
Please cite this article in press as: K. Kyzirakos, et al., GeoTriples: Transforming geospatial data into RDF graphs using R2RML and RMLmappings, Web Semantics: Science,
Services and Agents on the World Wide Web (2018), https://doi.org/10.1016/j.websem.2018.08.003.

Web Semantics: Science, Services and Agents on the World Wide Web () –

Contents lists available at ScienceDirect

Web Semantics: Science, Services and Agents
on the World Wide Web

journal homepage: www.elsevier.com/locate/websem

GeoTriples: Transforming geospatial data into RDF graphs using
R2RML and RML mappings
Kostis Kyzirakos a, Dimitrianos Savva b, Ioannis Vlachopoulos b, Alexandros Vasileiou b,
Nikolaos Karalis b, Manolis Koubarakis b,*, Stefan Manegold a

a Database Architectures Group, Centrum Wiskunde & Informatica, Amsterdam, The Netherlands
b Department of Informatics and Telecommunications, National and Kapodistrian University of Athens, University Campus, Ilissia, Athens 15784, Greece

a r t i c l e i n f o

Article history:
Received 7 September 2017
Received in revised form 31 March 2018
Accepted 16 August 2018
Available online xxxx

a b s t r a c t

A lot of geospatial data has become available at no charge in many countries recently. Geospatial data
that is currently made available by government agencies usually do not follow the linked data paradigm.
In the few cases where government agencies do follow the linked data paradigm (e.g., Ordnance Survey
in the United Kingdom), specialized scripts have been used for transforming geospatial data into RDF. In
this paper we present the open source tool GeoTriples which generates and processes extended R2RML
and RML mappings that transform geospatial data from many input formats into RDF. GeoTriples allows
the transformation of geospatial data stored in raw files (shapefiles, CSV, KML, XML, GML and GeoJSON)
and spatially-enabled RDBMS (PostGIS and MonetDB) into RDF graphs using well-known vocabularies
like GeoSPARQL and stSPARQL, but without being tightly coupled to a specific vocabulary. GeoTriples has
been developed in European projects LEO and Melodies and has been used to transform many geospatial
data sources into linked data.We study the performance of GeoTriples experimentally using large publicly
available geospatial datasets, and show that GeoTriples is very efficient and scalable especially when its
mapping processor is implemented using Apache Hadoop.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

In the last few years, the area of linked geospatial data has
received attention as researchers and practitioners have started
tapping the wealth of existing geospatial information and making
it available on theWeb [1,2]. As a result, the linked open data (LOD)
cloudhas been slowly populatedwith geospatial data. For example,
Great Britain’s national mapping agency, Ordnance Survey, has
been the first nationalmapping agency that hasmade various kinds
of geospatial data fromGreat Britain available as linked open data.1
Similarly, projects TELEIOS,2 LEO,3 MELODIES4 and Copernicus
App Lab,5 in which our research groups participated, published a
number of geospatial datasets that are Earth observation products
e.g., CORINE Land Cover and Urban Atlas.6 Also, the Spatial Data

* Corresponding author.
E-mail address: koubarak@di.uoa.gr (M. Koubarakis).

1 http://data.ordnancesurvey.co.uk/.
2 http://www.earthobservatory.eu/.
3 http://www.linkedeodata.eu/.
4 https://www.melodiesproject.eu/.
5 https://www.app-lab.eu/.
6 http://kr.di.uoa.gr/#datasets.

on theWebworking group7 created jointly by the Open Geospatial
Consortium (OGC) and the World Wide Web Consortium (W3C)
has produced in 2017 five relevant working notes on best prac-
tices, use cases and requirements, Earth observation data, spatio-
temporal data cubes and coverages as linked data.

Geospatial data can come in vector or raster form and are usu-
ally accompanied by metadata. Vector data, available in formats
such as ESRI shapefiles, KML, and GeoJSON documents, can be
accessed either directly or via Web Services such as the OGC Web
Feature Service or the query language of a geospatial DBMS. Raster
data, available in formats such as GeoTIFF, Network Common Data
Form (netCDF) and Hierarchical Data Format (HDF), can be ac-
cessed either directly or via Web Services such as the OGC Web
Coverage Processing Service (WCS) or the query language of an
array DBMS, e.g., rasdaman8 or MonetDB/SciQL. Metadata about
geospatial data are encoded in various formats ranging from cus-
tom XML schemas to domain specific standards like the OGC GML
Application schema for EO products and the OGC Metadata Profile
of Observations and Measurements. Automating the process of
transforming input geospatial data to linked data has only been

7 https://www.w3.org/2015/spatial/wiki/Main_Page.
8 http://www.rasdaman.org/.

https://doi.org/10.1016/j.websem.2018.08.003
1570-8268/© 2018 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.websem.2018.08.003
http://www.elsevier.com/locate/websem
http://www.elsevier.com/locate/websem
mailto:koubarak@di.uoa.gr
http://data.ordnancesurvey.co.uk/
http://www.earthobservatory.eu/
http://www.linkedeodata.eu/
https://www.melodiesproject.eu/
https://www.app-lab.eu/
http://kr.di.uoa.gr/%23datasets
https://www.w3.org/2015/spatial/wiki/Main%5FPage
http://www.rasdaman.org/
https://doi.org/10.1016/j.websem.2018.08.003

Please cite this article in press as: K. Kyzirakos, et al., GeoTriples: Transforming geospatial data into RDF graphs using R2RML and RMLmappings, Web Semantics: Science,
Services and Agents on the World Wide Web (2018), https://doi.org/10.1016/j.websem.2018.08.003.

2 K. Kyzirakos et al. / Web Semantics: Science, Services and Agents on the World Wide Web () –

addressed by few works so far [3–7]. In many cases, for example
in the wildfire monitoring and management application that we
developed in TELEIOS [5], custom Python scripts were used for
transforming all the necessary geospatial data into linked data.

In this paper we extend the mapping languages R2RML9 and
RML10 with some new constructs that help to specify ways of
transforming geospatial data from its original format into RDF. We
also present the tool GeoTriples that generates automatically and
processes extended R2RML and RML mappings for transforming
geospatial data from various formats into RDF graphs. The in-
put formats supported are spatially-enabled relational databases
(PostGIS andMonetDB), ESRI shapefiles, XML documents following
a given schema (hence GML documents as well), KML documents,
JSON and GeoJSON documents and CSV documents. GeoTriples is a
semi-automated tool that enables the automatic transformation of
geospatial data into RDF graphs using state of the art vocabularies
like GeoSPARQL [8], but at the same time it is not tightly coupled to
a specific vocabulary. The transformation process comprises three
steps. First, GeoTriples generates automatically extended R2RML
or RML mappings for transforming data that reside in spatially-
enabled databases or raw files into RDF. As an optional second step,
the user may revise these mappings according to her needs e.g., to
utilize a different vocabulary. Finally, GeoTriples processes these
mappings and produces an RDF graph.

Users can store and query an RDF graph generated by
GeoTriples using a geospatial RDF store like Strabon.11 They can
also interlink this graph with other linked geospatial data using
tools like the temporal and geospatial extension of Silk12 devel-
oped in our group [9] or the more recent tool Radon developed
with the participation of our group [10]. For example, it might
be useful to infer links involving topological relationships e.g., A
geo:sfContains F where A is the area covered by a remotely
sensedmultispectral imageI,F is a geographical feature of interest
(field, lake, city etc.) and geo:sfContains is a topological rela-
tionship from the topology vocabulary extension of GeoSPARQL.
The existence of this link might indicate that I is an appropriate
image for studying certain properties of F.

It is often the case in applications that relevant geospatial data
is stored in spatially-enabled relational databases (e.g., PostGIS)
or files (e.g., shapefiles), and its owners do not want to explicitly
transform it into linked data [11,12]. For example, this might be
because these data sources get frequently updated and/or are very
large. If this is the case, GeoTriples is still very useful. GeoTriple
users can use the generated mappings in the system Ontop-
spatial to view their data sources virtually as linked data. Ontop-
spatial is a geospatial extension of the Ontology-Based Data Ac-
cess (OBDA) system Ontop13 developed by our group [13]. Ontop
performs on-the-fly SPARQL-to-SQL translation on top of relational
databases using ontologies and mappings. Ontop-spatial extends
Ontop by enabling on-the-fly GeoSPARQL-to-SQL translation on
top of geospatial databases. The experimental evaluation of [13]
has shown that this approach is not only simpler for the users as it
does not require transformation of data, but also more efficient in
terms of query response time.

GeoTriples is an open source tool that has been developed in
the context of the EU FP7 projects LEO and MELODIES mentioned
in the beginning of this section. It is currently utilized in the EU
Horizon 2020 project Copernicus App Lab where data from three
Copernicus Services14 (Land, Marine and Atmosphere) are made
available as linked data to aid their take-up by mobile developers.

9 https://www.w3.org/TR/r2rml/.
10 http://rml.io/.
11 http://www.strabon.di.uoa.gr/.
12 http://silk.di.uoa.gr/.
13 http://ontop-spatial.di.uoa.gr/.
14 http://www.copernicus.eu/.

The organization of the paper is as follows. Section 2 presents
background information and discusses related work. In Section 3
we present the extensions to the mapping languages R2RML and
RML for the geospatial domain. In Section 4 we present the ar-
chitecture of GeoTriples and discuss how GeoTriples generates au-
tomatically mappings, and how these mappings are subsequently
processed for transforming a geospatial data source into an RDF
graph. Section 5 gives an example of translating an input shapefile
into RDF, using the GeoTriples utilities. Section 6 presents an
implementation of the mapping process of GeoTriples that uses
Apache Hadoop. In Section 7 we perform a performance evalua-
tion of the implementations of GeoTriples using publicly available
geospatial data. We also compare GeoTriples with the similar tool
TripleGeo. Finally, in Section 8, we conclude the paper and discuss
future work.

2. Background and related work

In this section we present related work on methodologies and
tools for transformation of data sources into RDF graphs. Currently,
most similar approaches have been focusing onmapping relational
databases into RDF graphs. We will discuss two state-of-the-art
approaches, direct mapping and R2RML and a recent proposal for
mapping heterogeneous data into RDF, themapping language RML.
We also include related work on transforming geospatial data into
RDF graphs based on these mapping techniques.

2.1. Direct mapping of relational data to RDF

A straightforward mechanism for mapping relational data into
RDF is the directmapping approach that became aW3C recommen-
dation in 2012 [14]. In this approach tables in a relational database
are mapped to classes defined by an RDFS vocabulary, while at-
tributes of each table are mapped to RDF properties that represent
the relation between subject and object resources. Identifiers, class
names, properties, and instances are generated automatically fol-
lowing the respective labels of the input data. For example, given
the table Address, the class <Address> is generated, and every
tuple is represented by a resource that becomes an instance of this
class. The generation of RDF data is dictated by the schema of the
relational database. This mechanism was initially defined in [15],
and [16] is an implementation of it.

2.2. The mapping language R2RML

A language for expressing customizedmappings from relational
databases to RDF graphs is the R2RML mapping language that be-
came W3C recommendation in 2012 [17]. R2RML mappings pro-
vide the userwith the ability to express the desired transformation
of existing relational data into the RDF data model, following a
structure and a target vocabulary that is chosen by him or her.
R2RML mappings refer to logical tables to retrieve data from an
input database. A logical table can be a relational table, an SQL
view that exists in a database or an SQL SELECT query. A triples
map is defined for each logical table that will be exported into
RDF. A triples map is a rule that defines how each tuple of the
logical table will be mapped to a set of RDF triples. A triples
map consists of a subject map and one or more predicate–object
maps. A subject map is a rule that defines how to generate the URI
that will be the subject of each generated RDF triple. Usually, the
primary key of the relation is used for this purpose. A predicate–
object map consists of predicatemaps and object maps. A predicate
map defines the RDF property to be used to relate the subject and
the object of the generated triple. An object map defines how to
generate the object of the triple, the value of which originates from
the value of the attribute of the specified logical table. Subject

https://www.w3.org/TR/r2rml/
http://rml.io/
http://www.strabon.di.uoa.gr/
http://silk.di.uoa.gr/
http://ontop-spatial.di.uoa.gr/
http://www.copernicus.eu/

Please cite this article in press as: K. Kyzirakos, et al., GeoTriples: Transforming geospatial data into RDF graphs using R2RML and RMLmappings, Web Semantics: Science,
Services and Agents on the World Wide Web (2018), https://doi.org/10.1016/j.websem.2018.08.003.

K. Kyzirakos et al. / Web Semantics: Science, Services and Agents on the World Wide Web () – 3

maps, predicate maps and object maps are termmaps. A term map
is a function that generates an RDF term from a logical table. Three
types of term maps are defined: constant-valued term maps that
always generate the same RDF term, column-valued term maps
that generate RDF terms froman attribute of the input relation, and
template-valued term maps that generate RDF terms according
to a template. R2RML defines the vocabulary to express foreign
key relationships among logical tables. For this purpose, a join
condition is introduced for defining the column name of the child
table and the column name of the parent table. Fig. 1a presents an
overview of R2RML.

Features of R2RML. R2RML is not limited to mapping relational
tables to RDFS classes and relational attributes to data properties.
R2RML has several other features that are presented below:

• Ad-hoc SQL result sets: This feature is useful in cases where
the userwants to apply some transformations (e.g., syntactic
modifications) or apply aggregate functions on the input
data.
• Templates: Using the rr:template property, one can spec-

ify the format of a resource that will be used as a subject or
an object of a triple using a string template. For example,
consider the relational table Employee(id, name, surname,
salary). The subject of the generated resource could use the
primary key id of the table to form a resource URI template
‘‘http://example.com/Employee/id/’’ to generate automati-
cally resources of the form <http://example.com/Employee/
1/>, <http://example.com/Employee/2/>, etc.
• Linking two tables: Most RDF datasets do not use only data

properties (properties for which the value is a data literal),
but also object properties (properties for which the value
is an individual) to assert relations between resources. As
a result, an R2RML mapping can take into account foreign
key constraints that may exist in the underlying relational
database to make such assertions.
• Named Graphs: Named graphs are a key concept of RDF that

allows the identification of an RDF graph using a URI. As a
result, contextual information like provenance information,
can be naturally expressed in RDF. R2RML allows a user to
customize a subjectmap so that produced triples can belong
to the default graph or any other named graph.

2.3. The mapping language RML

The RDFMapping language (RML) [18,19] is a recently proposed
generic mapping language which can express rules that map data
with heterogeneous structures and serializations to RDF graphs.
RML is defined as a superset of R2RML and allows the expression
of rules that map relational and semi-structured data (e.g., XML,
JSON) into RDF graphs. The main feature of RML is that it provides
the vocabulary for defining a generic data source and the iterator
pattern over the input data. Note that R2RML does not define
explicitly an iterator pattern over the input data since a per row
iteration is implied. In contrast, RML allows the user to explicitly
define an iterator that defines how the source data should be
accessed. For example, an XPath expression can be defined as an
iterator over an XML document, a JSONPath expression can be
defined as an iterator over a JSON document and an SQL query can
be defined as an iterator over a relational database. Fig. 1b presents
an overview of RML.

