Definition 19. For an arbitrary but fixed jResp the eval-
uation of a SPARQL query Q over a graph cover called
cover on a computer c, denoted by JQKc

cover, is defined
recursively as follows:

1. If tp ∈ TP then JtpKc
cover =

{µ| dom(µ) = var(tp) ∧ µ(tp) ∈ chunkcover(c)}.
2. If B1 and B2 are BGPs, then

JB1.B2Kc
cover =

(⋃
c′∈C

route(c, 〈〈B1.B2〉〉, JB1Kc′
cover)

)
on(⋃

c′∈C
route(c, 〈〈B1.B2〉〉, JB2Kc′

cover)
)
.

3. If W ⊆ V and B is a BGP,
then JSELECT W WHERE {B}Kc

cover =

project(W, JBKc
cover) =

{
µ|W |µ ∈ JBKc

cover
}
.

Definition 20. The distributed evaluation of a SPARQL
query Q over an arbitrary graph cover called cover that
assigns triples of an arbitrary RDF graph G to compute
nodes C, denoted by JQKcover, is defined as JQKcover :=⋃
c∈C

JQKc
cover.

With the help of these definitions, it is possible to
proof that the defined distributed execution mechanism
is semantically correct and complete.

Theorem 1. The centralized evaluation of query Q pro-
duces exact the same results as its distributed evalua-
tion, i.e.

JQKcover = JQKG .

The proof of Theorem 1 is shown in [30].

Distributed Query Execution Strategy With Triple
Replication
The distributed query execution strategy described in
the previous section has the disadvantage that in the
presence of replicated triples the query would match
with each replica, transfer them all to one compute node
and then computes joins for each of them. Thus, triple
replication would lead to a increased number of trans-
ferred intermediate results and a higher computational
effort. In order to benefit from triple replication, sys-
tems like [9] try to avoid the transfer of duplicate inter-
mediate results by using the replicated triple to increase
the amount of intermediate results that can be computed
locally on the individual compute nodes.

In order to benefit of triple replication in the same
way as systems like [9] do, we extend our distributed

8

g:Gesis

g:wanja

w:daniel w:martin

"Martin"

e:employs {c1}

f :knows {c1, c2}

f :givenname

"Wanja"
g:Dogg:bello

w:daniel

w:martin

w:WeST

"Daniel"

r :type {c2}

e:employs {c2}

c1 c2

e:ownedBy {c2}

"Daniel"

f :givenname {c1, c2}

g:wanja

"Martin""Wanja"

f :givenname {c1, c2}
{c1, c2}

f :givenname
{c1, c2}

f :knows {c1, c2}

Figure 7: The 2-hop replication extension of the hash cover in Figure 5
with annotated compute nodes.

query execution strategy. This extension keeps track on
which compute nodes a produced intermediate result is
already known. Only if the compute node on which it
should be processed next does not know it already, it is
transferred to it. In order to do so, we annotate each
triple with the compute nodes to which it was assigned
during the creation of the graph cover.

Example 15: Figure 7 shows the 2-hop replication ex-
tension of a hash cover from Figure 5. The information
to which compute nodes each triple was assigned to
is annotated behind the edge labels. In the following
we will use this cover to explain how the extension
of the query execution mechanism works. Since the
occurrences of the resources in the different chunks
have changed, the new join responsibilities are:

∀r ∈ {g:Gesis, g:wanja, "Wanja", "Martin", "Daniel", f:knows,
f:givenname}: jResp(r) := c1
∀r ∈ {g:bello,w:WeST,w:daniel,w:martin, r:type, e:employs,

g:Dog, e:ownedBy}: jResp(r) := c2 .

When matching a triple pattern with these annotated
triples, the resulting variable binding can be extended
by the set of compute nodes to which the original triple
was assigned to. By doing so, the resulting localized
variable binding – in the following named as µl – know
on which compute nodes they could be created.

Definition 21. A localized variable binding is a tuple
(µ,C′) with the set of compute nodes C′ ⊆ C on which
the variable binding µ is known. The set of localized
variable bindings denoted as O′.

Example 16: When finding matches for the triple pat-
tern tp1 = ?v1 <f:kknows> ?v2 from the exam-
ple query in example 8 with the graph chunk stored
on compute node c2 the localized variable binding
µl

1 = ({(?v1,w:martin), (?v2, g:wanja)}, {c1, c2}) is cre-
ated. Since the underlying triple was assigned to both
compute nodes, also µl

1 was created on both compute
nodes.

The triple pattern tpe = <w:WeST> <e:emplys> ?v1
create the localized variable binding µl

2 =

({(?v1,w:martin)}, {c2}) will be created on compute
node c2. Since the underlying triple was only assigned
to compute node c2, µl

2 is only known by c2.

In order to join two localized variable binding, we
extend definition 12. A variable binding that is created
by joining two localized variable bindings µl

1 and µl
2 will

be created and known on all compute nodes that know
µl

1 and µl
2.

Definition 22. The join of two sets of localized variable
bindings Ω′1 and Ω′2 is defined as

Ω′1 on Ω′2 =
{(
µ1 ∪ µ2,C′1 ∩C′2

)
|
(
µ1,C′1

)
∈ Ω′1

∧
(
µ2,C′2

)
∈ Ω′2 ∧ µ1 ∼ µ2

}
.

Example 17: The join of µl
1 and µl

2 from the previous
example will result in the localized variable binding
µl

3 = ({(?v1,w:martin), (?v2, g:wanja)}, {c2}) since µl
2 was

only known on compute node c2.

Crucial for reducing the number of transferred inter-
mediate results is the decision whether a localized vari-
able binding should be transferred or not. This decision
is defined in the route′ function in definition 23. Three
different cases can be distinguished: (i) an empty map-
ping should be transferred, (ii) the following join oper-
ation has no join variable, i.e., it is a Cartesian prod-
uct, or (iii) the following join operation is a join on at
least one join variable. In the first case the empty vari-
able binding needs to be transferred to all compute node.
Thus, after transferring it, it will be known by all com-
pute nodes. In order to prevent sending duplicates of
the empty variable binding, only the first compute node
knowing it will send it.

In case of a Cartesian product, all variable bindings
need to be transferred to the first computer who will
then process them. After sending the localized variable
binding, only the receiving compute node will know it.
In order to prevent the transfer of duplicates, only the
first compute node knowing it will send it. One special
case is, when the compute node to which the variable
binding should be transferred already knows it. In this

9

case, the variable binding will not be transferred over
network.

In case of a join operation with at least one join vari-
able, it is checked first, whether the compute node re-
sponsible for performing the join already knows the
variable binding or not. If the compute node does not
know it, it is transferred by the first compute node know-
ing it. As a consequence only the compute node respon-
sible for the join will know it. If the compute know
knows the variable binding already, then every com-
pute node who knows the variable binding will forward
it only to the succeeding local join operation. Thus,
query processing can benefit from replicated triples,
since joins can be processed on the local replicas of
triples.

Definition 23. The replication-aware route function ex-
tracts all variable bindings from a set of localized vari-
able bindings Ω̂′ produced on compute node cs that will
be processed on a compute node ct. For an arbitrary but
fixed join responsibility function jResp, it is defined as
follows.

route′ : C ×C × Υ × O′ → O′

route′(cs, ct, qet, Ω̂′) :=
{(
µ,C′r

)∣∣∣∃ (
µ,C′

)
∈ Ω̂′ :(

µ = ∅ ∧ cs = min<C (C′) ∧C′r = C
)

∨
(
cVars(qet) = ∅ ∧ ct = min<C (C)
∧ ct < C′ ∧ cs = min<C (C′)
∧C′r = {ct}

)
∨

(
cVars(qet) = ∅ ∧ ct = min<C (C)
∧ct ∈ C′ ∧ cs = ct ∧C′r = {ct}

)
∨

(
cVars(qet) , ∅ ∧ cs = min<C (C′)
∧ jResp(µ(min<V (cVars(qet)))) = ct

∧ ct < C′ ∧C′r = {ct}
)

∨ (cVars(qet) , ∅ ∧ cs = ct

∧ jResp(µ(min<V (cVars(qet)))) = cu

∧ cu ∈ C′ ∧C′r = C′
)}

.

Example 18: When executing the the example query
from example 8 on the 2-hop hash cover from Fig-
ure 7, the first triple pattern will create the localized
variable binding µl

1 on both compute nodes as shown
in Figure 8. The following join on ?v2. Based on
the join responsibility of µl

1(?v2) = g:wanja com-
pute node c1 would be responsible for joining it.
Since c1 knows the variable binding already, route′

determines both µl
1 to be transferred to the local

join operations, i.e., route′(c1, c1, 〈〈tp1.tp2〉〉, {µ
l
1}) =

c1

on
Jtp1K

′ c1
cover

µl
1 = ({(?v1,w:martin), (?v2, g:wanja)}, {c1, c2})

Jtp2K
′ c1
cover

µl
2 = ({(?v2, g:wanja), (?v3, "Wanja")}, {c1, c2})

c2

on
Jtp1K

′ c2
cover

µl
1 = ({(?v1,w:martin), (?v2, g:wanja)}, {c1, c2})

Jtp2K
′ c2
cover

µl
2 = ({(?v2, g:wanja), (?v3, "Wanja")}, {c1, c2})

Figure 8: Forwarding of duplicate localized variable bindings at the
presence of replicated triples.

route′(c2, c2, 〈〈tp1.tp2〉〉, {µ
l
1}) = {µl

1}. The second triple
pattern produces the localized variable binding µl

2 on
both compute nodes. Also this variable binding will be
forwarded to the local succeeding join operations.

Both join operations will compute the resulting lo-
calized variable binding µl

3 that is also known by both
compute nodes. As shown in Figure 9 this variable bind-
ing is forwarded to the succeeding local join operations.
The third triple pattern will produce the localized vari-
able binding µl

4 only on compute node c2. Since the join
responsibility of w:martin is c2 and µl

4 is already known
on c2 it is forwarded to the succeeding join operation on
c2.

When joining µl
3 and µl

4 on c2 the re-
sulting localized variable binding µl

5 =

({(?v1,w:martin) , (?v2, g:wanja) , (?v3, "Wanja")} , {c2})
is only known on compute node c2, since µl

4 is only
known on c2. The succeeding join operation would
have the join variable ?v2. µl

5 assigns g:wanja to
this variable. Since compute node c1 is responsible

on

µl
3 = ({(?v1,w:martin), (?v2, g:wanja), (?v3, "Wanja")},

on
µl

4 = ({(?v1,w:martin)}, {c2})

on {c1, c2})

µl
3 = ({(?v1,w:martin), (?v2, g:wanja), (?v3, "Wanja")},

{c1, c2})on

c2

c1

Jtp3K
′ c1
cover

Jtp3K
′ c2
cover

Figure 9: Forwarding of unique localized variable bindings at the
presence of replicated triples.

10

for joining it and c1 does not know the localized
variable binding yet, it is transferred to c1, i.e.
route′(c2, c1, 〈〈〈〈〈〈tp1.tp2〉〉.tp3〉〉.tp4〉〉, {µ

l
5}) = {µl

5}.

With the help of the previous definitions the replica-
tion aware evaluation of a SPARQL query can be de-
fined.

Definition 24. For an arbitrary but fixed jResp the
replication-aware evaluation of a SPARQL query Q over
a graph cover called cover on a computer c, denoted by
JQK′ ccover, is defined recursively as follows:

1. If tp ∈ TP then JtpK′ ccover = {(µ, cover(µ(tp)))|
dom(µ) = var(tp) ∧ µ(tp) ∈ chunkcover(c)}.

2. If B1 and B2 are BGPs, then

JB1.B2K′ ccover =

(⋃
c′∈C

route′(c′, c, 〈〈B1.B2〉〉, JB1K′ c
′

cover)
)

on
(⋃

c′∈C
route′(c′, c, 〈〈B1.B2〉〉, JB2K′ c

′

cover)
)
.

3. If W ⊆ V and B is a BGP,
then JSELECT W WHERE {B}K′ ccover =

project(W, JBK′ ccover) ={(
µ|W ,C

′
)
| (µ,C′) ∈ JBK′ ccover

}
.

Definition 25. The replication-aware distributed eval-
uation of a SPARQL query Q over an arbitrary graph
cover called cover that assigns triples of an arbitrary
RDF graph G to compute nodes C, denoted by JQK′cover,

is defined as JQK′cover :=
{
µ

∣∣∣∣∣∣(µ,C′) in
⋃
c∈C

JQK′ ccover

}
.

With the help of these definitions, it is possible to
proof that the defined replication-aware distributed exe-
cution mechanism is semantically correct and complete.

Theorem 2. The centralized evaluation of query Q pro-
duces exact the same results as its replication-aware
distributed evaluation, i.e.

JQK′cover = JQKG .

It can be proofed that in the case of graph cover strate-
gies that do not replicate triples the distributed query
execution strategy and the replication-aware distributed
query execution strategy work identically.

Theorem 3. In case of a graph cover without triple
replication, i.e., ∀t ∈ G : | cover(t)| = 1, the distributed
query execution strategy and the replication-aware dis-
tributed query execution strategy evaluate the BGP B
identically:

∀c ∈ C :
{
µ
∣∣∣(µ,C′) ∈ JBK′ ccover

}
= JBKc

cover .

The proof of Theorems 2 and 3 are shown in [30].

Limitations
A single graph cover strategies might have a property
that can be used to speed up the query processing. For
instance, in the case of a hash cover, the compute node
storing all triples with subject s can easily be identified
by computing hash(s)mod|C| where C is the number of
all compute nodes. This knowledge of triple placement
can be used to optimize query processing. The result-
ing optimized query processing strategy might not work
for minimal edge-cut covers since they do not have this
property. Thus, starting to consider properties of spe-
cific graph cover strategies to improve the distributed
query processing would lead to several query execution
strategies. This would limit the comparability of graph
cover strategies that will use different query execution
strategies.

In order to have comparable evaluation results of
different graph cover strategies, the distributed query
execution strategy must not consider any graph cover
strategy-specific properties. In [9] and [11] hash-based
graph cover strategies and the minimal edge-cut cover
strategy with and without n-hop replication were com-
pared. In their systems they decided based on the length
of the paths with which the query matches whether a
query needs to exchange intermediate results or not. If
no intermediate results need to be exchanged, the com-
plete query is executed on all compute nodes. If inter-
mediate results need to be exchanged, the query is first
decomposed into subqueries that only match with paths
with a length of at most n. The created intermediate
results are then combined by executing potentially sev-
eral MapReduce jobs. In case of triple replication this
strategy reduces the number of exchanged intermediate
results but does not avoid the creation and processing of
duplicate intermediate results caused by triple replica-
tion.

We developed a simple distributed query execution
strategy that similar to [9] and [11] executes the com-
plete query execution tree on all compute nodes. But
the decomposition of queries into subqueries that match
with paths that have a length of at most n was not done,
since it would be a property that is specific for the n-hop
replication. To become more graph cover-independent
we keep track on which compute nodes the individual
triples and intermediate results are known. With this
information, we can avoid transferring intermediate re-
sults to compute nodes that know these results already.
Similar to [9], our distributed query execution strat-
egy does not prevent duplicate results being produced.
This might lead to a poorer performance of graph cover
strategies with a huge portion of replicated triples.

