Accepted Manuscript

JOURNAL OF

An ontology-mediated analytics-aware approach to support monitoring e scnantics
and diagnostics of static and streaming data SCIENCE

SERVICES & g
AGENTS ON
Evgeny Kharlamov, Yannis Kotidis, Theofilos Mailis, WORLD WIDE WEB
Christian Neuenstadt, Charalampos Nikolaou, Ozgiir Ozgep,
Christoforos Svingos, Dmitriy Zheleznyakov, Yannis Ioannidis,

Steffen Lamparter, Ralf Moller, Arild Waaler

PIL: S1570-8268(19)30001-0

DOI: https://doi.org/10.1016/j.websem.2019.01.001
Reference: WEBSEM 494

To appear in: ~ Web Semantics: Science, Services and Agents on

the World Wide Web

Received date: 20 October 2017
Revised date: 18 November 2018
Accepted date: 3 January 2019

Please cite this article as: E. Kharlamov, Y. Kotidis, T. Mailis et al., An ontology-mediated
analytics-aware approach to support monitoring and diagnostics of static and streaming data, Web
Semantics: Science, Services and Agents on the World Wide Web (2019),
https://doi.org/10.1016/j.websem.2019.01.001

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to
our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form.
Please note that during the production process errors may be discovered which could affect the
content, and all legal disclaimers that apply to the journal pertain.

https://doi.org/10.1016/j.websem.2019.01.001

An Ontology-mediated Analytics-aware Approach to Support
Monitoring and Diagnostics of Static and Streaming Data

Evgeny Kharlamov®P, Yannis Kotidis?, Theofilos Mailis®, Christian Neuenstadtf. “haralampos Nikolaou?®,
Ozgiir Ozcepf, Christoforos Svingos®, Dmitriy Zheleznyakov®, Yannis Ioannidis®, Ste’.en | amparter®, Ralf Moller!,
Arild WaalerP

@ University of Oxford, Department of Computer Science, Wolfson Building, Parks R~ad, ¢ "1 8QD, Ozford, UK.
b University of Oslo, Department of Computer Science, P.O. Box 1080 Blinds n, .™-0316 Oslo, Norway.
¢Bosch Centre for Artificial Intelligence, Robert Bosch GmbH, Renningen, /(046" Stu..gart, Germany.

4 Athens University of Economics and Business, 76 Patission Street, 10, " . Athens, Greece.
¢ National and Kapodistrian University of Athens, Panepistimiopolis, I'" ‘a, 15,°', Athens, Greece.
FUniversity of Luebeck, Ratzeburger Allee 160, 23562, I eck, C rmany.
9Siemens Corporate Technology, Siemens AG, Otto-Hahn-Ring 6, 81739, M unich, Germany.

Abstract

Streaming analytics that requires integration and aggregation of he. roge eous and distributed streaming and static
data is a typical task in many industrial scenarios including the casc ~f industrial IoT where several pieces of industrial
equipment such as turbines in Siemens are integrated into an Ic™ T7_._ U 3DA approach has a great potential to facilitate
such tasks; however, it has a number of limitations in dealing wii.. analytics that restrict its use in important industrial
applications. We argue that a way to overcome those limit .."~»< is to extend OBDA to become analytics, source, and
cost aware. In this work we propose such an extension. In » ticular, we propose an ontology, mapping, and query
language for OBDA, where aggregate and other analytic ' func.‘ons are first class citizens. Moreover, we develop query
optimisation techniques that allow to efficiently process ai.aly.‘~al tasks over static and streaming data. We implement
our approach in a system and evaluate our system w’ ' Sien.~ns turbine data.

Keywords: Ontology Based Data Access, Data Integratiown, IoT, Streaming Data, Static Data, Optimisations, Siemens.

1. Introduction into data queries over data sources. As well as abstracting
away from details of data storage and access, the ontology
and mappings provide a declarative, modular and query-
independent specification of both the conceptual model
and its relationship to the data sources; this simplifies de-
velopment and maintenance and allows for easy integration
with existing data management infrastructure.

In Figure 1 we present a conceptual architecture of clas-
sical OBDA where on the data layer there is static rela-
tional data. Mappings are used to connect the data to the
ontology and access to the data is realised by means of
data extraction queries posed over the ontology.

A number of systems that at least partially imple-
ment OBDA have been recently developed; they include
D2RQ [3], Mastro [4], morph-RDB [5], Ontop [6], On-
toQF [7], Ultrawrap [8], Virtuoso, Spyder, and oth-

Ontology Based Data Access (OBDA) 7, 2] s an ap-
proach to access information stored in . - &ip] data
sources via an abstraction layer that -aediates oetween
the data sources and data consumers Ou *he one hand,
this layer uses an ontology to provid~ a uniform concep-
tual schema that describes the prol.em lomain of the un-
derlying data independently of hov. = .id where the data
is stored. On the other hand, ‘.ais laye. uses declarative
mappings to specify how the ontr.ogy is related to the
data by associating elements o1 he .ntology to queries
over data sources. The ontr.ogy and 1nappings are used to
transform queries over ont \logies, e., ontological queries,

Email addresses: evg ny.khar. mov@cs.ox.ac.uk (Evgeny

Kharlamov), evgeny.khar. mov@if ..uio.no (Evgeny Kharlamov), ers [9, 10]. Some of them were successfully used in various
evgeny.kharlamov@de.bosch. ... (Evgeny Kharlamov), applications including cultural heritage [11], governmental
kotidis@aueb.gr (Ya. s ..~ ''s), theofilos@image.ntua.gr organisations [12], and industry [137 14, 15, 16].

(Theofilos Mailis), neue. 3* 2dt@ifis.uni-luebeck.de (Christian

Neuenstadt), babis.nikor ou@cs.ox.ac.uk (Charalampos Despite their success, OBDA systems are not tailored

Nikolaou), oezcep@ifis.uni-luebeck.de (towards analytical tasks that are naturally based on data
Ozgiir Ozgep), c.svingos@di.uoa.gr (Christoforos Svingos), aggregation and correlation. Moreover, they offer a lim-
dmitriy.zheleznyakovecs.ox.ac.uk (Dmitriy Zheleanyakov), ited or no support for queries that combine streaming and
yannis@di.uoa.gr (Yannis loannidis), . .

steffen.lamparter@siemens.com (Steffen Lamparter), static data. At the same time, such tasks would naturally
moeller@ifis.uni-luebeck.de (Ralf Moller) benefit from OBDA as we illustrate next.

Preprint submitted to Elsevier January 14, 2019

Diagnostic
Centres

i

Data-oriented
Analytical
Queries

. =
v

li Middleware —|

Data
Extraction
Queries

domajn ontology ————

ﬂ(5 . Ontoloay
RERRR R AN
SPE]

Figure 1: Conceptual architecture of OBDA

Example 1. A typical scenario that involves analyticel
tasks and requires access to static and streaming date
is industrial diagnostics and monitoring of equipment.
Siemens has several service centres dedicated to diagno. cs
of thousands of power-generation appliances located across
the globe [15]. A usual task of a service centre is *- detect
in real-time potential faults of a turbine caused 7y, e.g.,
undesirable pattern in temperature’s behaviour w *hin v -
ious components of the turbine. Consider 4 (simp.,.ed)
example of such a task:

In a given turbine, report all tem™ eraturc ~en-
sors that are reliable (i.e., with th a. rage score
of validation tests at least 90%) snd whos mea-
surements within the last 10 nin were similar
(i.e., Pearson correlated by at . ~s’ 0.75) to mea-
surements reported last year oy a re. rence sensor
that had been functioning m @ critizal mode.

This task requires to extract, ~~grey. ‘= and correlate static
data about the turbine’s str icture, “treaming data produced
by up to 2,000 sensors instu'led in ¢ fferent parts of the tur-
bine, and historical ope: ‘ionu. wata of the reference sen-
sor stored in multiple data so ‘rees. Accomplishing such a
task currently requires *o posr a collection of hundreds of
queries, the majoritu of wiwch are semantically the same
(they ask about ten.~erc uic), but syntactically differ (they
are over different sch. mata). This takes up to 80% of the
overall diagnostic time .hat Siemens engineers as well as
engineers in other large service companies typically have
to spend [15].

ODBA can naturally allow to save a lot of this time
since ontologies can help to ‘hide’ the technical details of

@ . .
- Diagnostic
m Centres
—— Query or
Workflows
é% Analytical

QL, Workflows

{4

Semantic
Analytical
domaing—— oo e Queries
_fg& aware
3 @ Ontology
¢
’, —— .. tics, views
" L@
L = Optimised
Analytical
IR
AN\ Static and
> > G Streaming
- oo B Data loT

Figure 2: Conceptual architecture of analytics-enhanced OBDA

how the data is produced, represented, and stored in data
sources, and to show only what this data is about. Thus,
one would be able to formulate this diagnostic task using
only one ontological query instead of a collection of hun-
dreds data queries that today have to be written or config-
ured by IT specialists. Clearly, this collection of queries
does not disappear: the OBDA query transformation will
automatically compute them from the high-level ontological
query using the ontology and mappings.

Equipment diagnostics such as the ones in the example
scenario typically make heavy use of aggregation and cor-
relation functions as well as arithmetic operations. In our
running example, the aggregation function min and the
comparison operator > are used to specify what makes
a sensor reliable and to define a threshold for similarity.
Performing such operations in OBDA can be done either
on the level of (i) ontological queries or (ii) data queries
specified in the mappings. We argue that both options
are unsatisfactory. Indeed, Option (i) requires that all
relevant values should be retrieved prior to performing
grouping and arithmetic operations. This can be highly
inefficient, as it fails to exploit source capabilities (e.g.,
access to pre-computed averages), and value retrieval may
be slow and /or costly, e.g., when relevant values are stored
remotely. Moreover, it adds to the complexity of applica-
tion queries, and thus limits the benefits of the abstraction

layer. We illustrate this option in Figure 1 where a de-
voted middleware preprocesses analytical queries by ‘iso-
lating’ in them data extraction queries, and postprocess
answers retrieved by the latter queries using the analyti-
cal functions of the original analytical queries. Option (ii)
requires that all aggregation functions and comparison op-
erators are moved to mapping queries. This is brittle and
inflexible, as values such as 90% and 0.75, which are used
to define ‘reliable sensor’ and ‘similarity’, cannot be spec-
ified in the ontological query, but must be ‘hard-wired’
in the mappings, unless an appropriate extension to the
query language or the ontology are developed. In order to
address these issues, OBDA should become

analytics-aware by supporting declarative repre-
sentations of basic analytics operations and using
these to efficiently answer higher level queries.

In practice this requires enhancing OBDA technology with
ontologies, mappings, and query languages capable of cap-
turing operations used in analytics, but also extensive
modification of OBDA query preprocessing components,
i.e., reasoning and query transformation, to support these
enhanced languages.

Moreover, analytical tasks as in the example scenario
should typically be executed continuously in data inten-
sive and highly distributed environments of streaming ar.
static data. Efficiency of such execution requires non-
trivial query optimisation. However, optimisations i .-~
isting OBDA systems are usually limited to minimisatio.
of the textual size of the generated queries, e.g. [17], with
little support for distributed query processing, ar 4 no . 1p-
port for optimisation for continuous queries ove sequenc 3s
of numerical data and, in particular, comput .tion . € d ita
correlation and aggregation across static .nd treaming
data. In order to address these issues, Ob.” A sho’ id be-
come

source and cost aware by supporting bou. static
and streaming data sources anc ofi. ving a robust
query planning component an. ind xing that can
estimate the cost of differen’ plan. =and use such
estimates to produce low-c Jst » 1ans.

Note that the existence of m~teria.,. = . and pre-computed
subqueries relevant to ¢ nalytic within sources and
archived historical data tha should be correlated with cur-
rent streaming data im=""2s ti... Jhere is a range of query
plans which can diffe: drame ically with respect to data
transfer and query exe ution ‘.me.

In this paper we make tuc urst step to extend OBDA sys-
tems towards beco. ing aualytics, source, and cost aware.
In particular this wil. make such OBDA solution compli-
ant to the Siemens requirements for turbine diagnostics.
Consider a high level illustration of our approach in Fig-
ure 2: diagnostic engineers in diagnostic centres can create
analytical queries and workflows over ontologies by relying
on classical and analytical constructs offered by ontologies

(that are analytically enhanced). Such semantic analytical
queries are then rewritten with the help of the enhanced
ontology and unfolded into an-lytical data queries with
the help of enhanced (analytic -aware) mappings. The re-
sulting data queries are opt..nise.. ~ud executed over the
underlying data sources.

We see particular bene’.ts o' our analytics-aware OBDA
for Internet of Things (Io1, [ndeed, in the case of indus-
trial IoT, that is typicali, ~onsiuered in the context of In-
dustry 4.0, various s .a. * mac..ines that are equipped with
sensors exchange 1 sssa‘ es «..d resort to various sources of
information to optin.. » production outputs and costs. In
such IoT contey . 1t is critical to have analytical rather than
data access qu ries tha are supported by state-of-the-art
OBDA systems. n F gure 2 we schematically depict an
IoT with t abin~~ and external data.

The list ~f _ur ¢ ntributions is the following:

e We p..nosed analytics-aware OBDA components, i.e.,

- the ntology language DL-Lite’f® that extends
* attributes that have bag (multiset) exten-
sions and closed-world semantics, and
x concepts that are defined using results of the
evaluation of aggregate functions;
— the query language STARQL over DL-Lite4 on-
tologies that combine streaming and static data;

the analytics-aware relational query language
SQL® for static and streaming data; and

a mapping language relating DL-Liteffg vocab-

ulary and STARQL constructs with SQL®
queries over static and streaming data.

e We developed efficient query transformation tech-
niques for turning STARQL queries over DL-Lite’f®

ontologies into SQL® queries using our mappings.

e We developed the following source and cost aware
query optimisation techniques:

— Query optimisations on live streams:

* in-memory indexing structures and algo-
rithms;

x the adaptive stream indexing technique that
decides when to build the aforementioned in-
dexes.

— Query optimisations on archived information:

x efficient storage of archived streams for hy-
brid operations (i.e., complex analytics be-
tween live and archived streams);

* materialised window signatures that sum-
marise important features of archived
streams;

x the Locality Sensitive Hashing technique for
fast computation of complex hybrid opera-
tions.

e We developed elastic infrastructure that automati-
cally distributes analytical computations and data
over a computational cloud for faster query execution.

e We implemented

— the highly optimised engine EXASTREAM capa-
ble of handling complex streaming and static
queries;

— a dedicated STARQL2SQL® translator that
transforms STARQL queries into queries over
static and streaming data; and

— an integrated OBDA system that relies on the
aforementioned and third-party components.

e We conducted a performance evaluation of our OBDA
system with large scale Siemens data using analytical
tasks.

Delta from Previous Publications

We reported some ideas on analytics-aware OBDA in
our paper in the emerging applications track of ISWC
2016 [18]. Moreover, an earlier version of the STARQL
query language has been presented in [19] and of EXAS-
TREAM in [20, 21]. However, this work significantly ex-
tends our previous publications as follows:

. DL—Liteffg analytics-aware ontology language: In [1§)
we gave only a short introduction of DL-Lite’f® In
this submission we formally introduce its syntax «
semantics, study the computational properties of the
associated problems of satisfiability and quer- ... ~wer-

ing; we also include formal proofs.

o STARQL query language: The versior of S'1..7 QL
presented in this paper extends the o .e ir [19) with
the ability to use aggregate concents. Mc eover,
in [18] we only briefly mentioned the this can ve done,
while in this submission we give ar exte. ded presenta-
tion of the STARQL language. ™ ~ally, in this paper
we give an operational seman’.cs ¢ . STARQL which
we did not present previously a. ” that is more prac-
tical from the point of view of imple.aentation.

e OBDA and mappings with _- 1 se’ wantics: In [18] we
only gave examples of 1 .pings « onnecting predicates
of DL-Lite’{® ontolog s to re. ‘tional queries. In this
submission we formally ‘ntroc ace such mappings as a
component of extr.waed OBDA settings. Contrary to
the set-based sem mntics o1 -lassical OBDA settings [1],
extended OBDA s “tine and mappings are given a
semantics tha .. “~<ed on bags, which is more faithful
to the semantic * «: SQL and database systems. We
also study conjuns ‘ive query answering and rewriting
in this setting.

o EXASTREAM backend optimisation techniques: In [18]
we introduced materialised window signatures for hy-
brid operations between live and archived streams.

