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Abstract

Assessing the quality of an evolving knowledge base is a challenging task as it often requires to identify correct quality assessment

procedures. Since data is often derived from autonomous, and increasingly large data sources, it is impractical to manually curate

the data, and challenging to continuously and automatically assess their quality. In this paper, we explore two main areas of

quality assessment related to evolving knowledge bases: (i) identification of completeness issues using knowledge base evolution

analysis, and (ii) identification of consistency issues based on integrity constraints, such as minimum and maximum cardinality,

and range constraints. For completeness analysis, we use data profiling information from consecutive knowledge base releases to

estimate completeness measures that allow predicting quality issues. Then, we perform consistency checks to validate the results

of the completeness analysis using integrity constraints and learning models. The approach has been tested both quantitatively and

qualitatively by using a subset of datasets from both DBpedia and 3cixty knowledge bases. The performance of the approach is

evaluated using precision, recall, and F1 score. From completeness analysis, we observe a 94% precision for the English DBpedia

KB and 95% precision for the 3cixty Nice KB. We also assessed the performance of our consistency analysis by using five learning

models over three sub-tasks, namely minimum cardinality, maximum cardinality, and range constraint. We observed that the best

performing model in our experimental setup is the Random Forest, reaching an F1 score greater than 90% for minimum and

maximum cardinality and 84% for range constraints.
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1. Introduction

In recent years, numerous efforts have been put towards shar-

ing Knowledge Bases (KBs) in the Linked Open Data (LOD)

cloud1. This has led to the creation of large corpora, making

billions of RDF2 triples available from different domains such

as Geography, Government, Life Sciences, Media, Publication,

Social Networking, and User generated data. These KBs evolve

over time: their data instances and schemas are updated, ex-

tended, revised and refactored [1]. Unlike in more controlled

types of knowledge bases, the evolution of KBs exposed in the

LOD cloud is usually unrestrained [2], which may cause data

to suffer from a variety of quality issues, at both schema level

and data instance level. Considering the aggregated measure of

conformance, the empirical study carried out by Debattista et

al. [2] shows that datasets published in the LOD cloud have

reasonable overall quality, but significant issues remain con-

cerning different quality metrics, such as data provenance and

licensing. Therefore, by looking at individual metrics, we can

explore certain aspects, for example data quality issues in the

data collection or integration processes.

Data quality relates to the perception of the “fitness for use”

in a given context [3]. One of the common tasks for data qual-

1http://lod-cloud.net
2https://www.w3.org/RDF

ity assessment is to perform a detailed data analysis with data

profiling [4]. Data profiling is usually defined as the process of

examining data to collect statistics and provide relevant meta-

data about the data [5]. Based on the information we gather

from data profiling, we can thoroughly examine and understand

a KB, its structure, and its properties before using the KB. Vari-

ous approaches have been developed for KB quality assessment

based on manual, semi-automatic, and automated approaches.

For example, Flemming’s [6] data quality assessment approach

evaluate data quality scores based on manual user input for data

sources. RDFUnit3 is a tool centered around the definition of

integrity constraints for automatic validation tasks. These ap-

proaches can ensure an appropriate quality assessment proce-

dure, but it is challenging to continuously and automatically

access a evolving KB [7]. Various approaches are based on

low-level rules and programs, which require a significant user

involvement. Furthermore, in the current literature less focus

has been given into studying the evolution of a knowledge base

to detect quality issues.

Ellefi et al. [8] explored data profiling features of KB evolu-

tion by considering the use cases presented by Käfer et al. [9].

KB evolution analysis using data profiling features can help to

understand the changes applied to an entire KB or parts of it.

3http://github.com/AKSW/RDFUnit
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It has multiple dimensions regarding the dataset update behav-

ior, such as frequency of change, change patterns, change im-

pacts, and causes of change. More specifically, by exploring

KB evolution, we can capture those changes that happen of-

ten; or changes that the curator wants to highlight because they

are useful or interesting for a specific domain or application; or

changes that indicate an abnormal situation or type of evolu-

tion [10, 7, 11].

The KB evolution can directly impact the data integration

tasks (e.g., matching, linking), that may lead to incomplete or

incorrect results [12]. For example, Wikipedia has grown into

one of the central hubs of knowledge sources, and it is main-

tained by thousands of contributors. It evolves each day with

contributions from editors all over the world. DBpedia is a

crowd-sourced knowledge base and extracts structured infor-

mation from various Wikipedia projects. This extracted data

might have quality problems because either they are mapped

incorrectly or the source information itself is incorrect [13].

Considering the level of changes and complexity, KB evolu-

tion can be explored based on both simple changes at low-level

and complex changes at high-level [7]. Low-level changes are

easy to define and have several interesting properties [7]. For

example, low-level change detection in its simplest form per-

forms two operations, detection of addition and deletion, which

determine individual resources that were added or deleted in a

KB [7, 14]. However, a detailed low-level and automated anal-

ysis is computationally expensive and might result into a huge

number of fine-grained issue notifications [15]. Such amount

of information might cause an information overload for the re-

ceiver of the notifications. On the contrary, high-level anal-

ysis captures the changes that indicate an abnormal situation

and generates results that are intuitive enough for a human user.

However, high-level analysis requires fixed set of requirements

(i.e., integrity constraints) to understand underlying changes

happened in the dataset [7]. A data quality assessment ap-

proach using high-level change detection may lead to increas-

ing the number of false positive results if the version of a KB is

deployed with design issues, such as erroneous schema defini-

tions [11].

In particular, a knowledge base is defined to be consistent if it

does not contain conflicting or contradictory data [16]. Without

proper data management, the dataset in an evolving KB may

contain consistency issues [17]. When a schema is available

with integrity constraints, the data usually goes through a val-

idation process that verifies the compliance against those con-

straints. Those integrity constraints encapsulate the consistency

requirements of data in order to fit for a set of use cases. Con-

sidering the limitations of high-level change detection and the

changes present at the schema level, integrity constraints based

consistency analysis can help to validate the high-level anal-

ysis result. Traditionally, in databases, constraints are limita-

tions incorporated in the data that are supposed to be satisfied

all the time by instances [18]. They are useful for users to un-

derstand data as they represent characteristics that data natu-

rally exhibits [19]. In practical settings, constraints are used

for three main tasks: (i) specifying properties that data should

hold; (ii) handle contradictions within the data or with respect

to the domain under consideration; or (iii) for query optimiza-

tion. Taking into account ontologies for validation tasks, there

are, however, significant theoretical and practical problems. For

example, the OWL W3C Recommendation, based on Descrip-

tion Logic and the Open World Assumption, was designed for

inferring new knowledge rather than for validating data using

axioms. Reasoners and validators have different functions, i.e.,

a reasoner is used for inferring new knowledge, even though

it may find some inconsistencies as well, while a validator is

used for finding violations against a set of constraints. It is a

tedious, time-consuming, and error-prone task to generate such

validation rules manually. Some of the validation rules can be

encoded into the ontology, but it still requires a lot of manual

effort. This leads to the need for an approach for inducing such

validation rules automatically. Such rules can be represented

in the form of RDF shapes by profiling the data and using in-

ductive approaches to extract the rules. Other use cases for in-

ducting shapes include describing the data (which is helpful in

validating the completeness analysis results).

In this work, based on the high-level change detection, we

aim to analyze completeness issues in any knowledge base. In

particular, we address the challenges of completeness analy-

sis for evolving KB using data profiling features. We explore

completeness of KB resources using metrics that are computed

using KB evolution analysis. The first hypothesis (H1) that has

guided our investigation is:

Data profiling features can help to identify completeness is-

sues.

We formulate this research goal into the following research

question:

RQ1: To what extent the periodic profiling of an evolving KB

can contribute to unveil completeness issues?

In response to RQ1, we explore the completeness analysis

approaches similar to the work presented in [11]. In particular,

we explore multiple data profiling features at the class level and

at the property level to define completeness quality measures.

For the measurement functions, we use basic summary statistics

(i.e. counts and diffs) over entities from periodic KB releases.

To validate the completeness analysis results, we present

an experimental analysis that is based on a qualitative and

constraints-based validation approach. We propose constraints

based feature extraction approach to address the challenges

of consistency issues identification in an evolving KB. For

constraints-based consistency evaluation, we derived the sec-

ond hypothesis (H2):

Learning models can be used to predict correct integrity con-

straints using the outputs of the data profiling as features.

We present this research goal into the following research

question:

RQ2: How can we perform consistency checks using in-

tegrity constraints as predictive features of learning models?

To address RQ2, we use KB data profiling information to

generate integrity constraints in the form of SHACL [20] RDF

shapes. More specifically, we learn what are the integrity con-

straints that can be applicable to a large KB by instructing a

process of statistical analysis for feature extraction that is fol-

lowed by a learning model. Furthermore, we performed quali-
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tative analysis to validate the proposed hypothesis by manually

examining the results of the completeness analysis.

The remainder of this paper is organized as follows:

• In Section 2, we present background and motivational ex-

amples that demonstrate important key elements of our

quality assessment and validation approach;

• In Section 3, we present the related work focusing on

linked data dynamics, knowledge base quality assessment,

and knowledge base validation;

• In Section 4, we explore the concept of KB evolution anal-

ysis to drive completeness measurement functions and the

process of integrity constraints based on shape induction

for consistency analysis;

• In Section 5, we present our data driven completeness and

consistency analysis approach;

• In Section 6, we present an experimental analysis based

on two KBs, namely DBpedia and 3cixty Nice. Further-

more, we considered both English and Spanish versions of

DBpedia KB;

• In Section 7, we discuss the hypothesis, the research ques-

tions and insights gathered from the experimentation. We

also list potential threats emerged while testing the pro-

posed approach;

• In Section 8, we conclude by revisiting each research ques-

tion and outlining future research endeavours.

2. Background and Motivation

In this work, we explored two KBs namely, the 3cixty

Nice [21] and DBpedia [22]. Here we report a few common

prefixes used over the paper:

• DBpedia ontology URL4 prefix: dbo;

• DBpedia resource URL5 prefix: dbr;

• FOAF Vocabulary Specification URL6 prefix: foaf ;

• Wikipedia URL7 prefix: wikipedia-en;

• 3cixty Nice event type URL8 prefix: lode;

• 3cixty Nice place type URL9 prefix: dul.

In this section, we present an overview of the two main re-

search areas: (i) identification of completeness issues using KB

evolution analysis, and (ii) identification of consistency issues

based on integrity constraints. Also, we outline the approaches

for gold standard creation and learning models.

4http://dbpedia.org/ontology/
5http://dbpedia.org/resource/
6http://xmlns.com/foaf/0.1/
7https://en.wikipedia.org/wiki/
8http://linkedevents.org/ontology
9http://www.ontologydesignpatterns.org/ont/dul/DUL.owl

2.1. Identification of completeness issues using KB evolution

analysis

For a specific context of use, a completeness issue is asso-

ciated with an entity having all expected attributes [23]. More

specifically, it is associated with the quality issues related to

missing entities or missing properties of a knowledge base.

This may happen because of an unexpected deletion or because

of data source extraction errors.

Fine-grained completeness analysis based on low-level

changes brings substantial data processing challenges [7, 12].

More specifically, low-level change detection compares the cur-

rent dataset version with the previous one and returns the delta

containing the added or deleted entities. For example, two

DBpedia versions – 201510 and 201604 – have the property

dbo:areaTotal in the domain of dbo:Place. Low-level changes

can help to detect added or deleted instances for dbo:Place

entity type. One of the main requirements for quality assess-

ment would be to identify the completeness of dbo:Place en-

tity type with each KB releases. Low-level changes can help

only to detect missing entities with each KB release. Such as

those entities missing in the 201604 version (e.g. dbr:A Rúa,

dbr:Sandiás, dbr:Coles Qurense). Furthermore, these instances

are automatically extracted from Wikipedia Infobox keys. We

track the Wikipedia page from which DBpedia statements were

extracted. These instances are present in the Wikipedia In-

fobox as Keys but missing in the DBpedia 201604 release. It

is not feasible to manually check all such missing entities or at-

tributes. Thus, because of the large volume of the dataset, it is a

tedious, time-consuming, and error-prone task to perform such

quality assessment manually.

The representation of changes at low-level leads to syntac-

tic and semantic deltas [14] from which it is more difficult to

get insights to complex changes or changes intended by a hu-

man user. On the contrary, high-level changes can more effi-

ciently capture the changes that indicate an abnormal situation

and generates results that are intuitive enough for a human user.

High-level changes from the data can be detected using statisti-

cal profiling. For example, total entity count of dbo:Place type

for two DBpedia versions – 201510 and 201604 – is 1,122,785

and 925,383 where the entity count of 201604 is lower than

201510. This could indicate an imbalance in the data extraction

process without fine-grained analysis.

As an example, let us consider a DBpedia ES10 en-

tity dbo:Place/prefijoTelefónicoNombre:Mauricie.11 When

looking at the source Wikipedia page,12 we observe that,

as shown in Figure 1, the infobox reports a “Prefijo

telefónico” datum. The DBpedia ontology includes a

dbo:Place/prefijoTelefónicoNombre, and several other places

have that property, but the entity we consider is missing that

information.

While it is generally difficult to spot that kind of incom-

pleteness, for the case under consideration it is easier because

10http://es.dbpedia.org
11http://es.dbpedia.org/page/Mauricie
12https://es.wikipedia.org/wiki/Mauricie

3

http://dbpedia.org/ontology/
http://dbpedia.org/resource/
http://xmlns.com/foaf/0.1/
https://en.wikipedia.org/wiki/
http://linkedevents.org/ontology
http://www.ontologydesignpatterns.org/ont/dul/DUL.owl
http://es.dbpedia.org
http://es.dbpedia.org/page/Mauricie
https://es.wikipedia.org/wiki/Mauricie


that property was present for the entity under consideration in

the previous version of DBpedia ES [22] i.e. the 2016-04 re-

lease. It is a completeness issue introduced by the evolution

of the knowledge base. It can be spotted by looking at the

frequency of predicates inside for an entity type. In particu-

lar, in the release of 201610 there are 55, 387 occurrences of

the dbo:Place/prefijoTelefónicoNombre predicate over 356, 479

dbo:Place entity type, while in the previous version (201604)

they were 56, 109 out of 657, 481 dbo:Place entities.

Figure 1: Example of incomplete Wikipedia data.