11

For graph cover strategies without triple replication
the main difference between our approach and the sys-
tems [9] and [11] is how the join of intermediate results
from different compute nodes are handled. [9] and [11]
use MapReduce to join them with the consequence that
these joins via MapReduce punish network traffic with
an overhead. To avoid this punishment we adapted the
approach of TriAD [10] in which the joins of intermedi-
ate results are assigned to computed nodes based on the
occurrence of resources as subjects in the locally stored
graph chunks. This strategy aims to reduce the network
traffic for subject-object and subject-subject joins. Nev-
ertheless, the assignment of join responsibilities based
on the subject occurrences might lead to a poorer perfor-
mance of graph cover strategies that assign triples with
the same subject to different compute nodes.

4. Methodology for Benchmarking Graph Cover
Strategies

When defining a methodology for investigating the
effects of graph cover strategies on distributed RDF
stores, several challenges arise. Beyond overall per-
formance for the processing of SPARQL queries [31],
we want to observe indications that contribute to under-
standing how graph cover strategies may relate to scala-
bility. Section 1 has already explained several high-level
indicators, which are formally defined in Section 4.1.

Ideally, the graph cover strategy would be the only in-
dependent input variable based on which to pursue eval-
uation and to obtain values for dependent variables. Per-
formance observations of graph cover strategies, how-
ever, are tightly interwoven with several factors. The
first factor are the specific queries that are processed
as part of the benchmark (cf. Section 4.2). Further-
more, actual query execution constitutes a highly in-
fluential factor, too, for which we need to specify ex-
ecution strategies (cf. Section 4.3) as well as execution
operation (cf. Section 4.4). For these two factors, our
methodology aims at experimenting with a diverse set
of inputs in order to allow for recognizing the patterns
of influence between graph cover strategies and perfor-
mance measures.

4.1. Evaluation Measures
In this subsection, we define the measures we have
found most useful to characterize different graph cover
strategies. We have experimented with further measure-
ment and statistics functions, e. g. standard deviation in-
stead of Gini coefficient, but found them to be correlated
and then decided in favour of the ones we found most
intuitive to interpret.

Load times
Loading a data set typically involves at least seven

steps, some of which may be interleaved and/or paral-
lelized:

1. Initial dictionary encoding of nodes and labels un-
used during graph cover creation (see Section 4.4)
for faster access and memory savings.

2. Computation of the graph cover.
3. Final dictionary encoding of nodes and labels used

during graph cover creation.
4. Collection of statistical information.
5. Setting join responsibility of resources.
6. Transfer of data chunks to compute nodes.
7. Indexing of data chunks at local compute nodes.

Given a data set and a graph cover strategy, the overall
load time comprises these 7 steps. Since the computa-
tion of the graph cover is directly related to the graph
cover strategy, we define the load time L as the time
required for the computation of the graph cover. We
perform this measurement as a weak indicator for set-
ting up a data set in a cloud RDF store. However, we
are aware that all other steps by themselves are complex
enough to warrant deeper investigation.

Storage imbalance
Scaling the cloud for handling growing memory

needs may be jeopardized by graph cover strategies aim-
ing at horizontal containment. They might generate a
skewed distribution delegating expensive tasks on few
compute nodes. Therefore, we evaluate the quality of
the storage distribution resulting from a graph cover
strategy with the storage imbalance b.

Definition 26. For a given cover, storage imbalance b
is defined by the Gini coefficient

b :=
2∗
|C|∑
i=1

i∗volSeq(i)

(|C|−1)∗
∑

c∈C
vol(c) −

|C|+1
|C|−1 , 0 ≤ b ≤ 1

whereby vol(c) := |chunkcover(c)| describes the number
of triples on a compute node c and volSeq(i) returns the
size of the ith chunk in the ascending sequence of all
vol(c).

Thus, storage imbalance b is defined by the Gini coeffi-
cient of the distribution of triple occurrences with b = 1
indicating maximal imbalance and b = 0 maximal bal-
ance.

Beside the Gini coefficient, we also experimented
with the standard deviation and entropy but we decided
to use the Gini coefficient, since the produced values are
within a fixed range between 0 and 1 independent of the

12

actual chunk sizes and thus better comparable. Further-
more, our experiments showed that the storage imbal-
ance between different graph cover strategies is better
visible than using entropy.

Storage redundancy
When handling with triple replication the number of

triples in the graph chunks will be larger than the orig-
inal number of triples in the graph. Therefore, we de-
fine the storage redundancy as the blow-up factor, where
r = 1 indicates no redundancy and r = |C| · |G| indicates
maximal replication of triples on all compute nodes.

Definition 27. For a given cover of a graph G, the stor-
age redundancy is defined as

r :=
∑

c∈C
vol(c)

|G| , 1 ≤ r ≤ |C| · |G|
whereby vol(c) := |chunkcover(c)| describes the number
of triples on a compute node c.

Overall query performance
Depending on the target use case, different overall

performance characteristics of an RDF store may be de-
sirable. While the time to delivery of the complete result
is crucial, e.g., for statistical reports, in a fact-finding
mission one may be more interested in only few top-k
results being returned quickly. Hence, we provide dif-
ferent kinds of performance characteristics. Character-
istics depend on measuring the time interval between
issuing the query q (more precisely the query execution
tree as elaborated on in Section 4.3) at time tq

0 and the
time when the i-th result is returned at tq

i with Kq repre-
senting the overall number of query results for query q.
We drop the superscript q when it is clear from context
as in the following definitions.

Definition 28. Overall query performance is evaluated
by the following functions, with K being the overall
number of query results:

Query time to completion: exT ime := tK − t0
Result curve function: χ(t) := |{ti |ti−t0≤t}|

K

χ(t) allows us to plot the percentage of returned results
on a time axis between 0 and tK − t0. A curve that is
strictly below another one will indicate that results are
returned more slowly.

Horizontal containment
Time-based measurements such as exT ime depend on

the exact configuration of the system such as network
bandwidth and latency. Workload and workload imbal-
ance are means to capture the computing efforts at an
abstract level of operation. In a distributed system, the

second — and often the most — time-consuming oper-
ation is data transfer. Graph cover strategies that lead to
massive data transfer indicate that computation of indi-
vidual query results is not contained on one or few com-
pute nodes, and hence suggests that it will not allow the
cloud to be scaled horizontally. Hence, we measure an
abstract level of data transfer:

Definition 29. For a given cover and a given query
execution tree q, we define overall data transfer T :=∑

c∈C Tc. Data transfer is measured at each compute
node c as Tc :=

∑
op mop ·

∣∣∣dom(µop
1)

∣∣∣. Each join oper-
ation op that leads to the sending of variable bindings
to another compute node c′ , c contributes with data
size mop ·

∣∣∣dom(µop
1)

∣∣∣ where
∣∣∣dom(µop

1)
∣∣∣ are the number

of variables of a variable binding and m are the number
of variable bindings m =

∣∣∣{µop
i }

∣∣∣.
Additionally to the data transfer which measures the

amount of transferred data, we also measure the amount
of transferred packets:

Definition 30. For a given cover and a given query exe-
cution tree q, we define the number of transferred pack-
ets P :=

∑
c∈C Pc, where Pc is the number of packets sent

from c to any other compute node c′ , c.

The data transfer is sometimes also used as the pre-
ferred measurement for overall query efforts in the
cloud, as in standard cloud architecture the processor-
to-remote-memory gap by far excels the processor-to-
local-memory gap. In newer hardware architectures that
natively support remote direct memory access large dif-
ferences between these gaps cannot be taken for granted
anymore. Thus, we prefer to measure the data transfer
and the workload imbalance.

Vertical parallelization
In order to measure workload independently of time,

we observe the number of join comparisons to be per-
formed. Given a query execution tree the overall work-
load will be identical for all graph cover strategies. With
vertical parallelization we are interested in how many
join comparisons might be executed by different com-
pute nodes in parallel. This number is very difficult to
obtain as it would require the definition and implemen-
tation of complex concepts in a distributed system such
as ‘simultaneous’ or ‘nearly simultaneous’. We pursue a
simple, but effective strategy here, by simply measuring
how the workload is distributed over different compute
nodes using the Gini coefficient.

Definition 31. For a cover and a query execution tree
q, workload imbalance W is the Gini coefficient:

13

W :=
2∗
|C|∑
i=1

i∗wSeq(i)

(|C|−1)∗w(C) −
|C|+1
|C|−1 , 0 ≤ W ≤ 1

where the workload of a compute node w(c) is defined
by the number of join comparisons on c, wSeq(i) de-
notes the ith workload in the ascending workload se-
quence of all compute nodes, and w(C) =

∑
c∈C

w(c) is

the total computational effort on all slaves.

In the strict sense, workload imbalance does not mea-
sure vertical parallelization, because an actual query
might involve many compute nodes in a strictly sequen-
tial manner. However, each sequential processing of
a query requires data transfer. Thus, in combination
with horizontal containment we arrive at the follow-
ing interpretation table that lets us derive at a compre-
hensive picture when jointly considering workload im-
balance and measures for horizontal containment (see
Table 1). Based on our evaluation we would suggest
that the workload imbalance may be seen as low for a
W < 0.1 and the horizontal containment may be seen
as low if less than 0.01 packets would be transferred to
produce a single query result.

Horizontal con-
tainment low

Horizontal contain-
ment high

W low high vertical par-
allelization

low to medium verti-
cal parallelization

W high low vertical par-
allelization

low vertical paral-
lelization (unlikely
situation)

Table 1: Measurement of vertical parallelization.

4.2. Strategy for Generating Queries

Since the core functionality of SPARQL is provided by
matching basic graph patterns, we follow the strategy
of most other benchmarks, performing evaluations with
varied basic graph pattern structures. In particular, we
adopt the strategy of SPLODGE [34], which varies the
query characteristics given arbitrary real-world datasets:

Number of joins: controls the number of triple pat-
terns in the basic graph pattern.

Selectivity: controls the number of triples involved in
answering the query.

Join pattern: controls the branching factor that shapes
the basic graph pattern to a smaller or larger extent
into a path–shaped query or star–shaped query.

Number of sources controls for the number of data
sources that need to be involved to answer a query
(e.g., DBPedia and GeoNames would be two).

While the first three are common to most benchmarks,
the last one has been specifically added to SPLODGE
for benchmarking federated stores. Varying this param-
eter between 1 and several units is important in this con-
text, as several graph cover strategies may easily collo-
cate data from a single data source on a single compute
node. When testing the limits of graph cover strategies,
we must ensure that we also create ‘hard’ test cases.
Since some queries might produce accidentally huge re-
sult sets, we limit the number of results to 1 million.

4.3. Query Execution Strategies

In order to find out about weaknesses and strengths of
graph cover strategies, we need to determine how far our
evaluation measures are influenced by the graph cover
strategies themselves and how far they are influenced
by interfering aspects of the overall RDF store. Query
planning and execution are so intrinsically interwoven
that it is rather impossible to come up with one (or
several) query optimizers and planners that fit all chal-
lenges. We remedy this issue in a similar way as we do
for dataset and queries: We systematically explore the
suitability of the different graph cover strategies under
variations of query executions. Thus, we do not mea-
sure the performance of “the best run”, which would
be hard to achieve anyway, but we characterize the ro-
bustness and susceptibility of graph cover strategies vs.
execution strategies.

Specifically, we use (i) a bushy query execution tree
with minimal height, (ii) a left-linear query execution
tree, in which the triple patterns are joined in the se-
quence they are defined and (iii) a right-linear query ex-
ecution tree. Thus, we have trees of different heights
and topological sorting. To evaluate the performance
of graph cover strategies under variations of query exe-
cution trees, we have devised an operative environment
that can handle different graph cover strategies and such
variations of query execution trees. This environment is
described next.

Example 19: Figure 10 shows the three different query
execution trees generated for the query from example 8.
The bushy query execution tree joins all consecutive
triple patterns pairwise as shown in Figure 10a. The
resulting intermediate results are joined pairwise again
until all joins are performed. The left-linear query exe-
cution tree joins the triple patterns in the sequence they
were defined in the query (see Figure 10b) whereas the
right-linear query execution tree joins them in the re-
verse sequence as shown in Figure 10c.

14

project

on

on

Jtp1KG Jtp2KG Jtp4KG

on

Jtp3KG

(a) Bushy query execution tree.

project

on

Jtp4KGon

on Jtp3KG

Jtp1KG Jtp2KG

(b) Left-linear query execution tree.

project

on

Jtp4KG

on

on

Jtp3KG

Jtp2KG

Jtp1KG

(c) Right-linear query execution tree.

Figure 10: The three different query execution strategies for the query from example 8.

4.4. Distributed RDF Store for Arbitrary Graph Covers
(Koral)

The distributed RDF store for arbitrary graph covers
(Koral)4 [35] implements a query execution mechanism
that receives a data set, a graph cover, a query and a
query execution strategy and computes the correspond-
ing query result set. Its formal definition is given in Sec-
tion 3 and the proofs of soundness and completeness are
given in [30].

Koral is an extension of state-of-the-art asynchronous
execution mechanisms such as realised in TriAD [10].
The extensions render the query execution mechanism
independent from the underlying graph cover. The ar-
chitecture of Koral is depicted in Figure 11. Koral con-

4https://github.com/Institute-Web-Science-and-
Technologies/koral

Master
Dictionary

Slave1

Encoder
Graph Cover

Creator

Query Execution
Coordinator

Network
Manager

Dictionary Statistics

Query
Executor

Network
Manager

Local Triple Indices

Query
Executor

Network
Manager

Local Triple Indices

Slaven

Figure 11: Architecture of Koral.

sists of one master node and |C| slave nodes. The net-
work managers maintain peer-to-peer network connec-
tions and manage the network communication.

Graph Loading
At loading, the huge size of the input graph needs to
be reduced as early as possible. Therefore, the con-
tained textual resources are replaced by numerical ids.
The creation of the ids as well as storing the mapping
between the textual and the numerical representation is
done by the dictionary encoder. If a minimal edge-cut
cover should be created, the subject, property and ob-
ject of the triples can be encoded. In the cases of the
hierarchical cover the subjects are kept in their textual
representation since the IRI hierarchy is required for the
creation of this cover. The encoded graph is then used
by the graph cover creator to create the requested graph
chunks. In case of the hierarchical cover the textual sub-
ject resources are encoded afterwards in order to reduce
the size of the graph chunks. During the creation of the
graph cover, for each triple the graph chunks in which it
occurs is stored.

As described in Section 3 each resource is uniquely
assigned to a slave that is responsible for joining it dur-
ing the query processing. In order to increase the hor-
izontal containment, the assignment of a resource is
based on the frequency with which it occurs in the dif-
ferent graph chunks. Therefore, the frequency of the
different resources in the different chunks is counted and
stored in a statistics database. In our current implemen-
tation the statistics database is a single huge file which
is randomly accessed. Each resource stores its statistical
data at a dedicated region of the file. When the statis-
tical data have been completely collected, the loading
process iterates over all graph chunks again. During the
iteration, the slaves responsible for joining the individ-
ual resources are determined. The resource id is then
prefixed by the id of the responsible slave and written to

15

disk again.
After adjusting the join responsibility, the graph

chunks are sent to the slaves. The slaves create local
index structures (SPO, OSP, and POS indices as de-
scribed in [36]) that also includes the information on
which slaves the individual triples are stored. While the
multi-pass strategy has the disadvantage that it iterates
the data files several times, it has the advantage that it
prevents to run out of memory and is thus highly scal-
able for very large files. In order to reduce the cost of
disk I/O all components except the statistics database
access the data files linearly.