RML extensions to R2RML. RML has redefined all classes and prop-
erties defined in R2RML that are strictly coupled to the relational
model as follows:

Fig. 1. R2RML and RML overview. White boxes denote R2RML components, green
boxes denote R2RML components extended by RML and orange boxes denote RML
specific components. Arrowswithwhite arrowhead denote subclasses, arrowswith
dashed line andwhite arrowheaddenote the different types of TermMap and simple
lines denote associations. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

• The concept of logical table has been replaced by the
concept of logical source which is a more generic con-
cept that covers many kinds of input data sources. A logical
source contains all necessary properties for accessing a data
source and iterating over it. Similarly, the concept of table
has been replaced by the more general concept of source
which is a pointer to a dataset.
• The concept of iterator is a new concept that instructs

a processor on how to access data from a logical source.
The iterator is accompanied by a referenceFormulation
property that specifies the query language that is being used
by it. For example, for transforming an XML document into
RDF, we can set the referenceFormulation to be the
XPath language and the iterator to be the XPath query
itself. Currently, the following reference formulations are
defined: rr:sqlQuery, ql:CSV, ql:XPath, ql:CSS3 and
ql:JSONPath.
• The column property has been replaced by themore general

reference property. This property is used to point to the
data that is being returned by the iterator.

2.4. Transforming geospatial data into RDF

Recently, enough attention has been paid to the problem of
making geospatial data available on the Web as linked data. In

http://example.com/Employee/id/
http://example.com/Employee/1/
http://example.com/Employee/1/
http://example.com/Employee/1/
http://example.com/Employee/2/

Please cite this article in press as: K. Kyzirakos, et al., GeoTriples: Transforming geospatial data into RDF graphs using R2RML and RMLmappings, Web Semantics: Science,
Services and Agents on the World Wide Web (2018), https://doi.org/10.1016/j.websem.2018.08.003.

4 K. Kyzirakos et al. / Web Semantics: Science, Services and Agents on the World Wide Web () –

many cases linked geospatial datasets are either generated man-
ually or by semi-automated processes from original data sources
such as shapefiles or spatially-enabled relational databases. On the
contrary, a plethora of tools are currently available for publish-
ing relational and non-relational data as linked data. These tools
may follow the direct mapping approach, may support a mapping
language, may support relational or non-relational data and may
be able to evaluate SPARQL queries by translating them into SQL
queries.

The project LinkedGeoData15 [3,20] focuses on publishing
OpenStreetMap16 data as linked data. In this context the tool
Sparqlify17 has been developed and used. Sparqlify is a SPARQL
to SQL rewriter which allows one to define RDF views over a
relational database and query them using SPARQL. Sparqlify uses
the Sparqlification mapping language that has similar expressivity
with R2RML but different syntax. Sparqlify supports some basic
geospatial capabilities, like handling the serializations of a ge-
ometry and evaluating topological predicates like the function
st_intersects that returnswhether two geometries share some
portion of the space.

The tool Geometry2RDF18 [6] was the first tool that allowed the
user to convert geospatial information that resides in a spatially-
enabled relational database into an RDF graph. Geometry2RDF
takes as input data stored in a spatially-enabled relational DBMS
and utilizes the libraries Jena and GeoTools to produce an RDF
graph. Geometry2RDF follows the directmapping approach, allows
the user to configure the properties that connect a URI to the
serialization of a geometry and allows for the conversion of the
coordinates to the desired coordinate reference system. Geome-
try2RDF is no longer maintained by its developers (Oscar Corcho,
private communication). The codebase of Geometry2RDF was the
basis of the first version of tool TripleGeowhich is discussed below.

An interesting approach appears in [4] where the authors
present how R2RML can be combined with a spatially-enabled
relational database in order to transform geospatial data into RDF.
For the manipulation of the geometric information prior to its
transformation into RDF, the authors create several logical tables
that are based on ad-hoc SQL queries that perform the appropriate
pre-processing (e.g., requesting the serialization of a geometry
according to the WKT standard). This approach demonstrates the
power of utilizing a general-purposemapping language like R2RML
in the case of geospatial data. However, in [4] , no automated
method for transforming geospatial datasets into RDF is discussed,
and dealing with different types of data formats (e.g., shapefiles)
was not considered.

The tool TripleGeo has been developed in the context of Euro-
pean FP7 project GeoKnow19 [7]. TripleGeo is the closest existing
tool to GeoTriples (let alone the similarity in name). TripleGeo
can extract and transform geospatial features from many input
formats: relational DBMSs via JDBC (PostgreSQL/PostGIS, Oracle
Spatial and Graph, MySQL and MS SQL Server) and raw files (ESRI
shapefiles, GeoJSON, GML, KML, GPX and CSV). TripleGeo consists
of three modes: (i) the GRAPH mode, which transforms the in-
put dataset into an RDF graph, (ii) the STREAM mode, in which
each entry of the input data is processed separately, and (iii)
the RML mode, which uses RML mappings for the conversion of
the data. Modes STREAM and GRAPH are able to transform only
up to four attributes of each tuple. These attributes are the ID,
the geometry, the name and the category. This feature limits the

15 http://linkedgeodata.org/.
16 http://www.openstreetmap.org/.
17 http://aksw.org/Projects/Sparqlify.html.
18 http://mayor2.dia.fi.upm.es/oeg-upm/index.php/en/technologies/151-
geometry2rdf/.
19 https://github.com/SLIPO-EU/TripleGeo.

user from extracting other useful information that may exist in a
data source. Thanks to its modular implementation, TripleGeo is
now being enhanced by its developers with more utilities without
affecting existing functionality (Spiros Athanasiou, personal com-
munication). In the context of the SLIPO project,20 it is planned
to further extend TripleGeo with several novel features, and most
importantly, specific functionalities that can efficiently support
transformation of large datasets of points of interest (POIs). Fur-
ther, it is planned to include support for de facto POI formats (like
TomTom Overlay, OziExplorer Waypoints etc.), more DBMS plat-
forms (e.g., SpatialLite), as well as direct access to OpenStreetMap
data files. Finally, TripleGeo already supports RDF transformation
from INSPIRE metadata as well as certain INSPIRE data themes
(Geographical names, Administrative units, Addresses, Cadastral
parcels, Transport networks, Hydrography, Protected sites).

Recently, the OBDA engine Ontop21 [21] has been extended
in Ontop-spatial [13]. Ontop-spatial is a framework for OBDA
enriched with geospatial functionality. It supports the evalua-
tion of stSPARQL/GeoSPARQL queries over virtual RDF graphs de-
fined through R2RML mappings to a relational database. It is a
mature system that has already been used in a number of ap-
plications [11,12]. Handling geometric information in raw files
(e.g., shapefiles) or made available through the scientific data ac-
cess service OPeNDAP has been added to Ontop-spatial [22] by
integrating the relational engine madIS [23]. This is work done
in the context of project Copernicus App Lab which has been
discussed in the introduction.

Oracle has recently implemented in itswell-knownDBMSmany
interesting features for linked geospatial data. First of all, it has
offered support for GeoSPARQL in Oracle 12c, Release 1. Recently,
they have also implemented support for RDF Views of relational
tables with SDO_GEOMETRY columns. This feature is available
in Oracle 12c Release 2.22 Any SDO_GEOMETRY columns in the
mapped relational tables can be exposed as geo:wktLiteral
and GeoSPARQL queries against the RDF views will utilize any
spatial indexes that have been created on the underlying relational
tables. The virtual RDF can be queried in SQL with SEM_MATCH
or through their Joseki/Fuseki-based SPARQL endpoint. The recent
Oracle presentation ‘‘Realizing the Benefits of Linked Geospatial
Data with R2RML and GeoSPARQL’’ at the most recent SmartData
conference23 gives details of these approaches (Matthew Perry,
personal communication).

3. Extending the mapping languages R2RML and RML for
geospatial data

Much work has been done recently on extending RDF to rep-
resent and query geospatial information. The most mature results
of this work are the data model stRDF and the query language
stSPARQL [24,25] and the OGC standard GeoSPARQL [8]. These
datamodels and query languages have been implemented inmany
geospatial triple stores including Strabon, GraphDB,24 Oracle Spa-
tial and Graph,25 etc.

stRDF is an extension of the W3C standard RDF that allows the
representation of geospatial data that changes over time [24,25].
stRDF is accompanied by stSPARQL, an extension of the query
language SPARQL 1.1 for querying and updating stRDF data. stRDF

20 http://www.slipo.eu/.
21 http://ontop.inf.unibz.it/.
22 http://docs.oracle.com/database/122/RDFRM/rdf-views.htm#RDFRM555.
23 http://smartdata2017.dataversity.net/sessionPop.cfm?confid=
110{&}proposalid=9947.
24 https://ontotext.com/products/graphdb/.
25 http://www.oracle.com/technetwork/database/options/spatialandgraph/
overview/index.html.

http://linkedgeodata.org/
http://www.openstreetmap.org/
http://aksw.org/Projects/Sparqlify.html
http://mayor2.dia.fi.upm.es/oeg-upm/index.php/en/technologies/151-geometry2rdf/
http://mayor2.dia.fi.upm.es/oeg-upm/index.php/en/technologies/151-geometry2rdf/
https://github.com/SLIPO-EU/TripleGeo
http://www.slipo.eu/
http://ontop.inf.unibz.it/
http://docs.oracle.com/database/122/RDFRM/rdf-views.htm%23RDFRM555
http://smartdata2017.dataversity.net/sessionPop.cfm%3Fconfid%3D110%26proposalid%3D9947
http://smartdata2017.dataversity.net/sessionPop.cfm%3Fconfid%3D110%26proposalid%3D9947
https://ontotext.com/products/graphdb/
http://www.oracle.com/technetwork/database/options/spatialandgraph/overview/index.html
http://www.oracle.com/technetwork/database/options/spatialandgraph/overview/index.html

Please cite this article in press as: K. Kyzirakos, et al., GeoTriples: Transforming geospatial data into RDF graphs using R2RML and RMLmappings, Web Semantics: Science,
Services and Agents on the World Wide Web (2018), https://doi.org/10.1016/j.websem.2018.08.003.

K. Kyzirakos et al. / Web Semantics: Science, Services and Agents on the World Wide Web () – 5

and stSPARQL use OGC standards WKT and GML for a serialized
representation of temporal and geospatial data.

GeoSPARQL is an OGC standard for the representation and
querying of linked geospatial data. GeoSPARQL defines much of
what is required for such a query language by providing a vocabu-
lary (classes, properties, and functions) that can be used in geospa-
tial RDF graphs and SPARQL queries. The top level classes defined
in GeoSPARQL are geo:SpatialObject the instances of which
include everything that can have a spatial representation, and
geo:Feature that represents all features and is the superclass of
all classes of features that the usersmight want to define. To repre-
sent geometric objects, the classgeo:Geometry is introduced. The
topology vocabulary extension of GeoSPARQL provides a vocabu-
lary for asserting and querying topological relations between spa-
tial objects. The extension is parameterized by the family of topo-
logical relations supported. Such relations can be the ones defined
in the OGC standard for simple features [26] (e.g., geo:sfEquals),
the Egenhofer relations [27] (e.g., geo:ehMeet), or the RCC-8
relations [28] (e.g., geo:rcc8ec). These relations can be asserted
in a triple of an RDF graph (e.g., ex:Athens geo:sfWithin
ex:Greece .) or can be used in a triple pattern of a SPARQL query
(e.g., ?x geo:sfWithin ex:Greece).

When transforming geospatial data into RDF graphs using a
vocabulary like the vocabulary of stRDF or GeoSPARQL, we may
need to compute on the fly values that are not explicitly present
in the source data such as the dimension of a given geometry, the
length of a line or the area of a polygon. Such values can be derived
by applying a transformation function over the input geometries.
In addition, we may want to compute on the fly which topological,
directional, or distance relations hold between two spatial objects.
Such values can be derived by evaluating a topological, directional,
or distance function over the input geometries. As a result, we
need to extend the R2RML and RML mapping language with new
classes and properties in order to allow the representation of such
transformation functions. This is presented in detail in the rest of
this section. The new prefix that we introduce for our constructs is
rrx for http://geotriples.di.uoa.gr/ns/rml_extensions.

3.1. Transformation functions for R2RML and RML

We introduce two new properties as extensions to the
R2RML language. The first property is rrx:function and it is
used for representing transformation functions. The value of a
rrx:function property is an IRI that identifies a SPARQL exten-
sion function that performs a desired transformation. The domain
of the object property rrx:function is an rr:TermMap and the
range of this property is an rrx:TransformationFunction.

We also define the property rrx:argumentMap for repre-
senting an ordered sequence of term maps that will be passed
as arguments to a transformation function. The domain of the
object property rrx:argumentMap is an rr:TermMap. The rrx:
argumentMap property has as range an rdf:List of term maps
that define the arguments to be passed to the transformation
function.

The following definition extends the concepts of a termmap so
that transformation functions can be represented.

Definition 1. A transformation-valued termmap is a termmap that
generates an RDF term by applying a SPARQL extension function
on one ormore termmaps. A transformation-valued termmap has
exactly one rrx:function property and one rrx:argumentMap
property.

Definition 2. A term map must be a constant-valued term map,
a column-valued term map, a template-valued term map, or a
transformation-valued term map depending on what properties
are being used.

Fig. 2. Overview of the extensions to R2RML and RML. White boxes denote R2RML
components, green boxes denote R2RML components extended by RML, orange
boxes denote RML specific components and yellow boxes denote our extensions.
Arrows with white arrowhead denote subclasses, arrows with dashed line and
white arrowhead denote the different types of TermMap and simple lines denote
associations. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

Example 1. The following is an objectmap that is a transformation-
valued term map:

rr:objectMap [rrx:function strdf:dimension ;
rrx:argumentMap (
[rr:column "Geom"]);] .

The above map defines that the generated RDF triples will have
as objects the RDF terms that result from applying the SPARQL
extension function strdf:dimension to the values of the column
Geom.

Example 2. The following is an objectmap that is a transformation-
valued term map that has a transformation function that takes
multiple arguments as input:

rr:objectMap [rrx:function geof:buffer ;
rrx:argumentMap (

[rr:column "Geom"]
[rr:constant "10";
rr:datatype xsd:int]

[rr:constant uom:metre
])] .

The above map instructs that the generated RDF triples will
have as objects new geometric objects that represent all points
whose distance from the geometries stored in the Geom column
is less than or equal to ten meters.