In this submission we combine materialised window
signatures with the Locality Sensitive Hashing tech-
nique, for fast computatio of complex analytics be-
tween live and archived ¢ -eams. The combined algo-
rithm requires much lecs con. mtation. Additionally
we introduce some hy’ .. ' in-memory indexing struc-
tures specifically ta’ ored for streaming information
along with the adapi. - stream indexing technique
that decides when 1. “enewncial to build these indexes
on a specific wi'.uc v.

o EXASTREAM . ' .ementation: The implementation
of EXASTP ..M as presented in [18, 20, 21] is ex-
tended in his sub aission by implementing the afore-
mentioned “ntimi-ation techniques.

o Fuvalv itior. 1~ [18] we evaluated the effect of distri-
bution wnd t!e effect of materialised window signa-
tures .~ cowmplex analytics between live and archived
streams. In this submission we additionally evalu-
ate mir v hvel in-memory indexing structures and the
aw ntive stream indexing technique. Furthermore we
- .wruute the integration of materialised window signa-
“ures with the Locality Sensitive Hashing technique.

S’ ucture of the Paper

11 Sections 2-5 we introduce our novel OBDA compo-
nents, in Section 6 we discuss how we implemented a sys-
.em that accounts for them, in Sections 7-8 we present
backend optimisations and their evaluations, and in Sec-
tion 9-10 we discuss related work and conclude.

We now give a more detailed structure.

In Section 2 we start with an analytics-aware ontology
language DL—Liteffg for capturing static aspects of the
domain of interest where ontologies and aggregate func-
tions are treated as first class citizens. In Section 3 we
introduce STARQL that allows to combine static con-
junctive queries over DL-Lite’f® with continuous diagnos-
tic queries that involve simple combinations of time aware
data attributes, time windows, and functions, e.g., corre-
lations over streams of attribute values. Using STARQL
queries one can retrieve entities (e.g., sensors) that pass
two ‘filters’: static and continuous. In our running ex-
ample a static ‘filter’ checks whether a sensor is reliable,
while a continuous ‘filter’ checks whether the measure-
ments of the sensor are Pearson correlated with the mea-
surements of reference sensor. In Section 4 we present an
analytics-aware relational query language for static and
streaming data SQL®. In Section 5 we connect the previ-
ous sections: we explain how to bridge STARQL queries
over DL-Lite’f® and SQL® queries. To this end we re-
view necessary background on the classical OBDA ap-
proach to bridge ontological and data oriented queries with
the help of mappings and a two-stage query transforma-
tion procedure that reformulates ontological queries into
data queries. Then, we explain how we extend the clas-
sical mappings to our setting by defining mappings that

relate aggregate and non-aggregate concepts, properties,
and attributes occurring in queries over ontologies into
database schemata and relate functions and constructs of
STARQL continuous ‘filters’ into corresponding functions
and constructs over databases, and to extend the two-stage
query transformation procedure. Then, we dive in detailed
example-driven explanations of STARQL query transfor-
mation procedures, and discuss their correctness. In Sec-
tion 6 we present our system that combines our novel com-
ponents: (i) ontology language, (#) query language over
ontologies, (7ii) query language over data, and (iv) map-
pings between the ontology and data query languages and
query transformation procedures. In Section 7 we discuss
how to optimise backend queries in SQL®. Then, in Sec-
tion 8 we present experimental evaluation of the backend
where we emphasise the effect of the optimisations. Fi-
nally, in Section 9 we discuss related work, and in Sec-
tion 10 we conclude and present future work.

2. DL-Lite’®: An Ontology Language with Aggre-
gates

Our ontology language, DL-Lite’f®, is an extension of

DL-Lite4 [1] with concepts that are based on aggrega-
tion of attribute values. The semantics for such concepts
adapts the closed-world semantics [22]. The main reason
why we rely on this semantics is to avoid the problen.
of empty answers for aggregate queries under the certain
answers semantics |23, 24|. In DL-Lite’f® we disting. <h
between individuals and data values from countable sets
I' and D that intuitively correspond to the dats’ ~es of
RDF. For simplicity of presentation we assume that L is
the set of rational numbers. We also distinguis.. hetwr 2n
atomic roles P that denote binary relations etween , airs
of individuals, and attributes F' that dens -e b nars rela-
tions between individuals and data value.. I DL Lite’f®,
attributes F' are allowed to contain tb <ame tuple mul-
tiple times as these duplicates might ve pro iced by the
evaluation of the mappings over tF_ atabase. Retain-
ing these duplicates is crucial for a- plic' ¢ions that employ
aggregation and recent works caring . - data aggregation
have considered similar settings (25 26].

Before proceeding to the fu ms. def nitions, we intro-
duce the notion of a bag (or mult.. »/, which, informally,
is a collection that allows fr muli »le repetitions of its el-
ements. A bag over a set '/ is a unction €2 : M — Ny,
where Ny is the set of snneg.uve integers. The value
Q(c) is called the mult plicity . fc in Q. A bag Q is finite if
there are finitely many < € M with Q(¢) > 0. The empty
bag) over M is the bag sausfying ()(c) = 0 for all c € M.
We also define the ~ine .y uperation of bag intersection @
for such bags as follc 7s: for every ¢ € M, it holds that
(1 B Q2)(c) = min{Q1 (), Q2(c)}

2.1. Syntaz of DL-Lite’f®
Assume a vocabulary consisting of countably infinite
and pair-wise disjoint sets standing for atomic concepts

C, atomic roles R, and atomic attributes A. Let also agg
be an aggregate function (e.g., min, max, count, countd,
sum, avg), let 7 be a rational nv mber, and o be a compar-
ison predicate on rational nur hers, e.g., >, <, <, >, =, or
#. The grammar for conce; ts au ' roles in DL-Lite’f® is
defined based on the abov ncabulary as follows, where

AeC,PeR, FeA:

B— AR,
E—oagr F),

2 — B| 3F,
R—P|P.

We call expressions r, 7/, and F basic, extended, and ag-
gregate concept ,, respr <tively, and call expression R a basic
role.

A DL-Lit<*#8 ¢ +~',gy O is a finite set of axioms. We
consider t' e fo'’_ -ing types of axioms: (i) concept inclu-
sions of tl. “orm J C B and C C B, and role inclusions
of the fo..~ Ry = Ra, (i) functionality axioms on roles of
the form (fun t R), and (iii) concept, role, and attribute
deniats ~f thr form By M By C 1, Ry MRy C 1, and
Fyri.7 C i, respectively.
€ I'and v € D. A DL-Litef® dataset D is
a . ite bag over the set of assertions of the form A(a),
Pla.b), and F(a,v) where in addition it is required that
ag ertions of the form A(a) and P(a,b) occur in D at most
0. ce. Intuitively, D allows only multiple occurrences for
“ttribute assertions.

We require that if (funct R) is in O, then R’ C R is not in
O for any R’ different from R. This syntactic condition, as
well as the fact that we do not allow concepts of the form
JF and aggregate concepts to appear on the right-hand
side of inclusions ensure good computational properties
of DL-Lite’f®. The former restriction is inherited from
DL-Lite 4 while the latter can be shown using techniques
of [22] (see following sections).

T Ad ~ -

Example 2. The following concept inclusion comprises a
DL—Liteffg ontology capturing the notion of reliable sen-
sors as this was introduced in our running example:

>0.9 (min testScore) C Reliable. (1)

Here Reliable is an atomic concept, testScore is an atomic
attribute, and >¢.9 (min testScore) is an aggregate concept
that captures individuals with one or more testScore values
whose minimum is at least 0.9.

2.2. Semantics of DL—Litei%g

We define the semantics of DL-Lite’f® in terms of in-
terpretations Z = (AZ,.Z) that assign to individuals in
I' an element of their domain AZ, assign to data values
in D the corresponding rational number in Q, and assign
to atomic concepts A € C, to atomic roles P € R, and
to atomic attributes ' € A, a subset of AZ, a subset of
AT x AT, and a bag over AT x Q, respectively. Moreover,
for an atomic role P € R, a basic role R, and a data value

r € D, interpretation Z satisfies:

agg{v:m|veQ,m= F¥(a,v)}ort}.

Here, { - } denotes a bag and its meaning is well-defined
since bags over a set M can been seen as sets of elements
¢ :m where ¢ € M and m € Ny. Also, expression agg{ - }
denotes the evaluation of aggregate agg over the provided
bag {-[}. In our setting, expression agg{-[} always evaluates
to a rational number.

Please note that although the semantics interprets at-
tributes F' as bags, extended concepts based on attributes,
such as JF', are given a classical set-based semantics. This
is in contrast to the recent work in [25] that defined bag
interpretations as functions assigning to concepts and roles
bags over AT and A% x AT, respectively. In the following,
we assume the standard name assumption for interpreta-
tions Z, which requires that individuals and data values are
interpreted as themselves, i.e., ¢Z = ¢ for each ¢ € T U D.
This effectively makes AZ and Q equal to I' and D, re-
spectively.

The notion of a model for interpretations Z, DL-Liteff
ontologies O, and datasets D is defined similarly to [22. 25].
We say that an interpretation Z is a model of OUD, wri. ~u
as Z = O UD, if all of the following hold:

(i) at € AT if D(A(a)) = 1, (a,b%) - ¢ if
D(P(a,b)) = 1, and FZ(a?,vT) = D(F(c »)) for 1
assertions of the form A(a), P(a,b), an i F(a,

(ii) ST C SZ, for each concept and role . <lv .ion «xiom

51 ESQ in 0;

(iii) (a,b) € RT and (a,c) € R img.ies
functionality axiom (funct R) i+ ™

= ¢, for each

(iv) ST N ST = (), for each deniar ~i'm S; M Sy C L in
O where S; and Sy are bo’ a conce »ts or roles;

(v) FEaFf = 0, for each « niJl avom F; MF, T 1
in O.

Requirements (ii)—(iv) a = as in { 1e set case, whereas re-
quirement (v) is the natral «.* _sion of requirement (iv)
to bags [25]. Requir ment ‘) is a mixture of set and
closed-world semantic. to refl ct the closed-world nature
of attributes: models of C _ o shall interpret attributes F’
according to the as ert) .. on F' found in the dataset.

Example 3. Conside, the dataset
D = {{Reliable(so) : 1, testScore(s1,0.9) : 2,

testScore(s2,0.95) : 1, testScore(s2,0.98) : 1,
testScore(ss,0.5) : 1, testScore(ss,0.9) : 1.

For every model of D and the ontology in Equation (1),
it holds that (>0.9 (min testScore))t = {s1,s2} and sq €
Reliable™ ; thus {s0,81,82} C R liable® .

An important reasoning te .k .- ontologies is satisfiabil-
ity checking that asks whether an o..tology has a model.
Given a DL-Lite’f® onto! ,gy 9 and dataset D, one can
easily show that satisfiab.."*v _hecking for OUD can be de-
cided in polynomial tin.. in tu. ~ize of OUD provided that
computation of aggre—=te 1. <tions can be done in poly-
nomial time in the size .. P Indeed, this can be shown
by a reduction to s. “is .ability checking in DL-Lite 4.

Proposition 7. Let M be a DL—Liteffg ontology with ag-
gregate functio s comp ;table in polynomial time. Let also
D be a dataset. .7 -~ satisfiability checking for OUD can
be decided wn pr’, ~omial time in the size of O UD.

Proof. ("iven) ».d D we construct in polynomial time in
the size of O 'JD a DL-Lites ontology O and a dataset
D’ s.-h that D U D is satisfiable if and only if O’ U D’
is s “isfia. '~ Then, the claim follows from Theorem 4.22
in [1], w. '~h shows that satisfiability checking in DL-Lite4
. be done in polynomial time in the size of both the
ontow. v and the dataset.

. . ~oof of the above claim, let O’ be the DL-Lite4 on-
.~wogy obtained from O by replacing each aggregate con-
ce, b of the form o,.(agg F') appearing in the axioms of O
w.th a fresh atomic concept U. Let D’ be defined as the set
of assertions corresponding to D extended with the set of
assertions {U(a) | agg{v: m |v € Q,m = D(F(a,v))}or},
for each aggregate concept o,.(agg F') in O and concept U
introduced in O’ for o, (agg F).

Suppose now that Z = (AZ,.1) is a model of O U D
and let 7/ = (AZ,.Z') be the interpretation such that: (i)
ST = ST, for every S € CUR, (ii)) FI' = {(a,v) €
AT x AT | FZ(a,v) > 0}, for every F € A, and (iii)
UT = (o.(agg F))%, for every concept U introduced in
O’ for an aggregate concept o.(agg F) in O. It is now
straightforward to check that Z’ is a model of O’ UD'.

For the other direction, assume that 7' = (AI/, -I/) is a
model of O"UD’. Observe that concepts U and IF appear
only in the left-hand side of concept inclusion axioms in O,
thus, the subinterpretation 7" = (AZ', oIH) of 7’ defined
such that ST = ST UZ" = {aT e AT | U(a) € D'},
and FZ" = {(a¥',vT") € AT x Q| F(a,v) € D'}, where
Se€ CUR, F e A, and U is the concept corresponding
to an aggregate concept o,.(agg F'), is also a model of O’ U
D’'. Now, let T = (AII,I) be the interpretation such
that ST = ST°, for every S € CUR, and FI/(a, v) =
D(F(a,v)), for every ' € A. By construction, Z is a
model of O UD. O

2.3. Query Answering in DL-Litef®

Our query language for querying DL-Lite’s® ontologies
will be the class of conjunctive queries that consists of
all expressions of the form ¢(Z) :- conj(Z), where & is a
tuple of variables of arity k, conj is a conjunction of atoms

of the form A(t), E(t), P(t1,t2), or F(t,s) with A € C,
PeR,FeA, E=o.(agg F), and t,t1,ts being either
variables or constants from I', and s being either a variable
or constant from D. We also assume that every variable
in Z appears in some atom in conj. Following the standard
approach for ontologies, we adopt the semantics of certain
answers for answering conjunctive queries. Informally, the
certain answers cert(q, O,D) to a query ¢ over the union
of an ontology O and dataset D comprises all tuples of
arity k over I' U D for which the query is entailed by the
ontology. Formally, this set is defined as

cert(q, 0,D) = {t € (T UD)* | T = conj(t) for each
model Z of O UD}.

Example 4. Let O be the ontology in Equation (1) and
D be the dataset specified in Fxample 3. Consider also
the conjunctive query q(x) :- Reliable(x) that asks for all
reliable sensors. Following the observation made in Fx-
ample 3, every model T of O UD satisfies {sg, 1,52} C
Reliable®, hence, the certain answers to q over O UD is
cert(q, 0, D) = {so, 51, 82}

We now show that conjunctive query answering in
DL-Lite’f® is tractable, assuming that computation of ag-
gregate functions can be done in time polynomial in the
size of the data. This is proved in the proposition below I -
reducing conjunctive query answering over ontologies with
aggregates to the corresponding problem over aggre~~te-
free ontologies with closed predicates [22]. This is possi.'»
due to the fact that each aggregate concept and each at-
tribute behaves like a closed predicate in the setti- g v '22],
in the sense that its interpretation—given an - ntology O
and dataset D—is determined and fixed by D Bei -e st 1t-
ing the proposition, we introduce the notio . of ;afety for
DL-Lite4 ontologies with closed predicates, ~hr ce t} 2 syn-
tax of such ontologies follows that of D/ -Lite ,” * 1th the
exception that concept inclusions are fc 1.~ only between
extended concepts, whereas the semantics is " 2 standard
one [1].