Based on the linked data dynamicity behaviour [17, 8, 9],

we can assume that the growth of the entities in a mature KB

ought to be stable. In this aspect, another completeness issue

relates to entities that were present in the previous knowledge

base releases, but disappeared from more recent ones. As an

example, let us consider a 3cixty Nice entity of type lode:Event

that has as label: “Modéliser, piloter et valoriser les actifs des

collectivités et d’un territoire grâce aux maquettes numériques:

retours d’expériences et bonnes pratiques”. This entity hap-

pened to be part of the 3cixty Nice KB since it has been created

the first time, but in a subsequent release it got removed even

though it should not. Such a problem is generally complex to be

traced manually because it requires a per-resource check over

the different releases. It can, instead, be spotted by looking at

the total frequency of entities of a given resource type.

2.2. Identification of consistency issues based on integrity con-

straints

Another issue of unrestrained KB evolution is the unavail-

ability of explicit schema information that precisely defines the

types of entities and their properties [10]. In a KB, when an

ontology is available with TBox axioms, which define the con-

ceptualization of the domain, a reasoner can be used to verify

whether the dataset is consistent with the domain by verifying

the axioms defined in the ontology [24]. The empirical study

presented by Mihindukulasooriya et al. [13] pointed out that

changes in the ontology depend on the development process and

the community involved in the creation of the knowledge base.

Figure 2: Example of a 3cixty Nice KB entity that unexpectedly disappeared

from the release of 2016-06-15 to the other 2016-09-09.

They also pointed out the drawbacks of finding practical guide-

lines and best practices for ontology based evaluation. Taking

into account availability of schema with integrity constraints,

the data usually goes through a validation process that verifies

the compliance against those constraints. Those integrity con-

straints encapsulate the consistency requirements of data in or-

der to fit for a set of use cases. For example, in a relational

database, the integrity constraints are expressed in a data def-

inition language (DDL), and the database management system

(DBMS) ensures that any data inserted into the entire database

will not lead to any inconsistency.

The validation of entities in a KB is not done in the same

manner as in traditional database management systems due to

the lack of a language for expressing constraints or having less

restrictive generic models suitable for wider use and not for

specific use cases. Furthermore, most of the ontologies do not

have rich axioms that could help to detect inconsistencies in

data [24]. Further, most of the schema information about RDF

data is only available in the form of OWL ontologies that are

most suited for entailment rather than validation. In this ac-

count, we can assume that practical use cases that utilize RDF

data need the validation of integrity constraints. Larger knowl-

edge bases, such as DBpedia, lack the precise definition of in-

tegrity constraints, and it is a tedious task to create these con-

straint definitions from scratch manually. In DBpedia KB [25]

(version 2016-04), a person should have exactly one value for

the ”dbo:birthDate” property or the values of the ”dbo:height”

property should always be a positive number. The instances of

the Person class have more than 13,000 associated properties

(including dbo, DBpedia ontology properties and dbp, auto-

generated properties from Wikipedia infobox keys). Taking into
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account ontologies for consistency analysis, they are usually de-

signed for entailment purposes rather than for assessment and

their representation often lacks the granular information needed

for validating constraints in the data [26]. This leads to the need

of automatic consistency analysis for evolving KBs.

2.3. Gold Standard Creation

KBs may contain errors, thus the profiling results cannot be

considered as a gold standard. There are different strategies to

evaluate a dataset. In the following, we present three common

strategies when dealing with a knowledge base [27]:

(i) Silver Standard: this strategy is based on the assumption

that the given KB is already of reasonable quality. The silver

standard method is usually applied to measure the performance

of knowledge graph by analyzing how well relations in a knowl-

edge graph can be replicated. Although this strategy is suitable

for large-scale data, it can produce less reliable results [28, 29].

(ii) Gold standard: this strategy is based on turning the ob-

servations in a set of gold data points by human annotators. In

this context, gold standard is indeed suitable for our approach

since we can obtain gold insights of the completeness measure-

ment results, however it is very expensive if the annotation load

is large.

(iii) Partial gold standard: in this strategy, a small subset of

external graphs, entities or relations are selected as validation

criteria and they, then, are manually labeled [28]. This helps re-

ducing the number of candidates that an annotator will process.

2.4. Learning Models

We considered consistency analysis of instances using RDF

shape induction as a classification problem. Typically a clas-

sification learning model maps observations (samples) to a set

of possible categories (classes) [30]. For example, the mini-

mum cardinality value of an entity type is an observation for its

relevant attributes (features). For selecting a suitable learning

model for our problem, we investigated the following research

question: ”Which learning model is the most adequate for con-

sistency analysis using data profiling information as predictive

features?”. In order to answer this question, we evaluate the

performance of predictive features using five classical learning

models. These learning models are chosen considering five cat-

egories of machine learning algorithms [30]: (i) Neural Net-

works, (ii) Bayesian, (iii) Instance Based, (iv) Support Vector

Machine, and (v) Ensemble. Following we present details of

those tested in this work.

Multilayer Perceptron [31]: a feed forward Neural Network

consisting of at least three layers of neurons with a non-linear

activation function: one for inputs, one for outputs and one or

more hidden layers. Training is carried out through back prop-

agation.

Naive Bayes [32]: is a simple probabilistic classifier. The

core concept is based on the Bayes theorem [32]. Generally,

naive bayes classifiers are based on the assumption that features

are independent with each other.

k-Nearest Neighbors (k-NN) [33]: is an instance-based learn-

ing algorithm. It locates the k-nearest instances to the input

instance and determines its class by identifying the single most

frequent class label. It is generally considered not tolerant to

noise and missing values. Nevertheless, it is highly accurate,

insensitive to outliers and works well with both nominal and

numerical features.

Support Vector Machines (SVM) [34]: it conceptually im-

plements the following idea: input vectors are non-linearly

mapped to a very high dimensional feature space. In this feature

space a linear decision surface is constructed. Special proper-

ties of the decision surface ensures high generalization ability

of the classifier.

Random Forest [35]: it creates many classification trees. To

classify a new object from an input vector, it maps the input

vector down each of the trees in the forest. Each tree gives a

classification, and we say the tree “votes” for that class. The

forest chooses the classification having the most votes (over all

the trees in the forest).

In our modeling phase, we applied a k-fold cross validation

[30] to reduce the variance of a performance score. In the k-fold

cross validation setup, k is the number of splits to make in the

dataset. We choose value of k=10. This results in splitting the

dataset into 10 portions (10 folds) and runs the learning model

10 times. For each algorithm, the training runs on 90% of the

data and testing on the left 10%. With k value of 10, it uses

each data instance as a training instance exactly 9 times and

test instance 1 time.

We also adopted general classification performance evalua-

tion measures such as precision, recall, and F1 score [36]. Eval-

uation of the classification performance is based on considering

one of the output classes as the positive class and defining: (i)

true positives (TP): the number of samples correctly labeled as

in the positive class; (ii) false positives (FP): the number of

samples incorrectly labeled as in the positive class; (iii) true

negatives (TN): the number of samples correctly labeled as not

in the positive class; (iv) false negatives (FN): the number of

samples incorrectly labeled as not in the positive class.

We present the formulas of the aforementioned metrics:

Precision (P): it is based on positive predictive value and it

defined as P = T P
T P+FP

;

Recall (R): it is related to true positive rate also know as sen-

sitivity and it is defined as R = T P
T P+FN

;

F1 Score (F1): it is a measure of test accuracy and it is defined

as the harmonic mean of precision and recall: F1 = 2∗P∗R
P+R

.

3. Related Work

This section provides an overview of the state-of-the-art in

the context of knowledge base quality assessment approaches.

The research activities related to our approach fall into three

main areas: (i) Linked Data Dynamics, (ii) Knowledge Base

Quality Assessment, and (iii) Knowledge Base Validation.
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3.1. Linked Data Dynamics

Taking into account changes over time, every dataset can be

dynamic. Considering linked data dynamics, a comparative

analysis is present by Umbrich et al. [37]. The authors ana-

lyzed entity dynamics using a labeled directed graph based on

LOD, where a node is an entity that is represented by a subject.

In addition, Umbrich et al. [38] presented a comprehensive

survey based on technical solutions for dealing with changes

in datasets of the Web of Data. Furthermore, Käfer et al. [9]

designed a Linked Data Observatory to monitor linked data dy-

namics. The authors setup a long-term experiment to monitor

the two-hop neighborhood of a core set of eighty thousand di-

verse Linked Data documents on a weekly basis. Furthermore,

linked data dynamics is considered using five use cases: syn-

chronization, smart caching, hybrid architectures, external-link

maintenance, and vocabulary evolution and versioning.

The work presented by Papavasileiou et al. [7] explored high-

level change detection in RDF(S) KBs by addressing change

management for RDF(S). The authors explored the data man-

agement issues in KBs where data is maintained by large com-

munities, such as scientists or librarians, who act as curators

to ensure high quality of data. Such curated KBs are con-

stantly evolving for various reasons, such as the inclusion of

new experimental evidence or observations, or the correction

of erroneous conceptualizations. Managing such changes poses

several research problems, including the problem of detecting

the changes (delta) among versions of the same KB developed

and maintained by different groups of curators, a crucial task

for assisting them in understanding the involved changes. The

authors addressed this problem by proposing a language for

change detection that allows the formulation of concise and

intuitive deltas. Similarly, in our work, we explore the deltas

present in consecutive KB releases using data profiling.

In [13], Mihindukulasooriya et al. presented an empirical

analysis of the ontologies that were developed collaboratively

to understand community-driven ontology evolution in prac-

tice. The authors have analyzed, how four well-known ontolo-

gies (DBpedia, Schema.org, PROV-O, and FOAF) have evolved

through their lifetime and they observed that quality issues were

due to the ontology evolution. Also, the authors pointed out the

need for having multiple methodologies for managing changes.

The authors summarize that the selected ontologies do not fol-

low the theoretical frameworks found in the literature. Further,

the most common quality problems caused by ontology changes

include the use of abandoned classes and properties in data in-

stances and the presence of duplicate classes and properties.

Nevertheless, this work is not focused on KB evolution anal-

ysis for completeness analysis but rather on how changes in

the ontology affect the data described using those ontologies.

Klein et al. [39] studied the ontology versioning in the context

of the Web. The authors looked at the characteristics of the

release relation between ontologies and at the identification of

online ontologies. Then, a web-based system is introduced to

help users to manage changes in ontologies. Similarly, Pernelle

et al. [12] presented an approach that detects and semantically

represents data changes in knowledge bases. However, ontolo-

gies description for KBs are not always available [13]. In this

work, we focus on KB evolution analysis using data profiling at

the data instance level to address the issues concerning unavail-

ability of ontology descriptions..

In [10], Nishioka et al. presented a clustering technique over

the dynamics of entities to determine common temporal pat-

terns. The quality of the clustering is evaluated using entity

features such as the entities, properties, RDF types, and pay-

level domain. Besides, the authors investigated to what extent

entities that share a feature value change over time. In this pa-

per, we explore linked dynamic data features for detecting com-

pleteness issues. Instead of using a clustering technique [10]

based on the temporal pattern of entities, we focus on explor-

ing the evolution analysis as a classification problem to detect

completeness issues.

3.2. Knowledge Base Quality Assessment

Knowledge Base quality assessment is a largely investigated

research field, and many approaches to data quality manage-

ment have been proposed. There exists a large number of data

quality frameworks and tools based on manual, crowd-sourced,

and automatic approaches. In this section, we review literature

that analyze the quality of various aspects of KBs.

Comprehensive Studies. A comprehensive overview of the

RDF data profiling is presented by Ellefi et al. [8]. The authors

explored the RDF data profiling feature, methods, tools, and

vocabularies. Furthermore, the authors presented dataset profil-

ing in a taxonomy and illustrated the links between the dataset

profiling and feature extraction approaches. Ellefi et al. orga-

nized dataset profiling features into seven top-level categories:

1. General; 2. Qualitative; 3. Provenance; 4. Links; 5. Licens-

ing; 6. Statistical; 7. Dynamics. The authors considered linked

data dynamics as profiling features using the study presented by

Käfer et al. [9]. Similarly, in this work, we explore the concepts

regarding qualitative, statistical, and dynamic features. Also,

based on Ellefi et al. [8] study, we explore the dynamic features

to perform completeness analysis.

Considering the data quality methodologies applied to linked

open data (LOD), a comprehensive systematic literature review

is presented by Zaveri et al. [40]. The authors have extracted

26 quality dimensions and a total of 110 objective and sub-

jective quality indicators. Zaveri et al. organized the linked

data quality dimensions into the following categories, 1. Con-

textual dimensions; 2. Trust dimensions; 3. Intrinsic dimen-

sions; 4. Accessibility dimensions; 5. Representational dimen-

sions; 6. Dataset dynamicity dimensions. Furthermore, dataset

dynamicity dimensions are explored using three quality dimen-

sions: 1. Currency: speed of information update regarding in-

formation changes; 2. Volatility: length of time which the data

remains valid; 3. Timeliness: information is available in time to

be useful. The work presented in this paper is related to contex-

tual and dataset dynamicity dimensions. More concretely, the

completeness and consistency is associated with the contextual

dimensions, and the dataset evolution is related to the dataset

dynamicity dimensions.

Quality Assessment Frameworks. Taking into account data

quality analysis using manual approaches, Bizer et al. [41]

presented Web Information Quality Assessment Framework
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(WIQA). The WIQA - Information Quality Assessment Frame-

work is a set of software components that empowers informa-

tion consumers to employ a wide range of different information

quality assessment policies to filter information from the Web.

This framework employs the Named Graphs data model for

the representation of information together with quality-related

meta-information and uses the WIQA-PL13 policy language for

expressing information filtering policies. WIQA-PL policies

are expressed in the form of graph patterns and filter conditions.

WIQA can be used to understand the intended changes present

in a KB by applying graph patterns and filtering conditions. In

this work, instead of a static version of a KB, we plan to explore

multiple versions of KB using WIQA policy.

Using provenance metadata information, Mendes et al. [42]

presented Sieve framework that uses user configurable quality

specification for quality assessment and fusion method. Sieve

is integrated as a component of the Linked Data Integration

Framework (LDIF).14 In particular, Sieve uses the LDIF prove-

nance metadata and the user configured quality metrics to gen-

erate quality assessment scores. A set of Linked Data qual-

ity assessment measures are proposed as: 1. Intensional com-

pleteness; 2. Extensional completeness; 3. Recency and rep-

utation; 4. Time since data modification; 5. Property com-

pleteness; 6. Property conciseness; 7. Property consistency.

In this work, instead of using provenance metadata and the

user configured quality metrics, we explore completeness us-

ing dynamic linked data profiling features presented by Ellefi et

al. [8].