Run-time
At run-time, a query execution coordinator is instanti-
ated for each received query. During the initial parsing
step the query execution tree is created that specifies
the query execution strategy (bushy, left-linear, right-
linear). Thereby, all constants are encoded using the
dictionary and the join responsibility is adjusted using
the statistics.

The created query execution tree is serialized and
submitted to all slaves. Each slave deserializes the tree,
prepares all query operations for execution and finally
sends a ready-to-start notification to the query execu-
tion coordinator. When all slaves are ready to start, the
coordinator instructs all slaves to start the execution of
the query operators. This synchronization step has the
advantage that the receiver of an intermediate result sent
from one query operation to another on a different slave
node is guaranteed to exist.

When the slaves execute the individual triple opera-
tions, the match operations use the local triple indices to
find matches for the corresponding triple pattern. The
resulting variable bindings are transferred to the suc-
ceeding join operation on the slave responsible for the
join of the resource, i.e. µ(v) (where v is the join vari-
able) aiming at horizontal containment. The data trans-
fer of the intermediate variable bindings is formally de-
fined in Section 3. In order to make better use of the net-
work bandwidth, several intermediate results are bun-
dled together and sent to the receiving slave within one
packet.

Whenever the join operation receives a variable bind-
ing, it is joined with the cached variable bindings. The
join results are directly sent. Since the number of re-
ceived variable bindings can exceed the memory of a
slave, up to 32k variable bindings are cached in mem-
ory. If more variable bindings needs to be cached, they
are inserted into a persistent B-tree.

When all child operations in the query execution tree

of a query operation o are finished and no further input
needs to be processed, it sends a finish notifications to
all o operations on the other slaves. If o has received
the finish notifications from all other o operations, it de-
clares itself as finished. This synchronization step is re-
quired to guarantee that all results are found.

If a query operation has no succeeding operation, i.e.
it is the root operation in the query execution tree, it
sends its results to the query coordinator. The coordi-
nator decodes the ids using the dictionary and sends the
decoded variable bindings to the sender of the query.
When the coordinator receives the finish notification of
the root operations from all slaves, it sends a finish noti-
fication to the sender of the query and terminates itself.

In the case that the query contains a limit for the num-
ber of results, the query coordinator counts the number
of variable bindings it has sent to the sender of the query.
If the limit is reached, it instructs all slave to abort the
query execution.

5. Evaluation

The experimental setup we have used for the impact
analysis of different graph cover strategies on the query
execution effort is explained in Section 5.1. Our results
are described in Section 5.2.5

5.1. Experimental Setup
The set of configurations in our benchmark results from
the multiplicative combination of (i) the set of differ-
ent graph cover strategies, (ii) the set of different query-
dataset combinations, and (iii) the set of different query
execution strategies.

Compared Graph Cover Strategies
During the evaluation, a hash cover, a hierarchical hash
cover, a minimal edge-cut cover and a vertical cover are
compared. Both hash covers and the vertical cover are
reimplemented following the descriptions in [9]. For
both hash covers, the hash is computed only on the
subject of each triple. For the creation of the minimal
edge-cut cover we use METIS [27] as done by other dis-
tributed RDF stores like [28], [11], D-SPARQ [17] and
WARP [24].

Additionally, we examined the effect of the n-hop
replication. [11] and [16] identified a value of n = 2

5A script to generate the used datasets, the generated queries,
the raw and preprocessed measurements of all experiments as
well as many additional diagrams can be found at https://
github.com/Institute-Web-Science-and-Technologies/
graphCoverStrategyEvaluationData.

16

to be a good balance between storage redundancy and
gained query performance. Since it is expectational
that the random distribution of a hash cover will lead
to a high number of exchanged intermediate results, we
evaluated a 2-hop hash cover to have the greatest bene-
fits from the reduced network traffic.

Dataset and Queries
In order to avoid effects that occur due to the gen-
eration process of a synthetic dataset, we use 500M,
1000M and 2000M triples subsets of the real-world bil-
lion triple challenge dataset from 2014 (BTC2014) [37].
The dataset has been generated by crawling data from
several data sources of the linked open data cloud. The
used subsets contain the first 500 million, one billion
and two billion syntactically correct triples. Some char-
acteristics of these subsets are shown in Appendix A.

In comparison to evaluations as described in [8] that
store 1 billion triples per compute node, the dataset we
use are relatively small. Due to our limited compu-
tational resources, we could not perform experiments
with 40 compute nodes that are capable to process 1 bil-
lion triples each. In order to compensate this, we used
smaller datasets but also much smaller compute nodes.
Whereas [8] used compute nodes with 6 CPU cores and
96 GB RAM, our compute nodes had only 1 CPU core
and 2 GB RAM as described below.

Following the strategy explained in Section 4.2, we
generate basic graph patterns with SPLODGE varying
the query characteristics. In order to measure the effect
of an increasing number of joins, we generate queries
with one join involving two triple patterns and seven
joins involving eight triple patterns. These joins can
be subject-subject joins or subject-object joins leading
to star-shaped and path-shaped queries, respectively.
Since the horizontal containment of graph cover strate-
gies might be dependent on the join patterns, we gener-
ate queries for both join pattern types.

Some graph cover strategies might locate triples from
the same dataset within one graph chunk. This might
lead to a better result for queries requesting triples from
only one data source but worse for queries that require
triples from different data sources. In order to examine
this effect, we generate queries that require triples only
from one data source and queries that combine triples
from three different data sources.

In order to generate queries that produce different
amounts of intermediate results, we generate queries
with a selectivity between 0.001% and 0.01% for the
1000M triples subset. Thus, the match operations alone
guarantee that there will be between 1 million and 10

million intermediate results. We experimented with
a selectivity rate of 0.1% but, since we do not apply
any query optimization strategies, the join operations of
these queries produced such an amount of intermediate
results that it exceeded the available resources. The gen-
erated queries fulfilling these characteristics are given in
Appendix C. Summarized, the selected query character-
istics are:

Various number of joins: 2 and 8 triple patterns.
Varying selectivity: 0.001% and 0.01% involving be-

tween 1 million and 10 million triples.
Varying join patterns: path-shaped (subject-object

join) and star-shaped (subject-subject join).
Varying number of data sources: 1 and 3 source data

sets.

Evaluation Setup using the Graph Cover Evaluation
Platform (CEP)
Using our extensible evaluation platform for graph
cover strategies (CEP)6 [38], we set up the evaluation
as follows. CEP downloads the BTC2014 dataset, re-
moves all syntactically incorrect triples and creates the
500M, 1000M and 2000M triples dataset. The resulting
1000M dataset is used by SPLODGE [34] configured as
described above to generate the query set for the bench-
mark. For each graph cover strategy Koral is initialized,
the dataset is loaded and the list of configured queries is
executed 10 times. Thus, the effect of operating system-
dependent caches storing the results of the previously
executed query is reduced, because no query is immedi-
ately reexecuted after it has finished. In order to prevent
the effect of outliers caused by, e.g. garbage collection,
from all 10 executions of a query, the best and the worst
execution time are ignored and the arithmetic mean is
used for exT ime. CEP collects all measurements during
graph loading and query execution and creates tables
and corresponding diagrams.

In order to evaluate the scalability of the different
graph cover strategies, we use the 1000M triples dataset
and 11, 21, and 41 virtual machines (VMs) to evaluate
graph covers with 10, 20 and 40 graph chunks, respec-
tively. Thereafter, we use 21 virtual machines to eval-
uate the graph cover strategies with the 500M, 1000M
and 2000M triples datasets.

Computer and Software Environment
The graph cover evaluation platform CEP is executed on

6https://github.com/Institute-Web-Science-and-
Technologies/cep

17

a VM with 4 cores and 8 GB RAM. Koral is executed
on 11, 21 and 41 VMs. The master has 4 cores and 64
GB RAM and the 10 to 40 slaves have 1 core and 2 GB
RAM each. Since the CEP and the Koral master VM
need to store the complete dataset, they have a 1 TB hard
disk. The slaves have 300 GB hard disks. The physical
computers on which the VMs run are connected via a 1
Gigabit Ethernet network.

The operating system of each VM is a 64 bit Ubuntu
14.04.4 with the Linux kernel 3.13.0-96. The Oracle
JDK in version 1.8.0_101 is used to execute CEP in ver-
sion 0.0.1 and Koral in version 0.0.1. In order to create
the minimal edge-cut cover, METIS is used in version
5.1.0.dfsg-2.

Summary of Evaluation Setup
Table 2 summarizes the setup of the performed evalua-
tions. We compared the hash cover with the 2-hop hash
cover, the hierarchical hash cover, the minimal edge-cut
cover and the vertical cover with the 1 billion triples
dataset distributed among 10 slaves. Additionally, we
executed the master and one slave on the master VM
to measure the performance of a centralized RDF store
that runs on only a single compute node. In order to
measure the effect of an increasing number of slaves on
the hash cover, the hierarchical cover and the minimal
edge-cut cover, we used the 1 billion triples dataset that
were distributed among 10, 20 and 40 slaves. Finally,
he effect of scaling the dataset size from 500 million, 1
billion up to 2 billion triples on the hash cover, the hier-
archical hash cover and the minimal edge-cut cover was
evaluated on 20 slaves.

Dataset Number of slaves
size 10 20 40

500M -
hash
hierarchical
edge-cut

-

1000M

hash
hierarchical
edge-cut
vertical
2-hop hash

hash
hierarchical
edge-cut

hash
hierarchical
edge-cut

2000M -
hash
hierarchical
edge-cut

-

Table 2: Summary of the evaluation setup.

5.2. Results

When investigating the effect of the graph cover strat-
egy on the query execution effort, the possible configu-
rations of independent variables (configuration settings)

and dependent variables (evaluation measures) is stag-
gering. In order to shrink the number of configurations
we first compare the overall query performance of all
graph cover strategies with the query performance of
a centralized setting in which the queries are executed
on a single compute node in Section 5.2.1. For graph
cover strategies that can process the queries faster than
in the centralized setting, we will first present our anal-
ysis of measurements that do not depend on queries in
Section 5.2.2. These measurements comprises the load-
ing time of the graph covers on the one hand side. On
the other side the size and the structure of the resulting
graph chunks are analysed since they influence whether
a graph cover will have a good overall performance.
The overall query performance under a larger variation
of independent variables is depicted in Section 5.2.3.
The observed performance is caused by the horizontal
containment and vertical parallelization of the differ-
ent graph cover strategies. Therefore, in Section 5.2.4
we analyse indicators for horizontal containment and
vertical parallelization based on few selected indepen-
dent variables. Additionally, we investigate how the ob-
served results change, when scaling the number of vir-
tual machines with a fixed dataset size as well as scal-
ing the dataset size with a fixed number of virtual ma-
chines. The observed effects are described as separate
paragraphs in each section.

In order to improve the comprehensibility of the dia-
grams we name the queries based on their characteris-
tics. For instance, the query so #tp=8 #ds=3 sel=0.01
describes a query containing 8 subject-object joined
triple patterns which match triples from 3 data sources
and the sum of the selectivities of all triple patterns
is 0.01. Table 3 shows the number of results returned
by the queries for the different dataset sizes. For all
queries the number of results increased while scaling up
the dataset size. In the following the queries that were
aborted after one million results are called the aborted
queries. All the other queries are called finished queries.

5.2.1. Comparison with Centralized Execution
One reason to use a distributed RDF store is that

queries might be executed faster than on a single com-
pute node. The results described in this section can be
summarized as:

• Queries can be executed on the hash cover, hier-
archical hash cover and minimal edge-cut cover
faster than on a single compute node.

• The vertical cover has a slower query execution
time since the matches for triple patterns can only
be found on a few compute nodes.

18

Query
#Results for
500M triples

#Results for
1000M triples

#Results for
2000M triples

q1: so #tp=2 #ds=1 sel=0.001 855 1k 3k
q2: so #tp=2 #ds=1 sel=0.01 86k 127k 173k
q3: so #tp=8 #ds=1 sel=0.001 6k 61k 597k
q4: so #tp=8 #ds=1 sel=0.01 241 1k 144k
q5: so #tp=8 #ds=3 sel=0.001 1,000k 1,000k 1,000k
q6: so #tp=8 #ds=3 sel=0.01 328k 754k 1,000k
q7: ss #tp=2 #ds=1 sel=0.001 1,000k 1,000k 1,000k
q8: ss #tp=2 #ds=1 sel=0.01 65k 104k 148k
q9: ss #tp=8 #ds=1 sel=0.001 1,000k 1,000k 1,000k
q10: ss #tp=8 #ds=1 sel=0.01 1,000k 1,000k 1,000k
q11: ss #tp=8 #ds=3 sel=0.001 1,000k 1,000k 1,000k
q12: ss #tp=8 #ds=3 sel=0.01 4 12 60

Table 3: Number of query results.

• The 2-hop hash cover has a slower query execu-
tion time since the high amount of replicated triples
cause many intermediate results being computed
several times.

To check whether the examined graph cover strate-
gies could reduce the query execution time, we executed
one Koral master and one slave on the master VM with
64 GB main memory, loaded the 1 billion triples dataset
and executed the queries on it. Then, we compare the
measured execution time with the times measured for

so
#tp

=2 #d
s=

1 sel
=0.0

01

so
#tp

=2 #d
s=

1 sel
=0.0

1

so
#tp

=8 #d
s=

1 sel
=0.0

01

so
#tp

=8 #d
s=

1 sel
=0.0

1

ss
#tp

=2 #d
s=

1 sel
=0.0

1

ss
#tp

=8 #d
s=

3 sel
=0.0

1

Queries

−102

−101

0

101

102

103

104

105

Q
ue

ry
E

xe
cu

tio
n

Ti
m

e
(l

og
-s

ca
le

,
ch

an
ge

to
H

A
SH

in
%

)

HIERARCHICAL
MIN_EDGE_CUT
VERTICAL

2HOP_HASH
Centralized

Figure 12: Change of the exT imes of all finished queries relative to
the hash cover using bushy query execution with 10 slaves.

the different graph covers on 10 slaves running on VMs
with 2 GB of main memory each. The resulting query
execution times of the finished queries are shown in
Figure 12. Since the execution times vary strongly, we
show the change in comparison to the hash cover.

Comparison with Hash, Hierarchical and Minimal
Edge-cut Cover. For two queries the centralized setting
executed them more than 10% faster than all the other
graph cover strategies. In both cases the total computa-
tional effort of the queries is 8 till 31 times higher than
for the other queries. This huge amount of computa-
tional effort indicates that the 2 GB of main memory
are too small to cache all intermediate results in main
memory and have to be stored on disk. In contrast to
this, the single master node has enough main memory
to cache the intermediate results without accessing the
disk. For the other queries, the centralized query execu-
tion strategy need more than 3 times longer to execute
the queries than the hash cover, the hierarchical hash
cover or the minimal edge-cut cover.