Definition 1 ([22]). Let O be a L. tea ontology and
3 be a finite set of predicates “om CUIUA. We call
the pair (O, %) an ontology wi v c] sed sredicates and say
that (O, X) is safe if there are no - _epts Cy,Cy and no
role R such that (1) Cy i satisf ~ble in O and different
from 3R’ with O = R L' R, i O E C; C 3R and
O = 3JR™ C (y, (iii) C- me.."" s a predicate in Z, and
(iv) every role R wit. O E "1 T 3R and O R C R
mentions a predicate ¢ tside ¥ .

The theorem bc . ~*=tes that safety of DL-Lite4 on-
tologies with closea v edicates makes conjunctive query
answering equivalent ‘o the corresponding problem in
DL-Lite 4 ontologies.

Theorem 1 ([22]). Let (O,%) be a DL-Lites ontology
with closed predicates and let q(Z) be a conjunctive query
of arity k. If (O,X) is safe, then, for every dataset D

satisfiable with (O,%), the certain answers to q(T) over
(0,%) and D coincide with the certain answers to q(T)
over OUD.

We are now able to prcve t.. t query answering in
DL-Liteg® is tractable.

Proposition 2. Let O be - DL-Lite{® ontology with ag-
gregate functions compu. hle . polynomial time, let D be
a dataset, and let q' ., be a onjunctive query of arity k
and of fixed size. _hec iy wvhether @ € cert(q, O, D) for
a tuple @€ (T'U D) - be decided in polynomial time in
the size of O U .

Proof. Given ¢, D, ar . ¢ we construct in polynomial time
in the size .t O V1D a safe DL-Lite4 ontology with closed
predicates (O’ 2), a dataset D’, and a query ¢’ such that
cert(q,C D) = ertx(q, 0, D), where certs(q’,O',D’)
denotes the =t of certain answers to ¢’ over (0, %) and
D'. v safets of (O’,X) and Theorem 1, we have that
cer. (¢, " /') coincides with the certain answers to ¢
over the NL-Lite4 ontology @' U D’ whenever D’ is satis-
w nle with (O, X). Since satisfiability of (O, X) with D’
can L. checked in polynomial time in the size of @’ and
L 27 1] and the same is true for checking whether a tuple
. rom (TUD)¥ is a certain answer to ¢(Z) over O'UD’ [1,
T1.corem 5.17], the claim then follows.

In proof of the above claim, let @' and D’ be defined
18 in the proof of Proposition 1. Let also ¢’ be the query
obtained from ¢ by replacing each aggregate atom E(v)
in ¢ with the atom U(v), where E is o,(agg F') and U
is the concept used to replace E in the derivation of O’
from O. Let also ¥ comprise all attributes F' appearing
in O’ and all concepts U in (O’ for an aggregate concept
FE in O. Given that concepts U and 3F appear only in
the left-hand side of concept inclusion axioms in O’ and
that the only predicates in ¥ are exactly the U’s and all
attributes F' in @', this means that there is no concept
C5 that could be employed to satisfy requirements (ii) and
(iii) of Definition 1, thus, O’ is safe.

To show that cert(q, O, D) = certx(¢’, O',D'), it suffices
to prove that there is a one-to-one correspondence between
the models of OUD and those of (0', X)) and D’ such that
if Z is a model of the former ontology and Z’ is the cor-
responding model of the latter one, then Z = conj(a) if
and only if Z' |= conj(@), for all tuples @ € (I' U D)*. Ob-
serve that a one-to-many correspondence between these
two sets of models has been already established in the
proof of Proposition 1, which considered the mapping of
the DL—Liteffg ontology O U D to the DL-Lite4 ontology
O"UD’ without the use of closed predicates. Notice, how-
ever, that in the presence of the closed predicates in ¥ and
for the models Z” and Z’ of O’ UD’ considered in the last
paragraph of that proof, we have that Z”7 = 7', thus, this
correspondence becomes one-to-one. Note also that the
equivalence Z = conj(a@) if and only if Z' = conj(a@) holds
trivially by construction of Z’ on the basis of 7. O

In addition to the tractability of query answering
in DL-Lite’f®, one can show that the standard query
rewriting algorithm of [1] proposed for DL-Lite4 as a part
of query transformation procedure (with an extension
discussed in Section 5) also works for DL-Lite’f® and SQL.

2.4. Discussion

Note that our aggregate concepts can be encoded as
aggregate queries over attributes as soon as the latter are
interpreted under the closed-world semantics. Indeed, the
certain answers for the atomic query ¢(x) - (o,(agg F))(z)
would be the same as for the following aggregate query:

sAl,, (age 7)(z) = SELECT z FROM F(z,y)
GROUP BY z HAVING agg(y)or. (2)

Thus, one can reduce conjunctive query answering over
our analytics aware DL-Liteffg ontologies to aggregate
query answering over classical DL-Lite 4 ontologies as soon
as the closed-world semantics is exploited for the inter-
pretation of data attributes. At the same time, we ar-
gue that in a number of applications, such as monitoring
and diagnostics at Siemens [15], explicit aggregate con-
cepts of DL-Lite’{® give us significant modelling and query
formulation advantages over DL-Lite4 since in such ap-
plications concepts are naturally based on aggregate val-
ues of potentially many different attributes. For instancc
in Siemens the notion of reliability is naturally based
on aggregation over various attributes, i.e., it shoul L.
modelled as F; C Reliable for many different aggregau.
concepts F;, and reliability is also commonly exbloited
in diagnostic queries. In the case of DL—LitPPAjE’, 1w all
such diagnostic queries it suffices to use only ~ne atc m
Reliable(x). In contrast, in the case of DL-Lit .4, eac. < ich
diagnostic query would have to contain tF: w! ole nnion
Reliable(x) U; sqlg, (). Thus, Siemens diagu. < .ics jueries
over DL-Lite 4 would be much more com slex thaw .he ones
over DL-Lite’f%. Moreover, in the cas: o1 DL-Litey, the
diagnostics queries of the form sqlg, (= will have to be ad-
justed each time the notion of relial (ity s modified, while,
in the case of DL-Lite’f%, only the » ology and not the
queries should be adjusted.

3. STARQL: A Query " _ngu._: over DL-Litei%g
Ontologies for Static and » ‘reaming Data

In this section we wi'" give ... overview of STARQL,
illustrate it on our r mning ‘xample, and then explain
its syntax and semar ics. T ioreover, we will compare
STARQL to state-of-the art query languages over RDF
streams in terms o. the r syntactic features. We refer the
reader to [27] where ‘e compare STARQL’s implemen-
tation with respect to ¢cher systems in terms of architec-
tural and implementation aspects. We also refer the reader
to [28] were we compare STARQL with the LTL-based de-
scription logic of TCQs [29], and show that a safe fragment
of TCQs is captured by STARQL.

8.1. Overview and Example

STARQL is a query language over ontologies that al-
lows to query both streaming a’ d static data and supports
not only standard aggregates . *ch as count and avg, but
also more advanced aggregavion tu. ~tions from our back-
end system such as Pearsc . ¢ rrelation.

Each STARQL query akes as input a static DL-Lite’f®
ontology and a static detasev 'ogical view of data stored in
arelational DB) as well as « ~at of live and historic streams.
The output of the c iery is a stream of timestamped data
assertions about ¢ njec.s that occur in the static input
data and satisfy two .‘nds of filters: (i) static, that is,
a conjunctive uery ~ver the input static ontology and
data and (7)) . *reamin , that is, a diagnostic query over
the input stream.. ~ " ita—which can be live and archived
(i.e., static)— t' " may involve typical mathematical, sta-
tistical, a1 ' _vent pattern features needed in diagnostic
scenarios “r s._caming data. Therefore, any STARQL
query Qstarq -3 essentially a conjunction of two queries:
a static ~onju «ctive query Qsiatcq Over DL—Liteffg, and a
strea.. ‘'ng query Qsiream over DL-Litey:

Qstarql zcQStatCQ A QStream- (3)

.. syntax of STARQL is inspired by the W3C stan-
< adised SPARQL query language, allowing for nesting
of jueries. Moreover, STARQL has a formal semantics
tuat combines open and closed-world reasoning and ex-
.ends snapshot semantics for window operators [30] with
sequencing semantics that can handle integrity constraints
such as functionality assertions.

In Figure 3 we present a STARQL query that captures
the diagnostic task from our running example and uses
concepts, roles, and attributes from the Siemens ontol-
ogy [15, 31, 32, 33, 34, 35, 36] and Eq. (1). The query
has three parts: declaration of the output stream (Lines 5
and 6); sub-query over the static data (Lines 8 and 9)
that, in the running example, corresponds to ‘return all
temperature sensors that are reliable, i.e., with the aver-
age score of validation tests at least 90%’; and sub-query
over the streaming data (Lines 11-17) that, in the running
example, corresponds to ‘whose measurements within the
last 10 min Pearson correlate by at least 0.75 to measure-
ments reported by a reference sensor last year’. Moreover,
in Line 1 the namespace that is used in the sub-queries
is declared, i.e., the URI of the Siemens ontology, and in
Line 3 the pulse of the streaming sub-query is defined.

3.2. Syntax and Comparison to other Languages

We now enumerate the main clauses of STARQL and
illustrate them using the query in Figure 3:

CREATE PULSE clause declares a global time tick specified
by an update frequency and a starting point (here set
to NOW to specify that the streaming starts with the
registration of the query). The pulse determines the
time points NOW (as referenced in line 6 of 3) at which

© 0 N o« A W N e

I S S O S
o ok W N = O

-
]

PREFIX ex : <http://www.siemens.com/onto/gasturbine/>

CREATE PULSE examplePulse WITH START = NOW, FREQUENCY = 1min

CREATE STREAM StreamOfSensorsInCriticalMode AS
CONSTRUCT GRAPH NOW { ?sensor a :InCriticalMode

FROM STATIC ONTOLOGY ex:sensorOntology, DATA ex
WHERE { ?7sensor a ex:Reliable }

FROM STREAM sensorMeasurements [NOW -
referenceSensorMeasurements lyear
USING PULSE examplePulse

:sensorStaticData

imin, NOW]-> . eo.
<-[NOW - 1m* , Nu.'1-> 1sec,

SEQUENCE BY StandardSequencing AS MergedSequenceOfMeasur mente

HAVING EXISTS i IN MergedSequenceOfMeasurementes

(GRAPH i { ?sensor ex:hasValue 7y. ex:refSensor er:ha-. lue 7z })

HAVING PearsonCorrelation(?y, ?7z) > 0.75

Figure 3: Running example query expre. 1 in STARQL

the stream data are outputted. This global output
time points are necessary as a STARQL query may
refer to multiple streams with different slides.

CREATE STREAM clause declares the name of the outpu.
stream. In our example the output stream is called
StreamOfSensorsInCritical Mode.

streams, given by an execution frequency, e.g., 1min
an.. its absolute start and/or end time, e.g., NOW. The
pulse is a global clock that determines the output
times points of the stream query. The main purpose
of the pulse parameter is to align the different refer-
enced streams which may have different (local) slide
and range parameters.

SELECT/CONSTRUCT clause defines how the output stream WHERE clause declares a static conjunctive query expressed

declared in the previous clause should b . for. ~d.
STARQL allows for two types of output: “e SELE T
clause forms the output as simply the lis s of v =i ple
bindings, while the CONSTRUCT clause ¢ finr 5 the out-
put as an RDF graph that further ca.. ¥ str ced in
an RDF store or sent as input to #.1other " ARQL

as a SPARQL graph pattern. The output variables
of this query identify possible answers over the static
data. In our example, the query is Reliable(z) where x
corresponds to ?sensor in the graph pattern ‘?sensor
a ex:Reliable’.

query. In our example, we form t} s o..'~ut as a set of ~ SEQUENCE BY clause defines how the input streams should

data assertions of the form A(b), thus making an RDF
graph consisting of all sensor. (i. ., ?sensor) that
function in a critical mode (i.e, ~v.InCriticalMode)
and are determined by the wo sub- -ieries.

FROM STATIC/STREAM clause ac !.res nput static ontol-
ogy and data and defi- .. strea. .ing data with win-
dow parameters usii g the start and end value,
e.g., ‘[NOW - 1min, L"W]’, -5 well as a slide pa-
rameter, e.g., ‘-~ .sec. In our example, we
have the static intology ex:sensorOntology and
data DATA ex:sen orSt .ticData and two streams:
sensorMeasu: ~-~nts of live sensor measurements
and also refer. nc :SensorMeasurements of recorded
measurements of he reference sensor. Note that the
recorded sensor uses a set back time of one year, that
is, values from one year ago are correlated to a live
stream.

USING clause defines the periodic pulse for the input

be merged into one and gives a name to the resulting
merged stream. Using the built-in standard sequenc-
ing strategy results in a merged stream were all and
only those stream data with the same timestamp are
put into the same state (named RDF graph).

HAVING clause declares a streaming query. It can

contain various constructs, including a conjunc-
tive query expressed as a graph pattern, applied
over all elements of the merged stream that have
a specific timestamp identified by an index. In
our example the query ‘?sensor ex:hasValue 7y.
ex:refSensor ex:hasValue 7z’ which is applied at
the index point ‘i’ of the merged stream and re-
trieves all measurements values of the candidate sen-
sor (i.e., 7?semnsor) and the reference sensor (i.e.,
ex:refSensor). In the HAVING clause one can do
more than referring to specific time points: one can
also compare them by evaluating graph patterns on
each of the states or just return variables mentioned

in the graph pattern, while restricting them by log-
ical conditions or correlations. In our example, we
verify that the live values 7y of the candidate sensor
are Pearson correlated with the archived values 7z of
the reference sensor with a degree greater than 0.75.

We also note that STARQL distinguishes between two
kinds of variables that correspond to either points of time
and their arrangement in the temporal sequence, or to the
actual values defined by graph patterns of the HAVING or
WHERE clause. Variables of different kinds cannot be mixed
and points in time cannot be part of the output. Note
that the state based relations of the HAVING clause are
safe in the first-order logic sense and can be arranged by
filter conditions on the state variables. This safety con-
dition guarantees HAVING clauses are domain independent
and thus can be smoothly transformed into domain inde-
pendent queries in the languages of CQL [30] and SQL®,
which is our extension of SQL for stream handling (see
Sec. 6 for more details).

For other features of STARQL we refer the reader to
[28, 19]. A comparison of STARQL with state-of-the-art
RDF stream languages and engines is given the Sect. 9 on
related work.

3.8. Semantics

Intuitively, the semantics of STARQL combines oper.
and closed-world reasoning and extends snapshot seman-
tics for window operators [30] with sequencing semar. s
that can handle integrity constraints such as functionality
assertions. In particular, the window operator in » -~hina-
tion with the sequencing operator provides a s .quence of
datasets on which temporal (state-based) reason.. ~ can e
applied. Every temporal dataset frequently produce.. by
the window operator is converted to a sec -enc . of /pure)
datasets. The sequence strategy determir ;s ho. th times-
tamped assertions are sequenced into ds ~sets. In the case
of the presented example in Figure 3, che cu ~en sequenc-
ing method is standard sequencinc o sertions with the
same timestamp are grouped into t" e se ne dataset. So, at
every time point, one has a sequence . - datasets on which
temporal (state-based) reasoni’ g c# 1 be applied. This is
realised in STARQL by a sort. ! i st-o7 der logic template
in which state stamped grapr natte. » are embedded. For
evaluation of the time sequ 2nce, t. < graph patterns of the
static WHERE clause are mix 'd into ach state to join static
and streaming data. N-' tha. 5 LARQL uses semantics
with a real temporal dmensi n, where time is treated in
a non-reified manner « * an ar ditional ontological dimen-
sion and not as ordinary aucribute as, e.g., in SPARQL-
Stream [9].