In R2RML, a referencing object map is used for representing
foreign key relationships among logical tables. A referencing object
map may contain one or more join conditions that define the child
and parent columns of the foreign key. Two tuples are considered
as qualified when their values for the corresponding child and
parent columns are equal. For allowing the usage of a different
predicate, we need to extend the definition of a referencing object
map. This need arises from the topology vocabulary of GeoSPARQL
that allows the user to assert that a topological relation holds
between two geometric objects. In order to generate datasets that
explicitly contain qualitative topological information, we need to
extend the definition of referencing object maps and join condi-
tions.

http://geotriples.di.uoa.gr/ns/rml%5Fextensions

Please cite this article in press as: K. Kyzirakos, et al., GeoTriples: Transforming geospatial data into RDF graphs using R2RML and RMLmappings, Web Semantics: Science,
Services and Agents on the World Wide Web (2018), https://doi.org/10.1016/j.websem.2018.08.003.

6 K. Kyzirakos et al. / Web Semantics: Science, Services and Agents on the World Wide Web () –

Definition 3. A join condition is a resource that:

• has exactly one value for the rr:child and rr:parent
properties, or
• has exactly one value for the rrx:function and rrx:

argumentMap properties. Each element of the argument
map optionally has a rr:triplesMap property in order to
define the triples map from where the joining values derive.
If a rr:parentTriplesMap is absent, the termmap is eval-
uated over the current triples map.

Example 3. The following is an R2RML join condition:

rr:joinCondition [
rrx:function geof:sfOverlaps;
rrx:argumentMap ([rr:column "Geom"]

[rr:column "Geom" ;
rr:triplesMap <MapB>])
] .

The join condition above states that the values of the Geom
column of the current triples map must spatially overlap with the
values of the Geom column from the triples map <MapB>.

Definition 4. A referencing object map is a map that allows a
predicate–objectmap to generate as objects the subjects of another
triples map. A referencing object map can be represented as a
resource that:

• has exactly one rr:parentTriplesMap property and op-
tionally one or more join conditions, or
• has at least one join condition that employs one transforma-

tion function.

Example 4. The following is an R2RML referencing object map:

rr:objectMap [
rr:joinCondition [

rrx:function ex:isClose;
rrx:argumentMap([rr:column "Geom"]

[rr:column "Geom";
rr:triplesMap <MapB>]

[rr:constant "10";
rr:datatype xsd:int]
[rr:constant uom:metre
])]] .

Let ex:isClose be a SPARQL extension function which takes as
input two geometries, a decimal number and a URI that denotes
a unit of measurement, and returns true if the distance between
the two geometries is less than the given decimal number in the
given unit of measurement. Then, the values of the above object
map are the subjects from the triples map MapB that correspond
to a geometry that is close to the geometries of the current triples
map.

Given that the extensions that we defined above are orthogonal
to the RML extensions of R2RML, the same extensions can be
viewed as extensions of RML. In Fig. 2 we give a graphical overview
of R2RML, RML and our extensions.

4. The tool GeoTriples

In this sectionwepresent the tool GeoTriples thatwedeveloped
for transforming geospatial data sources into RDF. GeoTriples26
is an open-source tool that is distributed freely according to the
Mozilla Public License v2.0. We will present the architecture of

26 http://geotriples.di.uoa.gr.

GeoTriples and discuss its main components and their respective
implementation details. We will then describe how GeoTriples
generates R2RML and RML mappings for transforming data that
reside in spatially-enabled databases and raw files, and, finally, and
how it processes thesemappings to produce an RDF graph that fol-
lows the GeoSPARQL, stRDF or any other user-defined vocabulary.

4.1. System architecture

In this sectionwe present the system architecture of GeoTriples
that is depicted in Fig. 3. The input data for GeoTriples can be
geospatial data and metadata stored in ESRI Shapefiles, XML, GML,
KML, JSON, GeoJSON and CSV documents or spatially-enabled re-
lational databases (e.g., PostGIS and MonetDB). GeoTriples has a
connector that is responsible for providing an abstraction layer that
allows the rest of the components to transparently access the input
data. GeoTriples comprises three main components: the mapping
generator, the mapping processor and the stSPARQL/GeoSPARQL
evaluator.

The mapping generator is given as input a data source and
creates automatically an R2RML/RMLmapping document, depend-
ing on the type of the input. The generated mapping is enriched
with subject and predicate–object maps, taking into account all
transformations that are needed to produce an RDF graph that is
compliant with the GeoSPARQL vocabulary. Afterwards, the user
may edit the generated mapping document to make it comply
with her requirements (e.g., use a different vocabulary). We point
out that the ability of GeoTriples to use different vocabularies is a
useful feature since even standardized vocabularies such as the one
of GeoSPARQL can be dropped, modified or extended in the future.

The mapping processor may use either the generated mapping
document or one created by the user from scratch. Based on
the triples map definitions in the mapping file, the component
generates the final RDF graph which can be manifested in any of
the popular RDF syntaxes such as Turtle, RDF/XML, Notation3 or
N-Triples. The mapping processor has been implemented in two
ways. The first implementation runs on a single processor, while
the second runs in a distributed manner using the Apache Hadoop
framework. The second implementation will be described in detail
in Section 6.

The stSPARQL/GeoSPARQL evaluator is a component that eval-
uates an stSPARQL/GeoSPARQL query over a relational database
given an R2RML mapping. The evaluator is a thin layer that in-
tegrates GeoTriples with the OBDA engine Ontop-spatial [13]. It
supports the evaluation of stSPARQL/GeoSPARQL queries over vir-
tual RDF graphs defined through R2RML mappings to a geospatial
relational database.

4.2. Implementation details

To implement GeoTriples, we chose to extend the D2RQ plat-
form [29] which is a well-known system for publishing relational
data into RDF. D2RQ provides an interface for generating and
processing R2RML mappings for a variety of relational databases
that are accessible via JDBC27. To support the processing of other
data sources, GeoTriples also extends the iMinds RML processor28
to process RML mappings of relational databases as well as other
data sources. GeoTriples uses the GeoTools29 library for process-
ing geometric objects within ESRI shapefiles, GML, KML, GeoJSON
and CSV documents. The GDAL30 library is also integrated in the
application as an alternative for processing ESRI shapefiles more
efficiently.

27 https://docs.oracle.com/javase/8/docs/technotes/guides/jdbc/.
28 http://rml.io/.
29 http://geotools.org/.
30 http://www.gdal.org/.

http://geotriples.di.uoa.gr
https://docs.oracle.com/javase/8/docs/technotes/guides/jdbc/
http://rml.io/
http://geotools.org/
http://www.gdal.org/

Please cite this article in press as: K. Kyzirakos, et al., GeoTriples: Transforming geospatial data into RDF graphs using R2RML and RMLmappings, Web Semantics: Science,
Services and Agents on the World Wide Web (2018), https://doi.org/10.1016/j.websem.2018.08.003.

K. Kyzirakos et al. / Web Semantics: Science, Services and Agents on the World Wide Web () – 7

Fig. 3. The system architecture of GeoTriples.

4.3. Automatic generation of R2RML and RML mappings

GeoTriples can automatically produce an R2RML or RML map-
ping document that can then be used to generate an RDF graph that
corresponds to the input database or file.

Let us first discuss how mappings are generated when the
input is a geospatial relational database or a shapefile. In the next
section, we also present a simple example that illustrates the func-
tionality of GeoTriples. In these cases, R2RML/RML mappings that
are generated by GeoTriples consist of two triples maps: one for
handling thematic information and one for handling geospatial in-
formation. The triples map that handles non-geometric (thematic)
information defines a logical table that contains the attributes of
the input data source and a unique identifier for the generated
instances. The latter could be either the primary key of the table
or a row number of each tuple in the dBase table of a shapefile.31
Combined with a URI template, the unique identifier is used to
produce the URIs that are the subjects of the produced triples. For
each column of the input data source, GeoTriples generates an RDF
predicate according to the name of the column and a predicate
object map. This map generates predicate–object pairs consisting
of the generated predicate and the column values.

The triples map that handles geospatial information defines
a logical table with a unique identifier similar to the thematic
one. The logical table contains a serialization of the geometric
information according to the WKT format, and all attributes of
the geometry that are required for producing a GeoSPARQL com-
pliant RDF graph. For this purpose, if the input is a shapefile,
GeoTriples constructs RMLmappingswith transformations that in-
voke GeoSPARQL/stSPARQL extension functions. If the input is a re-
lational database, GeoTriples constructs SQL queries that utilize the
appropriate spatial functions of the Open Geospatial Consortium
standard ‘‘Simple Feature Access— Part 2: SQL Option’’32 that gen-
erate the information required. For example, in order to generate
triples that describe the dimensionality of a geometry, GeoTriples
creates an RML mapping that invokes the strdf:dimension
SPARQL extension function that is evaluated over a geometry of

31 A short description of what a shapefile is given in Section 5.
32 http://www.opengeospatial.org/standards/sfs.

a shapefile, or utilizes the PostGIS SQL function ST_Dimension
when dealing with a spatially-enabled relational database.

A different approach is followed when the input data source
is an XML document. In this case, GeoTriples utilizes information
from the XML SchemaDefinition (XSD) language file that describes
the structure of the input XML document for generating the ap-
propriate RML mappings. In XML Schema, two kinds of types are
defined: simple and complex. Simple types,33 whether built-in
(e.g., xsd:integer) or user-defined, are restrictions of the base
type definitions (e.g., positive integers with maximum value 122
for representing age information). We define as simple element an
XML element of simple type. By definition, a simple element may
contain only text and cannot contain any other XML elements or
attributes. A complex type34 is a set of attribute declarations and
a content type that is applicable to the attributes and children of
an element information item respectively. We define a complex
element to be an XML element of complex type.

For mapping an XSD document to an ontology, we define a
strategymapping XSD elements and attributes to RDFS classes and
properties. We introduce three rules for the generation of an RML
mapping and an ontology for any XML schema.

1. Each simple element is mapped to a predicate–object map
and an OWL data type property.

2. Each complex element is mapped to a triples map and an
RDFS class.

3. Nested complex elements are mapped to a predicate–object
map and an OWL object property.

A well-adopted standard for representing geospatial features in
XML is the Geography Markup Language (GML) which has been
defined by the Open Geospatial Consortium. We introduce the
following rules for handling geometric information that may be
present in an input XSD document that follows the GML standard.

1. For every gml:AbstractGeometryType, we create a new
triples map. All generated IRIs will be instances of the class
ogc:Geometry.

33 http://www.w3.org/TR/xmlschema11-1/#Simple_Type_Definition.
34 http://www.w3.org/TR/xmlschema11-1/#Complex_Type_Definition.

http://www.opengeospatial.org/standards/sfs
http://www.w3.org/TR/xmlschema11-1/%23Simple%5FType%5FDefinition
http://www.w3.org/TR/xmlschema11-1/%23Complex%5FType%5FDefinition

Please cite this article in press as: K. Kyzirakos, et al., GeoTriples: Transforming geospatial data into RDF graphs using R2RML and RMLmappings, Web Semantics: Science,
Services and Agents on the World Wide Web (2018), https://doi.org/10.1016/j.websem.2018.08.003.

8 K. Kyzirakos et al. / Web Semantics: Science, Services and Agents on the World Wide Web () –

Table 1
Transformation functions supported by GeoTriples.

stSPARQL functions GeoSPARQL functions Description

strdf:dimension geo:dimension Returns the inherent dimension of the input geometry.
strdf:spatialDimension geo:spatialDimension Returns the dimension of the spatial portion of the input geometry. If

the spatial portion does not have a measure coordinate, this will be
equal to the coordinate dimension (see below).

strdf:coordinateDimension geo:coordinateDimension Returns the number of measurements or axes needed to describe the
position of this geometry in its coordinate system.

strdf:isEmpty geo:isEmpty Returns true if the input geometry is an empty geometry. If true, then
this geometry represents an empty geometry collection, polygon, point
etc.

strdf:isSimple geo:isSimple Returns true if the input geometry has no anomalous geometric points,
such as self-intersection or self-tangency.

geo:is3D Returns true if the geometry uses three spatial dimensions.
strdf:asText geo:asWKT Returns the Well-Known Text (WKT) serialization of the input

geometry.
strdf:asGML geo:asGML Returns the Geography Markup Language (GML) serialization of the

input geometry.

2. For each newly created triples map, we generate a
predicate–object map for each geometric property de-
fined in the geometry extension component of GeoSPARQL.
Each predicate–object map must utilize the appropriate
GeoSPARQL or stSPARQL extension functions for performing
the desired transformation.

3. We generate a property–object map that will create a
ogc:hasGeometry link between the current triples map
and the triples map of the parent XML element.

Besides the datamodel used by GML and KML documents, there
is no other standard practice to represent geospatial information
inside XML documents. As a result, a custom approached must be
followed by editing the RML mapping accordingly.

In Table 1 we present the transformation functions that we
implemented inGeoTriples. In the Strabonwebsite,35 onemay find
a complete reference of these functions offered by stSPARQL.

4.4. Processing of R2RML and RML mappings

In this section we will present in detail the R2RML and RML
processor of GeoTriples. The algorithms employed by the processor
are Algorithms 1 and 2 where we highlight with comments our
extensions. In Algorithm 1 we present how GeoTriples processes
an R2RML mapping when the input data source is a spatially-
enabled relational database. In this case GeoTriples uses the ex-
tended D2RQmapping processor. The process starts by parsing the
input mapping and storing it in memory. For each triples map,
the mapping processor performs the following steps. At first, the
processor extracts the logical table from the document, constructs
the effective SQL query, and stores it in memory. Every logical
table has an effective SQL query that, if executed, produces as its
result the contents of the logical table. If the subject map is a
template-valued term map or a column-valued term map, the
related columns are extracted and stored in memory. Then, the
processor iterates over all predicate–object maps, and for each one
it extracts all template- and column-valued termmaps. These term
maps are cached in memory along with the position that they
appear on (i.e., whether they are a subject, predicate, object or
graph map). Notice that there is no upper bound on the number
of predicate or object maps that may appear in a predicate–object
map. Afterwards, the processor constructs an SQL query statement
that projects all column names that are referenced by the term
maps that appear in the subject, predicate and object positions
for the current predicate map. The constructed query is posed to
the database and then the processor iterates over the results. For

35 http://www.strabon.di.uoa.gr/files/stSPARQL_tutorial.pdf.

each predicate and object value in the result row, a new RDF triple
is constructed. If the object map is a referencing object map, a
new SQL query is constructed. The SELECT clause will contain
the column names that are referenced by the subject map of the
parent triples map and the subject and predicate column names
of the current predicate–object map. The effective SQL queries of
the current triples map and the parent triples map are used as the
relations in the FROM clause. The child and parent columns are
joined in the WHERE clause of the query. If there are more than
one referencing object maps in the same predicate object map, the
WHERE clause will contain multiple equi-joins between the child
and parent column names.