Comparison with Vertical Cover. When focussing on
the vertical cover, the query execution time is more than
5 times slower than in the centralized case. The cause
for this poor performance is that triples were assigned to
compute nodes based on their properties. When execut-
ing queries each triple pattern that has a resource at the
property position it will only find matches in at most one
graph chunk. Figure 13 shows that for the queries with
two triple patterns matches on only two slaves where
found and for queries with 8 triple patterns matches on
only 4 till 5 slaves were found. For all other evaluated
graph cover strategies each query found matches on all
slaves and, e.g., for the hash cover the chunk with the
fewest matches has only less than 2% fewer matches

19

1 2 3 4 5 6 7 8 9 10
Slaves

0
101
102
103
104
105
106
107
108

N
um

be
ro

fM
at

ch
ed

Tr
ip

le
s

(l
og

-s
ca

le
)

so #tp=2 #ds=1 sel=0.001
so #tp=2 #ds=1 sel=0.01
so #tp=8 #ds=1 sel=0.001
so #tp=8 #ds=1 sel=0.01

so #tp=8 #ds=3 sel=0.01
ss #tp=2 #ds=1 sel=0.01
ss #tp=8 #ds=3 sel=0.01

Figure 13: Number of triples that were matched on the individual graph chunks of the vertical cover.

than the chunk with the most matches for almost all
queries. Since the vertical cover has matches only on a
few slaves its workload imbalance is between 0.63 and
1 whereas the highest workload imbalance of the other
graph cover strategies is 0.43. Also the number of trans-
ferred intermediate results is more than 70% higher than
for the other graph cover strategies.
Comparison with 2-Hop Hash Cover. The 2-hop hash
cover leads to at least 5% slower query execution times
than in the centralized setting for most queries. In com-
parison to the hash cover, the 2-hop hash cover reduces
the number of transferred packets by 90% till 100% and
also the workload imbalance is reduced by more than
50% for almost all queries. The reason for the poor
performance of the 2-hop hash cover is that the stor-
age redundancy r is 4.19. This high number of repli-
cated triples leads to a total computational effort that is
4 till 10 times higher than for the graph cover strategies
without replication. Thus, the high number of duplicate
computations lead to the slow query execution times of
the 2-hop hash cover. Only for two queries the 2-hop
hash cover was faster than the hash cover. In these cases
the computation effort was only 4 times higher while the
workload imbalance was below 0.01 and the number of
transferred packages was reduced by 98% till 100% in
comparison to the hash cover.

Due to the poor performance of the vertical cover and
the 2-hop hash cover we will focus on the hash cover,
the hierarchical hash cover and the minimal edge-cut
cover in the following.

5.2.2. Query Independent Measurements
In this section we examine the required time to load

the graph covers and analyse the size and structure of
the created graph covers. The main findings are:
• The minimal edge-cut cover takes the longest time

to be created and produces the most imbalanced
graph chunks.

• Each graph cover strategy cuts almost every second
edge but the graph chunks of the minimal edge-cut
cover have the largest diameters.

Load Time
Even if the loading time has not a direct influence on
the query performance, it is helpful to know, whether a
graph cover strategy can be computed in a reasonable
amount of time for even large datasets. The loading L
time itself consists of several different steps like the dic-
tionary encoding and the statistics collection. The most
interesting step is the graph cover creation, on which we
will focus here.

As shown in Figure 14, the hash cover is created the
fasted. It takes around one hour to iterate the dataset
and assign triples to the corresponding compute nodes.
The hierarchical hash cover requires between seven and
eight hours. The longer cover creation time is caused by
iterating the complete dataset twice and the additional
computation to find the optimal IRI hierarchy level for

10 20 40
Number of Graph Chunks

0
5

10
15
20
25
30
35

L
oa

di
ng

Ti
m

e
(i

n
h)

0:
57

1:
02

1:
37

7:
19

7:
51

7:
08

31
:0

2

30
:1

1

31
:5

7

HASH
HIERARCHICAL

MIN_EDGE_CUT

Figure 14: Creation time of the different graph covers for different
number of slaves.

20

creating the graph cover. With 30 to 32 hours, the mini-
mal edge-cut cover creation takes the longest time.
Scalability. The effect of an increasing number of graph
chunks on the creation time of the minimal edge-cut
cover and the hierarchical hash cover is negligible since
the difference is only less than 10%. For the hash cover
the creation time was almost stable when scaling from
10 to 20 chunks. But when scaling to 40 chunks the
creation time increased by 35 minutes. This increase
might be caused by a much higher number of switches
between the 40 chunk files when assigning the triples to
the chunks. When we scaled the size of the dataset, the
creation time increased to the same extent as the dataset
size grew for both hash-based covers. Only the creation
time of the minimal edge-cut cover became three times
higher when doubling the dataset size.

In our current implementation we mainly focussed on
the graph cover creation step. We did not optimize the
loading steps that are the same for all graph cover strate-
gies since they do not give any insights which graph
cover strategy is created faster. Therefore, the com-
plete loading procedure consumes much more time. The
central bottleneck in our implementation is the statistics
database which needs more than a week for collecting
the statistics data. It requires optimization for practical
use, but not for the purpose of this evaluation.

Storage Imbalance
If a graph cover strategy produces some graph chunks
that are much larger than the others, then the compute
nodes storing these large chunks might have a higher
query workload than the compute nodes storing the
smaller chunks. In order to visualize the storage imbal-
ance, Figure 15 shows, how many triples are contained

1 2 3 4 5 6 7 8 9 1011121314151617181920
Chunks

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

N
um

be
ro

fT
ri

pl
es

×108

HASH
HIERARCHICAL

MIN_EDGE_CUT

Figure 15: Number of triples contained in each of 20 graph chunks.

in the different graph chunks sorted in descending order
for 20 graph chunks7. As shown in Table 4 the storage
imbalance of both hash-based covers is similar. When
scaling up from 10 to 40 graph chunks, the storage im-
balance almost doubles but still have a very low storage
imbalance. Both graph cover strategies distribute triples
based on subject hashes leading to a nearly optimal stor-
age balance. Thus, the number of triples per chunk de-
creases with an increasing number of graph chunks.

chunks 10 20 40
Hash cover 0.0167 0.0196 0.0275
Hierarchical hash
cover

0.0119 0.0160 0.0240

Minimal edge-cut
cover

0.1787 0.2418 0.2441

Table 4: The storage imbalance b of the different graph covers at dif-
ferent number of graph chunks for the 1 billion triple dataset.

The storage imbalance value of the minimal edge-cut
cover is at least 10 times higher than for the other graph
covers. As shown in Figure 15 the minimal edge-cut
cover has one graph chunk that contains more than twice
the number of triples than each the other chunks has.
Even when the number of chunks is increased from 10
to 40 the number of its triples is only reduced by roughly
36%. Furthermore, there exists some graph chunks that
contain much fewer triples than the average graph chunk
size. If the number of graph chunks is increased, the
number of these small chunks also increases leading to
a higher workload imbalance value.
Cause for High Storage Imbalance of Minimal Edge-
cut Cover. When investigating the cause for the high
storage imbalance of the minimal edge-cut cover, the
output of METIS stated that the number of vertices per
graph chunk only vary by at most 3% from the average
number of vertices per chunk (i.e., |V |

|C|). Since in our
evaluation we determine the size of a graph chunk by
the number of triples, the imbalanced chunk sizes are
caused by different number of incident edges that are
assigned to the different graph chunks.
Structure of Graph Chunks. In order to measure the
number of cut edges, we define a cut edge as a triple
whose subject and object are owned by different graph
chunks. A resource r is owned by a graph chunk, if all
triples with r as subject are assigned to this graph chunk.

7The figures for 10 and 40 graph chunks and for the 500M triples
and 2000M triples datasets do not provide additional insights and are
therefore omitted.

21

Figure 16: A plot of a minimal edge-cut cover of a 10k triples subset consisting of five chunks. Each chunk is drawn by a different colour. Cut
edges are indicated by red arrows.

When measuring the number of cut edges for the dif-
ferent graph cover strategies, we observe that all graph
cover strategies cut between 42% and 54% of all triples.
Thereby, the hierarchical hash cover cuts at most 0.5%
fewer triples than the hash cover. The minimal edge-cut
cover cuts 4% fewer triples than the hash-based covers.8

8During the creation of the minimal edge-cut cover, we removed
the rdfs:type triples and added them to the chunk which owned their

In order to understand, why nearly every second triple
is a cut edge, we plotted 1k to 30k triples subsets of our
dataset. Similar to [39], we found out that the graph
consists of one huge, densely-connected core and sev-
eral small sets of vertices which are densely connected
with each other, but are only loosely or not at all con-

subject later on. Since only 4% of the cut edges had a rdfs:type label,
the high number of cut edges for the minimal edge-cut cover was not
caused by our procedure.

22

nected to the huge core. Additionally, around 20% of
all triples used a subject and object that were not used
by any other triple. When colouring the triples by the
chunks to which they were assigned to, we could see
that each of the examined graph cover strategies cuts the
huge densely connected core, leading to a high number
of cut edges.

Colouring the different chunks in the plots lead to
another observation that might affect the query perfor-
mance. The triple assignment in both hash-based covers
is more or less random, leading to graph chunks with
a low diameter (i.e., the longest shortest path within
a graph chunk). In contrast to this, the diameters of
the minimal edge-cut chunks are higher, as recogniz-
able at, e.g., the green chunk in Figure 16. Thus, it is
more likely that path-shaped queries will require less
data transfer. Furthermore, most triples of the huge core
are contained by the green, orange and black chunks
whereas the cyan and the blue chunks mainly contain
triples not contained in the core. Since especially the
path-shaped queries will have only a few matches out-
side the core, the chunks containing portions of the core
will have a higher workload than the other chunks.
Scalability. Our scalability experiments showed that
the effects of scaling the number of graph chunks and
the dataset size on the storage imbalance is negligible.

5.2.3. Measuring Overall Query Performance under
Varying Independent Variables

The investigation of the overall query performance of
the different graph cover strategies described in this sec-
tion resulted in the following core findings:

• The hash-based covers have a better overall perfor-
mance than the minimal edge-cut cover.

• Both hash-based covers perform nearly the same.
Only for small datasets, the hierarchical hash cover
has a slightly better overall performance than the
hash cover.

• Star-shaped queries are executed faster than path-
shaped queries. Path-shaped queries with a few
triple patterns are executed faster than path-shaped
queries with many triple patterns.

Comparison of Query Execution Strategies. For our
study of the effect of the graph cover strategy on
the query performance, we simulate a graph cover-
independent query optimizer by using three different
query execution strategies for each query (see Sec-
tion 4.3). When investigating the effect of the differ-
ent strategies, we could observe that the bushy query
execution strategy produces the least query execution

times in 75 of 180 cases and the longest query execu-
tion times in only 16 cases. This better performance
of the bushy query execution strategy is independent of
the used graph cover. Since similarly to [40], the bushy
query execution strategy is faster than the other strate-
gies in our evaluation, we focus on this strategy in the
following.

so
#tp

=2 #d
s=

1 sel
=0.0

01

so
#tp

=2 #d
s=

1 sel
=0.0

1

so
#tp

=8 #d
s=

1 sel
=0.0

01

so
#tp

=8 #d
s=

1 sel
=0.0

1

so
#tp

=8 #d
s=

3 sel
=0.0

1

ss
#tp

=2 #d
s=

1 sel
=0.0

1

ss
#tp

=8 #d
s=

3 sel
=0.0

1

Queries

−10

0

10

100

1000

Q
ue

ry
E

xe
cu

tio
n

Ti
m

e
(l

og
-s

ca
le

,
ch

an
ge

to
H

A
SH

in
%

)

HIERARCHICAL MIN_EDGE_CUT

Figure 17: Change of the exT imes of all finished queries relative to
the hash cover using bushy query execution with 10 slaves.

Query Performance for 10 Slaves. In order to exam-
ine the overall query performance, we investigate the
queries that were finished completely. The correspond-
ing query execution times are given in Appendix B.
Since the execution times of the different queries vary
so strongly that even with a log-scaled y-axis the dif-
ferences between the different graph cover strategies
would not be visible for some queries, Figure 17 shows
the differences of the hierarchical hash cover and the
minimal edge-cut cover relative to the runtime of the
hash cover for each query with 10 slaves. For 5 of 7
queries the minimal edge-cut cover produces the longest
query execution times. This is caused by the imbalanced
workload of the minimal edge-cut cover (see Figure24).
In case of query so #tp=8 #ds=3 sel=0.01 the mini-
mal edge-cut cover is the fastest. In this case the differ-
ence of the workload imbalance between the minimal
edge-cut cover and both hash-based covers is only less
than 0.1 whereas the minimal edge-cut cover requires

23

more than 40% fewer packets to be transferred (see
Figure 22). When comparing both hash-based queries,
the hierarchical hash cover is slightly (i.e., < 10%)
faster for 5 of 7 queries. In the cases of so #tp=2
#ds=1 sel=0.01 and so #tp=8 #ds=1 sel=0.001 it is
caused by a lower workload balance. In the other three
cases the lower number of transferred packets explains
the faster query execution. In case of query so #tp=2
#ds=1 sel=0.001 the hierarchical hash cover is slower
even if the number of transferred packets is equal to the
hash cover and the workload is better balanced. Since
the difference is only 204 msec, the delay might be
caused by other effects not part of the evaluation like
the usage of the network by other services.

so
#tp

=2 #d
s=

1 sel
=0.0

01

so
#tp

=2 #d
s=

1 sel
=0.0

1

so
#tp

=8 #d
s=

1 sel
=0.0

01

so
#tp

=8 #d
s=

1 sel
=0.0

1

so
#tp

=8 #d
s=

3 sel
=0.0

1

ss
#tp

=2 #d
s=

1 sel
=0.0

1

ss
#tp

=8 #d
s=

3 sel
=0.0

1

Queries

−100

−50

0

50

100

150

200

250

Q
ue

ry
E

xe
cu

tio
n

Ti
m

e
(c

ha
ng

e
to

M
IN

_E
D

G
E

_C
U

T
10

sl
av

es
in

%
)

MIN_EDGE_CUT 20 slaves
MIN_EDGE_CUT 40 slaves

Figure 18: Change of the exT imes of all finished queries relative to 10
slaves using bushy query execution for the minimal edge-cut cover.

Scaling Number of Slaves
When scaling up the number of slaves, the effect on
the query execution times for the different graph covers
is similar. Therefore, we discuss the effect of scaling
up the number of slaves only for the minimal edge-cut
cover here. Figure 18 shows the change of the query ex-
ecution times is given relative to the execution times for
10 slaves, so that the effect of scaling up the number of
slaves is better visible. The assumption that the execu-
tion time will be reduced by roughly 50% when scaling
up to 20 slaves and by roughly 75% when scaling up

to 40 slaves could only be observed for query ss #tp=8
#ds=3 sel=0.01. In this case the workload imbalance
is nearly constant and no network traffic occurs. For
most other queries, the query execution time increases.
For some queries, the execution time increases when al-
ready scaling to 20 slaves. For other queries, the exe-
cution time decreases when scaling to 20 slaves but in-
creases when scaling to 40 slave. This observation is in-
dependent of the graph cover strategy. This increasing
query execution time is mainly caused by the hugely
increasing number of transferred packets between the
slaves. Therefore, the network latency seems to be a
factor limiting the scalability in our experimental set-
ting, as already identified in [41], chapter 24.3 for giga-
bit networks in general. Our experiments show that the
speed-up when scaling with the number of slaves is lim-
ited, as described by rules like the Universal Scalability
Law [42].

so
#tp

=2 #d
s=

1 sel
=0.0

01

so
#tp

=2 #d
s=

1 sel
=0.0

1

so
#tp

=8 #d
s=

1 sel
=0.0

01

so
#tp

=8 #d
s=

1 sel
=0.0

1

so
#tp

=8 #d
s=

3 sel
=0.0

1

ss
#tp

=2 #d
s=

1 sel
=0.0

1

ss
#tp

=8 #d
s=

3 sel
=0.0

1

Queries

−100

−10

0

10

100

Q
ue

ry
E

xe
cu

tio
n

Ti
m

e
(l

og
-s

ca
le

,
ch

an
ge

to
H

A
SH

in
%

)
HIERARCHICAL MIN_EDGE_CUT

Figure 19: Change of the exT imes of all finished queries relative to
the hash cover using bushy query execution with 40 slaves.