In [43], Kontokostas et al. proposed a methodology for test-

driven quality assessment of Linked Data. The authors formal-

ized quality issues and employed SPARQL query templates,

which are instantiated into quality test queries. Also, the au-

thors presented RDFUnit15 a tool centered around schema val-

idation using test-driven quality assessment approach. RDFU-

nit runs automatically based on a schema and manually gener-

ates test cases against an endpoint. RDFUnit has a component

that turns RDFS axioms and simple OWL axioms into SPARQL

queries that check for data that does not match the axiom. In

contrast, in this study, we aim to learn the constraints (which

might not be explicitly stated as RDFS or OWL axioms) as RDF

Shapes. Although the overall objectives are similar considering

RDF shape induction to this work, for completeness analysis

we mainly explore KB evolution analysis. Furthermore, in our

approach, we primarily use data profiling information as the in-

put for the process. Results from the consistency analysis can

be extended by using RDFUnit for further validation.

In [15], Debattista et al. presented a conceptual method-

ology for assessing Linked Datasets and proposed Luzzu, a

framework for Linked Data Quality Assessment. Luzzu is

based on four major components: 1. An extensible interface for

defining new quality metrics; 2. An interoperable, ontology–

driven back-end for representing quality metadata and quality

problems that can be re-used within different semantic frame-

13http://wifo5-03.informatik.uni-mannheim.de/bizer/wiqa/
14http://ldif.wbsg.de/
15https://github.com/AKSW/RDFUnit

works; 3. Scalable dataset processors for data dumps, SPARQL

endpoints, and big data infrastructures; 4. A customisable rank-

ing algorithm taking into account user-defined weights. Luzzu

is a stream-oriented quality assessment framework that focuses

on data instance-centric measurement of a user-defined collec-

tion of quality metrics. The validation metrics require users

to write Java code for implementing checks. In this work, we

perform completeness analysis based on high-level change de-

tection to identify any problem in the data processing pipeline.

Furthermore, various research works explored the importance

of quality metrics in a probabilistic and deterministic settings.

Debattista et al. [44] explored probabilistic techniques such as

Reservoir Sampling, Bloom Filters and Clustering Coefficient

estimation for implementing a broad set of data quality metrics

in an approximate but sufficiently accurate way. In addition,

various research works put emphasis on the problem of error

detection in a KB. For example, distance-based outlier detec-

tion by Debattista et al. [45] and error detection in relation as-

sertions by Melo et al. [46] gave more focus towards error de-

tection in schemas. The core of the study is similar considering

error detection in a KB, the focus of this study is to identify

completeness and consistency issues using various data profil-

ing features.

Crowdsourcing. A crowd-sourcing quality assessment ap-

proach can be used to understand the intended changes by

stakeholders due to KB updates. Acosta et al. [47] introduced

a crowd-sourcing quality assessment approach that is difficult

to uncover quality issues automatically. The authors explored

most common quality issues in DBpedia datasets, such as in-

correct object values, incorrect datatype or language tag and

incorrect link. The authors introduced a methodology to adjust

crowdsourcing input from two types of audience: (i) Linked

Data experts through a contest to detect and classify erroneous

RDF triples and (ii) Crowdsourcing through the Amazon Me-

chanical Turk. In detail, the authors adapted the Find-Fix-

Verify crowdsourcing pattern to exploit the strengths of experts

and paid workers. Furthermore, the authors used TripleCheck-

Mate [48] a crowdsourcing tool for the evaluation of a large

number of individual resources, according to a defined quality

problem taxonomy. To understand the quality of data sources,

Flemming’s [6] presented an assessment tool that calculates

data quality scores based on manual user input for data sources.

More specifically, a user needs to answer a series of questions

regarding the dataset and assigns weights to the predefined

quality metrics. However, it lacks several quality dimensions

such as completeness or inconsistency. In [43], Kontokostas et

al. proposed a methodology for test-driven quality assessment

of Linked Data. The authors formalized quality issues and em-

ployed SPARQL query templates, which are instantiated into

quality test queries. Also, the authors presented RDFUnit16 a

tool centered around schema validation using test-driven qual-

ity assessment approach. RDFUnit runs automatically based

on a schema and manually generates test cases against an end-

point. RDFUnit has a component that turns RDFS axioms and

16https://github.com/AKSW/RDFUnit
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simple OWL axioms into SPARQL queries that check for data

that does not match the axiom. In contrast, in this study, we aim

to learn the constraints (which might not be explicitly stated as

RDFS or OWL axioms) as RDF Shapes. Although the overall

objectives are similar considering RDF shape induction to this

work, for completeness analysis we mainly explore KB evolu-

tion analysis. Furthermore, in our approach, we primarily use

data profiling information as the input for the process. Results

from the consistency analysis can be extended by using RDFU-

nit for further validation.

Metadata. In [49], Assaf et al. introduced a framework that

handles issues related to incomplete and inconsistent metadata

quality. The authors proposed a scalable automatic approach

for extracting, validating, correcting and generating descriptive

linked dataset profiles. This framework applies several tech-

niques to check the validity of the metadata provided and to

generate descriptive and statistical information for a particular

dataset or an entire data portal. In particular, the authors ex-

tensively used dataset metadata against an aggregated standard

set of information. This procedure leads to dependency towards

availability of metadata information. Instead, in our approach,

we only focus on summary statistics from the collected dataset,

and it is independent of external information since the quality

profiling can be done only using summary statistics.

Temporal Analysis. In [50], Rula et al. started from the

premise of dynamicity of Linked Data and focused on the as-

sessment of timeliness in order to reduce errors related to out-

dated data. A currency metric is introduced to measure timeli-

ness, that is calculated in terms of differences between the ob-

servation is done (current time) and the time when the data was

modified for the last time. Furthermore, authors also took into

account the difference between the time of data observation and

the time of data creation. Similarly, in our work, we explore KB

dynamicity using data profiling information. Rather than using

timeless measures, we investigate the changed behavior present

in the dataset using dynamic profiling features introduced by

Ellefi et al. [8].

In [51], Furber and Hepp focused on the assessment of ac-

curacy, which includes both syntactic and semantic accuracy,

timeliness, completeness, and uniqueness. One measure of ac-

curacy consists of determining inaccurate values using func-

tional dependence rules, while timeliness is measured with time

validity intervals of instances and their expiry dates. Complete-

ness deals with the assessment of the completeness of schema

(representation of ontology elements), completeness of proper-

ties (represented by mandatory property and literal value rules),

and completeness of population (description of real-world enti-

ties). Uniqueness refers to the assessment of redundancy, i.e.,

of duplicated instances. In this work, we explored the changes

present in the KB to identify completeness issues.

Considering the version management and linked data life-

cycle, Knuth et al. [52] identified the critical challenges for

Linked Data quality. As one of the key factors for Linked Data

quality they outlined validation that, in their opinion, has to be

an integral part of Linked Data lifecycle. An additional factor

for Linked Data quality is version management, which can cre-

ate problems in provenance and tracking. Finally, as another es-

sential factor they outlined the usage of popular vocabularies or

manual creation of new correct vocabularies. Furthermore, Em-

buri et al. [53] developed a framework for automatic crawling

the Linked Data datasets and improving dataset quality. In their

work, the quality is focused on errors in data, and the purpose

of the developed framework is to automatically correct errors.

Statistical analysis. Paulheim et al. [54] presented two

approaches SDType and SDValidate for quality assessment.

SDType approach help to predict RDF resources type thus

completing missing values of rdf:type properties. SDValidate

approach detects incorrect links between resources within a

dataset. These methods can effectively detect errors on DBpe-

dia; however they require the existence of informative type as-

sertions. Furthermore, more complex errors containing wrong

entities with correct types cannot be identified. Taking into

account, the probabilistic approach for linked data quality as-

sessment, Li et al. [55] presented a probabilistic framework us-

ing the relations (equal, greater than, less than) among multiple

RDF predicates to detect inconsistencies in numerical and date

values based on the statistical distribution of predicates and ob-

jects in RDF datasets. However, they mainly focused on iden-

tifying errors in the numerical data. In [56], Ruckhaus et al.

presented LiQuate, a tool based on probabilistic models to an-

alyze the quality of data and links. The authors used Bayesian

Networks and rule-based system for quality assessment. The

probabilistic rules are represented by data experts to identify re-

dundant, incomplete and inconsistent links in a set of resources.

In our approach, we mainly focus on statistical profiling at the

instance level. This reduces the dependency on expert interven-

tion.

In the current state of the art, less focus has been given toward

understanding knowledge base resource changes over time to

detect anomalies and completeness issues due to the KB evo-

lution. For an evolving KB, we investigated two perspectives:

(i) Static: data quality analysis with respect to specific tasks

without considering dataset dynamics; (ii) Dynamic: process of

accessing data and temporal analysis, such as timeliness mea-

sure. In Table 1, we summarize the reported linked data quality

assessment approaches.

3.3. Knowledge Base Validation

The problem of knowledge base validation has been explored

using Description Logics considering both Open World (OW)

and Closed World (CW) Assumption. In recent years, various

validation languages have been introduced using constraint def-

initions.

• The Web Ontology Language (OWL) [57] is an expressive

ontology language based on Description Logics (DL). The

semantics of OWL addresses distributed knowledge repre-

sentation scenarios where complete knowledge about the

domain cannot be assumed. Motik et al. [58] proposed

an extension of OWL that attempts to mimic the intuition

behind integrity constraints in relational databases. The

authors divided axioms into regular and constraints. To

address the problem of validation using OWL representa-

tion, some approaches use OWL expressions with Closed
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Table 1: Summary of Linked Data Quality Assessment Approaches.

Paper Degree of Automation Goal Dataset Feature

Bizer et al. [41] Manual WIQA quality assessment framework enables information

consumers to apply a wide range of policies to filter informa-

tion.

Static

Acosta et al. [47] Manual A crowd-sourcing quality assessment approach for quality is-

sues that are difficult to uncover automatically.

Static

Ruckhaus et al. [56] Semi-Automatic LiQuate, a tool based on probabilistic models to analyze the

quality of data and links.

Static

Paulheim et al. [54] Semi-Automatic SDType approach using statistical analysis to predicts classes

of RDF resources thus completing missing values of rdf:type

properties.

Static

Furber and Hepp [51] Semi-Automatic Focus on the assessment of accuracy, which includes both syn-

tactic and semantic accuracy, timeliness, completeness, and

uniqueness.

Dynamics

Flemming [6] Semi-Automatic Focuses on a number of measures for assessing the quality of

Linked Data covering wide-range of different dimensions such

as availability, accessibility, scalability, licensing, vocabulary

reuse, and multilingualism.

Static

Mendes et al. [42] Semi-Automatic Sieve framework that uses user configurable quality specifica-

tion for quality assessment and fusion method.

Dynamic

Knuth et al. [52] Semi-Automatic They outline validation which, in their opinion, has to be an

integral part of Linked Data lifecycle.

Static

Rula et al. [50] Automatic Start from the premise of dynamicity of Linked Data and focus

on assessment of timeliness in order to reduce errors related to

outdated data.

Dynamic

Kontokostas et al. [43] Automatic Propose a methodology for test-driven quality assessment of

Linked Data.

Dynamic

Emburi et al. [53] Automatic They developed a framework for automatic crawling the

Linked Data datasets and improving dataset quality.

Dynamic

Li et al. [55] Automatic They proposed an automatic method to detect error between

multi attributes which can not be detected only considering

single attribute.

Dynamic

Assaf et al. [49] Automatic They propose a framework that handles issues related to in-

complete and inconsistent metadata quality.

Static

Debattista et al. [15] Automatic They propose a conceptual methodology for assessing Linked

Datasets, proposing Luzzu, a framework for Linked Data Qual-

ity Assessment.

Static
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World Assumption and a weak Unique Name Assumption

so that OWL expressions can be used for validation pur-

poses, such as the work presented by Tao et al. [59], and

Stardog ICV17.

• The Shape Expressions (ShEx) [60] language describes

RDF nodes and graph structures. A node constraint de-

scribes an RDF node (IRI, blank node or literal) and a

shape describes the triples involving nodes in an RDF

graph. These descriptions identify predicates and their as-

sociated cardinalities and datatypes.

• The W3C Shapes Constraint Language (SHACL) [20] is

used for validating RDF graphs against a set of conditions.

These conditions are provided as shapes and other con-

structs expressed in the form of an RDF graph. In particu-

lar, it helps to identify constraints using SPARQL. Also, it

provides a high level vocabulary to identify predicates and

their associated cardinalities, and datatypes. SHACL is

divided into two parts: (i) SHACL Core, describes a core

RDF vocabulary to define common shapes and constraints;

and (ii) extension mechanism named SHACL-SPARQL.

In this work, we explore the SHACL Core for consistency

evaluation. We look at SHACL Shape for a specific class

to identify constraints components. In SHACL, a Shape is

defined as the collection of targets and constraints compo-

nents. Targets specify which nodes in the data graph must

conform to a shape and constraint components determine

how to validate a node. Shapes graph represent an RDF

graph that contains shapes. Conversely, Data graph repre-

sents an RDF graph that contains data to be validated. Fur-

thermore, SHACL defines two types of Shapes: (i) Node

shapes presents the constraints information about a given

focus node; and (ii) Property shapes present constraints

about a property and values of a path for a node.

• SPARQL Inference Notation (SPIN)18 constraints asso-

ciate RDF types or nodes with validation rules. In par-

ticular, it allows users to use SPARQL to specify rules and

logical constraints.

These shape expression languages, namely, ShEx, SHACL,

and SPIN, aim to validate RDF data and to communicate data

semantics among users. They cover constraints such as keys

and cardinality; however, their expressivity is limited and re-

quire user interventions in every step. Furthermore, vari-

ous research endeavors explored the RDF validation based on

the Closed World Assumption (CWA). For example, Patel-

Schneider [61] explored Description Logics as a mean to pro-

vide the necessary framework for checking constraints and pro-

viding facilities to analyze CWAs. The authors utilized infer-

ence as a mean for constraint checking, which is the core ser-

vice provided by Description Logics. Our final goal is different

from these research approaches. In particular, we study how

17https://www.stardog.com/docs/
18http://spinrdf.org

data profiling can be applied to constraints based feature ex-

traction in a predictive setting. For example, cardinality esti-

mation has been studied in many different domains including

relational data. In addition, integrity constraints for validation

tasks has many other applications, such as network monitoring

for detecting DDoS attacks or worm propagation, link based

spam detection, and relation join query optimization. The exist-

ing cardinality estimation algorithms such as Hit Counting [62],

Adaptive Sampling [63], Probabilistic Counting [64] and HY-

PERLOGLOG [65] aim to estimate the number of distinct ele-

ments in very large datasets with duplicate elements. For car-

dinality estimation in RDF data, Neuman and Moerkotte [66]

have proposed “characteristic sets” for performing cardinality

estimations using SPARQL queries with multiple joins. Over-

all, these works differ from the work presented in this paper on

two axes. First, they are focused on determining the cardinali-

ties of each value rather than the cardinality of the entity-value

relation. Second, they are focused on query optimization rather

than integrity constraint validation. We consider the profiling

of instances as a mean to estimate constraint values which can

help to understand consistency issues.