A formal denotatic ral semantics of STARQL can be
found in [37]. From the implementation point of view, an
operational semantics is more helpful—at least it gives a
different perspective on the intended semantics of the win-
dow. A full operational semantics along the lines of [3§]
is planned for future work. We illustrate the operational

10

CREATE STREAM S_{out}

FROM Sin [NOW-wr, NOW' > sl

USING PULSE WITH STARKl = 5. FREQUENCY = fr

Figure 4: Template querv for 1. stration of operational semantics

semantics of the win. ~w in our terminology in order to
make clear twe pomnts: Why is the snapshot-semantics of
the window ch sen in 1 1e way described in [37] and illus-
trated in the ex. ~nl- pefore? Why dow we need a pulse
declaratior ¢

Conside. *'e qu ry template given in the listing of Fig-
ure 4. L.* tin. - _xp; = NOW-wr stand for the left end of
the window, .-here wr is a constant denoting the window
range, nd ti7 .eExp, = NOW stand for the right end. We
distu. misu vetween a pulse time ¢,,sc and a stream time
t... (F more than one stream one would have more lo-
Ca. “tream times.) The pulse time t,,5c evolves regularly
accora...g to the frequency specification,

tpulse = St —> st + fr — st +2fr — ...

L. contrast, the stream time ¢, is jumping/sliding and is
letermined by the trace of endpoints of the sliding window.
More concretely, the evolvement of ¢4, which can be easily
implemented, is specified as follows:

IF tstr +m x sl < tpulse

tstr tstr +m X sl.

(for m € N maximal)

The window contents at t,.se is given by:
{triple(t) € Sin | totr —wr <t <tyr}.

Note that the following always holds: s, < tpuise. This
is a crucial point since it enables STARQL to be used for
both historical reasoning and stream reasoning. Indeed,
having always tg, < tpuse guarantees that applying the
window on real-time streams does not give different stream
elements than when applying the window on a simulated
stream from a DB with historical data. In other words, if
tstr > tpuise, then the window in a historical query would
contain future elements from [tpyuise,tser] Whereas in the
real-time case the window cannot contain future elements
from [tpulsey tstr]~

We now illustrate tp,;sc and tss,- on our running example.

Example 5. For the STARQL query in the listing of
Figure 5 one gets the following evolvement of the pulse
time and the streaming time:

0s — 2s — 4s — 6s — 8 — 10s — 125 —
0s - 0s = 3s — 6s — 6s — 9s — 125 —

tpulse :
tstr :

CREATE STREAM Sout AS

NOW] -> 3s
Os, FREQUENCY = 2

FROM STREAM Sin: [NOW-3s,
USING PULSE WITH START =
s

Figure 5: Query illustrating operational semantics on one stream

CREATE STREAM Sout AS

FROM

STREAM Sinl [NOW-3s, NOW]->3s,
STREAM Sin2 [NOW-3s, NOW]->2s
USING PULSE WITH START = Os, FREQUENCY = 2

s
SEQUENCE BY StdSeq AS seq

Figure 6: Query illustrating operational semantics on two streams

The example query in the listing of Figure 6 refers to muv’
tiple streams and is intended to illustrate the synchroniza-
tion effect of the pulse:

tpulse : 05 — 25 — 4s — 65 — 85 — 105 — 125 —
tostry 0 058 = 08— 35— 6s—=6s— 9s — "2, »
tstry 05 =25 =+ 45 — 65 = 85 = 10s — 125 —

4. SQL®: An Analytics-aware Rels ion . Cuery

Language for Static and Streaming . ata

We introduced SQL® language as a'. ex. ~nsion of SQL
with operators for handling streamir~ data and for com-
bining streaming and static data. ¢ QL' contains a num-
ber of important pre-defined funcuv. », for data analysis
and allows to introduce new s .ch fun. ions defined by
users. SQL® relies on the semw .tic, of Tontinuous Query
Language (CQL) [30], an express:. * SC _-based declarative
language for registering cor mmuous queries against streams
and updatable relations. Eth SQ1 ® and CQL adopt spe-
cific operators for mapping s. *»ar, of information to finite
relations via a window ng me-hanisms.

4.1. Data Model and Euw.

We define our a ta aovuel and execution architecture
following the terminc Hgy that has been presented in the
bibliography, e.g. Storn.’s data model and execution archi-
tecture [39] as well as the computational model presented
in [40].

Within the SQL® data model, a topology describes the
flow of streaming and static records between computational

= on Architecture

Reads from
Source &
Adds Wid
Attri ute

Source Sm— ———————| AVG value

(a) Tupology

|
|
l

2
1
1

]

..Jeasurement
(b) Dataflow

Wid e 1une Average ®

CREATE ST .EAM

SELECT =

FROM (TTMESLIDIN’ JINDOW timewindow:3 frequency:3
SELECT
FROM (http

<. 1_from_source AS

http://ip:port/streaml’));

CREATE "TREA' avg_value AS
SEL. T wi., AVG(value)
9 FROM r. A_from_source

e E X)

fo I e A N

SELL ™ * FROM avg_value;

(c) Syntactical representation

Rigure 7: A simple SQL® topology, its corresponding dataflow, and
its syntactical representation

nodes. Computational nodes are logical processing units
that have one or more live-stream or static-data inputs and
one output. They execute a set of operations on their in-
put to produce the corresponding output. Computational
nodes can be classified as either having exclusively live-
stream inputs, exclusively static-data inputs, and hybrid
inputs. Similarly they can be classified to being streaming
or static, based on the form of their output.

A special type of computational nodes are those respon-
sible for communicating external sources to our topology,
similar to Storm’s spouts. These input nodes:

(i) access external sources, e.g. access live streams from
OPC and HTTP servers

associate each external source to a time-sliding win-
dow mechanism, i.e. a mechanism of forming (pos-
sibly overlapping) sub-sequences of tuples (windows)
at pre-determined time instances;

(i)

associate each record accessed from some external
source to a temporal identifier and window identi-
fiers.

(ii)

Example 6. Figure 7a shows a simple topology. The in-
put node receives information from a stream of temperature
measurements acquired from a single sensor on some power

11

generating turbine. The initial data contain the tempera-
ture measurement in Celsius degrees and the time that this
measurement was acquired. The input node processes the
records arriving from the source, acknowledges the tem-
poral identifier indicated by the source, and relates each
measurement to a time-sliding window mechanism that as-
sumes a window of size 10 sec is produced every 10 sec.
Then a second computational node calculates the average
temperature value grouped by windows. The result is stored
in the table as in Figure 7b.

4.2. A Declarative Language for Computations

EXASTREAM takes advantage of existing Database Man-
agement technologies and optimisations by providing a
declarative language, namely SQL®, extending the SQL
syntax and semantics for querying live streams and re-
lations. In contrast to popular distributed DSMSs, such
as Storm!, Flink?, Kafka®, Heron?, and Spark Stream-
ing® that offer an API that allows the user to submit
dataflows of user defined operators, the user can define
complex dataflows using a declarative language. The sys-
tem’s query planner is responsible for choosing an opti-
mal plan depending on the query, the available stream/
static data sources, and the execution environment. It
should be noted that several state-of-the-art systems for
Big Data processing are adopting a similar approach, pr.
viding for declarative SQL-like languages for data pro-
cessing. Apache Spark allows to query structured “.'»
inside Spark programs using SQL queries, while KSQL ..
a streaming SQL engine that enables real-time data pro-
cessing against Apache Kafka. The query optim’ er ni. kes
it possible to process SQL® queries that ble. 1 strea s
with static and historical data (e.g., archived strea. <

In order to incorporate the algorithmic lc zic f r extend-
ing SQL into SQL® several operators and su. - men s have
been implemented:

CreateStream: The create stream <tatemen. allows to
add a new computational nod: to wur topology that
outputs a live stream. The ¢, ~t stream statement
always contains a Select sub juery 1.t determines the
operations that are perfor.ned on *the input records.
Input records are identifiea . the From clause of the
subquery.

TimeSlidingWindow : The speci‘.c operator is imple-
mented as a user d ..uied tunction, groups tuples from
the same time w ndow ¢ 1d associates them with a
unique window ide. tifier .orresponding to the Wid at-
tribute. The ‘“eSlidgingWindow operator produces
results in the ¢ de of Wid and Time attributes. The

L Apache Storm. http://storm.apache.org

2 Apache Flink. http://flink.apache.org

3 Apache Kafka. https://kafka.apache.org

4Twitter Heron. https://apache.github.io/incubator-heron
5Spark Streaming. https://spark.apache.org/streaming

12

operator is used by input computational nodes to cre-
ate the corresponding window identifier.

WCache : WCache is an SQL® operator that when applied
between two streams it is 1. nslated to an equality
join between the two 'veams on their correspond-
ing Wid attribute. “vCa he also creates the index-
ing structures for ans. - ring efficiently equality con-
straints on the Wia ~nd ..ime attributes when pro-
cessing infinite ... ams. The WCache operator, its
related indexe . ans co. esponding optimisations are
presented in Sec " m 7.1.1.

It should be nc ted tha the aforementioned SQL® opera-
tors are based o. the - smantics of the CQL language [30].

Example 7. a1 F: jure 7c we see an example of the SQL®
languag The r esented query correspond to the topol-
ogy shown .. Figure 7a. The create stream statement
creal. ~ the tv o different computational nodes responsi-
ble [~ rew ' .g from the data source (read_from_source)
and con., “ting the average value per window (avg_value).
..~ we see the read_from_source computational node
uses . "o user defined functions: http reads the stream
‘hat are pushed from an HTTP server; and

.meslidingwindow is responsible for creating the win-
do 1s based on the windowing mechanism expressed by
tne timewindow and frequency parameters. The fre-
quency attribute defines that a window will be created ev-
ery 3secs and the timewindow defines that the length of
the window is 3 secs. The avg_value computational node
has read_from_source as its input and outputs a new
stream that contains the average value per window. Fi-
nally the select query is the one that shows the results of
the avg_value stream.

au

5. Bridging STARQL over DL-Lite’f® and SQL®:
Mapping Language and Query Transformation

In this section we explain how to bridge STARQL and
SQL®. To this end we start in Section 5.1 by reviewing
the classical OBDA approach to bridge ontological and
data oriented queries with the help of mappings (we give
their syntax and semantics) and a two-stage query trans-
formation procedure (we also review correctness of this
procedure). Then, in Section 5.2 we explain how we ex-
tend the classical mappings and the query transformation
procedure to account for the features of STARQL queries
Qstarql ~ QStatCQ A QStream (recall Equation (3)) and ag-
gregate concepts of DL-Lite’f®. Subsequently, we give
an example-driven but formal explanation of the query
transformation procedure for static queries Qstatcq in Sec-
tion 5.3 and of streaming queries Qsiream in Section 5.4.
Afterwards, in Section 5.5 we discuss correctness of the
query transformation procedures. Finally, in Section 5.6
we discuss practical advantages of aggregate concepts.

5.1. Background on OBDA

We now present notions from traditional OBDA and re-
fer the reader to [1, 41] for further details. A database
schema S is a finite set of relational symbols P with as-
sociated arities and associated attribute domains given by
ar(P) and domp(i),i € [1,ar(P)], respectively. For sim-
plicity, we assume that S is fixed and that the only at-
tribute domains are the set of individuals I" and the set of
data values D introduced in Section 2. A database instance
B is a finite set of assertions of the form P(dy, ..., dur(p)),
where P is a relation symbol in § and each d; is from
domp(i), i € [1,ar(P)]. We view a SQL query sql of arity
k as a function that assigns to every database instance B
a finite subset ans(sql, B) of (I'U D).

Let £ be an ontology language and O and ontology from
L. Following the practice of OBDA we rely on the so-
called global-as-view (GAV) mappings [1] that relate each
(atomic) ontological term from O (i.e., concept, relation,
or attribute) to a query over §. Formally, a GAV mapping
is of the form

S(7) = sql(7), (4)

where S is an atomic concept, an atomic role, or an atomic
attribute, sql is a SQL query over relation symbols in &
with appropriate arity and attribute domains, and Z is
tuple of variables with no repetitions. We denote with M
a set of GAV mappings.

An OBDA setting is a triple of the form (B, M,C’
where B is a database instance, M is a set of GAV map-
pings, and O is an ontology from L. The semar ..cs . € an
OBDA setting is defined on the basis of first-- ~der int r-
pretations. An interpretation Z is a model of (B,..* C, if
Z = O and for every mapping S(%) < sq! &) i+ M and
every tuple £ of elements from T'U D, if ."= ans(- ql, B),
then tZ € S7.

The semantics of query answering ‘a “BDA is based
on the notion of certain answers. Let ¢(Z) .- conj(Z) be
a conjunctive query of arity k& over the vocabulary of O.
The set of certain answers to ¢ « or an OBDA setting
(B, M, 0) is defined as

cert(q, (B, M, 0)) = {t € (T LU | _ = conj({)
for -ach wndel Z of (B, M, O)}.

Query answering in OBL." ic [ealised by a two-stage
transformation proce .ure t’at reformulates the input
query g to a query ¢ s. that tl > answers to the latter over
B coincides with the cerv. = answers to g over (B, M, O).
This transformatic ~ 15 . . “hically depicted below.

r_;'rit_e> _ unfold . (5)
q S q —>M q

In the first stage of the transformation, query ¢ is reformu-
lated using the ‘rewrite’ procedure to a query g over O that
incorporates the knowledge expressed in O; in the second

stage, ¢ is further reformulated using the ‘unfold’ proce-
dure to a query ¢ over B that additionally incorporates
the mappings M. The correctn sss of such a reformulation
is usually shown on the basis ¢ the virtual dataset Dz,
which is the dataset obtainec fron. ? and M by materialis-
ing the answers ¢ in ans(sa' 7 as assertions S(#), for each
mapping S(Z) < sql(Z) i. M The virtual dataset allows
to cast the problem of cou. ating the certain answers to
q over (B, M, O) as the .. ~blew. of computing the certain
answers to g over tb_ ¢ 'tolog, defined by the union of O
and Dy g, that is cert g, (", M, O)) = cert(q, O, D).
Then, to show coric fness of the reformulation proce-
dure depicted .1 fquation (5), one shows that the an-
swers to the r writing 7 over the dataset D4 g coincide
with cert(q, 0,2« and, subsequently, that these an-
swers coin «de v*+h the answers to the unfolding ¢ over
the datab: e ".sta’ ce B. This is summarised symbolically
in the fu 'owin~ - juations:

cert ¢, (B, M, O)) = cert(q, O, D .B) (6)
= ans(q, Da,5)
= ans(q, B).

™ M] it was shown that the query transformation pro-
~e qure described above for conjunctive queries is correct
w.en L is DL-Litey. In the following we show how we
o “tend this result to DL-Lite’f® and STARQL queries.

5.2. Extending OBDA for DL-Lite’f® and STARQL

We now discuss how we extend mappings and give a high
level overview of an extended two stage transformation
procedure.

Mappings. STARQL queries are defined over DL-Lite’f®
ontologies and have complex constructs related to stream
processing. Thus, the classical mappings should be ex-
tended to account for these features and we consider two
types of mappings:

e schema-mappings: from atomic concepts, roles, at-
tributes, as well as from aggregate concepts to SQL
queries over relational schemas of static, streaming,
or historical data, and

e construct-mappings: from the constructs of the
streaming queries of STARQL into SQL® queries
over streaming and historical data. These are built
on the basis of schema-mappings by compiling in the
pulse, slide, and the sequencing constructs into them.

For the syntax of construct-mappings we refer the reader
to [42, 28], while here we will exemplify them as follows
and sketch how they are compiled n the basis of schema
mappings in Section 5.4.