Query Performance for 40 Slaves. All graph cover
strategies are affected by the increased query execution
time to a different extent, when scaling up the num-
ber of slaves. This leads to the query execution times
for 40 slaves shown in Figure 19. Now, the differ-
ences between the different graph cover strategies be-
came smaller. The maximal difference has decreased
from 220% to 52%. The minimal edge-cut cover is the

24

slowest cover strategy for only one query. As described
in Section 5.2.4, this is caused by the smaller differences
in the workload imbalance as well as in the number of
transferred packets between the minimal edge-cut cover
and both hash-based covers. Since the number of trans-
ferred packets has increased faster for the hierarchical
hash cover than for the plain hash cover, the latter seems
to be faster for more queries than the other graph cover
strategies.

so
#tp

=2 #d
s=

1 sel
=0.0

01

so
#tp

=2 #d
s=

1 sel
=0.0

1

so
#tp

=8 #d
s=

1 sel
=0.0

01

so
#tp

=8 #d
s=

1 sel
=0.0

1

ss
#tp

=2 #d
s=

1 sel
=0.0

1

ss
#tp

=8 #d
s=

3 sel
=0.0

1

Queries

−100

−50

0

50

100

150

200

Q
ue

ry
E

xe
cu

tio
n

Ti
m

e
(p

er
Q

ue
ry

R
es

ul
t,

ch
an

ge
to

M
IN

_E
D

G
E

_C
U

T
50

0M
tr

ip
le

s
in

%
) MIN_EDGE_CUT 1000M triples

MIN_EDGE_CUT 2000M triples

Figure 20: Change of the exT imes per query result of all finished
queries relative to the 500M triples dataset using bushy query execu-
tion for the minimal edge-cut cover.

Scaling Dataset Size
When scaling up the dataset size, the query execution
time increases for all graph cover strategies since all
queries produce more results. In order to deal with the
higher number of query results, we divide exT ime by
the number of query results leading to the execution
time per query result shown in Figure 20 for the mini-
mal edge-cut cover. For almost all queries the execu-
tion time per results decreases when the dataset size
increases. As described in Section 5.2.4 this speed
up is caused by a better balanced query workload that
can even compensate the increased number of trans-
ferred packets. A special case is query so #tp=8 #ds=1
sel=0.01 for which the highest speed up of 99% was
observed. This high speed up cannot be explained by

the workload imbalance and the packet transfer since
both increase. Instead, the total computational effort per
query result dropped by more than 99%. Thus, there
were much less intermediate results without join part-
ners produced. Due to this, this query could produce
60,000% more results requiring only 42% more time.
The only query which required more time per query re-
sult was so #tp=2 #ds=1 sel=0.01. In this case the in-
creased packet transfer could not be compensated by the
decreased workload imbalance. These observations are
independent of the graph cover strategy.

Comparison of Graph Cover Strategies at the Different
Dataset Sizes. Since the query execution time speed
ups affect the different graph cover strategies to a dif-
ferent extent, we compare the different strategies for ev-
ery dataset size. For the 500M triples dataset the mini-
mal edge-cut cover required the longest execution times
for 4 out of 7 finished queries, whereas the hierarchi-
cal hash cover was the fastest for 5 out of 7 finished
queries. When observing the query execution times
for the 2000M dataset, the minimal edge-cut cover is
still the slowest for 4 out of 6 finished queries whereas
now, the hash cover is the fastest for 4 out of 6 finished
queries. This indicates that the hierarchical hash cover
seems to be better for smaller graph chunks whereas
hash produces better results for larger graph chunks.
This conclusion is strengthened by the observation that
the hierarchical hash cover has a slightly (i.e. <10%)
reduced number of transferred packets and improved
workload balance than the hash cover for the 500M
dataset whereas the opposite observation can be found
for the 2000M dataset.

Results Over Time
When investigating how fast the different graph cover
strategies produce their results over time, most queries
have result curve functions χ like the ones shown in Fig-
ure 21a for query ss #tp=8 #ds=1 sel=0.01. It takes
some time until the first result is produced but there-
after the results are arriving continuously. For queries
with only one join, the time until the first result is re-
turned is shorter. For most of these queries, the hash
cover produces the query results faster and the mini-
mal edge-cut cover slower than the other graph cover
strategies. Figure 21b shows the χ for query so #tp=8
#ds=3 sel=0.001. In this case the hash cover produces
the initial results faster but thereafter the results are re-
turned more slowly than for the other graph cover strate-
gies. This slower return rate of the results is caused by a
higher number of transferred packets and a higher total
computation effort that is more imbalanced among all

25

0 5 10 15 20 25
Time (in sec)

0.0

0.2

0.4

0.6

0.8

1.0

%
of

R
et

ur
ne

d
R

es
ul

ts

HASH
HIERARCHICAL
MIN_EDGE_CUT

(a) ss #tp=8 #ds=1 sel=0.01.

0 20 40 60 80 100 120 140
Time (in sec)

0.0

0.2

0.4

0.6

0.8

1.0

%
of

R
et

ur
ne

d
R

es
ul

ts

HASH
HIERARCHICAL
MIN_EDGE_CUT

(b) so #tp=8 #ds=3 sel=0.001.

0 5 10 15 20 25 30 35 40
Time (in sec)

0.0

0.2

0.4

0.6

0.8

1.0

%
of

R
et

ur
ne

d
R

es
ul

ts

HASH
HIERARCHICAL
MIN_EDGE_CUT

(c) ss #tp=8 #ds=3 sel=0.001.

Figure 21: χ for some queries at scale 10 for the 1000M triples dataset.

slaves. The hierarchical hash cover is slower than the
minimal edge-cut cover, since it needs to exchange more
packets between the slaves. Since no data transfer exists
for queries ss #tp=8 #ds=3 sel=0.0001 and ss #tp=2
#ds=1 sel=0.01, the different result return speeds of the
different graph cover strategies (see Figure 21c for the
first of both queries) are caused by the workload imbal-
ance of the three strategies. Initially, the minimal edge-
cut cover is faster than the hash cover. This might be
caused by a more balanced workload in the beginning
of the query execution.

Susceptibility to Query Size and Shape
Our measurements indicate that queries with only two
triple patterns are executed faster than queries with 8
triple patterns in most cases. This effect affects the
hash-based graph covers more than the minimal edge-
cut cover. This might be caused by the larger chunk
diameters for the minimal edge-cut cover (see Section
5.2.2). When focussing on the query shape, star-shaped
queries tend to be faster than path-shaped queries. The
explanation is that in our evaluation their results are
produced without data transfer as described in the fol-
lowing section. Since star-shaped queries have no data
transfer their horizontal containment is optimal for all
graph cover strategies. This leads to faster execution
times at all evaluated scale levels in the term of slave
numbers for this type of queries.

Susceptibility to Number of Sources
Based on our evaluation the number of data sources
does not seem to have an effect on the execution time.
The only observation that can be made is that the hierar-
chical hash cover is faster than the hash cover for most
queries using data from several data sources.

5.2.4. Measuring Dependent Variables
In order to find the reasons for the findings of the pre-

vious section, we analyse the indicators for horizontal
containment and vertical parallelization, now. The core
findings are:
• The minimal edge-cut cover has the best horizontal

containment but the highest workload imbalance.
• Scaling up the number of slaves or the dataset sizes

reduces the horizontal containment for all graph
cover strategies.

• The query workload becomes more imbalanced,
when the number of slaves is scaled up but it be-
comes more balanced, when the dataset size is in-
creased.

Horizontal Containment
Horizontal Containment of Star-shaped Queries. One
factor influencing the overall query performance is the
horizontal containment. A first observation is that the
examined graph cover strategies assign triples with the
same subject to the same chunk. Therefore, all triples
required to produce one result of a star-shaped query are
located in the same graph chunk. Since our query exe-
cution strategy performs the required joins on the slave
storing the original triples, no data transfer or packet
transport could be observed. Thus, all graph cover
strategies result in a perfect horizontal containment for
star-shaped queries.
Horizontal Containment of Path-shaped Queries. When
investigating the path-shaped queries, the data transfer
T and the number of transferred packets P increase for
all graph cover strategies, if the number of triple pat-
terns included in the path-shaped query increases. Thus,
the likelihood to leave a graph chunk during query pro-
cessing increases for all graph cover strategies when the

26

so
#tp

=2 #d
s=

1 sel
=0.0

01

so
#tp

=2 #d
s=

1 sel
=0.0

1

so
#tp

=8 #d
s=

1 sel
=0.0

01

so
#tp

=8 #d
s=

1 sel
=0.0

1

so
#tp

=8 #d
s=

3 sel
=0.0

1

Queries

−40

−35

−30

−25

−20

−15

−10

−5

0

#
Tr

an
sf

er
re

d
Pa

ck
et

s
(c

ha
ng

e
to

H
A

SH
in

%
)

HIERARCHICAL MIN_EDGE_CUT

Figure 22: The relative change in the number of transferred packets
P of the bushy query execution. Comparison of the different graph
covers at 10 slaves.

length of the queried path increases. In order to examine
the horizontal containment of the different graph cover
strategies, Figure 22 shows how the number of trans-
ferred packets changes relative to the hash cover using
10 slaves for the different graph cover strategies. The
minimal edge-cut cover requires 20%-43% fewer pack-
ets to be transferred than the hash cover. As described in
Section 5.2.2, this reduction is not caused by the fewer
cut edges. Instead, it is caused by the higher number of
connections within one graph chunk leading to higher
graph chunk diameters. Only for query so #tp=2 #ds=1
sel=0.001 the number of transferred packets is almost
identical. The hierarchical hash cover reduces the num-
ber of transferred packets by only less than 10% for all
queries. Thus, the minimal edge-cut cover has the best
horizontal containment whereas the horizontal contain-
ment of the hierarchical hash cover is only slightly bet-
ter than the one of the hash cover. Similar observations
are made when investigating the data transfer.

Effect of Other Query Characteristics on Horizontal
Containment. Since we used queries with different char-
acteristics, we investigated which of theses characteris-
tics lead to an increased data transfer and number of
transferred packets. We found out that long path-shaped
queries have the highest data transfer and star-shaped

so
#tp

=2 #d
s=

1 sel
=0.0

01

so
#tp

=2 #d
s=

1 sel
=0.0

1

so
#tp

=8 #d
s=

1 sel
=0.0

01

so
#tp

=8 #d
s=

1 sel
=0.0

1

so
#tp

=8 #d
s=

3 sel
=0.0

1

Queries

0

50

100

150

200

250

#
Tr

an
sf

er
re

d
Pa

ck
et

s
(c

ha
ng

e
to

M
IN

_E
D

G
E

_C
U

T
10

sl
av

es
in

%
)

MIN_EDGE_CUT 20 slaves
MIN_EDGE_CUT 40 slaves

Figure 23: The relative change in the number of transferred packets P
of the bushy query execution. Comparison of the different number of
slaves for the minimal edge-cut cover.

queries the smallest. The overall query selectivity can-
not be used to estimate the data transfer. In our eval-
uation, the impact of the number of used data sources
cannot be separated from the influence of the number
of results, since both queries with #ds=3 produce also
much more results than the other queries.

Scaling Number of Slaves. The effect of scaling up the
number of slaves on the packet transport and the data
transfer of the finished queries is not so huge. As shown
in Figure 23 the number of transferred packets increases
by 12%-64% when scaling from 10 to 20 slaves and
by 23%-229% when scaling from 10 to 40 slaves us-
ing the minimal edge-cut cover. In case of the hierar-
chical cover the increases are 6%-67% and 12%-206%.
For the hash cover the increases are 6%-51% and 16%-
177%. In contrast to the high impact on the number
of transferred packets, the data transfer increases only
slightly (i.e., by at most 16%). Thus, the horizontal con-
tainment decreases for all graph cover strategies when
the number of slaves is increased. Since in our evalu-
ation scaling up the number of slaves affects the num-
ber of transferred packets more strongly than the data
transfer, a network with a low latency seems to be more
important than a network with a high bandwidth, to
achieve low execution times for a high number of slaves.

27

Scaling Dataset Size. Scaling up the dataset size while
keeping the number of slaves constant leads to increased
graph chunk sizes. Thus, one may assume that the num-
ber of transferred packets per query result decreases
since more query results might be computed with the
data of a single chunk. In contrast to this assumption,
we found out that the number of transferred packets per
query result increases by up to 100% for all queries
when scaling up to the 1000M triples dataset. When
scaling up to the 2000M triples dataset the number of
transferred packets per query result increases between
50% and 450% for all queries. These increases are in-
dependent of the graph cover strategy. Thus, the hor-
izontal containment becomes worse when the dataset
size increases. Since all graph cover strategies are af-
fected by the increased number of transferred packets
to almost the same extent, the changes in the number
of transferred packets between the different graph cover
strategies stays nearly the same for most queries.

Vertical Parallelization
Total Computational Effort. The second factor influenc-
ing the overall query performance is the vertical paral-
lelization, which combines the data transfer presented in
the previous section with the workload imbalance. Be-
fore analysing the workload imbalance, we examined

so
#tp

=2 #d
s=

1 sel
=0.0

01

so
#tp

=2 #d
s=

1 sel
=0.0

1

so
#tp

=8 #d
s=

1 sel
=0.0

01

so
#tp

=8 #d
s=

1 sel
=0.0

1

so
#tp

=8 #d
s=

3 sel
=0.0

1

ss
#tp

=2 #d
s=

1 sel
=0.0

1

ss
#tp

=8 #d
s=

3 sel
=0.0

1

so
#tp

=8 #d
s=

3 sel
=0.0

01

ss
#tp

=2 #d
s=

1 sel
=0.0

01

ss
#tp

=8 #d
s=

1 sel
=0.0

01

ss
#tp

=8 #d
s=

1 sel
=0.0

1

ss
#tp

=8 #d
s=

3 sel
=0.0

01

Queries

0.0

0.1

0.2

0.3

0.4

0.5

0.6

W
or

kl
oa

d
Im

ba
la

nc
e

finished aborted

HASH
HIERARCHICAL

MIN_EDGE_CUT

Figure 24: Workload imbalance W of the bushy query execution.
Comparison of the different graph covers at 10 slaves.

how the total computational effort w(C) changes. As
expected, we observed that in our evaluation the total
computational effort stays the same independent of the
graph cover strategy and the number of slaves for the
finished queries. When increasing the dataset size, the
computational effort increases for all graph cover strate-
gies equally, since the queries produce more results.

Workload Imbalance. When analysing the workload im-
balance W as shown in Figure 24, the minimal edge-cut
cover has the most unbalanced workload of all graph
covers except for queries aborted after one million re-
sults. This is caused by the small graph chunks that
contain only small portions of the huge densely con-
nected core of the dataset (see Section 5.2.2). Since
these chunks contain less matches for the triple patterns
in the queries, they have a much smaller workload than
the other graph chunks. Whereas, the single huge graph
chunk does not produce a higher workload. The work-
load of the hash and the hierarchical graph cover is simi-
larly balanced for all queries that were not aborted. Also
the storage imbalance is similar for both graph covers.
In case of the queries that are aborted after one million
results, none of the graph cover strategies balances its
workload better than the others in general.