4. Completeness and Consistency Analysis

In this section, we investigate the concept of KB evolu-

tion analysis to derive completeness measurement functions.

For consistency analysis, we explore integrity constraints using

shape induction for feature extraction.

4.1. Evolution Analysis and Dynamic Features

Large KBs are often maintained by communities that act as

curators to ensure their quality [67]. The benefit of KB evolu-

tion analysis is two-fold [17]: (1) quality control and mainte-

nance; and (2) data exploitation. Considering quality control

and maintenance, KB evolution can help to identify common

issues such as broken links or URI changes that create incon-

sistencies in the dataset. On the contrary, data exploitation can

provide valuable insights regarding dynamics of the data, do-

mains, and the communities that explore operational aspects of

evolution analysis [17]. KBs naturally evolve due to several

causes: (i) resource representations and links that are created,

updated, and removed; (ii) the entire graph can change or dis-

appear. The kind of evolution that a KB is subjected to depends

on several factors, such as:

• Frequency of update: KBs can be updated almost con-

tinuously (e.g. daily or weekly) or at long intervals (e.g.

yearly);

• Domain area: depending on the specific domain, updates

can be minor or substantial. For instance, social data is

likely to experience wide fluctuations than encyclopedic

data, which is likely to undergo smaller knowledge incre-

ments;

• Data acquisition: the process used to acquire the data to

be stored in a KB and the characteristics of the sources
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may influence the evolution. For example, updates on in-

dividual resources cause minor changes when compared to

a complete reorganization of a data source infrastructure

such as a change of the domain name;

• Link between data sources: when multiple sources are

used for building a KB, the alignment and compatibility

of such sources affect the overall KB evolution. The dif-

ferences of KBs have been proved to play a crucial role in

various curation tasks such as the synchronization of au-

tonomously developed KB versions, or the visualization

of the evolution history of a KB [7] for more user-friendly

change management.

Ellefi et al. [8] presented a set of dynamic features for data

profiling. In this work, we explore these dynamic features for

measuring the completeness quality characteristics. Based on

Ellefi et al. [8], we explored the following dynamic features:

• Lifespan: knowledge bases contain information about dif-

ferent real-world objects or concepts commonly referred

as entities. Lifespan represents the period when a certain

entity is available and it measures the change patterns of a

knowledge base. Change patterns help to understand the

existence and the categories of updates or change behavior.

• Degree of change: it helps to understand to what extent the

performed update impacts the overall state of the knowl-

edge base. Furthermore, the degree of changes helps to

understand what are the causes for change triggers as well

as the propagation effects.

• Update history: it contains basic measurement elements

regarding the knowledge base update behavior such as fre-

quency of change. The frequency of change measures the

update frequency of KB resources. For example, the in-

stance count of an entity type for various versions.

4.2. Completeness Analysis based on Dynamic Features

The ISO/IEC 25012 standard [23] refers to completeness as

the degree to which subject data associated with an entity has

values for all expected attributes and related entity instances in

a specific context of use. In this paper, for completeness char-

acteristics, we look into the dynamic features using periodic

data profiling in order to identify quality issues. Taking into ac-

count linked data dynamics,19 the update behaviour of classes

and properties can be stable/growth or unstable [17]. Table 2

illustrates two common types of change behaviour using prop-

erty frequency as measurement element.

4.2.1. Measurement Elements

Statistical operations using data profiling provides descrip-

tive information about data types and patterns in the dataset.

For example, property distributions, number of entities, and

number of predicates. For computing the change detection, we

19https://www.w3.org/wiki/DatasetDynamics

Table 2: Categories of change behaviour.

Type Description

Stable/Growth = 1 If the property frequency at release N

equal or greater than N − 1

Unstable = 0 If the property frequency at release N

less than N − 1

used basic statistical operations. We thereby use the following

key statistics: (i) number of distinct predicates; (ii) number of

distinct subjects; (iii) number of distinct entities per class; (iv)

frequency of predicates per entity.

In particular, we aim to detect variations of two basic statis-

tical measures that can be evaluated with the most simple and

computationally inexpensive operation, i.e., counting.

The computation is performed on the basis of the classes in a

KB release of V , i.e. given a class C we consider all entities E

of the type C as:

count(C) = |{s : ∃〈s, typeof,C〉 ∈ V}|

The count(C) measurement can be performed with a

SPARQL query such as:

SELECT COUNT (DISTINCT ?s) AS ?COUNT

WHERE { ?s a <C> . }

The second measure element focuses on the frequency of the

properties, within a class C. We define the frequency of a prop-

erty (in the scope of class C) as:

freq(p,C) = |{〈s, p, o〉 : ∃〈s, p, o〉 ∧ 〈s, typeof,C〉 ∈ V}|

The freq(p,C) measurement can be performed with a

SPARQL query having the following structure:

SELECT COUNT (*) AS ?FREQ

WHERE {

?s <p> ?o.

?s a <C>.

}

There is an additional basic measure element that can be used

to build derived measures: the number of properties present for

the entity type C in the release i of the KB. Therefore, distinct

property count of entity type C as:

NP(C) = |{p : ∃〈s, p, o〉 ∧ 〈s, typeof,C〉 ∈ V}|

The NP(C) measure can be collected with a SPARQL query

having the following structure:

SELECT COUNT (DISTINCT ?p) AS ?NP

WHERE {

?s ?p ?o.

?s a <C>.

}

The essence of the proposed approach is the comparison of

the measure across distinct releases of a KB. In the remainder,
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we will use a subscript to indicate the release that the measure

refers to. The releases are numbered progressively as integers

starting from one and, by convention, the most recent release

is n. So that, for instance, countn−1(foaf:Person) represents the

count of resources typed with foaf:Person in the last but one re-

lease of the knowledge base under consideration. More specif-

ically we used the property frequency for a specific class for

completeness metrics.

4.2.2. Measurement Functions

On the basis of the dynamic features [8], a further conjecture

drive that the growth of knowledge in a mature KB ought to

be stable. Furthermore, we argue that completeness issues can

be identified through monitoring lifespan of an RDF KBs. A

simple interpretation of the stability of a KB is monitoring the

dynamics of knowledge base changes [11]. This measure could

be useful to understand high-level changes by analyzing KB

growth patterns.

We can monitor growth level of KB resources (instances) by

measuring changes presented in different releases. In particu-

lar, knowledge base growth can be measured by detecting the

changes over KB releases utilizing trend analysis such as the

use of simple linear regression. Based on the comparison be-

tween observed and predicted values, we can detect the trend in

the KB resources, thus detecting anomalies over KB releases if

the resources have a downward trend over the releases.

We derive KB lifespan analysis regarding change patterns

over time. To measure the KB growth, we applied linear re-

gression analysis of entity counts over KB releases. In the re-

gression analysis, we checked the latest release to measure the

normalized distance between an actual and a predicted value. In

particular, in the linear regression we used entity count (yi) as

dependent variable and time period (ti) as independent variable.

Here, n = total number of KB releases and i = 1...n present as

the time period.

We start with a linear regression fitting the count measure of

the class (C):

y(C) = a · t + b

The residual can be defined as:

residuali(C) = a · ti + b − counti(C)

We define the normalized distance as:

ND(C) =
residualn(C)

mean(|residuali(C)|)

Based on the normalized distance, we can classify the growth

of a class C as:

Growth(C) =

{

1 i f (ND(C)) ≥ 1

0 i f (ND(C)) < 1

The value is 1 if the normalized distance between actual

value is higher than the predicted value of type C, otherwise it

is 0. In particular, if the KB growth prediction has the value of

1 then the KB may have an unexpected growth with unwanted

entities otherwise the KB remains stable.

To further validate our assumptions, we explore the com-

pleteness of properties by monitoring the variations due to KB

updates. More specifically, by property completeness analysis

we focus on the removal of information as an adverse effect

of the KB evolution. We can use the frequency of predicates

of an entity type as the essential measurement element. Fur-

thermore, by comparing property frequency between two KB

releases, we can detect completeness issues. Considering the

changed behavior presented in Table 2, the value of 0 means

that a property presents in the last release might have complete-

ness issues.

The basic measure we use is the frequency of predicates, in

particular, since the variation in the number of subjects can af-

fect the frequency, we introduce a normalized frequency as:

NFi(p,C) =
freqi(p,C)

counti(C)

On the basis of this derived measure we can thus define com-

pleteness of a property p in the scope of a class C as:

Completenessi(p,C) =















1, NFi(p,C) ≥ NFi−1(p,C)

0, NFi(p,C) < NFi−1(p,C)

where NFi(C) is the number of properties present for class C

in the release i of the knowledge base.

At the class level the completeness is the proportion of com-

plete predicates and can be computed as:

Completenessi(C) =

NPi(C)
∑

k=1

Completenessi(pk,C)

NPi(C)

4.3. Consistency Analysis based on Integrity Constraints

Consistency checks whether inconsistent facts are included

in the KB [40]. For accessing consistency, we can use an infer-

ence engine or a reasoner, which supports the expressivity of the

underlying knowledge representation formalism. In the context

of KB validation, languages, such as W3C Shapes Constraint

Language (SHACL) and Shape Expressions Language (ShEx),

allow integrity constraints to be defined for validation tasks.

In this work, we explore the integrity constraints definitions

present in SHACL core for consistency evaluation. We gen-

erate shapes at the class-level using data profiling information.

We consider three constraints for consistency checks for evolv-

ing KBs: cardinality, range, and string constraint. We consider

these three constraints based on the following conditions: (i) to

evaluate properties with correct specifications, we explore car-

dinality constraints to identify the correct mapping of properties

for a specific class, and (ii) to evaluate contradictions within the

data, we explore the range constraint values.

Taking into account profiling based shape induction tasks, we

compute the RDF term at instance-level using the data instances

only. We thereby use the following key statistics: (i) percentage

(%) of IRIs, blank nodes, and literals; (ii) no. of triples with

IRI and its frequency, length, namespace, patterns; (iii) no. of
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triples with Literals (String/Numeric/Dates) and its frequency,

language, length, patterns, min, max, mean, std, variance.

The motivation for using these key statistics is that these

statistics could provide some insights related to different pos-

sible distributions to identify feature vectors. The percentage

(%) of IRIs, blank nodes, and literals are used to extract Range

constraints. Also, no. of triples with IRI and its frequency,

length, namespace, patterns is used for Range contraints fea-

ture extraction. For cardinality and string constraints feature

extraction, we considered the triples with literals (String/Nu-

meric/Date) and its frequency, language, length, patterns, min,

max, mean, std, variance. For example, based on the raw cardi-

nality value distributions, we can compute the distinct cardinal-

ity values. Overall, we derive 11 statistical measures including

min-max cardinalities, mean, mode, standard deviation, vari-

ance, quadratic mean, skewness, percentiles, and kurtosis [68].

Our intuition is that these values are descriptive to classify the

constraints category. Nevertheless, the data can be noisy, and

either min or/and max could be outliers. To address this, we add

statistical features that give more insights about the distribution

of the cardinalities such as mean, mode, kurtosis, standard de-

viation, skewness, variance and four percentiles.

In the remainder of this section, we describe cardinality,

range, and string constraints for feature extraction process. We

describe each constraint with examples based on the English

DBpedia 201604 release.

Cardinality constraints. We observe a trend in vocabular-

ies where the cardinality constraints are explicitly ex-

pressed [69]. When, we analyzed the 551 vocabularies

in the Linked Open Vocabularies (LOV) catalogue for the

values of owl:minCardinality, 96.91% (848 out of 875) of

owl:maxCardinality constraints have value 1 and 93.76%

(631 out of 673) of the owl:minCardinality values are ei-

ther 0 or 1 [69]. Thus, in this work, we explore which

cardinality category each property has with respect to a

given class. By doing so, we present cardinality value es-

timation as a classification problem. Table 3 shows the

common cardinality patterns.

For the classification task, we use the five main types of

cardinality classes: MIN0, MIN1, MIN1+, MAX1, and

MAX1+. Out of these, MIN0 and MAX1+ do not put

any constraints on the data, such that, any data will be

valid for those cardinality types. Thus, if we detect those

types, we do not generate constraints. For other types, cor-

responding SHACL property constraints are generated as

illustrated in Listing 1.

Listing 1: Cardinality constraints.

@prefix dbo: <http ://dbpedia.org/

ontology /> .

@prefix sh: <http ://www.w3.org/ns/shacl#

> .

ex:DBpediaPerson a sh:NodeShape ;

sh:targetClass dbo:Person;

# for MIN1 and MIN1 +

sh:property [sh:path foaf :name ;

sh:minCount 1 ];

# for MAX1

sh:property [ sh:path dbo:birthDate ;

sh:maxCount 1] .

# for MAX1 +

sh:property [ sh:path dbo:union;

sh:maxCount 1] .

Table 3: Minimum and maximum cardinality levels.

Key Description

MIN0 Minimum Cardinality = 0

MIN1 Minimum Cardinality = 1

MIN1+ Minimum Cardinality >1

MAX1 Maximum Cardinality = 1

MAX1+ Maximum Cardinality >1

We generate cardinality information for each property as-

sociated with the instances of a given class. The work pre-

sented by Neumann and Moerkotte [66] helps to identify

raw cardinality values using SPARQL queries. They pro-

posed a highly accurate cardinality estimation method for

RDF data using star joins SPARQL queries. Similarly, we

also explore the process of cardinality values estimation

using the results from SPARQL queries. Thus, our cardi-

nality constraints generation process is based on the study

presented by Neumann and Moerkotte [66]. We collected

distinct cardinality values by using star join SPARQL

query. An example of join SPARQL queries for raw cardi-

nality values estimation is presented in Listing 2.

Listing 2: SPARQL query for the cardinality value estimation.