Example 8.

GRAPH i {?sensor ex:hasVal Ty}
SELECT sid as 7sensor, sval as Ty, wid as i
FROM
[SELECT x FROM
(TIMESLIDINGWINDOW
timewindow : 7
frequency : sl
SELECT x FROM(http ip—of—M smit)

)
I;

In this example, a named graph template is mapped to an
SQL® query. The mapping relies on parameters r and s
from STARQL queries to accomplish the correct mapping
of sates i to time points in SQL®.

The syntax of schema-mappings is the same as the syn-
tax of GAV mappings given in Equation (4) with the addi-
tional restriction that query sql in Equation (4) mentions
a top-level DISTINCT specifier whenever S is a concept or
a role. The reason for imposing this restriction stems from
the fact that DL-Lite’f® interprets concepts and roles as
sets, while it interprets attributes as bags. In the followin,_
we describe how the syntax and semantics of OBDA need
to be extended to account for bags.

Semantics of Extended OBDA. A bag database instance
B is a finite bag over the set of assertions of che 1 *m
P(dy,...,da(p)), where P is a relation symbc’ in S a d
each d; is from domp(i), i € [1,ar(P)]. We view . “QL
query sql of arity k as a function assignin ; to :verv bag
database instance B a finite bag ans(sql, B) « - ¢ th' set of
tuples in (I'U D)*. An extended OBD. setting ‘s now a
triple (B, M, O), where B is a bag date ase mstance, M is
a set of schema-mappings and of cons*nct-mappings, and
O is a DL-Lite’§® ontology.

We now define the semantics of ex. 1ed OBDA settings
for schema-mappings and refer .he reau.: to [43, 28] for
the semantics of construct-ms opir gs. et (B, M, Q) be
an extended OBDA setting whe.. M s a set of schema-
mappings. We say that a J L-Lite’f® mterpretation Z is a
model of (B, M,0) if T = O and . satisfies the following
two conditions, where S ran,~< ~ er atomic concepts and
atomic roles, and F' re ages o er atomic attributes:

1. For every S(Z) < .~I(#) .n M and every t over T, if
ans(sql, B)(#) " +hen £ € ST;

2. For every £ in ~ x D it holds that FZ(t%) >
> b (@) sal(z)em ans(sal, B)(T).

Let us clarify now the above definition. Recall that
when B is a bag database instance, ans(sql,B) is de-
fined as a bag of tuples; thus expression ans(sql, B) ()

14

denotes the multiplicity of # in bag ans(sql,). Condi-
tion 1 above then stipulates that if M contains a map-
ping S(¥) « sql(¥) and tuple appears in the answers
to query sql over B, then (t - interpretation of) ¢ must
also appear in the extension of S . ~der Z. Therefore, this
condition together with t}. ~quirement that Z must be
a model of O constitute only a reformulation of the def-
inition of models in stanu. | OBDA settings. The dif-
ference in the two dehi. “ions stems from Condition 2,
which stipulates ths. e mu.iiplicity of (the interpreta-
tion of) a tuple £ i* the 2xt sion of an attribute F under
Z must be at least «. large as the sum of the multiplic-
ities of # in ths pags ans(sqly,B),...,ans(sql,, B), where
F(Z) « sqly(a),..., F %) < sql,,(Z) are all mappings in
M populating a.‘ribr e F. The intuition behind this def-
inition is t) sinrlate the semantics of SQL according to
which the m cipli ity of a tuple in the result of a query
correspc. Is to +' ¢ number of different proofs for that tu-
ple.

Giv.~ the .efinition of models above, the definition
of ¢ *ain w.swers for conjunctive queries over extended
OBDA st *ings coincide with the one over standard OBDA
sc *ings modulo the notion of (virtual) datasets. We now
extenu the notion of virtual datasets to extended OBDA
set g5, The virtual dataset Dag p corresponding to an
¢ tended OBDA setting (B, M, Q) is defined as the bag
sav.sfying the following two conditions, where ¢ ranges over
tuples of elements in I'U D, .S ranges over atomic concepts
and roles, and F ranges over attributes:

Da,s(S() = S(f)(_T(ﬁé)eM{a”S(SOI'?B)@}»
Dums(F(t) = > ans(sql, B)(£).

F(Z)<-sql(Z)eM

Given the similarity in the definitions of models and vir-
tual datasets for extended OBDA settings, it is straightfor-
ward to show that Equation (6) holds for extended OBDA
settings or, in other words, that the certain answers to
conjunctive queries g over (B, M, Q) coincides with the
certain answers to g over the union of the DL-Liteffg on-
tology O and the virtual dataset Dy z.

Proposition 3. For any extended OBDA
(B,M,0) and any conjunctive query q, we
cert(q, (B, M, O)) = cert(q, O, Da,8)-

setting
have

We now give an example illustrating query answering
over extended OBDA settings.

Example 9. Let S be a database schema comprising the
relations S(TRB,SNS, OP, TMP) and T(SNS,RT), where
S records the operational temperature of semsors and T
records the fraction of measurements the system has re-
cewved from a sensor. Thus, an assertion S(t,s,1,50)
means that sensor s, which is attached to the turbine t, is
operational and has temperature 50 °C at some time point,
whereas an assertion T(s,0.3) means that only 30% of the
total number of measurements sensor s transmitted over a

predefined period of time were eventually recorded in the
system. Let B be the bag database instance over S

B= {]S(to,So,0,0) : 1,S(Yf1,817 1,50) : 1,
S(tg, S2, 1, 25) . 1, S(tg, 83, 1, 50) : 1,
T(s0,0):1,T(s1,0.9) : 1, T(s2,0.98) : 1, T(s3,0.9) : 1]}

Let also M comprise the mappings

Reliable(x) <+ sqly (z),
testScore(x,y) + sqly(z,y),
testScore(x,y) < sqls(z,y),

where the SQL queries sqly,sqly, sqls are defined as

sql, (z) : SELECT DISTINCT SNS AS z

FROM S WHERE OP =0,
sqly(z,y) : SELECT SNS AS z, (1 — TEMP/500) AS y

FROM S WHERE OP =1,
sql;(x,y) : SELECT SNS AS z, RT AS y

FROM T WHERE RT > 0.

Last, let O be the DL-Litef® ontology given in Equa-
tion (1) of Example 2. Then, the triple (B, M,0O) de-
fines an extended OBDA setting that populates the role
Reliable with non-operational sensors and populates at-
tribute testScore with operational sensors assigned a scor=
that either denotes how far the temperature of the turbine,
as measured by the sensor, is from its mazimum omnera-
tional temperature (currently assigned to 500 °C) or he
fraction of the measurements of the sensor successfully
recorded in the system.

We next employ the correspondence between he OBi A
setting (B, M, O) and the virtual dataset Dag 5 110 ~omy it-
ing the certain answers to query q(z) :- Re.iable(x) (see
Proposition 3). Observe that ans(sqly, B, = {so : 1},
ans(sqly, B) = {(51,0.9) : 1,(s2,0.95) : L, (s5,205) : 1]},
and ans(sqls, B) = {(s1,0.9) : 1,(s2,0.9, - 1,(s3,0.9) : 1},
thus, by definition of virtual datasets, D ~orresponds
to the dataset defined in Example . "y Fxample 4, we
have that cert(q,O,Dap.8) = {s0, .S, thus, we derive
that cert(q, (B, M, 0)) = {so0, s1. %2}

Query Transformation Procee. ~e: QOve view. Due to the
separation property (Equation (5, . STARQL queries
we can define a transforn ition j -ocedure for STARQL
queries as follows:

rowrite

Qstarql %QStatCQ A Q tream)—> Q/StatUCQ A Q/Stream

(7)

unfold 7
Ao ’
M SQL

: “*/S/tream ~ qul$~

During the transforn. tion process the static conjunctive
Qstatcq and streaming «Jsiream parts of Qstarql, are first in-
dependently rewritten using the ‘rewrite’ procedure that
relies on the input ontology O into the union of static
conjunctive queries Q’StatUCQ and a new streaming query
QStream> and then unfolded using the ‘unfold’ procedure

15

that relies on the input mappings M into an aggregate
SQL query Qaggsqu and a streaming SQL® query Qg com
that together give an SQL® ‘uery Qse, ie., Qsqo =
unfold(rewrite(Qstarq)). In th* transformation procedure
we rely on the rewriting procedure * [1] while unfolding is
different in that it relies on two new types of mappings.

In what follows we exe apli’; the transformation proce-
dures for static and strean.. ‘o queries, discuss their cor-
rectness and also discuss -~racuical benefits of aggregate
concepts.

5.8. Transformation, ~ Static Queries

In realising t’.e nirst stage of the query transformation,
we rely on the rewriti g procedure of [1], called Perfec-
tRef, for which —e 2 sume familiarity. As a reminder,
recall that Perfe-*Ref takes as input a conjunctive query
q and a L "-7tey ontology and outputs a union of con-
junctive merie~ | satisfying cert(q, O, D) = ans(g, D), for
every datase. D. Each conjunctive query in ¢ is derived
from , by ap lying to ¢ a series of (i) rewriting or (ii)
unin. “tion ,eeps according to which (i) either an atom «;
is renlace ' by an atom ag whenever there is an inclusion
as’ ~m Cy C Cp in O such that C; unifies with a; or (i)
two av.ms are unified into one with the goal of enabling
a 7 :w.iting step that would otherwise not be applicable.
2" conjunctive queries over DL-Lite’s® both of these steps
are required and are indeed performed in the same fash-
ion. The only exception is the treatment of atoms based on
aggregate concepts and of attributes for which DL—Liteffg
adopts a closed-world semantics, and thus, PerfectRef must
leave them intact. Indeed, due to the imposed syntactic
restrictions on DL-Lite’s®, such constructs can occur only
on the left-hand side of inclusion axioms, hence, the rewrit-
ing step is never applicable, whereas the unification step,
which can be only applied to two atoms mentioning an at-
tribute, does not enable further applications of a rewriting
step either.

To illustrate the above discussion, we apply Perfec-
tRef to the example ontology in (1) and the query
q(z) :- Reliable(x) to obtain query

q(x) = Reliable(z) V (>¢.9 (min testScore))(x).

(8)

Before stating the correctness of the rewriting, we in-
troduce the class of unions of conjunctive queries of ar-
ity k as the set of all queries of the form ¢(Z) = ¢ (%) vV
-+ V qn (&) where each ¢; is a conjunctive query of arity k
qi(Z) :- conj,;(Z). We define the answers to q over a dataset
D as the set

ans(¢,D) = {tc (TUD)* | T = \"/ conj, (t)

i=1
for all DL-Lite’{® models Z of D}.

Proposition 4. For any DL-Lite{* ontology O, any

dataset D, and any conjunctive query q, where q is
the output of PerfectRef on inputs q and O, we have
cert(q, 0, D) = ans(q, D).

In realising the second stage of the query transforma-
tion, namely, the unfolding of ¢, we define the output of
procedure unfold on query atoms S(f) and F(t, s), where S
is an atomic concept or role and F' is an atomic attribute,
and then extend it to atoms of the form (o,.(agg F))(¢)
and to (unions of) conjunctive queries.

For a fixed set of schema-mappings M and any atom
T(t) with T € CUR U A, we define

unfold(T(t‘)):T(#) P sal(6(1)), (9)

where op = UNION if 7€ CUR and op = UNION ALL if
T € A, and @ is a substitution unifying atom T'(£) with the
atoms T'() appearing in the left-hand side of mappings in
M. Given an atom (o,(agg F))(t), we define

unfold((oT(agg F))(t)) = sqlor(agg unfold(F(t,y))(t)a (10)

where y is a fresh variable and expression sAls, (agg «) (t) is
the query defined in (2). Last, given a conjunctive query
q(Z) - conj(Z), we define unfold(q(Z)) to be the query
obtained from ¢ by replacing every atom « in conj(Z)
with unfold(«), while for a union of conjunctive queries

q(Z) = q(Z) V-V g, (T), we define

unfold(¢(Z)) = unfold(g; (Z)) UNION -
UNION unfold(qn(f)). (11)

To illustrate the case of unfolding of an aggregate atou..
consider the set of mappings M given in Example 9 and
the atom (>g.9 (min testScore))(x). By (10), .0 ov'ain
unfold((>0.9 (min testScore))(z)), we first nee to obte n
unfold(testScore(x, y)), where y is a fresh varizble. v J),
this latter expression corresponds to the un’on ¢ the SQL
queries in M defining testScore, that is,

unfold(testScore(x,y)) = sqly(x,y) UN' U " ALL sqlg(z, y).

Letting now E = >¢.g(min unfold(t st> ore(x,y)))(z), we
obtain the unfolding unfold((>0.9 min testScore))(z)) as
the SQL query sqlg(z) defined i+ (2):

sqlg(z) = SELECT z FROM
(sqly(z o UNe ¢ ALL sqls(x, y))
GROUP BY 2 H:'/ING min(y) > 0.9.

Finally, the reformul-'"on .. yuery ¢(x) :- Reliable(z)
over the database sch ma de. 1ed with respect to the on-
tology O and mapping * M sr acified in Example 9 corre-
sponds to query () below chat is obtained from ¢(z) by
unfolding its rewrivmg («, specified in (8):

z))
unfold(Reliable(x)) UNION

(4
(
unfold ((>¢.9 (min testScore))(z))
= sqly(z) UNION sqlg(x).

4(x) = unfold

Let us now stress the distinction between the SQL oper-
ators UNION and UNION ALL. The former computes the
set union of its operands and removes duplicate tuples.
The latter computes the so-c' led arithmetic union of its
operands resulting in a bag that -=signs to each tuple a
multiplicity corresponding ‘. “he sum of the multiplicities
that this tuple has in th: ba | operands. Given that we
care for aggregating over ..’ ributes, the use of operator
UNION ALL is crucial in -nfoluing an attribute. On the
other hand, the op¢.a. r of JNION is more appropriate
for interpreting thr con-.ecu. e of disjunction appearing in
rewritings of queries, ‘here the semantics is set-based.

The followin , example verifies the correctness of the
transformatior. describ d above.

Example 0. necall the extended OBDA setting
(B,M,0) spr.fie! in Example 9 and the certain an-
swers tr query o'c) :- Reliable(z) over (B,M,0). We
next comp. ‘s the answers to ¢ over the bag database
insta~ce B. Recall that the answers to queries sqly,
sql, anw 7' over B have already been computed in Ex-
ample © We next compute the answers to the sub-
. o1y sqig\z,y) UNION ALL sqls(z,y) mentioned in the
FRU. " clause of query sqlg. These correspond to the
ver "$1,0.9) 1 2,(52,0.95) : 1,(s2,0.98) : 1,(s3,0.5) :
' 83,0.9) : 1[}; thus sqlg evaluates to bag {s1 : 1,2 : 1]}
C.mbining the above results, the answers to ¢ over B are
y.oen by the bag {so : 1,81 : 1,89 : 1]}

We are now ready to prove correctness of the refor-
mulation procedure for conjunctive queries over extended
OBDA settings.

Proposition 5. For any extended OBDA setting
(B, M,0), any conjunctive query q of arity k, and any
tuple t from (I' U D)*, where § is the output of Perfec-
tRef on inputs q and O while § is the result of unfolding q
with M, we have that T € cert(q, (B, M, O)) if and only if
ans(q, B f) =1.