Combining the high workload imbalance W with the
high horizontal containment, we can observe that the
minimal edge-cut graph cover only allows a low verti-
cal parallelization for all types of queries. The vertical
parallelization of both hash-based covers depends on the
type of query. Long path-shaped queries that combine
triples from several sources lead to a low vertical par-
allelization whereas short path-shaped queries lead to a
medium vertical parallelization.

Scaling Number of Slaves. In order to visualize the
effect of the number of slaves on the workload imbal-
ance better, Figure 25 shows the workload imbalances
for the minimal edge-cut cover at the different num-
bers of slaves. For all finished queries the workload
becomes more imbalanced, when the number of slaves
increases. Even for the aborted queries this is true for
most queries. While the median workload imbalance
of all queries increases by 4% and 15% for the mini-
mal edge-cut cover when scaling to 20 and 40 slaves,
the median workload imbalance increases by 27% and
125% for the hash cover, and 68% and 144% for the
hierarchical hash cover. Thus, when scaling horizon-
tally, the workload imbalance of the hash-based cov-
ers increases faster than for the minimal edge-cut cover.
Nevertheless, the minimal edge-cut cover had the most
imbalanced workloads for every examined number of
slaves.

28

so
#tp

=2 #d
s=

1 sel
=0.0

01

so
#tp

=2 #d
s=

1 sel
=0.0

1

so
#tp

=8 #d
s=

1 sel
=0.0

01

so
#tp

=8 #d
s=

1 sel
=0.0

1

so
#tp

=8 #d
s=

3 sel
=0.0

1

ss
#tp

=2 #d
s=

1 sel
=0.0

1

ss
#tp

=8 #d
s=

3 sel
=0.0

1

so
#tp

=8 #d
s=

3 sel
=0.0

01

ss
#tp

=2 #d
s=

1 sel
=0.0

01

ss
#tp

=8 #d
s=

1 sel
=0.0

01

ss
#tp

=8 #d
s=

1 sel
=0.0

1

ss
#tp

=8 #d
s=

3 sel
=0.0

01

Queries

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

W
or

kl
oa

d
Im

ba
la

nc
e

finished aborted

MIN_EDGE_CUT 10 slaves
MIN_EDGE_CUT 20 slaves
MIN_EDGE_CUT 40 slaves

Figure 25: Workload imbalance W of the bushy query execution.
Comparison of the different number of slaves for the minimal edge-cut
cover.

Scaling Dataset Size. As shown in Figure 26, the
workload imbalance decreases for the minimal edge-cut
cover for most queries, when the dataset size increases.
When scaling from 500M to 1000M triples the median
workload imbalance decreases by 8% and by 42% when
scaling from 500M to 2000M triples. For the hash cov-
ers the median workload decreases by 25% and 32%,
and for the hierarchical hash cover it decreases by 24%
for both datasets.

5.3. Lessons Learned

When we analysed the results of our experiments, our
observations confirmed several of our expectations:
• The distributed query execution speeds up the

query execution for the hash-based and the mini-
mal edge-cut cover.

• Star-shaped queries are executed faster than path-
shaped queries. Path-shaped queries with a few
triple patterns are executed faster than path-shaped
queries with many triple patterns.

• Scaling up the number of slaves reduces the hori-
zontal containment.

• The vertical cover needs to transfer the most pack-
ets and has the highest workload imbalance since
the triple pattern matches only with triples of a few

so
#tp

=2 #d
s=

1 sel
=0.0

01

so
#tp

=2 #d
s=

1 sel
=0.0

1

so
#tp

=8 #d
s=

1 sel
=0.0

01

so
#tp

=8 #d
s=

1 sel
=0.0

1

ss
#tp

=2 #d
s=

1 sel
=0.0

1

ss
#tp

=8 #d
s=

3 sel
=0.0

1

so
#tp

=8 #d
s=

3 sel
=0.0

01

so
#tp

=8 #d
s=

3 sel
=0.0

1

ss
#tp

=2 #d
s=

1 sel
=0.0

01

ss
#tp

=8 #d
s=

1 sel
=0.0

01

ss
#tp

=8 #d
s=

1 sel
=0.0

1

ss
#tp

=8 #d
s=

3 sel
=0.0

01

Queries

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

W
or

kl
oa

d
Im

ba
la

nc
e

finished aborted

MIN_EDGE_CUT 500M triples
MIN_EDGE_CUT 1000M triples
MIN_EDGE_CUT 2000M triples

Figure 26: Workload imbalance W of the bushy query execution.
Comparison of the different dataset sizes for the minimal edge-cut
cover.

graph chunks. This leads to the longest query exe-
cution times in our experiments.

• The minimal edge-cut cover takes the longest time
to be created and produces the most unbalanced
graph chunk sizes, but has the best horizontal con-
tainment.

Beside the expected outcomes, our evaluation showed
several surprising results:

• The good horizontal containment of the minimal
edge-cut cover is caused by the higher graph chunk
diameter and not by the marginal reduced number
of cut edges in comparison to the hash-based cov-
ers.

• Scaling up the dataset sizes reduces the horizontal
containment for all graph cover strategies.

• The query workload becomes more imbalanced,
when the number of slaves is scaled up but it be-
comes more balanced, when the dataset size is in-
creased.

• The hash-based covers have a better overall per-
formance than the minimal edge-cut cover, even if
the latter has less data transfer. Thus, the workload
imbalance might be more important than the data
transfer.

• Both hash-based covers perform nearly the same.

29

Only for small datasets, the hierarchical hash cover
has a slightly better overall performance than the
hash cover.

• The n-hop replication reduces the number of trans-
ferred packets drastically but the overall query per-
formance is decreases since duplicate intermedi-
ate results increases the total computational effort
strongly.

A few aspects that we wanted to investigate could not
be analysed by our experiments:

• Since most of our generated queries combining
triples from three data sources were aborted after
one million results, the impact of data source num-
ber on the query execution time could not be ex-
amined.

• None of the investigated graph cover strategies
without replication has a high vertical paralleliza-
tion in general. Thus, the question remains how
large the effect of the vertical parallelization on the
query execution time is.

5.4. Discussion

In our study we have examined the impact of two
hash-based graph covers, which assign triples to graph
chunks based on the hash of the complete IRI or only an
IRI prefix, the minimal edge-cut cover, which assigns
triples to chunks based on structural information of the
graph, the vertical cover, which assigns triples to chunks
based on their properties, and the 2-hop extension of the
hash cover. The minimal edge-cut cover strategy takes
more effort to be prepared but due to the reduced num-
ber of cut edges, one might expect that queries can be
processed locally with less data transfer.

Commonly, papers like [9, 25, 28] make the assump-
tion that a graph cover strategy with minimal data trans-
fer implies low query execution time. However, our re-
sults suggest that while minimal edge-cut reduces the
number of transferred packets up to 43% in comparison
to hash-based strategies (see Figure 22), due to a more
unbalanced workload (see Figure 24), the query execu-
tion time of minimal edge-cut is effectively slower (see
Figure 17).

The vertical cover has an even 100 times slower query
execution time than the minimal edge-cut cover or the
hash-based covers, since matches for the triple patterns
can only be found on a few slaves whereas for the other
graph cover strategies the matches were found on all
slaves. Thus, it is expectational that the vertical cover
will lead to a more imbalanced query execution strat-
egy and/or a higher amount of transferred intermediate
results independent of the query execution strategy.

The 2-hop extension could reduce the number of
transferred intermediate results by more than 90% but
due to a 4 till 10 times higher total computation effort
the queries took up to 82 times longer to finish. Thus,
graph cover strategies that replicate a high portion of
triples need a distributed query execution strategy that
avoid the computation of duplicate results in order to
benefit from the triple replication.

Our investigation suggests that in our setting the min-
imal edge-cut cover takes the most effort to be prepared
(see Figure 14) but does not perform better over all (see
Figure 17). Since both hash-based covers perform sim-
ilarly, the simpler hash cover implementation might be
preferred, if other functionality such as prefix matching
does not benefit from the hierarchical hash cover.

6. Related Work

There are two categories of work related to our study.
The first type consists of other graph cover evaluations
and is described in Section 6.1. The second type con-
sists of graph cover strategies that we have not evalu-
ated, yet. They are described in Section 6.2.

6.1. Other Studies of Graph Cover Strategies

In the literature, papers like [19], [11], [16] and [12]
have compared the effect of the minimal edge-cut cover
strategy with hash-based cover strategies. They reported
that the minimal edge-cut cover produces the least query
execution time since it reduces the amount of trans-
ferred intermediate results. But they have neglected that
using Apache Hadoop [43] or its distributed file system
to join partial results from different compute nodes pun-
ishes data transfer by the potentially huge overhead of
possibly several Hadoop jobs (see [18]). The results
of our experiments indicate that in a system without
this overhead, the workload balance may have a higher
impact on the overall query performance than the data
transfer.

Also [28] came to the result that the minimal edge-cut
cover outperforms hash-based graph covers. Since their
proposed distributed query execution mechanism was
not implemented at that time, their study was limited
to investigating to which extent certain covers produce
complete or intermediate query results. These numbers
can be seen as an estimation of the expected data trans-
fer but they do not reflect whether a minimal edge-cut
cover will lead to a better overall query performance.

To the best of our knowledge, the findings in [8] are
the closest to ours. They compare the system presented
in [11], which uses a minimal edge-cut cover strategy,

30

with Microsoft’s Trinity.RDF, which uses a hash cover
strategy. It indicates that local queries can be executed
faster using the minimal edge-cut cover but if inter-
mediate results need to be transferred between chunks
the hash cover executes the queries faster. The two
compared systems work fundamentally differently: [11]
uses centralized RDF stores for the local query pro-
cessing and Apache Hadoop for the join of partial re-
sults from different graph chunks, whereas Trinity.RDF
is realized with a single distributed in-memory column
store. Thus, it is not clear whether their observations are
caused by the different graph cover strategies. We could
confirm that the hash cover leads to a shorter query ex-
ecution time, if intermediate results have to be trans-
ferred. But the queries are also executed faster, if only
local data is used.

Further approaches
In [44] two distributed RDF stores are compared that
use different extensions of the minimal edge-cut cover.
Since no additional hash-based system is evaluated, it is
not comparable with our study.

[45] measures the execution time of queries on dif-
ferent random distributions of a synthetic RDF graph,
but they used the system AVALANCHE which is not
designed to produce complete query results. Instead, it
is optimised to produce initial results quickly without
guaranteeing that a complete result set will ever be re-
turned. In our evaluation we also examined the speed in
which query results are produced.

Large datasets can also be managed by a federated
RDF store, which consists of several centralized RDF
stores and a query federator. The latter decomposes a
query into subqueries that are processed by the individ-
ual RDF stores and merges the returned partial results.
The impact of the data distribution strategy in such a
system has been evaluated by [46, 47] using different
query federation strategies. Although they have con-
trol of the data placement on the different RDF stores,
no centralized index is used to simplify the identifi-
cation of graph chunks involved in the processing of
query. Therefore, the query federator needs to send
additional queries to the RDF stores to identify the re-
quired chunks. This additional effort makes their evalu-
ation not comparable with ours.

The importance of graph cover strategies has also
been investigated in distributed reasoning platforms that
infer new statements from an existing RDF graph. In
[48] the performance of WebPIE is compared with other
distributed reasoning platforms each of them using a
different graph cover strategy. Since the platforms

which are compared differ in more components than just
the used graph cover strategy, it is difficult to estimate
to which extent the measured differences are caused by
the different graph cover strategies.

6.2. Other Graph Cover Strategies

Our study has focussed on the most commonly used
graph cover strategies, but several other graph cover
strategies can be found in the literature. For the sake of
completeness the other graph cover strategies, we have
found so far, are mentioned below.

RDF stores that run on a single compute node use a
local database as a storage back-end for the RDF graph.
In order to create a distributed RDF store, this stor-
age back-end is exchanged with a distributed general
purpose database as done by, e. g., Rya [49], H2RDF+

[50, 51], CumulusRDF [52] and Jena-HBase [14, 53].
In these cases, the assignment of triples to compute
nodes is left to the distributed database. Thus, the as-
signment decision is driven by metrics not related to
graphs like the number of rows in table.

Other distributed RDF stores are realised with
Apache Hadoop9 as done by, e. g., [15], PigSPARQL
[54], SHARD [55], RAPID+ [56, 57] and HadoopRDF
[13, 58]. They store the RDF graph in several files in
the Hadoop Distributed File System (HDFS). This file
system splits the files into blocks of a fixed size and dis-
tributes the resulting blocks equally among all compute
nodes. Thus, the resulting graph cover is a random as-
signment of triples to compute nodes.

The VB-Partitioner [16] assumes that resources that
frequently occur as a subject – i.e., vertices with a high
degree – are frequently involved in the processing of
queries. Furthermore, it assumes that such frequent sub-
jects, which are connected via a small number of triples,
are frequently queried together. Founded on these as-
sumptions, the used graph cover identifies sets of triples
with closely connected resources as subject. These sets
of triples are equally distributed among the compute
nodes. Thereby, triples of one set are assigned to the
same compute node.

[59] splits the RDF graph into set of triples with iden-
tical subject. Sets whose contained triples have similar
properties are then combined. The resulting triple sets
are assigned to the compute node in a way that the graph
chunks have a similar size.

The graph cover strategy proposed by [25] basically
identifies all resources that only occur as subjects first.
Then, all triples occurring in any path starting at one

9https://hadoop.apache.org/

31

of these resources are grouped into one triple set called
rooted subgraphs. The resulting rooted subgraphs are
assigned to compute nodes such that the number of
triples that are assigned to several compute nodes is
minimal.

Another type of graph cover strategies assume that
the query workload does not change much over the
time. Therefore, they learn from a historic query work-
load which triples have been frequently queried together
first. Based on this knowledge they try to find a optimal
graph cover for future queries. These approaches are,
for instance:
• The novel idea applied in WARP [24] is creating an

initial minimal edge-cut cover and then replicate
triples in a way such that all historic queries can be
answered locally.

• In COSI [22] edges are weighted based on the fre-
quency they are requested by the historic query
workload. Thereafter, a weighted minimal edge-
cut partitioning is performed leading to an im-
proved horizontal containment.

• In [23] the resulting graph cover aims to balance
the overall workload of all queries equally among
all compute nodes. Thereby, each query is pro-
cessed by a single compute node in an ideal case.
To reach this goal, the proposed algorithm as-
signs the triples required by the queries to compute
nodes in a way that the number of replicated triples
is reduced.

• In Partout [21] the queries contained in the historic
query workload are first generalized by replacing
every rarely queried subject or object constants by
variables. Thereafter, the matches of this general-
ized triple patterns are assigned to compute nodes
in a way that (i) ideally each query can be an-
swered by a single compute node without replicat-
ing triples and (ii) the query workload of all queries
is distributed equally among all compute nodes.