SELECT ?card (COUNT (?s) as ?count )

WHERE {

SELECT ?s (COUNT (?o) as ?card)

WHERE {

?s a ?class ;

?p ?o

} GROUP BY ?s

} GROUP BY ?card ORDER BY DESC(? count )

Range constraints. We use the subset of the target Node al-

ready identified in SHACL, i.e., IRI, Literal, BlankNode,

and BlankNodeOrIRI. Table 4 illustrates the target Node

objects type in SHACL. Each value of target Node in shape

is either an IRI or a literal. For range constraints, our goals

are twofold. First, we want to generate an object as target

node constraint for each property associated with a given

class. Once the target node type is determined, then more

specific range constraints have to be decided. If the node

type is Literal, the corresponding datatype has to be de-

termined. If the node type is either IRI, BlankNode, or

BlankNodeOrIRI the class type of the objects has to be

determined.
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Table 4: Objects Type.

IRI BlankNode Literal Type

X X X Any

X X BlankNodeOrIRI

X IRI

X BlankNode

X Literal

X X IRIOrLiteral

X X BlankNodeOrLiteral

We classify each property associated with instances of

a given class to one of the aforementioned node types.

The second task of assigning the corresponding datatype

or class as the range of each property is done based on

heuristics of datatype or class type distributions among

the set of objects associated with the property. For ex-

ample, dbo:Web has distribution of 73.13% for IRI node

type and 26.89% for LIT node type for dbo:SoprtsTeam

entity type. In this account, IRI has larger distribution then

LIT node type. Based on our heuristics, we considered

dbo:Web node type as IRI. An example of dbo:Person-

dbp:birthPlace objects nodeKind constraints Shape is il-

lustrated in the Listing 3.

Listing 3: Node type constraints.

@prefix dbo: <http ://dbpedia.org/

ontology /> .

@prefix dbp: <http ://dbpedia.org/

property /> .

@prefix sh: <http ://www.w3.org/ns/shacl#

> .

ex:DBpediaPerson a sh:NodeShape ;

sh:targetClass dbo:Person;

# node type IRI

sh:property [sh:path dbp: birthPlace ;

sh:nodeKind sh:IRI;

sh:or ( [sh:class schema:Place]

[ sh:class dbo:Place ] )

];

# node type literal

sh:property [ sh:path dbp: deathDate ;

sh:nodeKind sh:Literal;

sh:datatype xsd:date ] .

String based Constraints. For string based constraints gener-

ation the primary focus is to understand minimum length

(minLength) and maximum length (maxLength) of a prop-

erty. In this context max and min length subjected to

rdf:type and node with literal values. In general, if the

value of minLength is 0, then there is no restriction on

the string length, but the constraint is still violated if the

value node is a blank node. On the other hand, the value of

maxLength without restriction could be any string length

based on the rdf:type. We considered the distribution of

string lengths to identify minLength and maxLength of lit-

eral values of a property. More specifically, we explored

all the properties present in a class, and interquartile range

of string literals lengths distribution for constraints gener-

ation. We evaluate the minLength using 1st quartile(Q1)

and maxLength using the 3rd quartile (Q3). Table 5 il-

lustrates the string length conditions for minLength and

maxLength. In particular, we mainly focus on identifying

a relative range for the maximum and minimum length. An

example of string length based SHACL Shape for dbo:title

property is presented in Listing 4.

Table 5: Minimum and maximum String length levels.

Key Description

minLength0 Minimum Length <Q1

minLength1 Minimum Length ≥ Q1

maxLength0 Maximum Length <Q3

maxLength1 Maximum Length ≥ Q3

Listing 4: String constraints.

@prefix dbo: <http ://dbpedia .org/

ontology / >.

@prefix sh: <http ://www.w3.org/ns/shacl#

>.

ex: DBpediaPerson a sh:NodeShape ;

sh: targetClass dbo:Person;

# minLength

sh:property [sh:path foaf :name ;

sh: minLength 1;

sh: maxLength 8];

# for MAX1

sh:property [ sh:path dbo:birthDate ;

sh: minLength 1;

sh: maxLength 8] .

5. Approach

In order to formulate an answer to the research questions,

an approach is designed to identify KB with completeness and

consistency issues. Based on the data profiling information,

a set of features is introduced taking into account complete-

ness and consistency analysis. These features are applied in the

learning models to create RDF shapes. Figure 3 illustrates the

process flow of the proposed approach that is divided in three

main stages:

(i) Data Collection: A data curator needs to select an en-

tity type to initiate the completeness analysis procedure. Then,

the process checks the chosen entity types present in all KB re-

leases to verify schema consistency and computes the summary

statistics.

14



(ii) Data Preparation: The features are generated using the

results from data profiling.

(iii) Modeling: The validation of the hypothesis is performed

using quantitative and qualitative analysis. Also, the perfor-

mance of the constraints classifiers is assessed using learning

models.

Figure 4 illustrates the completeness and consistency anal-

ysis workflow that is outlined in Figure 3. The stages are ex-

plained in details below.

5.1. Data Collection

In this approach, the history of KB releases and summary

statistics are applied as inputs to the completeness and consis-

tency analysis. The acquisition of KB releases is performed by

querying multiple SPARQL endpoints (assuming each release

of the KB is accessible through a different endpoint) or by load-

ing data dumps. For each KB releases, summary statistics are

generated using data profiling. The Data Collection component

is built on top of Loupe [70], an online system that inspects and

extracts automatically statistics about the entities, vocabularies

(classes, and properties), and frequent triple patterns of a KB.

In this component, preprocessing operations is perfomed

over the collected dataset based on schema consistency checks.

It is essential to perform the schema consistency checks due to

high-level changes are more schema-specific and dependent on

the semantics of data. Hence, this component does the follow-

ing tasks: (i) selection of only those entity types that are present

in all KB releases, and (ii) for each entity type, selection of only

those properties present in that class. For example, in the imple-

mentation, the properties are filtered for an entity type in case

the instance count is 0 for all the KB releases.

5.2. Data Preparation

The goal of this stage is to extract the completeness and

consistency features for quantitative and qualitative analysis.

These automatically generated features are further validated us-

ing manual validation (which is a human-driven task). The

data preparation process is divided into two stages: (i) feature

extraction; and (ii) manual validation. The feature extraction

component is based on evolution based completeness analy-

sis, and integrity constraints based consistency analysis. The

entity types with completeness issues are considered as input

to the constraints based feature extraction process. Then, this

feature dataset is used for integrity constraints based evalua-

tion tasks. Furthermore, qualitative analysis is performed us-

ing manual validation to evaluate the precision of completeness

measure. Also, the features are manually evaluated to create a

partial gold standard. The components are explained in detail

below.

5.2.1. Feature Extraction

A feature extraction task is performed to instruct the learn-

ing models. It is composed of two stages: (i) selecting an en-

tity type using the completeness measure results, and (ii) con-

straints based shape induction to compute the features. The fea-

tures are four in total and they are grouped into two categories

as shown in Table 6.

Table 6: Features based on quality issues.

Quality Issues Feature Classifier Values

Completeness Property (0,1)

Consistency Minmum Cardinality (MIN0,MIN1+)

Maximum Cardinality (MAX1, MAX1+)

Range (IRI,LIT)

i) Completeness features: These features are extracted using

evolution based completeness analysis 4.2). In particular, us-

ing the selected class and properties from schema consistency

check, completeness is measured by comparing the changes

present in the current release with respect to the previous re-

lease. The result of the completeness features is indicated by

a Boolean value 0 or 1: 1 indicates a normal growth, while 0

indicates an unstable behaviour (Table 2).

ii) Consistency features: These features are based on the re-

sults from integrity constraint checks that are derived from the

SHACL representation (Section 4.3). In particular, the experi-

mental analysis is based on cardinality, and range constraints.

Moreover, the cardinality constraints is divided into minimum

and maximum cardinality constraints. In particular, this phase

evaluate the constraints based feature dataset using three con-

straints: i) Properties with minimum cardinality values of MIN0

or MIN1+; ii) Properties with maximum cardinality values of

MAX1 or MAX1+; iii) Properties with range values of LIT or

IRI. Finally, each of this feature is used as inputs and applied

in supervised learning models to evaluate the constraints based

classifier performance.

5.2.2. Manual validation and gold standard creation

The main goal of this step is to extract, inspect, and perform

manual validation to identify the causes of quality issues as well

as create gold standard. Manual validation tasks are based on

the following three steps:

i) Instances: For manual validation, a portion of the proper-

ties with quality issues is selected using the completeness anal-

ysis. The selection is performed in a random fashion to preserve

the representativeness of the experimental data. The proposed

completeness and consistency analysis is based on the results of

statistical data profiling to identify any missing entities. Based

on the quantitative analysis results, in this step, all entities are

extracted from the two releases of a given KB and set disjoint

operation is performed to identify missing entities.

ii) Inspections: Using the dataset from instance extraction

phase, an inspection of each entity is performed for manual val-

idation and report. Various KBs adopt automatic approaches to

gather data from the structured or unstructured data sources.

For example, the DBpedia KB uses an automatic extraction

process based on the mapping with Wikipedia pages. For the

manual validation, a source inspection is performed using the

missing instances to identify the causes of quality issues. In par-

ticular, a manual evaluation checks if the information is present

in the data sources but missing in the KB.
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Figure 3: Process flow of the proposed completeness and consistency analyses.

Figure 4: Workflow of the completeness and consistency analyses.

iii) Report: the validation result of an entity is reported as

true positive (the subject presents an issue, and an actual prob-

lem was detected) or false positive (the item presents a possible

issue, but none actual problem is found).

In this approach, a partial gold standard strategy (Sec. 2.3) is

adopted based on the assumption that a new (small) training set

is needed when dealing with a new knowledge base. The man-

ual validation phase is then in charge of inspecting and perform-

ing a manual annotation of the detected integrity constraints. In

detail:

(i) Feature extraction: At first, the entities and properties are

selected from the completeness analysis results for constraints

based feature extraction. Then, it selects the properties anno-

tated with integrity constraints for further inspection.

(ii) Inspection: the validation result of an instance is reported

as Correct (the properties are annotated with correct integrity

constraint) or Incorrect (the item presents a wrong integrity

constraint).

(ii) Feature dataset: the outcome of the manual validation

tasks is a subset of the feature dataset according to each in-

tegrity constraints. This dataset is considered as the training set

for the modeling phase.

5.3. Modeling

In this phase, five learning models are applied to evaluate the

performance of the cardinality and range constraints classifier

by computing precision, recall, and F-measure (Sec. 2.4). The

modeling task is run with a 10-fold cross validation setup in

standard settings. The performance is measured using five clas-

sical learning models (Section 2.4). These models are selected

to evaluate classifiers performance considering the diversity in

machine learning algorithms and to identify the best perform-

ing model. Based on the empirical analysis the best performing

model is applied for the prediction tasks.

6. Experiments and Evaluations

This section describes the experiments performed on two

KBs, namely DBpedia (both English and Spanish versions) and

3cixty Nice. We first present the experimental setting of the
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implementation, and then, we report the results of both (i) com-

pleteness analysis based on dynamic features and (ii) consis-

tency analysis using integrity constraints.

6.1. Experimental Settings

We selected 3cixty Nice KB and DBpedia KB according to:

(i) popularity and representativeness in their domain: DBpedia

for the encyclopedic domain, 3cixty Nice for the tourist and

cultural domain; (ii) heterogeneity in terms of content being

hosted such as periodic extraction of various event information

collected in 3cixty Nice KB, (iii) diversity in the update strat-

egy: incremental and usually as batch for DBpedia, continuous

update for 3cixty. In detail:

• 3cixty Nice is a knowledge base describing cultural and

tourist information concerning the cities of Nice. This

knowledge base was initially developed within the 3cixty

project,20 which aimed to develop a semantic web plat-

form to build real-world and comprehensive knowledge

bases in the domain of culture and tourism for cities. The

KB contains descriptions of events and activities, places

and sights, transportation facilities as well as social activ-

ities, collected from local and global data providers, and

social media platforms.

• DBpedia21 is among the most popular knowledge bases

in the LOD cloud. This knowledge base is the output

of the DBpedia project that was initiated by researchers

from the Free University of Berlin and the University of

Leipzig, in collaboration with OpenLink Software. DB-

pedia is roughly updated every year since the first public

release in 2007. DBpedia is created from automatically ex-

tracted information contained in Wikipedia,22 such as in-

fobox tables categorization information, geo-coordinates,

and external links.

Following we present a detailed summary of the extracted

datasets for each KB.

3cixty Nice. In the data collection module, we used the pri-

vate SPARQL endpoint for the 3cixty Nice KB. We collected

two datasets: (i) 8 snapshots based on each 3cixty Nice release,

and (ii) daily snapshots over the period of 2 months. The 3cixty

Nice KB schema [21] remained unchanged for all eight releases

collected from 2016-06-15 to 2016-09-09. We collected those

instances having the rdf:type of lode:Event and dul:Place. The

distinct entity count for lode:Event and dul:Place is presented

in Table 7. Overall, we collected a total of 149 distinct proper-

ties for the lode:Event typed entities and 192 distinct properties

for the dul:Place typed entities across eight different releases.

Furthermore, to monitor the completeness issues for continuous

updates, we collected 50 snapshots of lode:Event entity type

from 2017-07-27 to 2017-09-16. The daily snapshots values

are collected without considering distinct count to investigate

20https://www.3cixty.com
21http://wiki.dbpedia.org
22https://www.wikipedia.org

the changes present in the data extraction pipeline. Table 8 re-

ports the entity count of lode:Event type using periodic snap-

shots generation.

Table 7: Distinct entity count of lode:Event and dul:Place types.

Release lode:Event dul:Places

2016-03-11 605 20,692

2016-03-22 605 20,692

2016-04-09 1,301 27,858

2016-05-03 1,301 26,066

2016-05-13 1,409 26,827

2016-05-27 1,883 25,828

2016-06-15 2,182 41,018

2016-09-09 689 44,968

Table 8: Periodic snapshots of lode:Event class.

Release Entity Count

2017-07-27 114,054

2017-07-28 114,542

2017-07-29 114,544

2017-07-30 114,544

other rows are omitted for brevity

2017-09-14 188,967

2017-09-15 192,116

2017-09-16 154,745

DBpedia. We collected a total of 11 DBpedia re-

leases from which we extracted 4477 unique proper-

ties. For this analysis we considered the following ten

classes: dbo:Animal, dbo:Artist, dbo:Athlete, dbo:Film,

dbo:MusicalWork, dbo:Organisation, dbo:Place, dbo:Species,

dbo:Work, foaf:Person. The above entity types are the most

common according to the total number of entities present in all

11 releases. Table 9 presents the breakdown of entity count per

class. We also explored the Spanish version of DBpedia to fur-

ther validate our completeness measure. In Table 10, we present

the dbo:place class entity count across the seven releases of the

Spanish DBpedia.