Proof. (Sketch) By Propositions 3 and 4, we have
cert(q, (B, M,0)) = cert(q, Qa DM,B) = ans(q, DM,B)»
thus, it suffices to show that ¢ € ans(g, DM,B) if and only
if ans(g, B)(t) = 1, for every ¢ in (I'U D)*. Given the one-
to-one Correspondence between the conjunctive queries in
g; in q¢ and the SQL queries sql; in the union of SQL
queries in ¢ as well as the one-to-one correspondence be-
tween an atom « in ¢; and its unfolding unfold(«) in sql;,
it suffices to show that £ € ans(a, Dag) if and only if

ans(unfold(a), B)(f) = 1, for each such atom. This can
be shown easﬂy by contrasting the definition of virtual
datasets with Equations (9), (10), and (2). O

5.4. Transformation of Streaming Queries

The streaming part of a STARQL query may involve
‘static’ concepts and roles such as Rotor and testRotor,
that is, concepts and roles that are mapped into static
data, and ‘dynamic’ ones such as hasValue that are

16

mapped into streaming data.® Mappings for the static
ontological vocabulary are classical and discussed above.
Mappings for the dynamic vocabulary are composed from
the mappings for attributes and the mapping schemata
for STARQL query clauses and constructs. The mapping
schemata rely on user defined functions of SQL® and
involve windows and sequencing parameters specified in
a given STARQL query which make them dependent on
time-based relations and temporal states. Note that the
latter kind of mappings is not supported by traditional
OBDA systems.

For instance, a mapping schema for the ‘GRAPH i’
STARQL construct (see Line 16, Figure 3) can be de-
fined based on the following classical mapping that relates
a dynamic attribute ex:hasVal to the table Msmt about
measurements that among others has attributes sid and
sval for storing sensor IDs and measurement values:

ex:hasVal(Msmt.sid, Msmt.sval) <
SELECT Msmit.sid, Msmt.sval FROM Msmt.
The actual mapping schema for ‘GRAPH i’ extends this
mapping as follows:
GRAPH i {?sensor ex:hasVal 7y} +
SELECT sid as 7sensor, sval as 7y
FROM Slice(Msmt, i, r, sl, st),
where the left part of the schema contains an indexed
graph triple pattern and the right part extends the . .
ping for ex:hasVal by applying a macro function Slice tha.
describes the relevant finite slice of the stream Msmit from
which the triples in the i** RDF graph in the sequc “ce
are produced and uses the parameters such as . = wind: w
range r, the slide sl, the sequencing strates, st a.. ! che
index 4. (See [43] for further details.) Due co t'.e various
possible sequencing strategies st, the represe. * «tior of the
r.h.s. in a closed pure SQL® form (not using a..; macro
function) would become bulky. Howev ¢, 1. " he sequencing
strategy is standard sequencing, the~ the neac represen-
tation as given in Example 8 resul 5. I ote that now the
mapping has a pure SQL® r.h.s.
GRAPH i {?sensor ex:hasVal "y} + -
SELECT sid as 7sen. -, s al as Ty, wid as i
FROM
[SELECT % i ROM
(TIMECZ:DINGvINDOW
timcwindow T
freque.
SSLe'.. « FROM(http ip—of—M smit)
)
I;

. sl

6Note that we refer here to elements of ontological vocabulary as
‘static’ and ‘dynamic’ in order to emphasise that it is mapped to
static or dynamic data.

17

More details on the whole transformation process can be
found in our paper [28] which concerns the completeness
and correctness of the rewritir 3 step, and in [43], which
describes the unfolding and ir nlementation step.

5.5. Correctness of Query 7 ansformation Procedures

Due to the separatica p operty (Equation (3)) of
STARQL queries Qstari & ~ <tatcQ A Qstream we define se-
mantics of STARQL qu. ‘es over DL-Lite’f® queries over
OBDA settings by se sa. tely vefining the semantics of first
static queries Qsiat @ th .0 0. streaming queries Qstream and
then combining thewn. n the epistemic fashion by making
the join betwee . tne cervain answers. Note that the epis-
temic approac. has be :n already considered for classical
OBDA settings *4l v ..en one defines semantics of query
answering .or o--ries that are more expressive than the
class of co i .ctivi queries.

There ~re, i~ .rder to show correctness of the query
transformati. 1 procedure in Equation (7) it is enough
to she ~ correr tness of two transformations: of the query
Qstar.~ anc of Qsiream. Correctness of the transformation
for Q<+ follows from Proposition 5. The main reason
tu. correctness of the rewriting process for Qsiream relies in
the se.. antics the HAVING clause: The GRAPH triples in
the w..ernal state, which are constructed in the window,
< e answered independently. This guarantees the local
rev. riting in each state. In this aspect of separated consid-
eration of states, STARQL is quite similar to the language
of TCQs in [29]. Moreover, in [28] it is shown that the
additional step of abstraction induced by the sequencing
step poses no problem in the rewriting process. Consider-
ing the unfolding process, [43] argues for its completeness
and correctness using the fact that the HAVING clauses
of STARQL implement a safe fragment of first-order logic,
as shown in [37], and hence enable a translation into SQL.

5.6. Discussion: Practicality of Aggregate Concepts

Despite the fact that one can encode aggregate concepts
as atomic with the help of mappings as discussed above,
we argue, that this encoding has practical disadvantages
compared to aggregate concepts.

Indeed, in the case of aggregate concepts, the SQL query
sqlo, (age unfold(F)) (Z) that maps E = o,(agg F) to data is
computed on the fly during query transformation by ‘com-
posing’ the mapping for the unfolded attribute F' and the
query for the ‘aggregate context’ of F, o,.(agg x), in E.
Thus, sql,, (agg unfold(r)) () is not actually stored by the
query transformation system as it depends on the defini-
tion of F' in the ontology and some relevant mappings and
may change when the ontology or mappings are modified.
At the same time, if one encodes E with a fresh concept Ag
and a mapping Ag(z) < 5Aly, (agg unfold(r))(T) and stores
them, then one would have to ensure that each further
modification in the ontology and mappings relevant to F
are propagated in sql, (agg unfold(F))(Z)-

Another benefit of using aggregate concepts instead of
aggregate queries in mappings is that the former approach

offers more flexibility in terms of modelling. Indeed, con-
sider a data property HasTemperature. One can map it to
data sources with potentially many non-aggregate map-
pings and then a knowledge engineer can define various
aggregate concepts required by applications (i.e., with avg
or max temperatures) over this property using only on-
tological terms. This approach does not require to write
mappings with complex SQL queries for each new aggre-
gation required by applications.

6. System

In this section we discuss our system that implements
the OBDA extensions proposed in Section 3. In Figure 8
(Left), we present the overall architecture of our system.
On the application level one can formulate STARQL
queries over analytics-aware ontologies and pass them
to the query compilation module that performs query
rewriting, unfolding, and optimisation. Query compilation
components can access relevant information in the ontol-
ogy for query rewriting, mappings for query unfolding,
and source specifications for optimisation of data queries.
Compiled data queries are sent to a query execution layer
that performs distributed query evaluation over streaming
and static data, post-processes query answers, and sends
them back to applications. In the following we will discu. .
two main components of the system, namely, our dedi-
cated STARQL2SQL® translator that turns STA™ Q7
queries to SQL® queries, and our native data-strea..
management system EXASTREAM that is in charge of
data query optimisation and distributed query e alua. on.

6.1. STARQL to SQL® Translator

Our translator consists of several modu’ s fc . tre isfor-
mation of various query components and -.e nc - gi- e some
highlights on how it works. The transle ~r starts oy turn-
ing the window operator of the input & TAK T query and
this results in a slidingWindowViev o. the backend sys-
tem that consists of columns for efiv ag windowID (as
in Figure 10) and dataGraphID bas ! on the incoming
data tuples. Our underlying dat sty zam 1management sys-
tem EXASTREAM already pro. de use defined functions
(UDFs) that automatically ~reate b desired streaming
views, e.g., the timeSlidin Windc v function as discussed
below in the EXASTREAM Hart of he section.

The second importar* ‘rans...mation step that we im-
plemented is the tran: tormat. \n of the STARQL HAVING
clause. In particular, v » norm ilise the HAVING clause into
a relational algebr= norma: rorm (RANF) and apply the
described slicing te hm juc 1llustrated in Section 5, where
we unfold each state ¢ the temporal sequence into slices of
the slidingWindowView. For the rewriting and unfolding
of each slice, we make use of available tools using the
OBDA paradigm in the static case, i.e., the Ontop frame-
work [6]. After unfolding, we join all states together based
on their temporal relations given in the HAVING sequence.

18

6.2. EXASTREAM Data-Stream Management System

Data queries produced by the STARQL2SQL® trans-
lation, are handled by ExX#STREAM a Data Stream
Management System (DSM,, which is embedded in
EXAREME’, a system for elastic la., >-scale dataflow pro-
cessing in the cloud [20, 27 .

EXASTREAM is built < a streaming extension of the
SQLite database engi <, tu’ing advantage of existing
Database Management tec.. *ologies and optimisations. It
provides the declar .tive '~nguage SQL® (Section 4) for
querying data stre. ms und relations. The user can define
complex dataflows in & “L® and the system’s query plan-
ner is respons’ole for ~hoosing an optimal plan depend-
ing on the quer . the ar ailable stream/static data sources,
and the exe~ tion ___.ironment. EXASTREAM’s optimiser
makes it jossi’u to process SQL® queries that blend
streams w..l. stat.c and historical data (e.g., archived
streams).

EXASTREA. s processing engine is built as a stream-
ing exte <ior of SQLite being able to execute relational
operav.~ns on worker nodes. SQLite has some distinctive
f--1 ___ l.at fit our objectives [45, 46]: (i) Manifest typing:
insuv. ~d of static attribute typing, SQLite allows to mani-
“~~t tvping where the datatype is a property of the value
its olf. This is the most beneficial for the stream processing
cc e, since we cannot know a priori a stream’s datatype.
i) Single Database File and Variable-length records: an
SQLite database stores data in ordinary disk files that can
be located anywhere in the directory hierarchy. These files
can be easily shared in a distributed environment. Also the
fact that SQLite allows for variable-length records, which
results in smaller database files, makes the database run
faster and allows to minimise data transfer between EXAS-
TREAM’s worker nodes. (iii) The APSW Python wrapper®
allows to easily extend the SQLite database engine with
UDFs implemented in python. We are able to use python
to implement virtual tables, aggregate and row functions.
(iv) Compactness: the whole SQLite library with every-
thing enabled is less than 500 KB in size. This feature
facilitates the elastic model of EXASTREAM by allowing
to initialise new VMs running SQLite with minimum data
transfer.

EXASTREAM supports parallelism by allocating process-
ing across different workers in a distributed environment.
Its architecture is shown in Figure 8(Right). Queries are
registered through the Gateway Server. FEach registered
query passes through the EXASTREAM Parser and then is
send to its Query Planner. The Query planner decides for
an efficient order to execute SQL operators, i.e. optimal
query plan, and feeds it to the Scheduler module. The
Scheduler places data and compute operators (including
UDFs and relational plans) on workers nodes based on
each worker’s load. These operators are executed by an

"http://madgik.github.io/exareme/
8https://github.com /rogerbinns/apsw

| Application |

\ application-level answers

~
J
J

|~ = T == -=C
I

| Query Rewriting
I

—
Transformer for
Answers

Analytics-aware

_ Master

101001610151,
unewwuam
mewmmm

\ 75

Gateway

S \ Resource
Manager
-
Execution Query !
Engine Plar. >) I\

101001610151,
unameu,m
‘919”’1910015

L

Scheduler

Access and Cost

[
I
I
I
I
[
I
[
I
I
I
[

(Optimiser .
i constraints
SSWELS r optimised middleware plan
Backend Optimisation and Execution Layer J
Tquery | io_ptirﬁse? T 7 optimised [~ [query — T
answers queries queries answers

19160101015,
1111816191131
191019101951,

1910100 10107y,

nuomleusl y "
memawm‘ [4
atal At

¥ 7 L4

static data streaming data

Source Specs (cost,
access restrictions,

I
\ | & Component Ontology

| %_ rewritten queries
£

: 8 Query Unfolding kg Mapplngs (classical,
> Component aggregate streaming
)

: 8 *unfolded queries

I

I

(.

91610010161y,
111161016114,
mamsmala

ty

v

/l E
\
(Worke %(v 3rkerﬁ (Workerﬁ
[
Compute
— — —

P10100161015),
nuemeugle
mamsmal

Storage
Cloud

\ 7

Figure 8: (Left) Overall architecture. (Right) I ~uivuiea stream engine of EXASTREAM

SQLite”? database engine instance running on each worker.
ExXASTREAM offers different types of parallelism d
pending on the type of operations performed within a
query. Inter-query parallelism is supported for qu -
with an exclusively streaming input. This means th.*
all the operations of a single query are executed on the
same worker, while parallelism is achieved by .asu.>ut-
ing queries across workers. For example, fr- a set of
queries q1,...,q, on streaming input and a set . wec k-
ers wi, ..., Wy, the query planner assigns e ch ¢ aery to a
specific worker. For computational nodes w *h a st Jic in-
put, EXASTREAM provides intra-query varalle.. » «. This
means that each operation of a quer . distributed on
multiple workers. E.g., for an hybrid overatio.. that refers
to an analytical task involving live-s ,rea 1 and static data:
(i) the query planner will have the +at ¢ data distributed
across workers; (i) each consec .tive w ~dow of the live-
stream will be sent to all work rs; i) the operation will
be executed on each worker for o ' fere (t part of the static
information and latter com! ...ed to 1 rm the final answer.

EXASTREAM offers que y plans 2rs that allow to effi-
ciently execute queries in a Jeclar itive language, such as
SQL, without any con crn for low-level execution details.
Our query planner ex 2nds the one provided by SQLite in
order to handle stream ~rocc.sing continuous queries. It
should be noted t' ... ‘e stream query planner is respon-
sible for handling lo a) node computations.

SQLite computes jo. 's adopting nested loops, using one
loop for each table in the join. One or more indices might
be used on the inner loops to accelerate the search, or a

ag

Shttps://www.sqlite.org

19

lo’ p might be a full-table scan that reads every row in the
tehle. Thus, query planning decomposes into two main
.mbtasks: picking the nested order of the various loops;
choosing good indices for each loop.

When a query accesses streaming data, SQLite should
not make a full scan over an inner stream, or build a B-tree
index on it. This is because streams are a relational rep-
resentation of infinite records and therefore the two pre-
vious operations would never end, making the resulting
plans non-terminating. Therefore we always push streams
to the top of query plan trees, i.e. when joining one stream
with a static table, the static table is forced to be in the
inner loop.

The indexing structures and optimisations presented in
Section 7.1.1 are integrated to the EXASTREAM’s query
planner.

7. Backend Query Optimisations for SQL®

Since a STARQL query consists of analytical static and
streaming parts, the result of its transformation by the
rewrite and unfold procedures is an analytical data query
that also consists of two parts and accesses information
from both live streams and static data sources. A spe-
cial form of static data are archived-streams that, though
static in nature, accommodate temporal information that
represents the evolution of a stream in time. Therefore,
our analytical operations can be classified as:

(i) live-stream operations that refer to analytical tasks
involving exclusively live streams;

(ii) static-data operations that refer to analytical tasks
involving exclusively static information;

(iii) hybrid operations that refer to analytical tasks in-
volving live-streams and static data that usually orig-
inate from archived stream measurements.

For static-data operations we rely on standard database
optimisation techniques for aggregate functions. For live-
stream and hybrid operations we developed a number of
optimisation techniques and execution strategies. These
have been incorporated in the EXASTREAM system de-
scribed in Section 6. In Section 7.1 we present optimisa-
tions regarding live streams; while in Section 7.2 we focus
on the system’s optimisations for hybrid queries.

7.1. Query Optimisations on Live Streams

SQL® queries access information from both live streams
and static data sources. For static-data operations we rely
on standard database optimisation techniques. This para-
graph focuses on the live-stream optimisations we have
developed.

7.1.1. Indexing Structures

Considering the particularities of live-streams with in-
finite records, we have developed hybrid in-memory in-
dexing structures and algorithms dedicated to accelerating
stream-processing. For visualisation purposes, we will as-
sume a 3D space describing each stream and corresponding
to the attributes (Wid, Time, Measurement). The corre
sponding structures can be applied for higher dimensional
spaces.