For processing RML mappings, the GeoTriples mapping proces-
sor extends the RML processor of the tool iMinds. In Algorithm 2
we present how GeoTriples processes an RML mapping. For each
triples map, it opens the data source defined in the logical source
and poses the defined iterator query to the data source, using the
appropriate library. After receiving the result set, the mapping
processor iterates through all features in the results, and for each
feature it iterates through all predicate–object maps and processes
each one to form the desired RDF triples. For each feature, the
processor extracts the values that are referenced by template-
valued and reference-valued termmaps that appear in the current
predicate–object map. In the case of a referencing object map, the
processor accesses the logical source of the parent triples map,
to get the resulting features. Then, it selects only the features
that have equal values on the parent and the child references. For
these features, an RDF triple is generated using the result of the
parent triples map’s subject map as the object RDF term. The same
procedure is followed for each referencing object map that may
appear in the RML mapping.

5. An example

Let us now show an example of RML mapping generation by
GeoTriples for an input shapefile.

A shapefile is a vector data storage format for storing the lo-
cation, shape, and attributes of geographic features. It is an open
specification which has been developed by ESRI in the context of
its ArcGIS product. Shapefiles can represent geographic features
along with the spatial and non-spatial attributes that describe
them. For example, they can store the geometry of a country
in conjunction with its name, population etc. An ESRI shapefile
dataset is a collection of files stored in the same directory. Three
important files are the oneswith the suffixes.shp,.dbf and.shx.
The .shp file is the main file that contains the geometry of one
or more features, the .dbf file contains the non-spatial (thematic)
attributes of these features in a table with dBASE format, and the

http://www.strabon.di.uoa.gr/files/stSPARQL%5Ftutorial.pdf

Please cite this article in press as: K. Kyzirakos, et al., GeoTriples: Transforming geospatial data into RDF graphs using R2RML and RMLmappings, Web Semantics: Science,
Services and Agents on the World Wide Web (2018), https://doi.org/10.1016/j.websem.2018.08.003.

K. Kyzirakos et al. / Web Semantics: Science, Services and Agents on the World Wide Web () – 9

Algorithm 1 Processing R2RML mappings
1: Data: R2RML Mapping /* The mapping can also contain transformation functions */
2: Result: RDF graph
3: for each triples map in mapping do
4: Scan logical table;
5: effectiveQuery← ConstructEffectiveQuery(logical table);
6: sColumns← ExtractColumnNames(subject map);
7: /* We have extended predicate-object map, in order to support transformation functions */
8: for each predicate-object map in triples map do
9: for each predicate map in predicate-object map do
10: pColumns← ExtractColumnNames(predicate map);
11: for each object map do
12: if ObjectMapType(object map) = referencing object map then
13: parentTriplesMap← GetParentTriplesMap(object map);
14: parentEffectiveQuery← GetParentEffectiveQuery(parentTriplesMap);
15: parentTMColumns← XtractColNamesFromParentSubject(parentTriplesMap);
16: childColumn← GetChildColumn(object map);
17: parentColumn← GetParentColumn(object map);
18: effectiveQuery← ConstructJointEffectiveQuery(effectiveQuery,
19: parentEffectiveQuery, childColumn, parentColumn);
20: projections← sColumns, pColumns, parentTMColumns;
21: else
22: oColumns← ExtractColumnNames(object map);
23: projections← sColumns, pColumns, oColumns;
24: end if
25: resultSet← PoseQuery(projections, effectiveQuery);
26: for each result row in resultSet do
27: /* We have extended the process of the construction of the RDF triples,
28: in order to produce the results of the transformation functions */
29: ConstructRDFTriple(result row);
30: end for
31: end for
32: end for
33: end for
34: end for

Table 2
Thematic information from the .dbf file.

SHAPE_ID ID_0 ISO NAME_0 ID_1 NAME_1 CCA_1 TYPE_1 ENGTYPE_1 VARNAME_1

7.0 112 ITA Italy 8 Lazio 12 Regione Region Lacio/Latium
14.15 112 ITA Italy 15 Sicily 19 Regione Region Sicilia

.shx file is a positional index of the feature geometry to allow
seeking forwards and backwards quickly.

In our example, we will use a shapefile containing information
about the country Italy from the database of Global Administra-
tive Areas (GADM). GADM is a geospatial database of the world’s
administrative areas which are countries and lower level subdi-
visions such as provinces, states etc.36 A subset of the thematic
information for the feature ‘‘Italy’’, from the corresponding .dbf
file, is presented in Table 2. A subset of the geometric information
for the same feature, from the .shp file, is presented in Table 3.

As shown in Table 2, the .dbf file contains a unique identifier
SHAPE_ID and the thematic attributes of the identified features
(name of the country, name of the region, its type etc.)

As shown in Table 3, the .shp file contains a unique identifier
SHAPE_ID and the coordinates X and Y of all points forming the
polygons of the identified features. Unique identifiers in the .shp
file correspond to unique identifiers in the .dbf file and establish
the identity of the features described by the two files.

Given Italy’s shapefile as input, GeoTriples will generate a cor-
responding RMLmapping file, parts of whichwill be presented and
explained immediately. The mapping file consists of a thematic
part and a geometry part as we discussed in Section 4.3 above.

First, the thematic part contains information about the logical
source, the type of the file and the iterator of the file:

36 http://www.gadm.org/.

rml:logicalSource [rml:source
"User/data/ITA_adm_shp/ITA_adm1.shp";

rml:referenceFormulation ql:SHP;
rml:iterator "ITA_adm1";];

Subsequently, the triplesmapof the data source is given. This starts
with the subject map with a URI which is generated by a template
which includes a unique identifier GeoTriplesID:

rr:subjectMap [rr:template
"http://linkedeodata.eu/ITA_adm1/id/{GeoTriplesID}";

rr:class onto:ITA_adm1;];

The default namespace of the predicates of the generated triples is
http://linkedeodata.eu/ontology# and its prefix is onto. Then the
predicate–object maps are given. For reasons of brevity, we give
only the maps for the ISO and the NAME_1 thematic attributes.
The ISO attribute gives rise to the predicate onto:hasISO and the
NAME_1 attribute gives rise to the predicate onto:hasNAME_1:

rr:predicateObjectMap [
rr:predicateMap [rr:constant onto:hasISO];
rr:objectMap [rr:datatype xsd:string;

rml:reference "ISO";];];

rr:predicateObjectMap [
rr:predicateMap [rr:constant onto:hasNAME_1];
rr:objectMap [rr:datatype xsd:string;

rml:reference "NAME_1";];];

http://www.gadm.org/
http://linkedeodata.eu/ontology%23

Please cite this article in press as: K. Kyzirakos, et al., GeoTriples: Transforming geospatial data into RDF graphs using R2RML and RMLmappings, Web Semantics: Science,
Services and Agents on the World Wide Web (2018), https://doi.org/10.1016/j.websem.2018.08.003.

10 K. Kyzirakos et al. / Web Semantics: Science, Services and Agents on the World Wide Web () –

Algorithm 2 Processing RML mappings
1: Data: RML Mapping /* The mapping can also contain transformation functions */
2: Result: RDF graph
3: for each triples map in mapping do
4: Scan logical source;
5: iterator← ExtractIterator(logical source);
6: ReferenceFormulation← ExtractReferenceFormulation(logical source);
7: logicalReferences← ExtractLogicalReferences(triples map);
8: subjectMap← ExtractSubjectMap(triples map);
9: switch ReferenceFormulation do Select processor implementation
10: case Xpath Select XML processor;
11: case JSONPath Select JSON processor;
12: case SHP Select Shapefile processor;
13: case SQL Select SQL processor;
14: default Error(Wrong input)
15: /* The iterator is an SQL query which projects all logical references */
16: iterator← ConstructNewSQLIterator(logicalReferences, iterator);
17: endsw
18: resultSet← ExecuteIterator(iterator);
19: for each result row in resultSet do
20: sValues← ExtractSubjectValues(SubjectMap, result row);
21: /* We have extended predicate-object map, in order to support transformation functions */
22: for each predicate-object map do
23: for each predicate map do
24: pValues← ExtractPredicateValues(predicate map, result row);
25: for each object map do
26: if ObjectMapType(object map) = referencing object map then
27: parentTriplesMap← GetParentTriplesMap(object map);
28: parentSubjectMap← ExtractSubjectMap(parentTriplesMap);
29: childColumn← GetChildReference(object map);
30: childValue← ExtractChildValue(object map, result row);
31: parentColumn← GetParentReference(object map);
32: parentResultSet← ExtractResultSet(parentTriplesMap);
33: for each p result row in parentResultSet do
34: sParentValues← ExtractSubjectValues(parentSubjectMap, result row);
35: parentValue← ExtractParentValue(object map, result row);
36: if childValue = parentValue then
37: /* We have extended the process of the construction of the RDF triples,
38: in order to produce the results of the transformation functions */
39: ConstructRDFTriple(sValues, pValues, sParentValues);
40: end if
41: end for
42: else
43: oValues← ExtractObjectValues(object map, result row);
44: /* Our extension takes place here as well */
45: ConstructRDFTriple(sValues, pValues, oValues);
46: end if
47: end for
48: end for
49: end for
50: end for
51: end for

Table 3
Geometric information from the .shp file.

SHAPE_ID X Y

7.0 13.4551401138 40.792640686
7.0 13.4551401138 40.7923622131
7.0 13.4556941986 40.7923622131
· · · · · · · · ·

14.15 12.4334716797 37.8940315247
14.15 12.4334716797 37.8937492371
14.15 12.4323616028 37.8937492371
· · · · · · · · ·

19.2 12.5093050003 44.9306945801
19.2 12.5093050003 44.9304161072
19.2 12.5095834732 44.9304161072
· · · · · · · · ·

The geometry part is structured like the thematic part. First, it
contains information about the logical source, the type of the file
and the iterator of the file:

rml:logicalSource [rml:source
"User/data/ITA_adm_shp/ITA_adm1.shp";

rml:referenceFormulation ql:SHP;
rml:iterator "ITA_adm1";];

Then the triples map of the data source is given starting with the
subject map. The corresponding URI is generated by a template
which includes the unique identifier GeoTriplesID. This URI can
be given as input to GeoTriples. The subject mapmakes this URI an
instance of the class ogc:Geometry of the GeoSPARQL ontology:

rr:subjectMap [
rr:template

Please cite this article in press as: K. Kyzirakos, et al., GeoTriples: Transforming geospatial data into RDF graphs using R2RML and RMLmappings, Web Semantics: Science,
Services and Agents on the World Wide Web (2018), https://doi.org/10.1016/j.websem.2018.08.003.

K. Kyzirakos et al. / Web Semantics: Science, Services and Agents on the World Wide Web () – 11

"http://linkedeodata.eu/ITA_adm1/
Geometry/{GeoTriplesID}";

rr:class ogc:Geometry;];

Finally, the geometry part contains the predicate–object maps.
These are generated by transformation functions computed on
the geometry, for example the predicates geo:dimension and
geo:asWKT of the GeoSPARQL ontology:

rr:predicateObjectMap [
rr:predicateMap [rr:constant geo:dimension];
rr:objectMap [rr:datatype xsd:integer;

rrx:function geo:dimension;
rrx:argumentMap ([rml:reference

"the_geom";]);];];

rr:predicateObjectMap [
rr:predicateMap [rr:constant geo:asWKT];
rr:objectMap [rr:datatype ogc:wktLiteral;

rrx:function geo:asWKT;
rrx:argumentMap ([rml:reference

"the_geom";]);];];

The last step of the operation of GeoTriples is the processing
of the generated R2RML and RML mappings to produce an output
RDF graph. As the algorithm of Section 4.4 dictates, initially, for
each triples map, we extract the logical source of the file, the
reference formulation to choose the right processor (e.g., shapefile
processor), the subject map and the corresponding iterator. Then,
for each element of the logical source, the iterator extracts the
subject value of the generated RDF triple. Then the predicate–
object maps generate the predicate–object pairs of the triple. For
the triple map presented above, three of the generated thematic
triples for feature ‘‘Lazio’’ are:

PREFIX geo: <http://www.opengis.net/ont/geosparql#>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
PREFIX adm: <http://linkedeodata.eu/ITA_adm1/>
PREFIX onto: <http://linkedeodata.eu/ontology#>
PREFIX admgeo: http://linkedeodata.eu/ITA_adm1/Geometry/>
PREFIX leo: <http://linkedeodata.eu/ontology#>

adm:8 rdf:type leo:ITA_adm1 .
adm:8 onto:hasNAME_1 "Lazio"^xsd:string .
adm:8 geo:hasGeometry admgeo:8 .

In the same way, the geometric part of the mapping file gen-
erates, among others, the following triples corresponding to the
geometric attributes of the same feature:

admgeo:8 rdf:type geo:Geometry .
admgeo:8 geoisEmpty "false"^^xsd:boolean .
admgeo:8 geois3D "false"^^xsd:boolean .
admgeo:8 geo:isSimple "true"^^xsd:boolean .
admgeo:8 geo:coordinateDimension "9644"^^xsd:integer .
admgeo:8 geo:dimension "2"^^xsd:integer .
admgeo:8 geo:asWKT
"<http://www.opengis.net/def/crs/EPSG/0/4326>
MULTIPOLYGON (((13.455140113830566 40.79264068603521,
13.455140113830566 40.79236221313482, ...,

12.455550193786678 41.90755081176758)))"^^geo:wktLiteral .
admgeo:8 geo:spatialDimension "2"^^xsd:integer .

6. Implementing the mapping processor of GeoTriples using
Apache Hadoop

To enable the efficient transformation of large or numerous
input geospatial files into RDF, we have developed an implementa-
tion of the GeoTriples mapping processor using Apache Hadoop.37
We call this implementation GeoTriples-Hadoop and present its
architecture in Fig. 4. Apache Hadoop is an open source framework
that allows the distributed processing of large datasets across

37 http://hadoop.apache.org/.

clusters of computers. The main components of Apache Hadoop
are HDFS (its distributed file system) and Hadoop MapReduce (an
implementation of the MapReduce programming model originally
introduced by Google [30]). We have implemented the mapping
processor for the case of RML mappings generated from shapefiles
and CSV files. Our implementation is freely available onGitHub like
the single-node implementation discussed above.38

The mapping processor of GeoTriples-Hadoop is implemented
by mappers in the MapReduce programming model. Each mapper
takes as input one shapefile or a block of a CSV file and produces
one RDF file as output. The use of reducers is optional: they can be
used for themerging of the RDF files produced by themappers. For
example, if we have 100mappers and 2 reducers, themappers will
create 100 RDF files and the reducers will merge the results into 2
RDF files. For the processing of shapefiles by Hadoop, we used the
open source library Shapefile.39 Shapefile is a very efficient and
lightweight Java library that contains classes that enable Hadoop
to read shapefiles that are stored in the HDFS.