6.2. Completeness Evaluation

In this section, we report the completeness evaluation results

for both KBs. The general goal of this experimental analysis is

to verify that dynamic features using periodic profiling can help

to identify completeness issues. We perform the quantitative

and qualitative completeness analysis. Table 11 reports the cri-

teria used for the completeness evaluation. At first, we perform

quantitative evaluation using the evolution-based completeness

analysis (Section 4.2). Then, in the qualitative evaluation, we
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Table 9: English DBpedia 10 Classes entity count.

Version dbo:Animal dbo:Artist dbo:Athlete dbo:Film dbo:MusicalWork dbo:Organization dbo:Place dbo:Species dbo:Work foaf:Person

3.3 51,809 65,109 95,964 40,310 113,329 113,329 31,8017 11,8042 213,231 29,498

3.4 87,543 71,789 113,389 44,706 120,068 120,068 337,551 130,466 229,152 30,860

3.5 96,534 73,721 73,721 49,182 131,040 131,040 413,423 146,082 320,054 48,692

3.6 116,528 83,847 133,156 53,619 138,921 138,921 413,423 168,575 355,100 296,595

3.7 129,027 57,772 150,978 60,194 138,921 110,515 525,786 182,848 262,662 825,566

3.8 145,909 61,073 185,126 71,715 159,071 159,071 512,728 202,848 333,270 1,266,984

3.9 178,289 93,532 313,730 77,794 198,516 178,516 754,415 202,339 409,594 1,555,597

2014 195,176 96,300 336,091 87,285 193,205 193,205 816,837 239,194 425,044 1,650,315

201504 214,106 175,881 335,978 171,272 163,958 163,958 943,799 285,320 588,205 2,137,101

201510 232,019 184,371 434,609 177,989 213,785 213,785 1,122,785 305,378 683,923 1,840,598

201604 227,963 145,879 371,804 146,449 203,392 203,392 925,383 301,715 571,847 2,703,493

Table 10: Spanish DBpedia KB dbo:place class entity count.

Release Entity Count

3.8 321,166

3.9 345,566

2014 365,479

201504 389,240

201510 408,163

201604 659,481

201610 365,479

explore the causes of quality issues based on manual validation

using the results from the quantitative analysis.

Table 11: Criteria for completeness evaluation.

Criteria Value Interpretation

Complete 1 The value of 1 implies no completeness

issue present in the property.

Incomplete 0 The value of 0 indicates completeness

issues found in the property.

6.2.1. 3cixty Nice

Based on the entity counts reported in Table 7, we applied the

linear regression over the eight releases for the lode:Event-type

and dul:Place-type entities. We present the regression line in

Figure 5 and 6.

From the linear regression, the 3cixty Nice has a total of n =

8 releases where the 8th predicted value for lode:Event y
′

event8
=

3511.548 while the actual value=689. Similarly, for dul:Place

y
′

place8
= 47941.57 and the actual value=44968.

The residuals, eevents8
= |689 − 3511.548| = 2822.545 and

eplaces8
= |44968−49741.57| = 2973.566. The mean of the resid-

uals, eeventi = 125.1784 and eplacei
= 3159.551, where i = 1...n.

So the normalized distance for the 8th lode:Event entity

NDevent =
2822.545
125.1784

= 22.54818 and dul:Place entity NDplace =
2973.566
3159.551

= 0.9411357.

Figure 5: lode:Event class regression line using entity counts over 8 releases.

Figure 6: dul:Places class regression line using entity counts over 8 releases.

For the lode:Event class, NDevents ≥ 1 so the KB growth

measure value = 1. However, for the dul:Place class,

NDplaces < 1 so the KB growth measure value =0 .
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In the case of the 3cixty Nice KB, the lode:Event class clearly

presents anomalies as the number of distinct entities drops sig-

nificantly on the last release. In Figure 5, the lode:Event class

growth remains constant until it has errors in the last release. It

has higher distance between actual and predicted value based

on the lode:Event-type entity count. However, in the case of

dul:Place-type, the actual entity count in the last release is near

to the predicted value. We can assume that on the last release

the 3cixty Nice KB has improved the quality of data generation

matching the expected growth.

We then performed an empirical analysis by monitoring the

3cixty KB lode:Event entity type. To monitor any changes

present for continuous updates, we collected 50 snapshots of

lode:Event entity type from 2017-07-27 to 2017-09-16. Table 8

reports the entity count of lode:Event class 50 snapshots which

is collected using the 3cixty KB SPARQL endpoint. Figure 7 il-

lustrates the changes presents in the lode:Event-type due to KB

growth, and Figure 8 reports the regression line using entity

count. There are significant changes present in the last four re-

leases (2017-09-13, 2017-09-14, 2017-09-15, 2017-09-16) en-

tity count. In the 2017-09-13 release, we can see an exponen-

tial growth of actual entity count value of 190,187 compared

to predicted value of 125,100 . Furthermore, on the next two

releases (2017-09-14,2017-09-15) entity count remains stable

due to fewer variation presents in the entity count. However,

on the 2017-09-16 snapshots, we can observe a drop in the en-

tity count which may lead to anomalies in the data integration

pipeline. We further investigated the value chain leading to the

generation of the KB, and we found an error in the external data

acquisition process that led to missing entities for the 2017-09-

16 snapshot.

To validate our assumptions, we perform property complete-

ness measure based on the last two KB releases, namely 2016-

05-15 and 2016-09-09. In Table 12, we present a subset of

completeness measure results. For the lode:Event entity type,

the number of predicates in the last two releases = 21 and the

number of predicates with completeness issues (value of 0) = 8.

For instance, lode:Event class property atPlace has a frequency

of (1, 632, 424) for the releases 2016-05-15 and 2016-09-09.

Based on the condition of completeness measure (Table 11),

the property lode:atPlace indicates a completeness issue. In

Table 13, we present completeness measures based on 50 pe-

riodic snapshots. For example, based on the frequency count

of lode:BusinessType in the 2017-09-15 snapshot the observed

value is (1, 74, 421) lower than 2017-09-16 snapshots value

(99, 996). In this account, the completeness measure value is

0 leading to possible quality issues.

6.2.2. DBpedia

We evaluate the KB update trends based on linear regres-

sion analysis by comparing with actual and predicted values.

In this account, we measured the normalized distance (ND) for

each class. Based on the normalized distance, we then clas-

sify the growth of the class. Based on the entity counts re-

ported in Table 9, we applied the linear regression for each

class. Table 14 illustrates the normalized distance and pre-

dicted growth values for each class. From the results ob-

Table 12: Completeness measure of the 3cixty Nice lode:Event class.

Property 2016-05-15 2016-09-09 Complete

lode:atPlace 1,632 424 0

lode:atTime 2,014 490 0

lode:businessType 2,182 689 0

lode:hasCategory 1,698 584 1

other rows are omitted for brevity

lode:involvedAgent 266 42 0

served for dbo:Artist, dbo:Film, and dbo:MusicalWork, the

normalized distance is near the regression line with ND <

1. We assume that these classes have stable growth. On

the contrary, dbo:Animal, dbo:Athelete, dbo:Organisation,

dbo:Place,dbo:Species,dbo:Work, and foaf:Person, the normal-

ized distance is far from the regression line with ND > 1. We

assume that on the last release these classes might have unsta-

ble growth which may lead to completeness issue. For example,

Figure 9 reports the foaf:Person class regression line using en-

tity counts over 11 releases. The foaf:Person-type last release

(201604) entity count has a higher growth (over the expected).

In particular, foaf:Person has KB growth measure of 1 with a

normalized distance ND = 2.08. From this measure, we can

perceive that in foaf:Person there is completeness issue. We

can imply that additions in a KB can also be an issue. It can be

due to unwanted subjects or predicates.

To further evaluate our assumption, we perform property

completeness analysis based on the last two DBpedia KB re-

leases of 201510 and 201604. Table 16 reports the results

of completeness based on the latest two releases of DBpedia

201510 and 201604 for foaf:Person entity type. foaf:Person has

a total of 436 properties over the two considered versions. The

number of consistent properties is 238. Based on the complete-

ness criteria (Table 11), we computed the completeness mea-

sures over those 238 properties and identified 50 properties with

completeness measure value of 0. The remaining 188 properties

can be considered as complete. For example, the foaf:Person

class property dbo:firstRace has an observed frequency of 796

in the 201510 release, while it is 788 in the 201604 release. As

a consequence the Completeness measure evaluated to 0; thus

it indicates an issue of completeness in the KB. We further val-

idated our results through manual validation. Table 17 reports,

for each class, the total number of properties – which were de-

tected by completeness computation –, the complete properties,

the incomplete properties and percentage of complete proper-

ties.

Taking into account the Spanish DBpedia on the last two re-

leases (201604, 201610) there are in total 8, 659 common prop-

erties present in the datasets. We identified 3, 606 properties

with quality issues based on the frequency difference between

two releases. In Table 15, we present a subset of complete-

ness measure results. We have detected quality issues based on

the property frequency difference between two versions of the
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Figure 7: 3cixty KB lode:Event class entity count of 50 snapshots.

Figure 8: 3cixty KB lode:Event class regression line using entity count of 50 snapshots.

Table 13: Completeness measure of 3cixty Nice lode:Event class properties from periodic snapshots.

Property 2017-09-15 2017-09-16 Complete

lode:minDistanceNearestWeatherStation 2,067 2,063 0

lode:nearestWeatherStation 2067 2063 0

lode:businessType 1,74,421 99,996 0

lode:minDistanceNearestMetroStation 72,606 72,606 1

other rows are omitted for brevity

lode:created 118,070 43,861 0

dbo:Place class. For example, the property dbo:anthem count

is 316 for the 201610 release while it was 557 in the 201604

release. This variation in the property count implies that 241

resources are missing in the 201610 version of the DBpedia

201610 release. We further validated this result through man-

ual validation.

6.3. Manual Validation

We manually inspected whether the detected issues by the

Feature Extraction stage are real issues. We annotated each
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Figure 9: foaf:Person class regression line using entity counts over 11 releases.

Table 14: DBpedia 10 class Summary.

Class Normalized Distance(ND) Growth

dbo:Animal 3.05 1

dbo:Artist 0.66 0

dbo:Athlete 2.03 1

dbo:Film 0.91 0

dbo:MucsicalWork 0.56 0

dbo:Organisation 2.02 1

dbo:Place 5.03 1

dbo:Species 5.87 1

dbo:Work 1.05 1

foaf:Person 2.08 1

Table 15: Spanish DBpedia dbo:Place class completeness measure based on

release 201604 and 201610.

Property 201604 201610 Complete

dbo:abstract 363,572 655,233 1

dbo:address 17,636 13,3781 0

dbo:anthem 557 316 0

dbo:archipelago 3,162 1,871 0

dbo:architect 4,580 2,291 0

dbo:architecturalStyle 6,919 4,373 0

other rows are omitted for brevity

dbo:area 6,764 3,619 0

property either as True positive (TP) or False positive (FP)

(Sec. 5.2.2).

Taking into consideration the results from completeness anal-

ysis, we randomly selected a subset of properties to make

the task feasible to be performed manually.23 Concerning

the 3cixty Nice KB, we analyzed the properties attached to

lode:Event entities. On the other hand for the English and

Spanish DBpedia KB, we explored dbo:Place and foaf:Person

entity types. The completeness manual validation results are

23We remind here that the intent is to be precise, rather than maximizing the

quantity of the annotations. We have studied empirically that a good number of

annotations is 250 and demonstrated by the experimental results.

Table 16: Completeness measure of DBpedia KB foaf:Person class.

Property 201510 201604 Complete

dbo:timeInSPace 465 419 0

dbo:height 139,445 148,192 1

dbo:weight 67,412 66,144 0

dbo:abstract 1,282,025 1,165,251 0

other rows are omitted for brevity

dbo:activeYearsEndDate 26,483 25,221 0

dbo:firstRace 796 788 0

Table 17: DBpedia 10 class completeness measure results based on release

201510 and 201604.

Class Properties Incomplete Complete Complete(%)

dbo:Animal 170 50 120 70.58%

dbo:Artist 372 21 351 94.35%

dbo:Athlete 404 64 340 84.16%

dbo:Film 461 34 427 92.62%

dbo:MusicalWork 335 46 289 86.17%

dbo:Organisation 975 134 841 86.26%

dbo:Place 1,060 141 920 86.69%

dbo:Species 101 27 74 73.27%

dbo:Work 896 89 807 90.06%

foaf:Person 396 131 265 66.92%

explained in detail below.

lode:Event properties: In the last two releases of lode:Event

class we found 21 common properties. From this list, we found

only eight properties have completeness value of 0.

Instances. We investigated all entities attached to this eight

properties and we extracted five instances for each property, in

total we manually collected 40 different entities.

Inspection. We observed that entities that are present in

2016-06-06 are missing in 2016-09-09. Thus, it leads to a com-

pleteness value of 0. As a result we identified a total of 1, 911

entities missing in the newest release: this is an actual error.

We further investigated and found an error in the reconciliation

algorithm for 2016-09-09 release. In this account, the variation

present in the stability measures is true positive. Furthermore,

based on the True Positive and False Positive results, the output

from completeness measure has a precision of 95%.

foaf:Person/dbo:firstRace property: For the foaf:Person

entity type, we found 238 common properties in last two re-

leases (201510, 201604) for the English DBpedia KB. From the

completeness measure over 396 properties only 131 properties

have a completeness value of 0.

Instances. We investigated a subset of 50 incomplete proper-

ties based on the subjects present for each property. For exam-
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ple, property dbo:firstRace and dbo:lastRace have complete-

ness value of 0. We extracted all the subjects present in the last

two releases (201510 and 201604) and performed a set disjoint

operation to identify the missing subjects. For manual valida-

tion, we first checked five subjects for the dbo:firstRace and

dbo:lastRace property, checking a total of 250 entities.

Inspection. In the 201604 release, dbo:firstRace has 769 in-

stances and in the 201510 release it has 777 instances. After the

set disjoint operation between two releases (201510, 201604),

we found 9 distinct instances missing in 201604 release of the

English DBpedia version. Furthermore, we manually inspected

each instance to identify causes of incompleteness issue. One

of the data instance dbr:Bob Said for the dbo:firstRace prop-

erty is available in the 201510 release. However, it is not

present in 201604 release. We further explore the correspond-

ing Wikipedia page using foaf:primaryTopic. In the Wikipedia

page firt race is present as info box key. Due to DBpedia update

from 201510 to 201604 version, this entity has been missing

from the property dbo:firstRace. Similarly, we also found this

entity is missing for the dbo:lastRace property. This presents an

ideal scenario for completeness issues in the 201604 release of

the English version of DBpedia. Based on the manual inspec-

tion of 50 properties, we observed that completeness measure

has the precision of 94%.

dbo:Place/dbo:prefijoTelefónicoNombre property: From

the Spanish version of DBpedia, dbo:Place entity type com-

pleteness measure we found 3, 606 properties with complete-

ness value of 0. This indicates a potential completeness issue

present for these properties.