7. Conclusion

We have presented a comprehensive methodology and
its implementation for analysing the impact of graph
cover strategies on the performance of distributed RDF
stores in the cloud. Our systematically varied, broad
set of experiments has revealed that contrary to com-
mon assumption the minimal edge-cut cover may have
a worse overall query execution performance than hash-
based data placement strategies. With the provided set
of varying metrics, we found out that balancing the
query workload across all compute nodes may be more
important for a fast query execution than the amount of

network traffic. Even without knowing the future query
workload, our study gives hints, how triples should be
distributed to improve the query performance: (i) to re-
duce the data transfer, the triples stored on a single com-
pute node should be connected and allow the traversal of
longer paths (ii) triples of densely connected subgraphs
should be equally distributed among all compute nodes
to achieve a balanced workload. The evaluation of fur-
ther graph cover strategies will be done in the future.
Further future work will be applying compression tech-
niques as described in [26] or using query optimization
techniques like [60] to improve the performance of our
distributed RDF store for arbitrary graph covers Koral.
Part of our contribution are the tools CEP and Koral
which are open source available on the Web for further
investigation of distributed RDF data management chal-
lenges.

References

[1] D. Janke, S. Staab, M. Thimm, On data placement strategies
in distributed rdf stores, in: Proceedings of The International
Workshop on Semantic Big Data, SBD ’17, ACM, New York,
NY, USA, 2017, pp. 1:1–1:6. doi:10.1145/3066911.3066915.
URL http://doi.acm.org/10.1145/3066911.3066915

[2] P. Norvig, The semantic web and the semantics of the web:
Where does meaning come from?, in: Proceedings of the 25th
International Conference on World Wide Web, WWW ’16, In-
ternational World Wide Web Conferences Steering Committee,
Republic and Canton of Geneva, Switzerland, 2016, pp. 1–1.

[3] J. McMurry, S. Jupp, J. Malone, T. Burdett, A. Jenk-
inson, H. Parkinson, M. Davies, M. Brandizi, et al.,
Report on the scalability of semantic web integration
in biomedbridges, http://dx.doi.org/10.5281/zenodo.
14071 (2015). doi:10.5281/zenodo.14071.
URL http://dx.doi.org/10.5281/zenodo.14071

[4] O. Erling, I. Mikhailov, Towards Web Scale RDF, in: 4th Int.
Workshop on Scalable Semantic Web Knowledge Base Systems
(SSWS2008), 2008.

[5] A. Harth, S. Decker, Optimized Index Structures for Querying
RDF from the Web, in: Proc. of LA-WEB ’05, IEEE, 2005, pp.
71—-. doi:10.1109/LAWEB.2005.25.

[6] A. Harth, J. Umbrich, A. Hogan, S. Decker, YARS2: A Fed-
erated Repository for Querying Graph Structured Data from
the Web, in: ISWC-2007, Vol. 4825, 2007, pp. 211–224.
doi:10.1007/978-3-540-76298-0_16.

[7] A. Owens, A. Seaborne, N. Gibbins, M. schraefel, Clustered
TDB: A Clustered Triple Store for Jena, http://eprints.
soton.ac.uk/266974/ (Nov. 2008).
URL http://eprints.soton.ac.uk/266974/

[8] K. Zeng, J. Yang, H. Wang, B. Shao, Z. Wang, A Distributed
Graph Engine for Web Scale RDF Data, PVLDB 6 (4) (2013)
265–276. doi:10.14778/2535570.2488333.

[9] K. Lee, L. Liu, Scaling Queries over Big RDF Graphs with Se-
mantic Hash Partitioning, PVLDB 6 (14) (2013) 1894–1905.

[10] S. Gurajada, S. Seufert, I. Miliaraki, M. Theobald, TriAD:
A Distributed Shared-nothing RDF Engine Based on Asyn-
chronous Message Passing, in: SIGMOD, 2014, pp. 289–300.

[11] J. Huang, D. J. Abadi, K. Ren, Scalable SPARQL Querying of
Large RDF Graphs, PVLDB 4 (11) (2011) 1123–1134.

32

[12] X. Zhang, L. Chen, Y. Tong, M. Wang, EAGRE: To-
wards scalable I/O efficient SPARQL query evalua-
tion on the cloud, in: ICDE-2013, 2013, pp. 565–576.
doi:10.1109/ICDE.2013.6544856.

[13] M. Farhan Husain, L. Khan, M. Kantarcioglu, B. Thurais-
ingham, Data Intensive Query Processing for Large RDF
Graphs Using Cloud Computing Tools, in: Cloud Computing
(CLOUD), 2010 IEEE 3rd International Conference on, 2010,
pp. 1–10. doi:10.1109/CLOUD.2010.36.

[14] V. Khadilkar, M. Kantarcioglu, B. M. Thuraisingham,
P. Castagna, Jena-HBase: A Distributed, Scalable and Effcient
RDF Triple Store, in: Proceedings of the ISWC 2012 Posters &
Demonstrations Track, Boston, USA, November 11-15, 2012,
2012.
URL http://ceur-ws.org/Vol-914/paper_14.pdf

[15] X. Zhang, L. Chen, M. Wang, Towards Efficient Join Processing
over Large RDF Graph Using MapReduce, in: A. Ailamaki,
S. Bowers (Eds.), Scientific and Statistical Database Manage-
ment, Vol. 7338 of Lecture Notes in Computer Science, Springer
Berlin Heidelberg, 2012, pp. 250–259. doi:10.1007/978-3-642-
31235-9_16.
URL http://dx.doi.org/10.1007/
978-3-642-31235-9_16

[16] K. Lee, L. Liu, Efficient Data Partitioning Model for Hetero-
geneous Graphs in the Cloud, in: Proc. of the Int. Conf. on
High Performance Computing, Networking, Storage and Anal-
ysis, ACM, 2013, pp. 46:1—-46:12.

[17] R. Mutharaju, S. Sakr, A. Sala, P. Hitzler, D-SPARQ: Dis-
tributed, Scalable and Efficient RDF Query Engine, in: ISWC
(Posters & Demos)’13, 2013, pp. 261–264.

[18] D. Jiang, B. C. Ooi, L. Shi, S. Wu, The performance of
mapreduce: An in-depth study, PVLDB 3 (1) (2010) 472–483.
URL http://www.comp.nus.edu.sg/~vldb2010/
proceedings/files/papers/E03.pdf

[19] O. Curé, H. Naacke, M. A. Baazizi, B. Amann, On the evalu-
ation of RDF distribution algorithms implemented over apache
spark, in: Proc. of the 11th Int. Workshop on Scalable Seman-
tic Web Knowledge Base Systems (at ISWC-2015)., 2015, pp.
16–31.

[20] C. Gutierrez, C. Hurtado, A. O. Mendelzon, Foundations of Se-
mantic Web Databases, in: PODS, ACM, 2004, pp. 95–106.
doi:10.1145/1055558.1055573.

[21] L. Galarraga, K. Hose, R. Schenkel, Partout: A Distributed En-
gine for Efficient RDF Processing, CoRR abs/1212.5.
URL http://arxiv.org/abs/1212.5636

[22] M. Bröcheler, A. Pugliese, V. S. Subrahmanian, COSI:
Cloud Oriented Subgraph Identification in Massive
Social Networks, in: Advances in Social Networks
Analysis and Mining (ASONAM), 2010, pp. 248–255.
doi:10.1109/ASONAM.2010.80.

[23] C. Basca, A. Bernstein, Distributed SPARQL Throughput In-
crease: On the effectiveness of Workload-driven RDF partition-
ing, in: ISWC2013, 2013.

[24] K. Hose, R. Schenkel, WARP: Workload-aware replication
and partitioning for RDF, in: Data Engineering Workshops
(ICDEW), 2013, pp. 1–6. doi:10.1109/ICDEW.2013.6547414.

[25] B. Wu, Y. Zhou, P. Yuan, H. Jin, L. Liu, SemStore: A Semantic-
Preserving Distributed RDF Triple Store, in: CIKM-2014, 2014.

[26] A. Khandelwal, Z. Yang, E. Ye, R. Agarwal, I. Stoica, ZipG: A
Memory-efficient Graph Store for Interactive Queries, in: Pro-
ceedings of the 2017 ACM International Conference on Man-
agement of Data, SIGMOD ’17, ACM, New York, NY, USA,
2017, pp. 1149–1164. doi:10.1145/3035918.3064012.
URL http://doi.acm.org/10.1145/3035918.3064012

[27] G. Karypis, V. Kumar, A Fast and High Quality Multilevel

Scheme for Partitioning Irregular Graphs, SIAM J. Sci. Com-
put. 20 (1) (1998) 359–392. doi:10.1137/S1064827595287997.

[28] A. Potter, B. Motik, I. Horrocks, Querying Distributed RDF
Graphs: The Effects of Partitioning, in: Workshop on Scalable
Semantic Web Knowledge Base Systems (SSWS 2014), 2014,
pp. 29–44.

[29] D. J. Abadi, A. Marcus, S. R. Madden, K. Hollenbach, Scalable
Semantic Web Data Management Using Vertical Partitioning,
in: Proceedings of the 33rd International Conference on Very
Large Data Bases, VLDB ’07, VLDB Endowment, 2007, pp.
411–422.
URL http://dl.acm.org/citation.cfm?id=1325851.
1325900

[30] D. Janke, S. Staab, M. Thimm, Impact analysis of data
placement strategies on query efforts in distributed rdf stores,
Tech. rep., Institute for WeST, http://west.uni-koblenz.
de/sites/default/files/research/publications/
janke2016iao_technicalreport.pdf (2016).
URL http://west.uni-koblenz.de/sites/default/
files/research/publications/janke2016iao_
technicalreport.pdf

[31] E. Prud’hommeaux, S. Harris, A. Seaborne, SPARQL 1.1 Query
Language, W3c recommendation, W3C (2013).
URL http://www.w3.org/TR/sparql11-query/

[32] J. Pérez, M. Arenas, C. Gutierrez, Semantics and Complexity
of SPARQL, ACM Trans. Database Syst. 34 (3) (2009) 16:1—-
16:45. doi:10.1145/1567274.1567278.
URL http://doi.acm.org/10.1145/1567274.1567278

[33] M. Arenas, J. Pérez, Federation and Navigation in SPARQL 1.1,
in: T. Eiter, T. Krennwallner (Eds.), Reasoning Web. Semantic
Technologies for Advanced Query Answering, Vol. 7487 of
Lecture Notes in Computer Science, Springer Berlin Heidel-
berg, 2012, pp. 78–111. doi:10.1007/978-3-642-33158-9_3.
URL http://dx.doi.org/10.1007/
978-3-642-33158-9_3

[34] O. Görlitz, M. Thimm, S. Staab, Splodge: Systematic genera-
tion of sparql benchmark queries for linked open data, The Se-
mantic Web–ISWC 2012 (2012) 116–132.

[35] Koral, https://github.com/Institute-Web-Science-and-
Technologies/koral, accessed: 2016-10-24.

[36] D. Wood, P. Gearon, T. Adams, Kowari: A platform for seman-
tic web storage and analysis, in: In XTech 2005 Conference,
2005, pp. 05–0402.

[37] T. Käfer, A. Harth, Billion Triples Challenge data set, Down-
loaded from http://km.aifb.kit.edu/projects/btc-2014/ (2014).

[38] Cep, https://github.com/Institute-Web-Science-and-
Technologies/cep, accessed: 2016-10-24.

[39] J. Leskovec, K. J. Lang, A. Dasgupta, M. W. Mahoney, Sta-
tistical Properties of Community Structure in Large Social and
Information Networks, in: Proceedings of the 17th International
Conference on World Wide Web, WWW ’08, ACM, New York,
NY, USA, 2008, pp. 695–704. doi:10.1145/1367497.1367591.
URL http://doi.acm.org/10.1145/1367497.1367591

[40] M.-E. Vidal, E. Ruckhaus, T. Lampo, A. Martínez, J. Sierra,
A. Polleres, Efficiently Joining Group Patterns in SPARQL
Queries, Springer Berlin Heidelberg, Berlin, Heidelberg, 2010,
pp. 228–242. doi:10.1007/978-3-642-13486-9_16.
URL http://dx.doi.org/10.1007/
978-3-642-13486-9_16

[41] W. R. Stevens, TCP/IP Illustrated (Vol. 1): The Protocols,
Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, 1993.
URL http://www.pcvr.nl/tcpip/

[42] N. J. Gunther, A simple capacity model of massively parallel
transaction systems, in: 19. International Computer Measure-

33

ment Group Conference, San Diego, CA, USA, December 5-10,
1993, 1993.

[43] Apache hadoop, https://hadoop.apache.org/, accessed:
2016-10-21.

[44] A. Potter, B. Motik, Y. Nenov, I. Horrocks, Distributed
RDF Query Answering with Dynamic Data Exchange,
Springer International Publishing, Cham, 2016, pp. 480–497.
doi:10.1007/978-3-319-46523-4_29.
URL http://dx.doi.org/10.1007/
978-3-319-46523-4{_}29

[45] C. Basca, A. Bernstein, Querying a Messy Web of data with
AVALANCHE, Web Semantics: Science, Services and Agents
on the World Wide Web 26.

[46] N. A. Rakhmawati, M. Hausenblas, On the Impact of Data Dis-
tribution in Federated SPARQL Queries, in: Semantic Comput-
ing (ICSC), 2012 IEEE Sixth International Conference on, 2012,
pp. 255–260. doi:10.1109/ICSC.2012.72.

[47] N. A. Rakhmawati, M. Karnstedt, M. Hausenblas, S. Decker,
On Metrics for Measuring Fragmentation of Federation over
SPARQL Endpoints, in: Proceedings of the 10th International
Conference on Web Information Systems and Technologies,
2014, pp. 119–126. doi:10.5220/0004760101190126.

[48] J. Urbani, S. Kotoulas, J. Massen, F. van Harmelen, H. Bal,
Webpie: A web-scale parallel inference engine using mapre-
duce, Web Semantics 10.

[49] R. Punnoose, A. Crainiceanu, D. Rapp, Rya: A scalable rdf
triple store for the clouds, in: 1st Int. Workshop on Cloud In-
telligence, ACM, 2012, pp. 4:1–4:8.

[50] N. Papailiou, I. Konstantinou, D. Tsoumakos, P. Kar-
ras, N. Koziris, H2RDF+: High-performance distributed
joins over large-scale RDF graphs, in: Big Data, 2013
IEEE International Conference on, 2013, pp. 255–263.
doi:10.1109/BigData.2013.6691582.

[51] N. Papailiou, D. Tsoumakos, I. Konstantinou, P. Karras,
N. Koziris, H2RDF+: An Efficient Data Management System
for Big RDF Graphs, in: Proceedings of the 2014 ACM SIG-
MOD International Conference on Management of Data, SIG-
MOD ’14, ACM, New York, NY, USA, 2014, pp. 909–912.
doi:10.1145/2588555.2594535.
URL http://doi.acm.org/10.1145/2588555.2594535

[52] G. Ladwig, A. Harth, CumulusRDF: Linked Data Management
on Nested Key-Value Stores, in: Proceedings of the 7th Inter-
national Workshop on Scalable Semantic Web Knowledge Base
Systems (SSWS2011) at the 10th International Semantic Web
Conference (ISWC2011), 2011.

[53] V. Khadilkar, M. Kantarcioglu, B. M. Thuraisingham,
P. Castagna, Jena-HBase: {A} Distributed, Scalable and Eff-
cient {RDF} Triple Store, Tech. rep., Department of Computer
Science at The University of Texas at Dallas (2012).