Our technique considers two levels of indexing: (i) the
first level, namely WCacheLy, is for performing fast equal-
ity operations on the Wid attribute based on .n hy. -id
merge/hash-join algorithm (ii) the second lev.' namv iy
WCacheL,, is for accelerating operations on t'.e rest . © che
attributes, i.e. Time and Measurement for c ar d scri~tion,
and is based on a K D-tree structure [47!. .7)-tr .es are
in-memory data structures that are ve v useful .or join,
range, and nearest neighbour searche,. 1° = specific in-
dexing structures were proved to bs “he mosu beneficial
for the Siemens scenarios that assr .ne j,in and range op-
eration on non-overlapping windows. " or other use cases,
different indexing structures car combine.. with the Adap-
tive Indexing Technique that i© ore .ente 1 in Section 7.1.2.
We now discuss the indexing stru. “mir7 s in more detail.

WCachel; Index. The WCa hel; in 'ex related to a stream
is used for efficiently answe. e e iality constraints on its
Wid attribute. In pa «cular, we use the WCacheL; in-
memory hash-index v ith Wid as key and the list of tu-
ples that belongs to t.. -t < ccific Wid as values. Each
bucket on WCache , .'~»~= Wids in a sorted order, while
records on the live + v am also appear sorted on the Wid
attribute —this prope. v of live streams is credited to the
timeslidingWindow operator.

Example 11. The left hand side of Figure 9 shows the
WCacheL; level of indexing. Bucket 0 contains in sorted or-
der all the wids that have appeared till now and are mapped

20

WCacheL;

5
& _.
11
14

WCacheLo

Measurement

r

Bucket 0

_.

X

Time

_

12
15

|

— |

=
7 lWId
10
13

1

Bucket 1

Bucket 2

)

Fig -re 9: The JCacheL; and WCacheLs index structures

to the v.'te <70, as we can see both wids in buckets and
in the . ~tual stream, are sorted on the Wid attribute.

ecause a stream is infinite, we need a mechanism to en-
sure ti. t our hash-structure moves forward in time. This
me naaism adds wids to the WCachelL; index, as soon as
v ey appear in the stream. Since live streams arrive sorted
on _he Wid attribute, the WCacheL; related to it can be eas-
ily updated by inserting each new wid to the bottom of its
corresponding hash-bucket.

Example 12. In Figure 9 the wids 17 and 18 are added
to the 0 and 1 buckets, as soon as they appear as records
into our stream.

We will demonstrate how our algorithm exploits the
WCachel, structure for a simple equi-join on two streams.
The outer stream of the join operation makes a scan to its
data and visits the WCacheL; of the inner one. If the outer
stream scans the wid w and WCacheL; contains the finite
set of wids denoted with W the following cases may occur:

(i) w < max(W) and w ¢ W: In that case w does not
appear as a value in the WCacheL;-index and conse-
quently in the Wid attribute of Streamjy,e,. Since
values in Stream;,,., are ordered in Wid, we can
safely assume that the window w will never appear
as part of the inner stream and therefore the joining
condition will never be satisfied for the w window.

(i) w € W: In that case we search the correspond-

ing bucket of WCacheL; that contains the value of

w. Since windows are stored in a sorted order per

bucket, the algorithm searches for w using a merge-

join algorithm. When w is found, our algorithm will
return all the tuples in Stream;p,., that belong to
the specific window.

(#3) max(W) < w: In that case our algorithm will pull

more tuples from the inner stream until we get a wid

that is greater than the outer tuple’s wid and then
operate as in one of the previous cases.

It should be noted that the joining algorithm on window
identifiers is hybrid hash/merge-join since it takes advan-
tage of a hash-index and the ordering of elements per hash-
bucket.

Example 13. Suppose that two streams contain a Wid,
a Time, and a Measurement attribute and an equi-join is
performed between the measurement attributes. Let’s also
assume that the record of the outer stream that is being
ezamined has a Wid value of 9 and a Measurement value
of 450°C. In order to find if the same temperature appears
within the 9th window of the inner stream, the value of the
window id 9 is hashed to the Bucket 2 in Fig. 9. Since
the value appears in the Bucket 2 of the inner stream, we
examine if the corresponding temperature appears in the
second level of storage, i.e. WCacheLs, that hold all the in-
formation about Wid 9 within a K D-tree structure. Using
the K D-tree we can decided if the latter is the case.

WCacheL, Index. The second level of indexing ensures
the acceleration of data retrieval operations for attributes
other than Wid. This index is nested on each window and
we have adopted a K D-tree structure [47] for indexing in
the rest of the dimensions that participate in a join b.
tween two streams. Each level of a K D-tree partitions the
space into two subspaces. The partitioning is done
one dimension at the node at the top level of the tree, alow.,
another dimension in nodes at the next level, and so on,
cycling through the dimensions. The partitionine proc ~ds
in such a way that, at each node, approximat: v one-h If
of the points stored in the subtree fall on ne s.'» ~.nd
one-half fall on the other. Partitioning stoy , wk :n a node
has less than a given maximum number o. ~c.nts. Since
K D-trees are linear in the size of the cata, the aemory
consumption will also be linear in the s.zc¢ f the incoming
information.

. Ravay

Example 14. The right part of F' ure J shows how a two
level K D-tree partitions the (Tir-e, M. ~surement) space.
The red line performs a data part dioning on the Time-
axis, each partition containinyg S -ecorts. Then the blue
lines perform data partitiop® ; on .’ . Measurement-axis,
each partition containing « ractly . records.

It should be noted th~* tn. - _ond level of indexing is
dynamically created b sed oi. the Adaptive Stream Indezx-
ing technique that is ¢ »scriber next.

7.1.2. Adaptive St -am 1i..exing

The Adaptive Strew 2 Indexing technique is responsible
for creating on the fly the appropriate WCacheLs structures
that will accelerate execution of live-stream operations.
This means that a K D-tree structure will only be created
if the system’s optimiser decides it beneficial for the query
execution on the specific window of a stream. Formally,

21

let’s assume a set of stream-join operations that all have
stream s as the inner relation of the join computation:

1%
U{Sl "o, -1,
=1

Moreover each join cor dtio. #; contains the conjunct
Wids, = Wids '°. Ovr pi~lem constitutes in finding
whether it is beneficial 1. the query execution speed to
build a secondary le el « f K D-tree index on the attributes
of s that appear ir all /; couditions.

The adaptive index.. 2 algorithm operates in two steps:

Step 1. With (ach nev window w appearing in stream s,
our algoritbm fii.® -~ .imates the number of records that
have a Wic of v~ ..~ w for all streams under consideration.
The functic - -ecs(, w) that makes the estimation takes as
input a s.. ~am . wnd the wid w. If all the records of stream
t with a wia > w have already appeared, i.e. a record
with a -id w r 1 exists, our algorithm returns the actual
numuy ~ ot records in window w. Otherwise, the number
of roco-2 Juring the wth window is estimated based on
wu.* happened during the last n windows (where n has
a defau.t value of 10 but can be altered depending on the
us . case).

tep 2. The second step of the algorithm estimates
whether it is beneficial to build a K D-tree index on the
new window of stream s. If we assume that (i) the cost
of computing the join operation between s; and s on the
wth window without any K D-tree index is denoted with
cost(s; g, s), (ii) the cost of performing the join opera-
tion on the wth window when having a K D-tree structure
is denoted with costxp(s; g, s), (4i) and the cost of
building the actual K D-tree on the wth window of stream
s is denoted with costi p(s), then the algorithm decides
that creating a K D-tree index is beneficial whenever:

17 v
Zcost(si X, §) > Z costip(s; g, 8) + costgp(s).
i=1 i=1

With k the dimensionality of the s stream, n; the num-
ber of tuples within the wth window of stream s; and n
the number of tuples within the wth window of stream s,
the cost of building the KD-tree is O(k - n - log(n)), while
the cost of performing a join operation using a multidi-
mensional KD-tree index is O(n; - k-n'~*%). Details on
K D-trees and their corresponding cost functions can be
found in [47].

7.2. Query Optimisations on Archived Information

This section focuses on optimisations we have developed
on hybrid operations between streaming and static data.

10Qur algorithm also works for Wids, = Wids + d; conditions.

P o

2016-02-08,
o

15:00:00 426°C
2016-02-08,

Windows 15:01:00

428°C
2016-02-08,

Start 15:02:00

Wid | MWS_Avg

433°C
2016-02-08,
15:00:00

2016-02-08,

2016-02-08,
15:02:00

429°C 15:03:00

448°C
2016-02-08,
15:03:00

2016-02-08,
15:05:00

o 2016-02-08, o
458.33°C 15:04:00 460°C

2016-02-08, o
15:05:00 467°C

NG B

Figure 10: Schema for storing archived streams and MW Ss

7.2.1. Efficient Storage of Archived Streams for Hybrid
Operations

Our approach for storing archived streams and perform-
ing hybrid operations on them, separates the actual stream
from the windowing mechanisms that are applied on it.
Consider the relational schema depicted in Figure 10 for
storing archived streams and performing hybrid opera-
tions on them. The relational table Measurements rep-
resents the archived part of the stream and stores the
temporal identifier (Time) of each measurement and the
actual values (attribute Measurement). The relational ta-
ble Windows identifies the windows that have appeared up
till now based on the existing window-mechanism. It con-
tains a unique identifier for each window (Wid) and tl. -
attributes that determine its starting and ending points
(Window_Start, Window_End). The necessary indices ...
will facilitate the complex analytic computations are ma
terialised.

Example 15. In Figure 10 for six measureme i1ts we c =-
ated two windows and for each of them we romy *ed he
average of the corresponding measurements

The schema that we proposed and illus srave ' in Jhe ex-
ample: (i) is flexible to query changes ~ince it separates
the windowing mechanism —which is query Jependent—
from the actual measurements; () .. mits execution of
multiple queries on the same dat set without the need
to replicate the archived streaming . ‘ta between differ-
ent windows. Indeed, the fler .bili"y is guaranteed sine
each time that the windowing . ~ecl anis' 1 changes only the
Window table will be updated anu ~c¢ the, much larger,
Archived Stream table ‘nat st ves the actual stream
Moreover, if we have n q. eries o0 the same dataset we
need Windowy, ...,Wind~—, to . _atify the window mecha-
nism of each query. Ic :ally, i. Window;, Window; share the
same windowing mech nism, - /e only need to keep one of
the tables.

7.2.2. Materialised V. ndow Signatures

In order to accelerate analytical tasks that include hy-
brid operations over archived streams, we facilitate pre-
computation of frequently requested aggregates on each
archived window. We name these precomputed summari-
sations as Materialised Window Signatures (MWS). These

22

Current Window

(=)
—_
=
—_
=
=

TITI0T

0T00TO
TTTT0T
0TT0T0

7

ream

T010TT
0T0TTO
10T0T0
110101
101010

)
N

v

‘ archived stream

Figure 11: Pearson Corre.. “ion coefficient between live and archived
streams with emb’ uaing the LSH technique in MWSs

MWSs ar. ca’_ula >d when past windows are stored in the
backend and are "ater utilised while performing complex
calculations ~ atween these windows and a live stream. The
sumt. ~risatior values are determined by the analytics un-
der ~onsi. - .ion. E.g., for the computation of the Pear-
son cori'ation, we precompute the avg value and standard
« matron on each archived window measurements; for the
cosine <imilarity, we precompute the FEuclidean norm of
ean . ~chived window; for finding the absolute difference
. tween the average values of the current and the archived
wi. dows, we precompute the average value, etc.

The selected MWSs are stored in the Windows relation
with the use of additional columns. In Fig. 10 we see the
MWS summary for the avg aggregate function being in-
cluded in the relation as an attribute termed MWS Avg.
The application can easily modify the schema of this re-
lation in order to add or drop MWS, depending on the
analytical workload.

When performing hybrid operations between the cur-
rent and archived windows, some analytic operations can
be directly computed based on their MWS values with no
need to access the actual archived measurements. This
provides significant benefits as it removes the need to per-
form a costly join operation between the live stream and
the, potentially very large, Measurements relation. On
the opposite, for calculations such as the Pearson correla-
tion coefficient and the cosine similarity measures, we need
to perform calculations that require the archived mea-
surements as well, e.g., for computing cross-correlations
or inner-products. Nevertheless, the MWS approach al-
lows us to avoid recomputing some of the information on
each archived window such as its avg value and deviation
for the Pearson correlation coefficient, and the Euclidean
norm of each archived window for the cosine similarity
measure. Moreover, in case when there is a selective addi-
tional filter on the query (such as the avg value exceeds a
threshold), by creating an index on the MWS attributes,
we can often exclude large portions of the archived mea-
surements from consideration, by taking advantage of the
underlying index.

Locality Sensitive Hashing. For more complex similarity
measures such as the Pearson correlation coefficient and
the cosine similarity, the problem of finding relationship
between a live and several archived streams cannot be effi-
ciently solved with the plain use of MWSs . That concern
motivates the use of the locality-sensitive hashing (LSH)
technique and the embedding of LSH information into
MWSs.

The premise of the LSH technique is that in many cases
it is not necessary to insist on the exact answer; instead,
determining an approximate answer with strong accuracy
bounds should suffice. The above argument relies on the
assumption that approximate similarity search can be per-
formed much faster than the exact one. The key idea is
to hash the streams using several hash functions which are
chosen so as to ensure that, for each function, the probabil-
ity of collision is much higher for streams which are similar
to each other than for those which are far apart. Then,
one can determine similar streams by hashing the query
point and retrieving elements stored in buckets containing
that point. The LSH technique [48, 49] was introduced
for the purposes of devising main memory algorithms for
nearest neighbor search. Detailed studies of LSH for live
streams and its extensions have been presented in the lit-
erature [50, 51].

The combination of MWS and the LSH technique al-
lows to build a smaller summary on what happened diring
a specific period of time. This summary needs to be bu."'d
only once for each archived window, while it can be used
to compute the similarity between the archived .. ! the
current window without the need to access the actual n-
formation of the archived data stream. This ac ~lere es
similarity operations several orders of magn cude.

We extend MWSs to incorporate LSH 1..° rma ton as
it is illustrated in Figure 10. For comp] x simila. ¢y mea-
sures, the table Windows of Figure 10 vili . » extended to
incorporate information related to th~ *.SH hash-values of
archived windows by adding the 7 .tril ite MWS_LSH. For
each new window arriving from the - e-stream the same
information is calculated and tb . live wi. low is only com-
pared to the archived ones the . fal” intc the same bucket,
i.e. that are most possible to be .. mils r.

Example 16. Figure ” illus.. ..es a correlation example
between the current v indow . f a live stream and several
archived windows. 1, < LSH algorithm hashes archived
windows into two Jifferen. vuckets illustrated with the or-
ange and cyan colcrs ownce the current window of the
stream falls under the rrange bucket, there is a high proba-
bility to correlate with a.chived window measurements that
are hashed under the same bucket and a low probability to
correlate with all other window measurements. Therefore,
it will only be correlated with the archived measurements
that are hashed to the orange bucket.

B O ©® O oA W N

o

23

PREFIX ex : <http://www.siemens.com/onto/gasturbine/
CREATE PULSE pulse WITH START = NOW, FREQUENCY = 1sec
CREATE STREAM pearsonStream /.,

SELECT pearsonCorrelation(?, ”z), NOW

FROM STREAM
measurementA [NOW -100sec .NOW]->. .ec,
measurementB [NOW -100f .c, OW]->1sec

USING PULSE pulse SEQUEN_E B' StdSeq AS SEQ1

HAVING EXISTS i in SEQ1

GRAPH i { ex:senso-d
ex:sensorb

:ha Talue 7?7y .
hasVa.ue 7z })

Figure 12: _ ry V expressed in STARQL

8. Experimei tal Ev Juation of the Backend

The ain of ¢ .r « valuation is to study how our optimisa-
tion techniyues ar « query distribution to multiple workers
accelerate “e overall execution time of different analytic
queri=s that i1 volve live-stream and hybrid operations.