To be able to use the Shapefile library effectively, we had to
solve an incompatibility with GeoTriples and deal with one draw-
back. The incompatibility with GeoTriples stems from the fact that
Shapefile is based on the ESRI Geometry API40 while GeoTriples is
based on the JTS Topology Suite.41 To solve this incompatibility,
we had to change the way in which Shapefile process the ge-
ometries. In addition, we made an improvement in the processing
of shapefiles by creating a hybrid library class that can process
both geometry types (points and polygons) in the same execution.
The original library had two different classes, one for shapefiles
that contain points and one for shapefiles that contain polygons
something that is inconvenient when using the library. Finally, we
converted the Shapefile library into a Maven project.42 In this
way, the GeoTriples implementation that uses Hadoop is a Maven
project that consists of three completely independent modules:
the module that contains the Apache Hadoop implementation, the
module that contains the rest of the components of the GeoTriples
tool discussed above and the module that contains the Shapefile
library.

Themain advantage of the GeoTriples-Hadoop implementation
of the mapping processor is the distribution of the transformation
workload to clusters of computing nodes. It is well-known that an
Apache Hadoop implementation is very efficient only with large
datasets. Thus, the single-node implementation of the mapping
processor will typically be more efficient than the Hadoop imple-
mentation for smaller datasetswhenwe take into account the costs
for the initialization and the management of the Hadoop cluster.

The mapping processor of GeoTriples-Hadoop uses the Shape-
file library to distribute the workload by assigning each one of the
shapefiles of the input dataset to a different mapper. This might
appear to be contrary to the Hadoop principle of segmenting each
input file according to the blocksize, and distributing the segments
to the cluster nodes where the mappers reside. The Shapefile
library does not support this principle; instead, it uses a different
map procedure for accessing a whole shapefile. In practice this is
not a drawback of the Shapefile library (and our implementation)
because, typically, the average size of a shapefile is smaller than the
typical size of an Apache Hadoop blocksize, typically 64 MB–128
MB (see for example the average size of a shapefile in the datasets
of Table 4). Most shapefiles we have encountered in our work are

38 https://github.com/dimitrianos/GeoTriples-Hadoop.
39 https://github.com/mraad/Shapefile.
40 https://github.com/Esri/geometry-api-java.
41 https://github.com/locationtech/jts.
42 Apache Maven is a software project management tool that helps Java soft-
ware developers manage the software development process. For more, see https:
//maven.apache.org/.

http://hadoop.apache.org/
https://github.com/dimitrianos/GeoTriples-Hadoop
https://github.com/mraad/Shapefile
https://github.com/Esri/geometry-api-java
https://github.com/locationtech/jts
https://maven.apache.org/
https://maven.apache.org/

Please cite this article in press as: K. Kyzirakos, et al., GeoTriples: Transforming geospatial data into RDF graphs using R2RML and RMLmappings, Web Semantics: Science,
Services and Agents on the World Wide Web (2018), https://doi.org/10.1016/j.websem.2018.08.003.

12 K. Kyzirakos et al. / Web Semantics: Science, Services and Agents on the World Wide Web () –

Fig. 4. The system architecture of GeoTriples-Hadoop.

Table 4
Datasets and first set of experiments.

Dataset # of files Size on disk # of subject maps # of predicate object maps # of triples RDF graph size Total conversion time

Sentinel-2, Level-1C
products

2188 186.4 MB 1,538 3,986 4,198,561 1.8 GB 38 min

TOP10NL 101 29 GB 29,135 190,898 480,346,004 99.0 GB 245 min
Urban Atlas 336 20 GB 672 5,042 106,020,936
RML — Shapefiles
— GDAL

51.8 GB 78 min

RML — Shapefiles
— GeoTools

44.5 GB 72 min

RML — MonetDB 41.2 GB 77 min
RML — PostgreSQL 41.4 GB 64 min

tens of MBs in size. Fewer shapefiles are in the order of hundreds
of MBs, and very few are 1 GB or more. In fact, according to ESRI,43
each component of a shapefile cannot exceed 2 GBs in size.

In the case of CSV files, since CSV file access is built-in in Apache
Hadoop, the Hadoop principle of segmenting an input file accord-
ing to blocksize and distributing it to mappers is also followed by
our implementation.

7. Performance evaluation of GeoTriples

In this section we present a performance evaluation of three
versions of GeoTriples: the single-node implementation (called
simply GeoTriples in this section), the GeoTriples-Hadoop imple-
mentation, and a version of the single-node implementationwhich
uses the shell tool GNU Parallel44 and multiple threads to paral-
lelize thework of processing themappings (called GeoTriples-Multi
in this section). For a fairer comparison of GeoTriples-Hadoop and
GeoTriples-Multi, we choose the number of threadsmade available
to GeoTriples by GNU Parallel to be equal to the number of the
Hadoop cluster nodes in GeoTriples-Hadoop (15 threads for 15
cluster nodes). We also present the results of the comparison of
GeoTriples with the similar tool TripleGeo. TripleGeo has already
been described in Section 2.4.

For evaluating the performance of the various implementa-
tions, we used Earth observation data from the Sentinel Open
Access Hub managed by the European Space Agency, Dutch car-
tographic data, an urban land use dataset made available by the
European Environmental Agency and shapefiles from the Global
Administrative Areas portal. The kinds of input formats we used

43 http://support.esri.com/technical-article/000010813.
44 https://www.gnu.org/software/parallel/.

are spatially-enabled relational databases (PostGIS and MonetDB),
shapefiles and CSV files. We first evaluate GeoTriples exhaustively
and thenwe compare itwithGeoTriples-Hadoop, GeoTriples-Multi
and TripleGeo. For all evaluations, we start by discussing some
measurement assumptions that we adopted in our study, then we
define the experimental platform that was used for carrying out
the experiments, and, finally, we present and discuss our findings.

7.1. Measurement assumptions

In the experiments with the implementation of GeoTriples,
we focus on the time required for generating and processing
R2RML and RML documents. The index creation for shapefiles,
the database loading, and indexing is beyond the scope of the
experiments. The rationale is based on the predominantly read-
only nature of RDF stores.

The timing for generating the whole RDF graph focuses on cold
runs. Cold run is a runof the query right afterwhich all caches of the
operating system are cleared, the DBMS is re-started and no data is
loaded into the system’s main memory, neither by the DBMS, nor
in file system caches.

Elapsed time is the real time required for performing all neces-
sary steps for transforming a shapefile or the corresponding rela-
tional table, into an RDF graph stored as a file on disk. This includes
the cost of accessing the shapefile or accessing the database for
requesting exactly the same information (this includes the time re-
quired for parsing, optimizing, executing a query and transferring
the results to the client).

The computations carried out by GeoTriples are I/O and CPU
intensive. The I/O intensity reveals itself mostly when there are
many and large files in the input data, and this has as result many
I/O transactions. The CPU intensity reveals itself when the input
data contains large geometries and transformation functions are
computed on them on the fly.

http://support.esri.com/technical-article/000010813
https://www.gnu.org/software/parallel/

Please cite this article in press as: K. Kyzirakos, et al., GeoTriples: Transforming geospatial data into RDF graphs using R2RML and RMLmappings, Web Semantics: Science,
Services and Agents on the World Wide Web (2018), https://doi.org/10.1016/j.websem.2018.08.003.

K. Kyzirakos et al. / Web Semantics: Science, Services and Agents on the World Wide Web () – 13

7.2. Experimental setup

Our experiments were carried out on a Fedora 20 (Linux
3.12.10) installation on an Intel Core i7-2600K with 8 MB cache
running at 3.4 GHz (turbo 3.8 GHz). The CPU has four cores and
each core has two threads. The system has 16 GB of RAM and a 2
TB disk with 32 MB cache and rotational speed is 7200 rpm. The
I/O read speed is 110–115 MB/s.

7.3. Datasets for the first set of experiments

We transformed into RDF three datasets: the metadata of all
Sentinel-2A Earth Observation products, the Dutch TOP10NL car-
tographic dataset and the Urban Atlas dataset of the European
Environmental Agency. Details for each dataset are presented in
Table 4.

Sentinel-245 is a European wide-swath, high-resolution, multi-
spectral imaging mission. For our first set of experiments, we used
the metadata of all Level-1C products that are currently available
from the Sentinel Open Access Hub.46 Level-1C products contain
information about top-of-atmosphere reflectances in cartographic
geometry. The dataset consists of 1950 GML files and 234 XML
files. The size of the source GML and XML files is 3.4 MB and 183
MB respectively. For transforming this dataset into RDF, we used
GeoTriples for generating and processing the appropriate RML
mappings.

TOP10NL47 is a nationwide digital topographic data base pub-
lished by the Dutch Cadastre, Land Registry and Mapping Agency.
It is themost detailed product of theDutch digital topographic data
base. The dataset consists of 85 GML files with information about
theDutch roadnetwork, railwaynetwork, etc. and16XML files that
contain versioning information for the TOP10NL features. The size
of the source GML and XML files is 26 GB and 5 GB respectively.
For transforming this dataset into RDF, we used GeoTriples for
generating and processing the appropriate RML mappings.

Urban Atlas48 is an activity of the European Environment
Agency that provides reliable, inter-comparable, high-resolution
land use maps for 336 Large Urban Zones and their surroundings
(more than 100,000 inhabitants as defined by the Urban Audit)
for the reference year 2006. The Urban atlas dataset is distributed
as 336 ZIP files. After decompressing the ZIP files, the complete
dataset occupies approximately 20 GB of space and contain in-
formation about 5,762,507 features within 336 shapefiles. Since
domain experts usually store this dataset into a spatially-enabled
relational database, we also stored all shapefiles intoMonetDB and
PostgreSQL enhancedwith the PostGIS extension. For transforming
this dataset into RDF, we used GeoTriples for generating and pro-
cessing RML mappings over shapefiles, MonetDB and PostgreSQL.

7.4. Experimental results

In Table 4 we present the elapsed time for generating the
appropriate mappings for each dataset and subsequently process-
ing them for generating an RDF graph. We made the generated
datasets and the corresponding RML mappings publicly available
as open data.49, 50, 51

45 https://sentinel.esa.int/web/sentinel/missions/sentinel-2/.
46 https://sentinel.esa.int/web/sentinel/user-guides/sentinel-2-msi.
47 http://www.kadaster.nl/web/artikel/producten/TOP10NL.htm.
48 https://www.eea.europa.eu/data-and-maps/data/copernicus-land-
monitoring-service-urban-atlas.
49 http://datahub.io/dataset/sentinel2/.
50 http://datahub.io/dataset/top10nl/.
51 http://datahub.io/dataset/urban-atlas/.

Fig. 5. Generating RML mappings.

As we report in Table 4, GeoTriples required 38 and 245 min
respectively for generating and processing the relevant RML map-
pings for the Sentinel-2 and TOP10NL datasets.

For transforming the Urban Atlas dataset, we evaluated
GeoTriples operating directly over shapefiles using the libraries
GeoTools and GDAL, and GeoTriples operating over shapefiles
stored inMonetDB and PostgreSQL. The elapsed times for each case
are shown in Table 4. The resulting RDF graph has 106,020,936
triples but storage requirements differ for each case. All imple-
mentations store coordinates using the double-precision floating-
point type, but choose to print different numbers of significant
digits when serializing them as strings. The GDAL library uses 15
significant digits, GeoTools uses 9 significant digits, PostgreSQL
uses 8 significant digits, and MonetDB uses 8 significant digits.
As a result, the size of the output RDF graph in terms of disk
usage differs. Small variations of the storage requirements also
emerge from the different URI templates that are been used when
operating directly on the files and when harvesting information
from a relational database.

In Fig. 5 we present the time required to generate RMLmapping
documents for the case of Urban Atlas assuming input shape-
files or spatially-enabled relational tables. We observe two clus-
ters of measurements: one cluster for spatially-enabled relational
databases and one for GeoTriples operating directly on shapefiles.
The mapping generation process relies on accessing either the
header of the shapefiles or the database catalogue which is mea-
sured to be a faster process. We notice that mapping generation is
a very efficient process which is independent of the sizes of triples
that will be generated eventually. Even in the worst case, it takes
a few seconds. Comparing this with the elapsed times of Table 4,
we can see that these times are essentially only for processing the
mappings.

In Fig. 6 we present the elapsed time for processing the gener-
ated RML mappings relatively to the number of generated triples.
The variability of elapsed time for data points that correspond to
the same number of triples comes from the fact that we may have
two files with the same number of triples, but with very different
sizes (e.g., 1 GB vs. 2 GBs) depending on the number of characters
used to represent the geometries in the files. In Fig. 7 we present
the cumulative elapsed time for processing all RML mappings

https://sentinel.esa.int/web/sentinel/missions/sentinel-2/
https://sentinel.esa.int/web/sentinel/user-guides/sentinel-2-msi
http://www.kadaster.nl/web/artikel/producten/TOP10NL.htm
https://www.eea.europa.eu/data-and-maps/data/copernicus-land-monitoring-service-urban-atlas
https://www.eea.europa.eu/data-and-maps/data/copernicus-land-monitoring-service-urban-atlas
http://datahub.io/dataset/sentinel2/
http://datahub.io/dataset/top10nl/
http://datahub.io/dataset/urban-atlas/

Please cite this article in press as: K. Kyzirakos, et al., GeoTriples: Transforming geospatial data into RDF graphs using R2RML and RMLmappings, Web Semantics: Science,
Services and Agents on the World Wide Web (2018), https://doi.org/10.1016/j.websem.2018.08.003.

14 K. Kyzirakos et al. / Web Semantics: Science, Services and Agents on the World Wide Web () –

Fig. 6. Processing RML mappings.

relatively to the total number of generated triples. Compared with
Fig. 6, the line now is smooth given that data points corresponding
to the same number of triples are reported with one (cumulative)
value. We observe that using PostgreSQL is the fastest approach
followed by operating over shapefiles using GeoTools. Using GDAL
or MonetDB is slower. In the case of MonetDB, the bottleneck is
the time required to serialize the results and transport them to the
client. For example, when serializing 99,064 geometries that exist
in the gr001l_athina shapefile, 12 s are required for serializing
all geometries while 37 s are required for transporting the data to
the client.

7.5. The experimental setup for the parallel implementations

The second set of experiments were carried out in two different
setups. One for the GeoTriples-Hadoop implementation and one
for the other two implementations.

The Hadoop setup is composed by 16 virtual nodes, 1 for the
master node and 15 for the cluster nodes. The master node has
and Intel Xeon E5-4603 v2 CPU running at 2.20 GHz with 2 cores.
The system has 8 GB of RAM, a 32 GB virtual harddisk with EXT4
volume and an 82540EM Gigabit Ethernet Controller. The cluster
nodes belong to two groups in terms of computational power. 5 of
themhave a CPUwith 2 cores, 4GBof RAM, a 32GBvirtual harddisk
with EXT4 volume and an 82540EM Gigabit Ethernet Controller.
The rest 10 of them have a CPU with 2 cores, 4 GB of RAM, a 32 GB
virtual harddisk with EXT4 volume and an NetXtreme II BCM5709
Gigabit Ethernet interface.