[54] A. Schätzle, M. Przyjaciel-Zablocki, G. Lausen, PigSPARQL:
Mapping SPARQL to Pig Latin, in: Proceedings of the Inter-
national Workshop on Semantic Web Information Management,
SWIM ’11, ACM, New York, NY, USA, 2011, pp. 4:1—-4:8.
doi:10.1145/1999299.1999303.
URL http://doi.acm.org/10.1145/1999299.1999303

[55] K. Rohloff, R. E. Schantz, High-performance, Massively Scal-
able Distributed Systems Using the MapReduce Software
Framework: The SHARD Triple-store, in: Programming Sup-
port Innovations for Emerging Distributed Applications, PSI
EtA ’10, ACM, New York, NY, USA, 2010, pp. 4:1—-4:5.
doi:10.1145/1940747.1940751.
URL http://doi.acm.org/10.1145/1940747.1940751

[56] P. Ravindra, H. Kim, K. Anyanwu, An Intermediate Algebra
for Optimizing RDF Graph Pattern Matching on MapRe-
duce, in: G. Antoniou, M. Grobelnik, E. Simperl, B. Parsia,

D. Plexousakis, P. De Leenheer, J. Pan (Eds.), The Semanic
Web: Research and Applications, Vol. 6644 of Lecture Notes
in Computer Science, Springer Berlin Heidelberg, 2011, pp.
46–61. doi:10.1007/978-3-642-21064-8_4.
URL http://dx.doi.org/10.1007/
978-3-642-21064-8_4

[57] H. Kim, P. Ravindra, K. Anyanwu, From SPARQL to MapRe-
duce: The Journey Using a Nested TripleGroup Algebra,
PVLDB 4 (12) (2011) 1426–1429.
URL http://www.vldb.org/pvldb/vol4/p1426-kim.
pdf

[58] M. Farhan Husain, J. McGlothlin, M. M. Masud, L. Khan,
B. Thuraisingham, Heuristics-Based Query Processing for
Large RDF Graphs Using Cloud Computing, Knowledge and
Data Engineering, IEEE Transactions on 23 (9) (2011) 1312–
1327. doi:10.1109/TKDE.2011.103.

[59] F. Du, H. Bian, Y. Chen, X. Du, Efficient SPARQL Query Eval-
uation in a Database Cluster, IEEE Int. Congress on Big Data
(2013) 165–172doi:10.1109/BigData.Congress.2013.30.

[60] I. Trummer, C. Koch, Solving the Join Ordering Problem via
Mixed Integer Linear Programming, in: Proceedings of the 2017
ACM International Conference on Management of Data, SIG-
MOD ’17, ACM, New York, NY, USA, 2017, pp. 1025–1040.
doi:10.1145/3035918.3064039.
URL http://doi.acm.org/10.1145/3035918.3064039

Appendix A. Characteristics of the Used Datasets

Table A.5 shows the characteristics of the 500M, 1G
and 2G triples subsets of the real-world billion triple
challenge dataset from 2014 (BTC2014) [37] used in
our evaluation.

dataset 500M 1G 2G
triples 500M 1,000M 2,000M
unique graphs 9k 13k 21k
unique subjects 50,602k 90,713k 170,246k
unique properties 179k 412k 812k
unique objects 76,642k 147,625k 259,945k

Table A.5: Dataset characteristics.

Appendix B. Query Execution Times

Table B.6 shows the query execution times of all
graph covers for the 10 slaves and the 1 billion triples
dataset in seconds. Table B.7 shows the query execution
times for the hash cover, hierarchical cover and minimal
edge-cut cover for the 1 billion triples dataset when us-
ing 10, 20 and 40 slaves in seconds. Additionally, this
table includes the execution times for the centralized
query execution. Table B.8 shows the query execution
times for the hash cover, hierarchical cover and minimal
edge-cut cover for 20 slaves when using the 500 mil-
lion, 1 billion and 2 billion triples dataset in seconds.
When interpreting the query execution times, it should
be noted that the number of returned results differ for the
different dataset sizes and the 2-hop hash cover. Query
execution times of aborted queries are highlighted.

34

query hash hierarchical minimal edge-cut vertical 2-hop hash
q1 2.2 2.4 2.5 45.1 1.1
q2 16.5 15.1 23.4 3,502.1 354.8
q3 245.4 244.2 261.4 1,133.2 143.7
q4 45.6 42.0 49.9 3,459.8 289.8
q5 121.5 76.1 55.4 2,516.0 24.5
q6 2,505.6 2,460.0 2,311.4 2,455.7 91.0
q7 36.0 38.3 54.6 57.4 39.9
q8 4.4 4.4 7.3 44.7 14.2
q9 22.5 23.6 25.6 201.0 34.4
q10 21.9 24.0 23.8 1,176.5 30.9
q11 28.0 22.0 38.7 1,099.1 28.2
q12 8.0 25.7 20.8 3,908.2 667.8

Table B.6: Query execution times in sec for the comparison of the different graph cover strategies.

hash hierarchical minimal edge-cut centralized
query 10 20 40 10 20 40 10 20 40
q1 2.2 5.4 11.5 2.4 5.6 12.8 2.5 5.4 8.0 7.8
q2 16.5 18.0 15.2 15.1 12.0 19.3 23.4 13.6 16.6 238.2
q3 245.4 174.1 188.9 244.2 162.9 172.6 261.4 168.4 174.2 69.6
q4 45.6 53.6 81.0 42.0 57.6 103.3 49.9 56.4 88.0 276.2
q5 121.5 62.0 45.0 76.1 39.2 56.4 55.4 49.0 91.8 55.0
q6 2,505.6 3,756.1 2,799.9 2,460.0 3,500.4 2,186.9 2,311.4 2,206.7 2,639.7 247.3
q7 36.0 20.3 36.9 38.3 50.6 57.8 54.6 47.4 60.2 23.6
q8 4.4 4.4 8.0 4.4 5.5 8.0 7.3 4.3 8.0 3.3
q9 22.5 25.2 24.4 23.6 25.1 35.6 25.6 24.6 40.1 49.4
q10 21.9 24.9 27.5 24.0 34.7 44.3 23.8 24.8 39.8 57.2
q11 28.0 22.5 25.0 22.0 24.0 41.4 38.7 24.3 36.5 124.9
q12 8.0 6.0 3.3 25.7 7.5 3.4 20.8 11.1 4.1 313.6

Table B.7: Query execution times in sec when scaling the number of slaves.

hash hierarchical minimal edge-cut
query 500M 1000M 2000M 500M 1000M 2000M 500M 1000M 2000M
q1 5.7 5.4 5.5 4.0 5.6 5.4 5.1 5.4 5.4
q2 10.3 18.0 19.6 9.4 12.0 89.5 15.1 13.6 80.1
q3 97.8 174.1 1,516.7 94.6 162.9 1,956.8 99.8 168.4 2,290.7
q4 46.9 53.6 64.5 34.4 57.6 65.0 49.3 56.4 70.0
q5 27.6 62.0 46.1 28.0 39.2 51.4 42.9 49.0 52.9
q6 2,883.0 3,756.1 2,561.1 2,570.5 3,500.4 2,613.4 1,368.8 2,206.7 1,929.2
q7 27.9 20.3 43.1 29.0 50.6 39.7 28.9 47.4 42.0
q8 5.0 4.4 8.7 3.9 5.5 8.4 4.0 4.3 5.0
q9 25.7 25.2 29.1 25.2 25.1 25.0 25.8 24.6 24.6
q10 26.7 24.9 26.1 30.5 34.7 23.4 29.2 24.8 23.7
q11 22.3 22.5 32.9 21.2 24.0 33.2 23.7 24.3 23.8
q12 1.3 6.0 12.2 3.4 7.5 14.2 4.4 11.1 19.6

Table B.8: Query execution times in sec when scaling the dataset size.

35

Appendix C. Generated Queries

�
SELECT ?v0 ?v2 WHERE {

?v0 <http://purl.org/ontology/bibo/Webpage> ?v1.
?v1 <http://purl.org/dc/terms/created> ?v2.

} LIMIT 1000000
� �
Listing 1: Query so #tp=2 #ds=1 sel=0.001

�
SELECT ?v0 ?v2 WHERE {

?v0 <http://vivo.ufl.edu/ontology/vivo-ufl/dateTimeIntervalFor> ?v1.
?v1 <http://www.w3.org/2000/01/rdf-schema#label> ?v2.

} LIMIT 1000000
� �
Listing 2: Query so #tp=2 #ds=1 sel=0.01

�
SELECT ?v0 ?v8 WHERE {

?v0 <http://www.w3.org/2000/01/rdf-schema#isDefinedBy> ?v1.
?v1 <http://purl.org/dc/terms/hasPart> ?v2.
?v2 <http://www.metalex.eu/metalex/2008-05-02#variant> ?v3.
?v3 <http://www.metalex.eu/metalex/2008-05-02#fragment> ?v4.
?v4 <http://www.metalex.eu/metalex/2008-05-02#fragment> ?v5.
?v5 <http://xmlns.com/foaf/0.1/primaryTopic> ?v6.
?v6 <http://www.w3.org/2000/01/rdf-schema#isDefinedBy> ?v7.
?v7 <http://purl.org/dc/terms/hasPart> ?v8.

} LIMIT 1000000
� �
Listing 3: Query so #tp=8 #ds=1 sel=0.001

�
SELECT ?v0 ?v8 WHERE {

?v0 <http://vivo.ufl.edu/ontology/vivo-ufl/dateTimeIntervalFor> ?v1.
?v1 <http://vivoweb.org/ontology/core#contributingRole> ?v2.
?v2 <http://vivoweb.org/ontology/core#teacherRoleOf> ?v3.
?v3 <http://vivo.ufl.edu/ontology/vivo-ufl/homeDept> ?v4.
?v4 <http://vivo.ufl.edu/ontology/vivo-ufl/homeDeptFor> ?v5.
?v5 <http://vivo.ufl.edu/ontology/vivo-ufl/homeDept> ?v6.
?v6 <http://vivoweb.org/ontology/core#subOrganizationWithin> ?v7.
?v7 <http://www.w3.org/2000/01/rdf-schema#label> ?v8.

} LIMIT 1000000
� �
Listing 4: Query so #tp=8 #ds=1 sel=0.01

�
SELECT ?v0 ?v8 WHERE {

?v0 <http://www.w3.org/2000/01/rdf-schema#isDefinedBy> ?v1.
?v1 <http://www.w3.org/2007/05/powder-s#describedby> ?v2.
?v2 <http://www.openlinksw.com/schema/attribution#isDescribedUsing> ?v3.
?v3 <http://www.w3.org/2007/05/powder-s#describedby> ?v4.
?v4 <http://www.openlinksw.com/schema/attribution#isDescribedUsing> ?v5.
?v5 <http://www.w3.org/2007/05/powder-s#describedby> ?v6.
?v6 <http://www.openlinksw.com/schema/attribution#isDescribedUsing> ?v7.
?v7 <http://purl.org/dc/terms/title> ?v8.

} LIMIT 1000000
� �
Listing 5: Query so #tp=8 #ds=3 sel=0.001

36

�
SELECT ?v0 ?v8 WHERE {

?v0 <http://www.w3.org/2000/01/rdf-schema#isDefinedBy> ?v1.
?v1 <http://purl.org/dc/terms/hasFormat> ?v2.
?v2 <http://purl.org/dc/terms/hasVersion> ?v3.
?v3 <http://purl.org/dc/terms/isFormatOf> ?v4.
?v4 <http://purl.org/dc/terms/hasFormat> ?v5.
?v5 <http://purl.org/dc/terms/isVersionOf> ?v6.
?v6 <http://purl.org/dc/terms/type> ?v7.
?v7 <http://www.w3.org/2000/01/rdf-schema#seeAlso> ?v8.

} LIMIT 1000000
� �
Listing 6: Query so #tp=8 #ds=3 sel=0.01

�
SELECT ?v0 ?v2 WHERE {

?v0 <http://www.metalex.eu/metalex/2008-05-02#realizedBy> ?v1.
?v0 <http://www.metalex.eu/metalex/2008-05-02#fragment> ?v2.

} LIMIT 1000000
� �
Listing 7: Query ss #tp=2 #ds=1 sel=0.001

�
SELECT ?v0 ?v2 WHERE {

?v0 <http://vivo.ufl.edu/ontology/vivo-ufl/dateTimeIntervalFor> ?v1.
?v0 <http://vivoweb.org/ontology/core#start> ?v2.

} LIMIT 1000000
� �
Listing 8: Query ss #tp=2 #ds=1 sel=0.01

�
SELECT ?v0 ?v8 WHERE {

?v0 <http://www.metalex.eu/metalex/2008-05-02#realizedBy> ?v1.
?v0 <http://www.metalex.eu/metalex/2008-05-02#fragment> ?v2.
?v0 <http://xmlns.com/foaf/0.1/isPrimaryTopicOf> ?v3.
?v0 <http://purl.org/vocab/frbr/core#realization> ?v4.
?v0 <http://purl.org/dc/terms/valid> ?v5.
?v0 <http://purl.org/dc/terms/description> ?v6.
?v0 <http://www.w3.org/2000/01/rdf-schema#isDefinedBy> ?v7.
?v0 <http://purl.org/dc/terms/created> ?v8.

} LIMIT 1000000
� �
Listing 9: Query ss #tp=8 #ds=1 sel=0.001

�
SELECT ?v0 ?v8 WHERE {

?v0 <http://www.metalex.eu/metalex/2008-05-02#realizedBy> ?v1.
?v0 <http://www.metalex.eu/metalex/2008-05-02#fragment> ?v2.
?v0 <http://purl.org/vocab/frbr/core#realization> ?v3.
?v0 <http://purl.org/dc/terms/description> ?v4.
?v0 <http://xmlns.com/foaf/0.1/isPrimaryTopicOf> ?v5.
?v0 <http://purl.org/dc/terms/type> ?v6.
?v0 <http://purl.org/dc/terms/created> ?v7.
?v0 <http://purl.org/dc/terms/title> ?v8.

} LIMIT 1000000
� �
Listing 10: Query ss #tp=8 #ds=1 sel=0.01

37

�
SELECT ?v0 ?v8 WHERE {

?v0 <http://www.w3.org/1999/xhtml/vocab#stylesheet> ?v1.
?v0 <http://www.w3.org/1999/xhtml/vocab#icon> ?v2.
?v0 <http://ogp.me/ns#description> ?v3.
?v0 <http://www.w3.org/1999/xhtml/vocab#next> ?v4.
?v0 <http://ogp.me/ns#title> ?v5.
?v0 <http://ogp.me/ns#url> ?v6.
?v0 <http://ogp.me/ns#type> ?v7.
?v0 <http://www.w3.org/1999/xhtml/vocab#prev> ?v8.

} LIMIT 1000000
� �
Listing 11: Query ss #tp=8 #ds=3 sel=0.001�

SELECT ?v0 ?v8 WHERE {
?v0 <http://www.w3.org/2002/07/owl#equivalentClass> ?v1.
?v0 <http://www.w3.org/2004/02/skos/core#prefLabel> ?v2.
?v0 <http://www.w3.org/2003/06/sw-vocab-status/ns#term_status> ?v3.
?v0 <http://purl.obolibrary.org/obo/IAO_0000111> ?v4.
?v0 <http://www.w3.org/2000/01/rdf-schema#isDefinedBy> ?v5.
?v0 <http://www.w3.org/2000/01/rdf-schema#label> ?v6.
?v0 <http://www.w3.org/2000/01/rdf-schema#comment> ?v7.
?v0 <http://eagle-i.org/ont/app/1.0/preferredLabel> ?v8.

} LIMIT 1000000
� �
Listing 12: Query ss #tp=8 #ds=3 sel=0.01

38