Instances. From the 3, 606 property, we randomly selected

the property dbo:prefijoTelefónicoNombre for manual valida-

tion. We collected all the subjects (56109, 55387) from the two

releases (201604, 201610). Then we performed a set of dis-

joint operations between two triples set to identify those triples

missing from the 201610.

Inspection. From the set disjoint operation, we found a total

of 1982 subject missing from 201610 version. To keep the man-

ual work at a feasible level, we selected a subset of 200 subjects

for evaluation in a random manner. One of the results of the

analysis is location Morante,24 which is available in the 201604

release. However, it is missing in 201610 release of DBpe-

dia. To further validate such an output, we checked the source

Wikipedia page using foaf:primaryTopic about Morante.25 In

the Wikipedia page prefijo TelefónicoNombre is present in the

infobox as key. In the Spanish DBpedia from 201604 version to

201610 version update, this subject has been missing from the

property prefijo TelefónicoNombre. This example shows a com-

pleteness issue presents in the 201610 release of DBpedia for

property prefijo TelefónicoNombre. Based on the investigation

over the subset of property values, we compute our complete-

ness measure has the precision of 89%.

24http://es.dbpedia.org/page/Morante
25https://es.wikipedia.org/wiki/Morante

6.4. Consistency Evaluation

The process leading to the constraint definitions is outlined

in Section 4.3. From the quantitative analysis, we have identi-

fied multiple entity types and properties with quality issues. In

particular, we selected the entity types from the completeness

analysis for consistency analysis and evaluated the performance

of the constraint classifier using five learning models. Our ap-

proach has been implemented with a prototype written in R.26

Feature Extraction. We are evaluating the integrity con-

straints evaluation as a classification problem, it is necessary

to further validate the annotations and create a gold standard.

In this context, we have manually inspected the constraints fea-

ture (Section 5.2.1) values from the 3cixty and DBpedia KB.

However, to keep the manual inspection tasks at the feasible

level, we have selected a subset of properties for an entity type.

In this experimental analysis for the English DBpedia KB,

we used the expected cardinalities for 174 properties (associ-

ated with an instance of a given class). Also, we collected a

subset of 200 properties associated with the dbo:Place entity

type for IRI objects and the datatype for literal objects. Sim-

ilarly, for Spanish DBpedia we collected cardinality features

for 240 properties and 219 properties for the range constraints

based on dbo:Organization entity type. Furthermore, we col-

lected dataset with cardinality features for each property asso-

ciated with instances of a given class for 215 properties for the

3cixty Nice KB. For range constraints, we collected 215 prop-

erties associated with IRI and the datatype for literal objects.

Following we present an example of feature extraction process

based on minimum cardinality, maximum cardinality and range

constraints.

Cardinality constraints: We generate cardinality information

for each property associate with the instances of a given

class. For example, by analyzing 1,767,272 dbo:Person

instances in DBpedia, we extract the cardinality distri-

bution for dbo:Person-dbo:deathDate as reported in Ta-

ble 18.

Table 18: Cardinality Counts for dbo:Person-dbo:deathDate.

Cardinality Instances Precentage

0 1,355,038 76.67%

1 404,069 22.87%

2 8,165 0.46%

During the feature extraction step, this raw profiling data is

used to derive a set of features that can be used for predict-

ing the cardinality. Another example of cardinality distri-

bution is reported in Table 19 for the dbo:Sport/dbo:union

property.

At first we extract the raw cardinalities. Based on the

raw values, we compute the distinct cardinality values

26 https://github.com/rifat963/RDFShapeInduction
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Table 19: Cardinality Counts for dbo:Sport/dbo:union.

Cardinality Instances Precentage

0 1,662 84.88%

1 279 14.14%

2 10 0.05%

3 5 0.02%

4 2 0.01%

distributions similar to the ones reported in Table 19.

Note that there are three distributions, one is the raw car-

dinalities (0,1,0,3,1,2,1,6,1,0), then distinct cardinalities

(0,1,2,3,4) and the percentages of instances per each cardi-

nality (84.88%, 14.24%, 0.05%, 0.02%, 0.01%). Further,

for each of the three distributions we derive 30 statistical

measures including min-max cardinalities, mean, mode,

standard deviation, variance, quadratic mean, skewness,

percentiles, and kurtosis [68].

Table 20 reports 30 features (P1 to P30) selected for a clas-

sifier that predicts the cardinality category with example

values for the dbo:Sport class dbo:union property. Fea-

tures P1 to P13 are related to raw cardinality distribution,

features P14 to P20 are related to the distinct cardinal-

ity distribution, and features P21 to P30 are related to the

percentage distribution. For example, P1 presents a min-

imum cardinality value of 0 for dbo:Sport/dbo:union and

P2 presents maximum that is 4. Our intuition is that these

are descriptive to classify the cardinality category. Never-

theless, the data can be noisy and either min or/and max

could be outliers. To address this we add statistical fea-

tures that give more insights about the distribution of the

cardinalities such as mean, mode, kurtosis, standard de-

viationsm, skewness, variance and four percentiles. Our

motivation for using these statistical values is that each

of these could provide some insights related to different

possible cardinality distributions. Based on the cardinality

level (Sec. 4.3), we create a gold standard by annotating

the properties with corresponding constraints values and

create the feature dataset for validation. For instance, the

dbo:Person-dbo:deathDate corresponding SHACL prop-

erty constraints are generated as illustrated by Listing 1.

Range Constraints: We collected statistics about the number

of IRIs, Literals, and Blank nodes for each property asso-

ciated with instances of a given class as shown in Table 21.

The blank node counts are also generated by the data col-

lection stage but they are not reported because there were

no blank nodes in this example.

Furthermore, we also explore object type information

by analyzing all IRI and blank node objects. Ta-

ble 4 shows an example of object type information by

analyzing all objects having dbo:Person/dbp:deathPlace

as class-property. As it can be seen, the objects of

dbo:Person/dbp:deathPlace are typed as many different

Table 20: dbo:Sport/dbo:union 30 statistical measures (p1 to p30) from raw

cardinality estimation.

ID Description Example ID Description Example

P1 Min Cardi-

nality

0 P16 Distinct

Quadratic

Mean

2.4495

P2 Max Cardi-

nality

4 P17 Distinct Kur-

tosis

-1.2

P3 Mean 0.16445 P18 Distinct

Standard

Deviation

1.5811

P4 Mode 0 P19 Distinct

Skewness

0

P5 Quadratic

mean

0.44972 P20 Distinct vari-

ance

2.5

P6 Kurtosis 13.7897 P21 Percentages

Mins

0.0010

P7 Standard De-

viation

0.41868 P22 Percentage

Max

0.8488

P8 Skewness 3.09484 P23 0 Percentage 0.8488

P9 Variance 0.17529 P24 1 Percentage 0.1429

P10 98th per-

centile

1 P25 Percentage

Mean

0.2

P11 2nd per-

centile

0 P26 Percentage

Quad. Mean

0.3849

P12 75nd per-

centile

0 P27 Percentage

Kurtosis

0.3849

P13 25th per-

centile

0 P28 Percentage

Standard

Deviation

0.3677

P14 Distinct Car-

dinalities

5 P29 Percentage

Skewness

2.0948

P15 Distinct

Mean Card.

0 P30 Percentage

Variance

0.1352

Table 21: Object node type information.

Class-property
IRI Literals

Total Distinct Total Distinct

dbo:Person/dbp:birthPlace 89,355 21,845 44,639 20,405

dbo:Person/dbp:name 21,496 15,746 115,848 100,931

dbo:Person/dbp:deathDate 127 111 65,272 32,449

dbo:Person/dbp:religion 8,374 786 6,977 407

classes. And, in general, it can be seen that most ob-

jects are typed with multiple classes (e.g., with equiv-

alent classes, super classes). Also there are some ob-

jects that should not be associated (i.e., inconsistent) with

the dbp:deathPlace property, for example, a Broadcaster

should not be a death place of a person. Further, there are

some objects for which the type information is not avail-

able.

Similarly, for literal objects our data collection module

extracts the information about their data types. Table 23

23



Table 22: Classes of dbo:Person-dbp:birthPlace objects.

Object Class

Objects

(89,355)

Distinct Objects

(21,845)

Count % Count %

schema:Place 71,748 80.29 16,502 75.54

dbo:Place 71,748 80.29 16,502 75.54

dbo:PopulatedPlace 71,542 80.07 16,353 74.86

dbo:Settlement 41,216 46.13 14,184 64.93

other rows are omitted for brevity

schema:Product 2 00.00 2 00.01

dbo:Broadcaster 2 00.00 2 00.01

Unknown 9,790 10.95 2,888 13.22

shows an example of extracted information for the class-

property combination dbp:Person/dbp:deathDate. For

each datatype, it shows the number of objects, num-

ber of distinct objects, and their corresponding percent-

ages. Such an information provides heuristics about which

should be the corresponding datatype.

Table 23: Datatypes of dbp:Person/dbp:deathDate literals.

Datatype

Objects

(65,272)

Distinct Objects

(32,449)

Count % Count %

xsd:date 39,761 60.92 26,726 82.36

xsd:integer 13,543 20.75 1,758 5.42

rdf:langString 6,388 9.79 3,512 10.82

xsd:gMonthDay 5,446 8.34 366 1.13

dt:second 113 0.17 66 0.20

xsd:double 20 0.03 20 0.06

dt:hour 1 0.00 1 0.00

Total 65,272 100 32,449 100

We use all the aforementioned information as features for

the two tasks of detecting the object type and also detect-

ing the class type for IRI objects and the datatype for literal

objects.

String constraints: We use statistics about the literals to iden-

tify the minLength and maxLength of the string values.

Based on the string length distribution of literal values,

we explore the 1st quartile and 3rd quartile to identify

the minimum and maximum length. More specifically,

we evaluate the interquartile range (IQR) based on the

string length literal values of a property. For example,

in Table 24, we report the string length distribution of

the foaf:Person class dbo:Title property together with fre-

quency of string length. Similarly, in Table 25, it is illus-

trated the dbo:BirthName property frequency distribution.

In this example, both properties have a small central ten-

dency towards the mean. Our main focus is to identify a

Table 24: Frequency distribution of foaf:Person/dbo:Title property.

String Length Frequency Percentage

16 20 31.25 %

13 7 10.93%

15 5 7.81%

other rows are omitted for brevity

20 4 6.25%

Table 25: Frequency distribution of foaf:Person/dbo:BirthName property.

String Length Frequency Percentage

20 32 13.14 %

21 26 10.65%

19 25 10.24%

other rows are omitted for brevity

22 17 6.96%

range of minLength and maxLength for literal objects. In

this account, we use the interquartile range for dbo:title

to identify minLength and maxLength. We used the 3rd

quartile (Q3) of the string length as maxLength and the 1st

quartile (Q1) as minLength for the dbo:title property. In

Figure 10, we present a boxplot of the dbo:title property.

In particular, using the interquartile range, we can present

the string range constraints as a binary classifier.

Figure 10: foaf:Person class dbo:title property string length box plot.

Model Preparation. From the initial analysis of the feature

dataset, we found that the minimum cardinality constraint has

an imbalance in distribution of feature values. We observed

that rare events occur in case of selected constraints as response

variables. The variation between two variables is less than 15%.

We applied SMOTE (Synthetic Minority Over-sampling Tech-

nique) [71] for oversampling the rare events. The SMOTE

function over-samples response variables by using bootstrap-

ping and k-Nearest Neighbor to synthetically create additional
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observations of that response variable. In our experiment, we

applied an over-sampling value of 100 to double the number of

positive cases, and an undersampling value of 200 to keep half

of what was created as negative cases. It balances the classi-

fier and achieves better performance than only under-sampling

the majority class. The results are reported in Table 26. Af-

ter applying the SMOTE technique, we applied 10-fold cross-

validation based on the learning models mentioned in Section

2.4.

Model Evaluation. In detail, the model evaluation results are

mentioned below.

• 3cixty Nice. Table 27 reports the 3cixty KB three con-

straints classifier performance measures. Considering five

learning models, the Random Forest model had more than

90% of F1 value for all three classifiers. For minimum car-

dinality, the Random Forest model reached 91% F1 score

where it achieved 96% precision. Conversely, the Neu-

ral Network model reached 90% F1 score for range con-

straints. However, simple Naive Bayes learning algorithm

had a significantly lower F1 (<70%) score compared to the

other classifiers. K-Nearest Neighbour (K-NN) had the

lowest F1 score for the maximum cardinality and range

constraints.

• English DBpedia. Table 27 illustrates the three classi-

fiers performance measures for the English version of the

DBpedia KB. Similar to the 3cixty KB, Random Forest

proved to be effective in achieving greater than 90% F1

value for all three classifiers. Overall, for Random Forest

algorithm, minimum cardinality constraints reached 97%

F1 score where it achieved 98% precision. Also, in the

case of minimum cardinality classifier, other learning al-

gorithms such as Neural Network and Least Squares SVM

reached an F1 score greater than 90%.

• Spanish DBpedia. Table 29 reports the integrity con-

straints performance measure for the Spanish DBpedia

Dataset. Compared to the other models, Random Forest

achieved the highest F1 score for all three classifiers. In

addition, it achieved 92.85% F1 score for maximum car-

dinality classifier. Compared to Random Forest model,

Least Squares SVM also achieved the F1 score of 87.23%

for the minimum cardinality classifier. For the Spanish

DBpedia KB, Naive Bayes classifier had the lowest F1

score for all the constraints classifiers.

7. Discussion

In this section, we discuss the main findings and the limita-

tion of this work using the results from the experimental analy-

sis (Section 6). Figure 11 illustrates the primary results of this

work labeled with A, B, C, D, and E.

7.1. Completeness Analysis

We perceive that changes observed in a set of KB releases can

help in detecting completeness issues. We identified properties

with quality issues based on dynamic features from the com-

pleteness analysis. We, then, summarize our assumption using

qualitative analysis by manually evaluating a subset of classes

and properties. From the experimental analysis, we potentially

detected errors in various stages of evolving KBs. Following we

summarize our findings based on the completeness evaluation.