The experiments concerning GeoTriples and GeoTriples-Multi
took place on a system with an Intel Xeon E5620 CPU running at
2.40 GHz with 4 cores and each core has 8 threads. The system has
32 GB of RAM (4 * DIMM DDR3 Synchronous 1333 MHz at 8 GB)
and a SCSI 1395GiB disk in RAID (MegaRAID SAS 2108).

7.6. Datasets for the second set of experiments

The second set of experiments used three datasets composed of
shapefiles and two datasets composed of CSV files. The shapefiles

Fig. 7. Processing RML mappings — cumulative.

Table 5
Shapefiles for the second set of experiments.

Country .shp file size .dbf file size # of files

Ukraine 2 MB 20 KB 1000
Australia 250 MB 97 KB 60
Andorra 625 MB 264 MB 15

come from the GADM database of global administrative areas in-
troduced in Section 5 and contain data for three different countries.
The CSV files have been created from scratch for the purposes of
our experiments.

The shapefile datasets are presented in Table 5. Each of the
three datasets contains data for a different country available in
the GADM portal. To create a variety of data sources, we have
modified or copied the corresponding files many times. The first
dataset contains 1000 copies of the shapefile for Ukraine. The file
that contains the geometry is 2 MB while the file that contains
the non-spatial attributes is 20 kB. With the Ukraine dataset, we
wanted to check the performance of our implementations with
many small files. The second dataset is for Australia. The original
file that contains the geometry is 20MBwhile the file that contains
the non-spatial attributes is 8 kB. We have modified these files by
increasing the file that contains the geometry to 250 MB, the file
with the non-spatial data to 97 kB, and by copying the file 60 times.
With theAustralia dataset,wewanted to check the efficiency of our
implementation with a reasonable number of big files. The third
dataset is for Andorra. The original file that contains the geometry
is 12 kB while the file that contains the non-spatial attributes is
6 kB. As with Australia, we have modified the Andorra dataset by
increasing the file that contains the geometry to 625 MB, the file
with the non-spatial data to 264 MB, and by copying the file 15
times.With the Andorra dataset, wewanted to check the efficiency
of our implementation with few very big files.

The CSV datasets are presented in Table 6. The first dataset is a
CSV file with spatial and non-spatial data, its size is 500 MB and it
contains more than 2.000.000 records. We copy this file 20 times.
The second dataset is a CSV file with spatial and non-spatial data,
its size is 1 GB and it contains more than 4.500.000 records.

The above shapefile and CSV datasets have been constructed so
that appropriate features of the three implementations are tested
in various interesting scenarios. This allowed us to make a more

Please cite this article in press as: K. Kyzirakos, et al., GeoTriples: Transforming geospatial data into RDF graphs using R2RML and RMLmappings, Web Semantics: Science,
Services and Agents on the World Wide Web (2018), https://doi.org/10.1016/j.websem.2018.08.003.

K. Kyzirakos et al. / Web Semantics: Science, Services and Agents on the World Wide Web () – 15

Table 6
CSV files for the second set of experiments.

Size # of records # of files

500 MB 2.000.000 20
1 GB 4.500.000 1

Table 7
Comparing the three GeoTriples implementations on shapefiles and CSV files.

Dataset Hadoop Single Multi

Shapefiles — Ukraine 16 min 69 min 16 min
Shapefiles — Australia 10 min 68 min 10 min
Shapefiles — Andorra 11 min 56 min 14 min
CSV files — first dataset 18 min 133 min 20 min
CSV files — second dataset 5 min 13 min 13 min

Table 8
Number of records in each shapefile.

Shapefile Distinct records Total records

Ukraine 27 records 27 records
Australia 11 records 132 records
Andorra 7 records 367,388 records

detailed comparison, something that we would have not achieved
ifwehadused e.g., thewholeUrbanAtlas shapefile datasetweused
in the first set of experiments.

7.7. Experimental results

The results of our experiments for the three implementations
are presented in Table 7. Before discussing the results in detail, we
would like to mention that we have experimented with a variety
of configurations of the GeoTriples-Hadoop and GeoTriples-Multi
implementation. We performed experiments with different size of
RAM and different block size (for Hadoop). Since we noticed only
very minor fluctuations in the results, we will present results only
for our default configuration of 4 GB RAM and 128 MB block size.
We also performed experiments with having reducers that merge
the output RDF files. Our experiments showed that the presence
of reducers added 2–3 min to the elapsed time. Thus, we will not
include reducers in the discussion below.

The first row of Table 7 contains the results for the Ukraine
shapefile dataset. As shown in the table, the GeoTriples-Hadoop
implementation allows for a decrease of 85% in the processing time
compared with GeoTriples. GeoTriples-Hadoop and GeoTriples-
Multi seem to have exactly the same performance. The reason for
the latter result is that the files in the dataset have small size and
therefore the I/O intensity of the computation does not arise. A
Hadoop implementation always suffers from a slow start given
the time that Hadoop needs to communicates with the cluster and
start the execution. In our implementation this time is 1–2 min.
Moreover, the use of the Shapefile library adds additional time.

We also noticed that the performance of GeoTriples for individual
files is better than GeoTriples-Multi: GeoTriples needs around
4.15 s to process one file while GeoTriples-Multi needs 12.5 s. This
occurs because of the competition for the common resources in
GeoTriples-Multi and indicates that the performance will decrease
as the parallel execution increases. GeoTriples-Hadoop needs 11–
12 s to process one file independently of the number of cluster
nodes, therefore, for large scale experiments GeoTriples-Hadoop
is more efficient than GeoTriples-Multi.

The second row of Table 7 contains the results for the Australia
shapefile dataset. As shown in the table, GeoTriples-Hadoop allows
again for a 85% decrease in the processing time compared with
GeoTriples. Since in the Australia dataset, individual files are larger
than the ones in the Ukraine dataset, GeoTriples needs 68 s for
processing a single file, GeoTriples-Multi needs 120–140 s and
GeoTriples-Hadoop needs 110 s.

The third row of Table 7 contains the results for the Andorra
shapefile dataset. As shown in the table, GeoTriples-Hadoop al-
lows for an 80% decrease in the processing time compared with
GeoTriples and a 21% decrease compared with GeoTriples-Multi.
In other words, as the size of the data files increases, the differ-
ence in performance in favor of GeoTriples-Hadoop becomes clear.
However, since we have significantly increased the size of each
shapefile, the I/O and CPU intensity of the computation shows
up for all implementations: GeoTriples needs 4 min for a single
file, GeoTriples-Multi needs 14 min and GeoTriples-Hadoop needs
7 min. Overall the Hadoop implementation scales well given the
parallel execution of tasks in the mappers.

The last two rows of Table 7 contain the results for the CSV
datasets. For the first dataset, the GeoTriples-Hadoop allows for an
86% decrease in the processing time comparedwithGeoTriples and
by a 10% decrease compared with GeoTriples-Multi. This increase
in performance for GeoTriples-Hadoop is due mainly to the built-
in mechanism of Apache Hadoop for the processing of CSV files.
Apache Hadoop breaks down the input files in segments and bal-
ances the workload better than the GeoTriples or GeoTriples-Multi
where load balancing does not take place. This fact is also proved by
the last row of the table where we have a single CSV file and this
will be processed in a single cycle by GeoTriples and GeoTriples-
Multi while GeoTriples-Hadoop allows a decrease of 62% in the
processing time compared with the other two implementations.

7.8. The experimental setup for the comparison of GeoTriples and
TripleGeo

The comparison of the two systemswas carried out in the setup
that was used for GeoTriples and GeoTriples-Multi (Section 7.5).
For these experiments we set theminimum Java Heap Spacemem-
ory to 2 GB and maximummemory to 4 GB.

Table 9
The columns of every input record.

Column GeoTriples TripleGeo graph TripleGeo RML TripleGeo stream

ID_0 X X
ISO X X
NAME_0 X X
ID_1 X X
NAME_1 X X X X
HASC_1 X X
CCN_1 X X
CCA_1 X X
TYPE_1 X X
ENGTYPE_1 X X X X
NL_NAME_1 X X
VARNAME_1 X X
Geometry X X X X

Please cite this article in press as: K. Kyzirakos, et al., GeoTriples: Transforming geospatial data into RDF graphs using R2RML and RMLmappings, Web Semantics: Science,
Services and Agents on the World Wide Web (2018), https://doi.org/10.1016/j.websem.2018.08.003.

16 K. Kyzirakos et al. / Web Semantics: Science, Services and Agents on the World Wide Web () –

Table 10
Comparing GeoTriples and TripleGeo on shapefiles.

Dataset GeoTriples TripleGeo graph TripleGeo RML TripleGeo stream

Shapefiles — Ukraine 109 min 82 min 67 min 71 min
Shapefiles — Australia 63 min 43 min 48 min 47 min
Shapefiles — Andorra 47 min 26 min 42 min 28 min

Table 11
Number of triples in each RDF file.

RDF file GeoTriples TripleGeo graph TripleGeo RML TripleGeo stream

Ukraine 349 triples 216 triples 349 triples 216 triples
Australia 1584 triples 88 triples 132 triples 1056 triples
Andorra 4,408,656 triples 56 triples 30,912 triples 2,939,104 triples

7.9. Datasets for the third set of experiments

For this set of experimentswe used themodified shapefiles that
are presented in Table 5 and thoroughly described in Section 7.6.

7.10. Experimental results

The results of the comparison are presented in Table 10. In order
to have a fair comparison, we only measure the time that it takes
GeoTriples to transform the input data given amapping file (i.e., we
do not measure the time it takes to generate the mappings).

Unlike GeoTriples, TripleGeo does not support transformation
functions. In order to provide the systemswith equivalentmapping
files, the predicates that have to do with transformation functions
were removed from the mapping file of GeoTriples.

The records of each shapefile given as input to the two sys-
tems have the same columns (Table 9). For every record of An-
dorra and Australia, the value of the attributes CCA_1, NL_NAME_1
and VARNAME_1 is NULL. Regarding the shapefile of Ukraine, the
columns CCA_1 and NL_NAME_1 do not contain any information
and moreover, two out of 27 records have a NULL value in the
column VARNAME_1.

In Table 9 we can see that, GeoTriples and TripleGeo RML are
able to transform 12 columns into RDF, whereas TripleGeo GRAPH
and TripleGeo STREAM are able to transform only four attributes
into RDF. GeoTriples and TripleGeo RML use the column ID_1 as
identifier and transform into RDF every other column of a record,
unless its value is NULL. They also create three additional triples.
The predicate rdf:type is used in two of these triples to encode
the class of each resource and the class of its geometry. The third
triple has the predicate geo:hasGeometry to encode the geometry
of a resource. For each record of Australia and Andorra, GeoTriples
and TripleGeo RML will transform all of its columns, except from
CCA_1, NL_NAME_1 and VARNAME_1 whose values are NULL, into
RDF. If we also take into consideration Table 9 and the additional
triples, we can see that both tools create 12 triples for each record
of Australia and Andorra. In the same manner, for 25 out of the
27 records of Ukraine, the tools create 13 RDF triples and for
the other two records, whose value in the column VARNAME_1 is
NULL, they create 12 RDF triples. Every RDF file that is produced
by GRAPH and STREAM modes of TripleGeo is also enriched with
three triples that contain the rdf:type predicate and one triple that
contains the geo:hasGeometry predicate. We see that these modes
have one additional triple that contains the rdf:type predicate than
GeoTriples and TripleGeo RML. This additional triple encodes the
fact that each resource is an instance of ogc:Feature. As a result,
TripleGeo GRAPH produces eight triples for each distinct record,
whereas TripleGeo STREAMproduces eight triples for every record.
The GRAPH and STREAM modes of TripleGeo transform into RDF
the columns that are marked in Table 9. Tables 8 and 11 provide
information about the input and output files.

The experimental results (Table 10) show that TripleGeo out-
performs GeoTriples. We expected that the STREAM and GRAPH
modes of TripleGeo would need less time to produce the RDF
files, since TripleGeo transforms fewer attributes in these modes
than GeoTriples hence it needs less I/O operations. The results also
show that the RML mode of TripleGeo is performing better than
GeoTriples, when it comes to small input files (i.e., Ukraine). The
performance gap is smaller when larger files (i.e., Australia and
Andorra) are given as input to the systems, even thoughGeoTriples
carries out more I/O operations, since it generates significantly
more triples than the RML mode of TripleGeo. TripleGeo RML
produces fewer triples than GeoTriples because it removes some of
the duplicate triples that will be generated given the artificial way
of increasing the sizes of the datasets by duplicating the records of
the shapefiles of Australia and Andorra (see Section 7.6).

Finally, the results that have been presented in Section 7.7,
show that GeoTriples-Hadoop and GeoTriple-Multi not only out-
perform the simple implementation of GeoTriples, but also every
mode of TripleGeo.

8. Summary and conclusions

We presented the tool GeoTriples which is able to transform
geospatial data stored in raw files and spatially-enabled RDBMS
to RDF graphs using well-known vocabularies. The tool works in
three steps. First, it generates automatically extended R2RML or
RML mappings that can be used to transform the input data into
RDF. As an optional second step, the user may revise these map-
pings according to her needs e.g., to utilize a different vocabulary.
Finally, GeoTriples processes thesemappings and produces an RDF
graph. We performed a detailed performance evaluation of three
implementations of GeoTriples and showed that all of them can
deal with large data volumes (in the order of Gigabytes). We also
compared GeoTriples with the similar tool TripleGeo and found
that TripleGeo is more efficient than the single node implemen-
tation of GeoTriples. Finally, a Hadoop-based implementation of
GeoTriples outperforms all other implementations of GeoTriples or
TripleGeo.

In this paper we have seen that GeoTriples and TripleGeo are
both state-of-the-art tools for transforming geospatial data into
RDF. However, transforming geospatial data from their native for-
mats into RDF is only one phase of the life-cycle of linked geospatial
data which we have presented in [31]. The requirements of this
life-cycle are addressed by the linked geospatial data tool suite that
has been developed by our group at the National and Kapodistrian
University of Athens and has been recently surveyed in [1]. All our
tools are open source and they will continue to be maintained by
our team while they are being used in research projects by our
group or others.Motivated by the good performance of GeoTriples-
Hadoop, in future work, we will be concentrating on making all
of our tools scale to even bigger datasets by utilizing big data
technologies like HopsFS [32] and Spark [33].

Please cite this article in press as: K. Kyzirakos, et al., GeoTriples: Transforming geospatial data into RDF graphs using R2RML and RMLmappings, Web Semantics: Science,
Services and Agents on the World Wide Web (2018), https://doi.org/10.1016/j.websem.2018.08.003.

K. Kyzirakos et al. / Web Semantics: Science, Services and Agents on the World Wide Web () – 17

Acknowledgments

This work has been funded in part by the European FP7 project
LEO, European Commission (611141): FP7 project MELODIES,
European Commission (603525): Dutch NWO project COMMIT,
Netherlands: H2020 project Copernicus App Lab, European Com-
mission (730124).

References

[1] M. Koubarakis, K. Bereta, G. Papadakis, D. Savva, G. Stamoulis, Big, linked
geospatial data and its applications in earth observation, IEEE Internet Comput.
21 (4) (2017) 87–91.

[2] M. Koubarakis, M. Karpathiotakis, K. Kyzirakos, C. Nikolaou, M. Sioutis, Data
models and query languages for linked geospatial data, in: Invited Tutorial
At the 8th Reasoning Web Summer School 2012 (RW 2012). in: Eiter, T.,
Krennwallner, T. (Eds.) Reasoning Web. Semantic Technologies for Advanced
Query Answering. Lecture Notes in Computer Science, Vol. 7487, pp. 290-328.
Springer., 2012.

[3] S. Auer, J. Lehmann, S. Hellmann, LinkedGeoData: Adding a spatial dimension
to the web of data, in: A. Bernstein, D. Karger, T. Heath, L. Feigenbaum, D.
Maynard, E. Motta, K. Thirunarayan (Eds.), The Semantic Web - ISWC 2009,
in: Lecture Notes in Computer Science, vol. 5823, Springer Berlin Heidelberg,
2009, pp. 731–746.

[4] K. Chentout, A.A. Vaisman, Adding spatial support to R2RML mappings,
in: OTM Workshops, in: Lecture Notes in Computer Science, vol. 8186, Sprin-
ger, 2013.

[5] K. Kyzirakos, M. Karpathiotakis, G. Garbis, C. Nikolaou, K. Bereta, I. Papoutsis,
T. Herekakis, D. Michail, M. Koubarakis, C. Kontoes, Wildfire monitoring using
satellite images, ontologies and linked geospatial data, J. Web Semant. 24
(2014) 18–26.

[6] A. de León, V. Saquicela, L.M. Vilches, B. Villazón-Terrazas, F. Priyatna, O.
Corcho, Geographical linked data: A Spanish use case, in: Proceedings of the
6th International Conference on Semantic Systems, in: I-SEMANTICS ’10, ACM,
New York, NY, USA, 2010, pp. 36:1–36:3.

[7] K. Patroumpas, M. Alexakis, G. Giannopoulos, S. Athanasiou, TripleGeo: an
ETL Tool for Transforming Geospatial Data into RDF Triples, in: Proceedings
of the Workshops of the EDBT/ICDT 2014 Joint Conference (EDBT/ICDT 2014),
in: CEUR Workshop Proceedings, vol. 1133, CEUR-WS.org, 2014.

[8] Open Geospatial Consortium. GeoSPARQL - A geographic query language for
RDF data. OpenGIS Implementation Standard Available from: https://portal.
opengeospatial.org/files/?artifact_id=47664, 2012.

[9] P. Smeros, M. Koubarakis, Discovering spatial and temporal links among RDF
Data, in: Proceedings of the Workshop on Linked Data on the Web, LDOW
2016, Co-Located with 25th International WorldWideWeb Conference, 2016.

[10] M.A. Sherif, K. Dreßler, P. Smeros, A. Ngonga Ngomo, Radon - rapid discovery
of topological relations, in: Proceedings of the Thirty-First AAAI Conference on
Artificial Intelligence, February 4-9, 2017, San Francisco, California, USA., 2017,
pp. 175–181.

[11] K. Bereta, G. Xiao, M. Koubarakis, M. Hodrius, C. Bielski, G. Zeug, Ontop-
spatial: Geospatial data integration using GeoSPARQL-to-SQL translation,
in: Proceedings of the 15th International Semantic Web Conference, Kobe,
Japan, 2016. Demo paper.

[12] S. Brüggemann, K. Bereta, G. Xiao, M. Koubarakis, Ontology-based data access
for maritime security, in: The Semantic Web. Latest Advances and New Do-
mains - 13th International Conference, ESWC 2016, Heraklion, Crete, Greece,
May 29 - June 2, 2016, Proceedings, 2016, pp. 741–757.

[13] K. Bereta, M. Koubarakis, Ontop of geospatial databases, in: The SemanticWeb
- ISWC 2016 - 15th International Semantic Web Conference, Kobe, Japan,
October 17-21, 2016, Proceedings, Part I, 2016, pp. 37–52.

[14] A. Bertails, M. Arenas, E. Prudh́ommeaux, J. Sequeda, A direct mapping of
relational data to RDF.W3CRecommendationAvailable from:http://www.w3.
org/TR/rdb-direct-mapping/, 2012.

[15] T. Berners-Lee, Relational databases on the semanticweb. http://www.w3.org/
DesignIssues/RDB-RDF.html.

[16] D. Steer, SquirrelRDF. Available from: https://sourceforge.net/projects/jena/
files/Archive/SquirrelRDF/, 2006.

[17] S. Das, S. Sundara, R. Cyganiak, R2RML: RDB to RDF Mapping Language. W3C
Recommendation Available from: http://www.w3.org/TR/r2rml/, 2012.

[18] A. Dimou, M. Vander Sande, P. Colpaert, R. Verborgh, E. Mannens, R. Van de
Walle, RML: A generic language for integrated RDFmappings of heterogeneous
data, in: Proceedings of the 7th Workshop on Linked Data on the Web, 2014.

[19] A. Dimou, D. Kontokostas, M. Freudenberg, R. Verborgh, J. Lehmann, E.
Mannens, S. Hellmann, R.V. de Walle, Assessing and refining mappings to
RDF to improve dataset quality, in: The Semantic Web - ISWC 2015 - 14th
International Semantic Web Conference, Bethlehem, PA, USA, October 11-15,
2015, Proceedings, Part II, 2015, pp. 133–149.

[20] C. Stadler, J. Lehmann, K. Höffner, S. Auer, LinkedGeoData: A core for a web of
spatial open data, Semant. Web 3 (4) (2012) 333–354.

[21] M. Rodriguez-Muro, M. Rezk, Efficient SPARQL-to-SQL with R2RMLmappings,
J. Web Sem. 33 (2015) 141–169.

[22] K. Bereta, M. Koubarakis, Creating virtual semantic graphs on top of big data
from space, in: Proc. of the 2017 Conference on Big Data from Space (BiDS),
2017.

[23] Y. Chronis, Y. Foufoulas, V.Nikolopoulos, A. Papadopoulos, L. Stamatogiannakis,
C. Svingos, Y.E. Ioannidis, A relational approach to complex dataflows, in:
Proceedings of the Workshops of the EDBT/ICDT 2016 Joint Conference,
EDBT/ICDT Workshops 2016, Bordeaux, France, March 15, 2016., 2016.

[24] K. Kyzirakos,M. Karpathiotakis, M. Koubarakis, Strabon: A semantic geospatial
DBMS, in: P. Cudré-Mauroux, J. Heflin, E. Sirin, T. Tudorache, J. Euzenat, M.
Hauswirth, J.X. Parreira, J. Hendler, G. Schreiber, A. Bernstein, E. Blomqvist
(Eds.), International Semantic Web Conference (1), in: Lecture Notes in Com-
puter Science, vol. 7649, Springer, 2012, pp. 295–311.

[25] K. Bereta, P. Smeros, M. Koubarakis, Representation and querying of valid
time of triples in linked geospatial data, in: P. Cimiano, O. Corcho, V. Presutti,
L. Hollink, S. Rudolph (Eds.), The Semantic Web: Semantics and Big Data,
in: Lecture Notes in Computer Science, vol. 7882, Springer Berlin Heidelberg,
2013, pp. 259–274.

[26] Open geospatial consortium. openGIS implementation standard for geo-
graphic information - simple feature access - part 1: common architecture.
OpenGIS Implementation Standard, Available from: http://portal.opengeospa
tial.org/files/?artifact_id=25355, 2016.

[27] M.J. Egenhofer, R.D. Franzosa, Point-set topological spatial relations, in: Proc.
Int. J. Geogr. Inf. Syst., Vol. 5(2), 1991, pp. 161–174.

[28] D.A. Randell, Z. Cui, A.G. Cohn, A spatial logic based on regions and connection,
in: Proceedings of the 3rd International Conference on Principles of Knowl-
edge Representation and Reasoning (KR’92). Cambridge, MA, October 25-29,
1992., 1992, pp. 165–176.

[29] R. Cyganiak, C. Bizer, J. Garbers, O. Maresch, C. Becker, The D2RQ Platform.
Available from: http://d2rq.org/.

[30] J. Dean, S. Ghemawat, MapReduce: a flexible data processing tool, Commun.
ACM 53 (1) (2010) 72–77.

[31] M. Koubarakis, K. Kyzirakos, C. Nikolaou, G. Garbis, K. Bereta, R. Dogani,
S. Giannakopoulou, P. Smeros, D. Savva, G. Stamoulis, G. Vlachopoulos, S.
Manegold, C. Kontoes, T. Herekakis, I. Papoutsis, D. Michail, Managing big,
linked, and open earth observation data: Using the TELEIOS/LEO software
stack, IEEE Geosci. Remote Sens. Mag. 4 (3) (2016) 23–37.

[32] S. Niazi, M. Ismail, S. Haridi, J. Dowling, S. Grohsschmiedt, M. Ronström,
HopsFS: Scaling hierarchical file system metadata using newsql databases,
in: 15th USENIX Conference on File and Storage Technologies, FAST 2017,
Santa Clara, CA, USA, February 27 - March 2, 2017, 2017, pp. 89–104.

[33] M. Zaharia, R.S. Xin, P.Wendell, T. Das, M. Armbrust, A. Dave, X. Meng, J. Rosen,
S. Venkataraman, M.J. Franklin, A. Ghodsi, J. Gonzalez, S. Shenker, I. Stoica,
Apache Spark: a unified engine for big data processing, Commun. ACM 59 (11)
(2016) 56–65.