• Causes of Quality Issues. From our completeness evalua-

tion, three types of quality issues are identified: (i) errors

in the data extraction process, (ii) erroneous conceptual-

ization, and (iii) error in object type. In details:

Errors in the data extraction process: We discovered prop-

erties with anomalies and performed further inspections

for each KB. For the 3cixty KB lode:Event entity type, we

identified completeness issues due to an algorithmic error

in the data extraction pipeline. For what concerns DBpe-

dia, we identified issues as a result of missing mapping

with Wikipedia infobox keys. This issue of missing map-

ping might happened because of wrong schema presenta-

tion or schema definition inconsistency due to KB updates.

Erroneous conceptualization: We observe that the proper-

ties with lower frequency tend to have erroneous schema

representations. For example, the property dbo:weight

has 4 data instances mapped with dbo:Place type. We

further investigated each of this data instance and corre-

sponding Wikipedia page. From manual investigation, we

identified dbo:weight property erroneously mapped with

the dbo:Place type. Such as one of the data instance

wikipedia-en:Nokia X5 is about mobile devices, and it is

mapped with dbo:Place type. This mapping indicates a

consistency issue as a result of a wrong schema presenta-

tion.

Error in object type: From the manual validation results,

we assumed that it could be possible to identify an er-

ror in any literal value using our approach. For exam-

ple, the property dbo:bnfId triggered a completeness issue.

We, therefore, further investigated the property dbo:bnfId

in the 201604 release. We explored the property de-

scription that leads to Wikidata link27 and examined how

BnF ID is defined. It is an identifier for the subject is-

sued by BNF (Bibliothèque nationale de France). It is

formed by eight digits followed by a check digit or let-

ter. Based on the BnF ID formalization rule, we checked

each literal values for dbo:bnfId entity type. We found that

one of the literal values is ”12148/cb16520477z” for sub-

ject Quincy Davis (musician)28 contains a ”/” between the

digits ”12148” and ”cb16520477z”, which does not fol-

low the standard formatting structure issued by BNF (Bib-

liothèque nationale de France). It clearly points to an er-

ror for the subject Quincy Davis (musician). However, to

detect errors in literal values, we need to extend our qual-

ity assessment framework to inspect literal values compu-

tationally. We considered this extension of literal value

analysis as a future research endeavor.

27https://www.wikidata.org/wiki/Property:P268
28http://dbpedia.org/resource/Quincy_Davis_(musician)
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Table 26: DBpedia and 3cixty Nice distribution of cardinality constraints.

Knowledge Base Distribution

Minimum

Cardinality

Maximum

Cardinality

Range

Constraint

MIN0 MIN1+ MAX1 MAX1+ IRI LIT

3cixty Nice
Without SMOTE 47% 52.8% 79.2% 20.8% 68.7% 31.3%

With SMOTE (100,200) 50% 50% 50% 50% 50% 50%

English DBpedia
Without SMOTE 76.5% 23.5% 53% 47% 71.5% 28.5%

With SMOTE(100,200) 50% 50% 50% 50% 50% 50%

Spanish DBpedia
Without SMOTE 72% 28% 56% 44% 69.4% 30.6%

With SMOTE(100,200) 50% 50% 50% 50% 50% 50%

Table 27: Integrity Constraints performance measures for 3cixty Nice.

Learning

Algorithm

Minimum Cardinality Maximum Cardinality Range

Precision Recall F1 Precision Recall F1 Precision Recall F1

Random Forest 0.9626 0.8729 0.9156 0.8909 0.9423 0.9159 0.9333 0.9032 0.9180

Multilayer Perceptron 0.8812 0.8812 0.8128 0.8113 0.8269 0.8190 0.9375 0.8823 0.9091

Least Squares SVM 0.7692 0.7263 0.7471 0.8070 0.8846 0.8440 0.8148 0.9167 0.8627

Naive Bayes 0.7152 0.6932 0.7040 0.7288 0.8268 0.7748 0.8266 0.7462 0.8275

K-Nearest Neighbour 0.6991 0.6695 0.6840 0.7049 0.8269 0.7611 0.7837 0.8285 0.8055

Table 28: Integrity Constraints performance measure for English DBpedia.

Learning

Algorithm

Minimum Cardinality Maximum Cardinality Range

Precision Recall F1 Precision Recall F1 Precision Recall F1

Random Forest 0.9890 0.9574 0.9730 0.9842 0.9920 0.9881 0.9457 0.9527 0.9594

Least Squares SVM 0.9944 0.9468 0.9700 0.8491 0.9574 0.9000 0.8596 0.9231 0.8902

Multilayer Perceptron 0.9674 0.9468 0.9570 0.8167 0.9601 0.8826 0.8262 0.8657 0.8456

K-Nearest Neighbour 0.9511 0.9309 0.9409 0.8797 0.8750 0.8773 0.8361 0.8425 0.8393

Naive Bayes 0.9401 0.8351 0.8845 0.9065 0.7739 0.8350 0.8953 0.7951 0.8422

• Summary of findings. In the case of the 3cixty Nice KB,

we only identified issues based on the data source extrac-

tion process. For example, we found a significant number

of resources missing for the lode:Event class in the last

release(2016-09-09). We identified all three types of qual-

ity issues for DBpedia KB. For example, entities missing

in foaf:Person class is due to incorrect mappings of field

values in the data extraction process. Also, we identified

a notable number of issues due to wrong schema presen-

tation for the DBpedia KB. Such as property dbo:Lake

mapped with foaf:Person-type due to automatic mapping

with wrong Wikipedia infobox keys. Taking into account

periodicity of KBs, we observe that continuously analyz-

ing KBs with high-frequency updates (daily updates), such

as the 3cixty Nice KB, has fewer quality issues. On the

other hand, KBs with low-frequency updates (monthly or

yearly updates), such as DBpedia KB, seem to have more

completeness issues.

Correspondingly, we analyze the KB growth patterns to

predict any unstable behaviour. We define this lifespan

analysis as stability feature. A straightforward interpreta-

tion of the stability of a KB is monitoring the dynamics of

knowledge base changes. This dynamic feature could be

useful to understand high-level changes by analyzing KB

growth patterns. However, a further exploration of the KB

stability feature is needed, and we consider this as a future

research activity.

Overall, we evaluated the property completeness measure

in terms of precision through manual evaluation. Consid-

ering computational complexity, we only use count and

difference operation for measurement functions. We as-

sume that our computational complexity will be O(NT )

where the NT is the total number of entities for type T.

The computed precision of completeness measure in our

approach is: i) 94% for foaf:Person-type entities of the En-

glish DBpedia KB; ii) 89% for dbo:Place-type entities of
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Table 29: Integrity Constraints performance measure for Spanish DBpedia.

Learning

Algorithm

Minimum Cardinality Maximum Cardinality Range

Precision Recall F1 Precision Recall F1 Precision Recall F1

Random Forest 0.8971 0.8547 0.8754 0.9247 0.9323 0.9285 0.8741 0.8954 0.8846

Least Squares SVM 0.8517 0.8940 0.8723 0.8070 0.8846 0.8440 0.8348 0.8416 0.8381

Multilayer Perceptron 0.8670 0.8183 0.8419 0.8863 0.8517 0.8685 0.7942 0.7701 0.7819

K-Nearest Neighbour 0.8378 0.8170 0.8272 0.8168 0.7901 0.8032 0.7714 0.7808 0.7761

Naive Bayes 0.7091 0.7278 0.7183 0.7862 0.7961 0.7911 0.7620 0.7901 0.7758

Figure 11: Summary of the main results of the Completeness and Consistency Analysis.

the Spanish DBpedia KB, and iii) 95% for the lode:Event-

type entities of the 3cixty Nice KB.

7.2. Consistency Analysis

In the consistency analysis, the constraint classifiers perfor-

mance is measured by precision, recall and F1 score. Overall,

our constraints classifiers achieved high predictive performance

with the Random Forest model. For example, the Random For-

est cardinality classifiers achieved the highest F1 score for all

KBs. Furthermore, the Multilayer Perceptron and the Least

Squares SVM also achieved high F1 scores greater than 90%

for the English DBpedia KB. Concerning the range constraints,

we explored the object node type constraint for each property

associated with a given class. Similar to cardinality constraints,

Random Forest algorithm achieved a high F1 score of 95.94%

for the English DBpedia KB. This makes the consistency eval-

uation approach adaptable and facilitates adoption for multiple

KBs.

Furthermore, we applied a Naive Bayes classifier. The model

provides apriori probabilities of no-recurrence and recurrence

events as well as conditional probability tables across all at-

tributes. We considered Naive Bayes as a baseline model to

explore the classifier performance compared to other learning
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algorithms. In this context, other models achieved better perfor-

mance values compared to the Naive Bayes learning algorithm.

Finally, we generate constraints once the constraint predic-

tion models are built. Based on the Random Forest model, we

created the constraints datasets. More specifically, we com-

bined all the constraints related to a given class and, for each,

we generate an RDF Shape. An example of the RDF Shape

in SHACL for the foaf:Person class is illustrated in Listing 5

using cardinality and range constraints. Furthermore, we per-

ceived that the generated constraints datasets can be used in

other tools such as RDFUnit [43]. We considered this exten-

sion of our RDF shape induction approach as a future work.

Listing 5: DBpedia Person SHACL Shape

@prefix dbo: <http ://dbpedia.org/ontology />

.

@prefix sh: <http ://www.w3.org/ns/shacl#> .

ex:DBpediaPerson a sh:NodeShape ;

sh:targetClass foaf :Person;

# node type Literal

sh:property [sh:path foaf :name ;

sh:minCount 1;

sh:nodeKind sh:Literal ];

# for MIN1 and MAX1 cardinality

sh:property [ sh:path dbo:birthDate ;

sh:datatype xsd:date ;

sh:minCount 1;

sh:maxCount 1;

sh:nodeKind sh:Literal ] ;

# node type IRI

sh:property [sh:path dbp:birthPlace ;

sh:nodeKind sh:IRI;

sh:or ( [sh:class schema:Place]

[ sh:class dbo:Place ] )

];

# node type literal

sh:property [ sh:path dbp:deathDate ;

sh:nodeKind sh:Literal;

sh:datatype xsd:date ] .

7.3. Limitations and Future Work

In this section, we discuss the limitations of the proposed

approach, together with future research directions.

Impact of addition of entities. A limitation of the current ap-

proach is that we only considered the negative impact of dele-

tion of entities as causes of quality issues. As a future research

direction, we plan to study how to dynamically adapt impact

of the addition of entities in an evolving KB. Furthermore, we

argue that quality issues can be identified through monitoring

lifespan of a KB. This argument has led to conceptualize the

stability feature, which is meant to detect anomalies in a KB.

Using a simple linear regression model, we explore the lifespan

of an entity type. We can envision that stability feature can be

used for analyzing the impact of the addition of entities. As

a future work, we plan to monitor various KB growth rates to

explore stability feature. In particular, we want to investigate

further (i) which factors are affecting stability feature, and (ii)

validating the stability measure.

Schema based validation. We presented experimental analy-

sis using three constraints types: cardinality, range, and string.

As a future work, we plan to extend our implementations to

other SHACL constraints. We envision that these constraints

can be applied to other tools such as RDFUnit [43] as a di-

rect input. However, in RDFUnit they considered constraints

in the form of RDFS/OWL axioms. We considered extending

our approach to RDFUnit as future research work to favor the

interoperability.

Furthermore, in our experimental analysis, we involved a hu-

man annotator to validate the datasets in order to create the par-

tial gold standards. As future work, we plan to extend our eval-

uation strategy with an alternative approach such as the valida-

tion using OWL schema. However, it is challenging to explore

an OWL schema for validation tasks. For example, the DBpe-

dia KB 201610 version ontology lacks axioms about cardinality

constraints (owl:cardinality, owl:minCardinality, maxCardinal-

ity). The only information that we can extract from the ontology

is indirectly using the axioms that define functional properties

(i.e., MAX1 constraints). In this context, we plan to extend

our approach to other KBs that contain complete OWL schema

representations.

8. Conclusions

The primary motivations of this work are rooted in the con-

cepts of Linked Data dynamics on the one side and constraints

based KB validation on the other side. We focused on auto-

matic shape validation as well as automating the timely process

of quality issue detection without user intervention based on

KB evolution analysis. Knowledge about Linked Data dynam-

ics is essential for a broad range of applications such as effec-

tive caching, link maintenance, and versioning [9]. However,

less focus has been given towards understanding knowledge

base resource changes over time to detect anomalies over vari-

ous releases. We introduced a completeness analysis approach

by analyzing the evolution of a KB, to understand the impact

of linked data dynamicity. More specifically, we explored the

completeness of an entity type using periodic data profiling.

However, we perceive that if the KB has design issues, our

completeness analysis might lead to increase the number of

false positives. We introduced an RDF validation approach to

explore the consistency of KB resources using integrity con-

straints from SHACL representation. Our approach follows a

traditional data mining workflow: data collection, data prepa-

ration, and model training. This approach can be applied to

any knowledge base, and we demonstrated its usages for two

different use cases, namely 3cixty Nice and DBpedia. We sum-

marized the main findings of this work as follows:

In response to RQ1, the proposed approach provides an as-

sessment of the overall completeness quality characteristic and

it aims to identify potential problems in the data processing

pipeline. Such an approach produces a smaller number of

coarse-grained issue notifications that are directly manageable
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without any filtering and provide useful feedback to data cura-

tors. An experimental analysis of proposed completeness anal-

ysis is performed on two different knowledge bases of different

size and semantics, and its operations are verified using these

use cases. Since this approach uses simple statistical measures

(count and difference), it reduces the search space of the suspi-

cious issues, resulting in an approach that can be applied to also

larger knowledge bases. Based on the two use cases, complete-

ness analysis has proven to be highly effective to identify qual-

ity issues in the data extraction and integration process. Overall,

the proposed approach achieved the precision of greater than

90% for completeness measures for almost all use cases.

To address RQ2, a consistency analysis approach is proposed

using constraints based feature extraction and learning mod-

els. This approach is evaluated using cardinality, and range

constraints. In the experimental analysis, the performance of

the five learning models are empirically assessed and the best

performing model is identified according to the F1 score. The

proposed approach reaches an F1 score greater than 90% with

DBpedia datasets for cardinality constraints using Random For-

est model. Nevertheless, the proposed approach is defined in

a generic and flexible manner which can be extended to other

types of constraints. Overall, all learning models have good

performances meaning that the problem is well configured and

the features are predictive.
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