http://refhub.elsevier.com/S1570-8268(18)30042-8/sb1
http://refhub.elsevier.com/S1570-8268(18)30042-8/sb1
http://refhub.elsevier.com/S1570-8268(18)30042-8/sb1
http://refhub.elsevier.com/S1570-8268(18)30042-8/sb1
http://refhub.elsevier.com/S1570-8268(18)30042-8/sb1
http://refhub.elsevier.com/S1570-8268(18)30042-8/sb2
http://refhub.elsevier.com/S1570-8268(18)30042-8/sb2
http://refhub.elsevier.com/S1570-8268(18)30042-8/sb2
http://refhub.elsevier.com/S1570-8268(18)30042-8/sb2
http://refhub.elsevier.com/S1570-8268(18)30042-8/sb2
http://refhub.elsevier.com/S1570-8268(18)30042-8/sb2
http://refhub.elsevier.com/S1570-8268(18)30042-8/sb2
http://refhub.elsevier.com/S1570-8268(18)30042-8/sb2
http://refhub.elsevier.com/S1570-8268(18)30042-8/sb2
http://refhub.elsevier.com/S1570-8268(18)30042-8/sb2
http://refhub.elsevier.com/S1570-8268(18)30042-8/sb2
http://refhub.elsevier.com/S1570-8268(18)30042-8/sb3
http://refhub.elsevier.com/S1570-8268(18)30042-8/sb3
http://refhub.elsevier.com/S1570-8268(18)30042-8/sb3
http://refhub.elsevier.com/S1570-8268(18)30042-8/sb3
http://refhub.elsevier.com/S1570-8268(18)30042-8/sb3
http://refhub.elsevier.com/S1570-8268(18)30042-8/sb3
http://refhub.elsevier.com/S1570-8268(18)30042-8/sb3
http://refhub.elsevier.com/S1570-8268(18)30042-8/sb3
http://refhub.elsevier.com/S1570-8268(18)30042-8/sb3
http://refhub.elsevier.com/S1570-8268(18)30042-8/sb4
http://refhub.elsevier.com/S1570-8268(18)30042-8/sb4
http://refhub.elsevier.com/S1570-8268(18)30042-8/sb4
http://refhub.elsevier.com/S1570-8268(18)30042-8/sb4
http://refhub.elsevier.com/S1570-8268(18)30042-8/sb4
http://refhub.elsevier.com/S1570-8268(18)30042-8/sb5
http://refhub.elsevier.com/S1570-8268(18)30042-8/sb5
http://refhub.elsevier.com/S1570-8268(18)30042-8/sb5
http://refhub.elsevier.com/S1570-8268(18)30042-8/sb5
http://refhub.elsevier.com/S1570-8268(18)30042-8/sb5
http://refhub.elsevier.com/S1570-8268(18)30042-8/sb5
http://refhub.elsevier.com/S1570-8268(18)30042-8/sb5
http://refhub.elsevier.com/S1570-8268(18)30042-8/sb6
http://refhub.elsevier.com/S1570-8268(18)30042-8/sb6
http://refhub.elsevier.com/S1570-8268(18)30042-8/sb6
http://refhub.elsevier.com/S1570-8268(18)30042-8/sb6
http://refhub.elsevier.com/S1570-8268(18)30042-8/sb6
http://refhub.elsevier.com/S1570-8268(18)30042-8/sb6
http://refhub.elsevier.com/S1570-8268(18)30042-8/sb6
http://refhub.elsevier.com/S1570-8268(18)30042-8/sb7
http://refhub.elsevier.com/S1570-8268(18)30042-8/sb7
http://refhub.elsevier.com/S1570-8268(18)30042-8/sb7
http://refhub.elsevier.com/S1570-8268(18)30042-8/sb7
http://refhub.elsevier.com/S1570-8268(18)30042-8/sb7
http://refhub.elsevier.com/S1570-8268(18)30042-8/sb7
http://refhub.elsevier.com/S1570-8268(18)30042-8/sb7
https://portal.opengeospatial.org/files/%3Fartifact%5Fid%3D47664
https://portal.opengeospatial.org/files/%3Fartifact%5Fid%3D47664
https://portal.opengeospatial.org/files/%3Fartifact%5Fid%3D47664
http://refhub.elsevier.com/S1570-8268(18)30042-8/sb9
http://refhub.elsevier.com/S1570-8268(18)30042-8/sb9
http://refhub.elsevier.com/S1570-8268(18)30042-8/sb9
http://refhub.elsevier.com/S1570-8268(18)30042-8/sb9
http://refhub.elsevier.com/S1570-8268(18)30042-8/sb9
http://refhub.elsevier.com/S1570-8268(18)30042-8/sb10
http://refhub.elsevier.com/S1570-8268(18)30042-8/sb10
http://refhub.elsevier.com/S1570-8268(18)30042-8/sb10
http://refhub.elsevier.com/S1570-8268(18)30042-8/sb10
http://refhub.elsevier.com/S1570-8268(18)30042-8/sb10
http://refhub.elsevier.com/S1570-8268(18)30042-8/sb10
http://refhub.elsevier.com/S1570-8268(18)30042-8/sb10
http://refhub.elsevier.com/S1570-8268(18)30042-8/sb11
http://refhub.elsevier.com/S1570-8268(18)30042-8/sb11
http://refhub.elsevier.com/S1570-8268(18)30042-8/sb11
http://refhub.elsevier.com/S1570-8268(18)30042-8/sb11
http://refhub.elsevier.com/S1570-8268(18)30042-8/sb11
http://refhub.elsevier.com/S1570-8268(18)30042-8/sb11
http://refhub.elsevier.com/S1570-8268(18)30042-8/sb11
http://refhub.elsevier.com/S1570-8268(18)30042-8/sb12
http://refhub.elsevier.com/S1570-8268(18)30042-8/sb12
http://refhub.elsevier.com/S1570-8268(18)30042-8/sb12
http://refhub.elsevier.com/S1570-8268(18)30042-8/sb12
http://refhub.elsevier.com/S1570-8268(18)30042-8/sb12
http://refhub.elsevier.com/S1570-8268(18)30042-8/sb12
http://refhub.elsevier.com/S1570-8268(18)30042-8/sb12
http://refhub.elsevier.com/S1570-8268(18)30042-8/sb13
http://refhub.elsevier.com/S1570-8268(18)30042-8/sb13
http://refhub.elsevier.com/S1570-8268(18)30042-8/sb13
http://refhub.elsevier.com/S1570-8268(18)30042-8/sb13
http://refhub.elsevier.com/S1570-8268(18)30042-8/sb13
http://www.w3.org/TR/rdb-direct-mapping/
http://www.w3.org/TR/rdb-direct-mapping/
http://www.w3.org/TR/rdb-direct-mapping/
http://www.w3.org/DesignIssues/RDB-RDF.html
http://www.w3.org/DesignIssues/RDB-RDF.html
http://www.w3.org/DesignIssues/RDB-RDF.html
https://sourceforge.net/projects/jena/files/Archive/SquirrelRDF/
https://sourceforge.net/projects/jena/files/Archive/SquirrelRDF/
https://sourceforge.net/projects/jena/files/Archive/SquirrelRDF/
http://www.w3.org/TR/r2rml/
http://refhub.elsevier.com/S1570-8268(18)30042-8/sb18
http://refhub.elsevier.com/S1570-8268(18)30042-8/sb18
http://refhub.elsevier.com/S1570-8268(18)30042-8/sb18
http://refhub.elsevier.com/S1570-8268(18)30042-8/sb18
http://refhub.elsevier.com/S1570-8268(18)30042-8/sb18
http://refhub.elsevier.com/S1570-8268(18)30042-8/sb19
http://refhub.elsevier.com/S1570-8268(18)30042-8/sb19
http://refhub.elsevier.com/S1570-8268(18)30042-8/sb19
http://refhub.elsevier.com/S1570-8268(18)30042-8/sb19
http://refhub.elsevier.com/S1570-8268(18)30042-8/sb19
http://refhub.elsevier.com/S1570-8268(18)30042-8/sb19
http://refhub.elsevier.com/S1570-8268(18)30042-8/sb19
http://refhub.elsevier.com/S1570-8268(18)30042-8/sb19
http://refhub.elsevier.com/S1570-8268(18)30042-8/sb19
http://refhub.elsevier.com/S1570-8268(18)30042-8/sb20
http://refhub.elsevier.com/S1570-8268(18)30042-8/sb20
http://refhub.elsevier.com/S1570-8268(18)30042-8/sb20
http://refhub.elsevier.com/S1570-8268(18)30042-8/sb21
http://refhub.elsevier.com/S1570-8268(18)30042-8/sb21
http://refhub.elsevier.com/S1570-8268(18)30042-8/sb21
http://refhub.elsevier.com/S1570-8268(18)30042-8/sb22
http://refhub.elsevier.com/S1570-8268(18)30042-8/sb22
http://refhub.elsevier.com/S1570-8268(18)30042-8/sb22
http://refhub.elsevier.com/S1570-8268(18)30042-8/sb22
http://refhub.elsevier.com/S1570-8268(18)30042-8/sb22
http://refhub.elsevier.com/S1570-8268(18)30042-8/sb23
http://refhub.elsevier.com/S1570-8268(18)30042-8/sb23
http://refhub.elsevier.com/S1570-8268(18)30042-8/sb23
http://refhub.elsevier.com/S1570-8268(18)30042-8/sb23
http://refhub.elsevier.com/S1570-8268(18)30042-8/sb23
http://refhub.elsevier.com/S1570-8268(18)30042-8/sb23
http://refhub.elsevier.com/S1570-8268(18)30042-8/sb23
http://refhub.elsevier.com/S1570-8268(18)30042-8/sb24
http://refhub.elsevier.com/S1570-8268(18)30042-8/sb24
http://refhub.elsevier.com/S1570-8268(18)30042-8/sb24
http://refhub.elsevier.com/S1570-8268(18)30042-8/sb24
http://refhub.elsevier.com/S1570-8268(18)30042-8/sb24
http://refhub.elsevier.com/S1570-8268(18)30042-8/sb24
http://refhub.elsevier.com/S1570-8268(18)30042-8/sb24
http://refhub.elsevier.com/S1570-8268(18)30042-8/sb24
http://refhub.elsevier.com/S1570-8268(18)30042-8/sb24
http://refhub.elsevier.com/S1570-8268(18)30042-8/sb25
http://refhub.elsevier.com/S1570-8268(18)30042-8/sb25
http://refhub.elsevier.com/S1570-8268(18)30042-8/sb25
http://refhub.elsevier.com/S1570-8268(18)30042-8/sb25
http://refhub.elsevier.com/S1570-8268(18)30042-8/sb25
http://refhub.elsevier.com/S1570-8268(18)30042-8/sb25
http://refhub.elsevier.com/S1570-8268(18)30042-8/sb25
http://refhub.elsevier.com/S1570-8268(18)30042-8/sb25
http://refhub.elsevier.com/S1570-8268(18)30042-8/sb25
http://portal.opengeospatial.org/files/%3Fartifact%5Fid%3D25355
http://portal.opengeospatial.org/files/%3Fartifact%5Fid%3D25355
http://portal.opengeospatial.org/files/%3Fartifact%5Fid%3D25355
http://portal.opengeospatial.org/files/%3Fartifact%5Fid%3D25355
http://portal.opengeospatial.org/files/%3Fartifact%5Fid%3D25355
http://portal.opengeospatial.org/files/%3Fartifact%5Fid%3D25355
http://portal.opengeospatial.org/files/%3Fartifact%5Fid%3D25355
http://portal.opengeospatial.org/files/%3Fartifact%5Fid%3D25355
http://portal.opengeospatial.org/files/%3Fartifact%5Fid%3D25355
http://portal.opengeospatial.org/files/%3Fartifact%5Fid%3D25355
http://portal.opengeospatial.org/files/%3Fartifact%5Fid%3D25355
http://portal.opengeospatial.org/files/%3Fartifact%5Fid%3D25355
http://portal.opengeospatial.org/files/%3Fartifact%5Fid%3D25355
http://portal.opengeospatial.org/files/%3Fartifact%5Fid%3D25355
http://portal.opengeospatial.org/files/%3Fartifact%5Fid%3D25355
http://portal.opengeospatial.org/files/%3Fartifact%5Fid%3D25355
http://portal.opengeospatial.org/files/%3Fartifact%5Fid%3D25355
http://portal.opengeospatial.org/files/%3Fartifact%5Fid%3D25355
http://portal.opengeospatial.org/files/%3Fartifact%5Fid%3D25355
http://portal.opengeospatial.org/files/%3Fartifact%5Fid%3D25355
http://portal.opengeospatial.org/files/%3Fartifact%5Fid%3D25355
http://portal.opengeospatial.org/files/%3Fartifact%5Fid%3D25355
http://portal.opengeospatial.org/files/%3Fartifact%5Fid%3D25355
http://portal.opengeospatial.org/files/%3Fartifact%5Fid%3D25355
http://portal.opengeospatial.org/files/%3Fartifact%5Fid%3D25355
http://portal.opengeospatial.org/files/%3Fartifact%5Fid%3D25355
http://portal.opengeospatial.org/files/%3Fartifact%5Fid%3D25355
http://portal.opengeospatial.org/files/%3Fartifact%5Fid%3D25355
http://portal.opengeospatial.org/files/%3Fartifact%5Fid%3D25355
http://portal.opengeospatial.org/files/%3Fartifact%5Fid%3D25355
http://portal.opengeospatial.org/files/%3Fartifact%5Fid%3D25355
http://portal.opengeospatial.org/files/%3Fartifact%5Fid%3D25355
http://portal.opengeospatial.org/files/%3Fartifact%5Fid%3D25355
http://portal.opengeospatial.org/files/%3Fartifact%5Fid%3D25355
http://portal.opengeospatial.org/files/%3Fartifact%5Fid%3D25355
http://portal.opengeospatial.org/files/%3Fartifact%5Fid%3D25355
http://portal.opengeospatial.org/files/%3Fartifact%5Fid%3D25355
http://portal.opengeospatial.org/files/%3Fartifact%5Fid%3D25355
http://portal.opengeospatial.org/files/%3Fartifact%5Fid%3D25355
http://portal.opengeospatial.org/files/%3Fartifact%5Fid%3D25355
http://portal.opengeospatial.org/files/%3Fartifact%5Fid%3D25355
http://portal.opengeospatial.org/files/%3Fartifact%5Fid%3D25355
http://portal.opengeospatial.org/files/%3Fartifact%5Fid%3D25355
http://portal.opengeospatial.org/files/%3Fartifact%5Fid%3D25355
http://portal.opengeospatial.org/files/%3Fartifact%5Fid%3D25355
http://portal.opengeospatial.org/files/%3Fartifact%5Fid%3D25355
http://portal.opengeospatial.org/files/%3Fartifact%5Fid%3D25355
http://portal.opengeospatial.org/files/%3Fartifact%5Fid%3D25355
http://portal.opengeospatial.org/files/%3Fartifact%5Fid%3D25355
http://portal.opengeospatial.org/files/%3Fartifact%5Fid%3D25355
http://portal.opengeospatial.org/files/%3Fartifact%5Fid%3D25355
http://portal.opengeospatial.org/files/%3Fartifact%5Fid%3D25355
http://portal.opengeospatial.org/files/%3Fartifact%5Fid%3D25355
http://portal.opengeospatial.org/files/%3Fartifact%5Fid%3D25355
http://portal.opengeospatial.org/files/%3Fartifact%5Fid%3D25355
http://portal.opengeospatial.org/files/%3Fartifact%5Fid%3D25355
http://portal.opengeospatial.org/files/%3Fartifact%5Fid%3D25355
http://refhub.elsevier.com/S1570-8268(18)30042-8/sb27
http://refhub.elsevier.com/S1570-8268(18)30042-8/sb27
http://refhub.elsevier.com/S1570-8268(18)30042-8/sb27
http://refhub.elsevier.com/S1570-8268(18)30042-8/sb28
http://refhub.elsevier.com/S1570-8268(18)30042-8/sb28
http://refhub.elsevier.com/S1570-8268(18)30042-8/sb28
http://refhub.elsevier.com/S1570-8268(18)30042-8/sb28
http://refhub.elsevier.com/S1570-8268(18)30042-8/sb28
http://refhub.elsevier.com/S1570-8268(18)30042-8/sb28
http://refhub.elsevier.com/S1570-8268(18)30042-8/sb28
http://d2rq.org/
http://refhub.elsevier.com/S1570-8268(18)30042-8/sb30
http://refhub.elsevier.com/S1570-8268(18)30042-8/sb30
http://refhub.elsevier.com/S1570-8268(18)30042-8/sb30
http://refhub.elsevier.com/S1570-8268(18)30042-8/sb31
http://refhub.elsevier.com/S1570-8268(18)30042-8/sb31
http://refhub.elsevier.com/S1570-8268(18)30042-8/sb31
http://refhub.elsevier.com/S1570-8268(18)30042-8/sb31
http://refhub.elsevier.com/S1570-8268(18)30042-8/sb31
http://refhub.elsevier.com/S1570-8268(18)30042-8/sb31
http://refhub.elsevier.com/S1570-8268(18)30042-8/sb31
http://refhub.elsevier.com/S1570-8268(18)30042-8/sb31
http://refhub.elsevier.com/S1570-8268(18)30042-8/sb31
http://refhub.elsevier.com/S1570-8268(18)30042-8/sb32
http://refhub.elsevier.com/S1570-8268(18)30042-8/sb32
http://refhub.elsevier.com/S1570-8268(18)30042-8/sb32
http://refhub.elsevier.com/S1570-8268(18)30042-8/sb32
http://refhub.elsevier.com/S1570-8268(18)30042-8/sb32
http://refhub.elsevier.com/S1570-8268(18)30042-8/sb32
http://refhub.elsevier.com/S1570-8268(18)30042-8/sb32
http://refhub.elsevier.com/S1570-8268(18)30042-8/sb33
http://refhub.elsevier.com/S1570-8268(18)30042-8/sb33
http://refhub.elsevier.com/S1570-8268(18)30042-8/sb33
http://refhub.elsevier.com/S1570-8268(18)30042-8/sb33
http://refhub.elsevier.com/S1570-8268(18)30042-8/sb33
http://refhub.elsevier.com/S1570-8268(18)30042-8/sb33
http://refhub.elsevier.com/S1570-8268(18)30042-8/sb33

	GeoTriples: Transforming geospatial data into RDF graphs using R2RML and RML mappings
	Introduction
	Background and related work
	Direct mapping of relational data to RDF
	The mapping language R2RML
	The mapping language RML
	Transforming geospatial data into RDF

	Extending the mapping languages R2RML and RML forgeospatial data
	Transformation functions for R2RML and RML

	The tool GeoTriples
	System architecture
	Implementation details
	Automatic generation of R2RML and RML mappings
	Processing of R2RML and RML mappings

	An example
	Implementing the mapping processor of GeoTriples using Apache Hadoop
	Performance evaluation of GeoTriples
	Measurement assumptions
	Experimental setup
	Datasets for the first set of experiments
	Experimental results
	The experimental setup for the parallel implementations
	Datasets for the second set of experiments
	Experimental results
	The experimental setup for the comparison of GeoTriples and TripleGeo
	Datasets for the third set of experiments
	Experimental results

	Summary and conclusions
	Acknowledgments
	References