8.1. Eu. "ation Setting

e deployed our system to the Okeanos Cloud Infras-
tructui M and used up to 16 virtual machines (VMs) each
ha g a 2.100 GHz processor with two cores and 4 GB
¢ main memory. We used streaming and static data that
~ontain measurements produced by 100,000 thermocouple
sensors installed in 950 Siemens power generating turbines.

8.2. Test Queries

For the experimental evaluation, the following queries
were adopted:

Query I: The first query computes an equality join on the
Wid and Time attributes between two live-streams.

Query II: This query computes the Pearson correlation
of a live stream with a varying number of archived
streams.

Queries IIT & IV: These two queries are variations of
Query II but, instead of the Pearson correlation, they
compute similarity based on either the average or the
manimum values within a window.

We defined such similarities between vectors (of measure-
ments) @ and ¢ as follows: |avg(w) — avg(¥)| < 10°C and
|min(w) — min(¥)| < 10°C. The archived stream windows
are stored in the Measurements relation, against which the
current stream is compared.

Query V: This query calculates the Pearson correlation
between two live streams. The STARQL formulation
of this query is given in Figure 12.

yww. okeanos . grnet . gr/

with index e without index
4
3
iy
[}
12}
~ 2
[}
g
E
0 @ t t t d
0 8 15 23 30

Velocity (tuples/sec)

Figure 13: Effect of adaptive indexing

with LSH e without LSH

160

120
)
%
o 80
£
H

40

0 1 2 4 8 16

Nodes

Figure 15: Effect of intra-query parallelism an.
the LSH technique

In the remaining part of the section we present the re-
sults of our experimental evaluation for each of _ - op-
timisations techniques: Adaptive indexing op misatw n,
MWS Optimisation, Parallelism between live ana ~rchiv 2d
streams, and Parallelism between live strear .s.

8.8. Adaptive Indexing Optimisation

This experiment is devised to show n. = the adaptive
indexing optimisation and the related indexing structures
affect query-response times. We e ccu. > Query I as fol-
lows:

(i) on a single VM-worker;
(i) processing is performed on v. md ws of 100 secs;

(iii) the evaluation is perf rmed o1 the live streams A and
B (A being the inner . “latio . of the join operation),
building an index on stream A whenever appropriate;

(iv) stream A has a v 'ocity £ 10 tuples/sec, while we vary
the velocity ¢ ~tream 15 from 1 tuple/sec to 28 tuples/sec.

In Figure 13, we me. ured the processing time for com-
puting the join betwee.. a pair of windows of stream A
and B with and without enabling the adaptive indexing
technique that creates the necessary WCacheLy structures.
The horizontal axis displays the velocity of stream B and
the vertical axis the window processing time measured as

W Join Aggregate

160

120

80

Time (sec)

40

!ﬁ

L Avg Min,
+MWS

0

Pears. Avg. M n.
Type of sir 'arlf

Figure 14: Effer . ¢t MW) ptimisation

5000000 e

3750000 =/

2500000 T

1. 71000

"hroughput (tuples/sec)

0 & T T T 1
0 300 600 900 1200

Number of Concurrent Queries

“.gure 16: Effect of inter-query parallelism on
liv -stream

the average of 100 consecutive live-stream execution cycles.
We observe that for high throughput, the adaptive index-
ing techniques performs substantially better then simple
join, i.e. in our experiment the adaptive indexing tech-
nique performs 12 times faster for a 28 tuples/sec through-
put.

For the Adaptive Indexing optimisation, we did not per-
form an experiment dedicated to the size of the corre-
sponding window, since, increasing the window size has
a similar effect to changing the velocity of each stream.

8.4. MWS Optimisation

This set of experiments is devised to show how the
MWS optimisation affects the query’s response time. We
executed test Queries II, III, and IV:

(i) on a single VM-worker;
(#) for a fixed live-stream velocity of 1 tuple/min;

(#ii) for a fixed window size of 1hour which corresponds
to 60 tuples of measurements per window;

(iv) and the current live stream window was measured
against 100,000 archived ones.

We measured the window processing time with and with-
out the MWS optimization. In Figure 14 we present the

results of our experiments. The reported time is the av-
erage of 15 consecutive live-stream execution cycles. The
horizontal axis displays the three test queries with and
without the MWS optimisation, while the vertical axis
measures the time it takes to process 1 live-stream window
against all the archived ones. This time is divided to the
time it takes to join the live stream and the Measurements
relation and the time it takes to perform the actual compu-
tations. Observe that the MWS optimisation reduces the
time for the Pearson query by 8.18%. This is attributed
to the fact that some computations (such as the avg and
standard deviation values) are already available in the
Windows relation and are, thus, omitted. Nevertheless, the
join operation between the live stream and the very large
Measurements relation that takes 69.58% of the overall
query execution time can not be avoided. For the other two
queries, we not only reduce the CPU overhead of the query,
but the optimiser further prunes this join from the query
plan as it is no longer necessary. Thus, for these queries,
the benefits of the MWS technique are substantial.

It should be noted that for hybrid operations the ef-
fect of the MWS optimisation becomes more substantial
for larger window sizes. Therefore, increasing the size of
the window would further improve the contribution of the
MWS technique on hybrid operations, especially for the
cases when the archived streams are not accessed, e.r&
when computing the minimum or average aggregate func-
tions or when using the LSH technique to compute simi-
larity measures (see Subsection 8.7 for the correspond. g
experiments using LSH optimisations).

8.5. Parallelism Between Live and Archived St cams

Since the MWS optimisation substantially a. elera es
query execution for the two test queries th . rely o.. av-
erage and minimum similarities, query dis’ ibv .1on vould
not offer significant benefit, and thus t} zse ~eri s were
not used in the third experiment. For ~mplex analytics
such as the Pearson correlation that nccessiuw “es access to
the archived windows, the EXASTR .a. " backend permits
us to accelerate queries by distri’ atin , the load among
multiple worker nodes. In the *hira ~xperiment we use
the same setting as before for c¢he Pearson computation
without the MWS technique, “ut we ary this time the
number of available workers rom _ t) 16. In Figure 15,
one can observe a significa .t decr. 1se in the overall query
execution time as the nui ber of VM-workers increases.
EXASTREAM distribut vleasurements relation
between different wor’ er noa. 3. Each node computes the
Pearson coefficient be ween i.s subset of archived mea-
surements and the live streain. As the number of archived
windows is much , vea’c: chan the number of available
workers, intra-query | arallelism results in significant de-
crease of the time requi.ed to perform the join operation.

te

8.6. Parallelism Between Live Streams

This experiment focuses on the effect of accelerating
live-stream operations by distributing the load to multi-

25

ple worker nodes via inter-query parallelism. We executed
Query V (Pearson correlation)

(i) for a varying number ¢. 1 to 1024 of concurrent
queries between differe’ ¢ L. rs of live streams;

(i) for a fixed window s e © 60 tuples;
(#i) on non-overlapping w. lows;
(iv) using 128 EXASTREAn. vorker nodes.

We measured the -“nsow throughput, as the number of
stream tuples th~% arc nrocessed per sec. Recall that
each node is quippe ' with a two-core processor. We
can see from F ~ure 1€ that initially, the overall through-
put of the -, tem ..creases linearly with the number of
queries. " his *, L :cause EXASTREAM utilizes the avail-
able workei., and ¢ istributes the load evenly among them.
When the mmuver of queries reaches the number of cores
availnble (256 we observe the maximum throughput of
4,250, 2. tup’ s/sec. From that point onward, the ad-
dition.” queries injected in EXAREME result in multiple
¢ __.ie. vuaring the same core and, as a result, the cumu-
lativ throughput decreases. It should be noted that the
* ?ontive Indexing Technique creates the corresponding in-
1¢ <ing structures whenever it is beneficial for the afore-
n. ntioned operations. For a larger number of concurrent
., ‘eries/streams, we can obtain even better performance
by utilizing the LSH technique, discussed next.

8.7. LSH Optimisation

Our final experiment focuses on the LSH technique and
how the intermix of MWSs, LSH buckets, and paral-
lelism accelerates the computation of complex similarity
measures between live and archived streams. We perform
the same experiment as in Section 8.5 for parallelism be-
tween live € archived streams, only this time we employ the
LSH variation of MWSs. For the interested reader in the
LSH parameterisation we used a combination of 7 AND-
constructors and 6 OR-constructors. The results of this
experiment are also displayed in Figure 15 that compares
performance with and without our optimisation. One can
observe a significant decrease in the overall query execu-
tion time when we adopt the combination of the MWS
and LSH techniques for computing correlation between
live and archived streams. The price we have to pay for
this increase in performance is 3% of false negative results
for finding all Pearson correlations with an equality degree
above 0.7.

9. Related Work

OBDA System. Our proposed approach extends exist-
ing OBDA systems since they either assume that data
is in (static) relational DBs, e.g [12, 6], or streaming,
e.g., |9, 10|, but not of both kinds. Moreover, we are
different from existing solutions for unified processing of

streaming and static semantic data, e.g. [52], since they
assume that data is natively in RDF while we assume that
the data is relational and mapped to RDF. An extension
of OBDA tailored towards equipment diagnostics has been
recently presented in [53, 54]. They rely on the standard
OWL 2 QL ontologies and define a rule-based language
over them that has a sort of fixed-point semantics. In
contrast, we propose an analytics-aware ontology language
DL-Lite’® and a query language STARQL that has a dif-
ferent expressive power and semantics. Finally, we focus
on backend optimisations while they rely on the standard
backend solutions for evaluation of diagnostic programs.

Ontology language. The semantic similarities of
DL-Lite’f® to other works have been covered in Sec. 3.
Syntactically, the aggregate concepts of DL-Lite’f* have
counterpart concepts, named local range restrictions
(denoted by VF.T') in DL-Litey [55, 56, 57]. However,
for purposes of rewritability, these concepts are not
allowed on the left-hand side of inclusion axioms as we
have done for DL-Lite’f8, but only in a very restrictive
semantic/syntactic way. Consequently, most of the
results of [55, 56, 57] regarding rewritability of ontology
satisfiability and query answering are very relevant for
DL-Lite’{® as well.

The semantics of DL-Lite’f® for aggregate concepts is
very similar to the epistemic semantics proposed in [23] fo.
evaluating conjunctive queries involving aggregate func-
tions. A different and more intuitive semantics for ¢ ~I-
uating conjunctive queries with aggregate functions has
been considered in [24] based on minimal models -'ative
to a query, but query answering has been sb .wn to He
intractable, while it covers only the aggregate “nctic as
count and countd. Interpretations assigning a bag e...en-
sion to predicates has been considered rece tly ‘a th . con-
text of OBDA [25] and data exchange [26] In . +h fthese
works, the motivation is based on the r ~d for performing
aggregation over the integrated databuse fo. ~hich dupli-
cates influence the answers and m' .. he retained. The
semantics of DL-Lite’f® follows t' s s writ, but only for
the predicates corresponding to ettri. *es, over which ag-
gregation may be performed as . res ilt ot the definition of
an aggregate concept, which, 1. met .elers , is given a set ex-
tension. In contrast to [25], where 5. “i faction of TBox ax-
ioms is defined based on an extens. 'n of the subset relation
to bags, DL-Lite’f® retain. the me re standard, set-based
semantics for satisfacti~ lu lus respect, DL-Lite’f® is
closer to [24], which & lopts s andard set-based semantics
for TBox axioms.

Last, query answering 1. L)L—Liteffg is closer to that in
DL-Lite4 rather ti.n *.ae ontology languages in [25, 24].
This is because the atter works are concerned about
the computation of the minimum number of matches of
the query across all models of the ontology, whereas in
DL-Lite’® we care only for the existence of a match. Clos-
ing the discussion on DL—Liteffg, concepts based on aggre-
gates functions were considered in [58] for the description

26

logics ALC and EL equipped with concrete domains, but
the problem of query answering was not studied there.

Query language. While alre: 1y several languages and
engines for RDF stream reas.~ing exist, e.g., C-
SPARQL [66], RSP-QL "-°' SPARQLSTREAM [9], or
CQELS [67], only SPAT QL' TREAM supports an ontol-
ogy based data access app. ach in the classical sense: It
uses (pure) query rewrit.. ~ of v.e queries in a preprocess-
ing process w.r.t. a 7 .. Lite » Box—without knowledge of
the input data (ste .ic d .ta . ad streaming data). The sys-
tem described in [68) . so exploits rewriting of queries, but
uses a different L larguage, namely ELHIO. In general,
FOL rewritabi ity is n t guaranteed for this DL, but the
authors conside, ~ewr’.ing for the non-recursive fragment
of ELHIC. Unf-lding is not relevant for the approach in
[68] as the a1’ 1ors consider materialized RDF streams. In
compari. " to th_se OBDA approaches, STARQL offers
more advanc 1 user defined functions from the backend
syste.. like Pe arson correlation. ([9] at least uses a native
inci.-ion o uggregation functions).

In Ta.'»s 1 and 2 we use the setting of features of
[v"! in order to compare STARQL with the state-of-the-
art kW stream query languages, namely, STREAMING
Sr .. QL [59], C-SPARQL [60, 61, 60], CQELS [52],
. ?ARQLSTREAM [9, 62, 63], EP-SPARQL [64], TEF-
St ARQL [65], and RSP-QL [38]. Observe that except for
Froperty Paths, a new feature of SPARQL 1.1, and Triple
Windows, STARQL supports all constructors of the lan-
guages reported in the tables. In particular, STARQL
supports the basic operators such as Union, Join, Op-
tional, and Filter that are supported by all other languages
in the tables. STARQL also supports the If Expression,
an SPARQL 1.1 function form that evaluates some boolean
condition and outputs one or other expression depending
on the outcome of testing the boolean condition. This is
supported by C-SPARQL, SPARQLSTREAM, and RSP-
QL only. Also, STARQL supports value Aggregation
and Time Windowing as most of the other systems re-
ported in the tables. STARQL supports W-to-S Oper-
ator on RStreams, that is, it outputs the whole content
of the window. Moreover, STARQL allows to declare
Named Streams, that is, it is possible to define a new
stream by a STARQL query that can be referenced by
other STARQL queries. This feature is important for
our diagnostics use case, because named streams enable
a pipe-lined query building methodology which is required
to handle in a modularized manner those aspects of various
streams that are relevant for diagnostics. Note that among
the languages reported in the tables, only C-SPARQL,
EP-SPARQL and RSP-QL support named streams.

Observe that STARQL supports a rear feature of Intra
window time (which is supported only by C-SPARQL,
SPARQLSTREAM, and EP-SPARQL), that is, the users
can distinguish between different states within a window
and order them. This adds the useful abstraction of state-
based reasoning on the window contents. Another rear fea-

Table 1: Comparison of RDF-stream query languages (Part 1)
(*) See explanation in main text

Name Data Model Union, Join, Optional, Filter IF Expression Aggregate Property Paths " ime Windows Triple Windows
STREAMING SPARQL [59] RDF streams Yes No No No Ves Yes

C-SPARQL [60, 61, 60] RDF streams Yes Yes Yes Yes Yes Yes

CQELS [52] RDF streams Yes No Yes No Yes No

SPARQLSTREAM [9, 62, 63| (virtual) RDF streams Yes Yes Yes Yes Yes No

EP-SPARQL [64] RDF streams Yes No Yes No T % No

TEF-SPARQL [65] RDF streams Yes No Yes No T Yes Yes

RSP-QL [38] RDF streams Yes Yes Yes Yes(*) Vos No (*)

STARQL [37, 19, 28, 18| (virtual) RDF streams Yes Yes Yes No Yes No

Table 2: Comparison of RDF-stream query languages (7 art 2
(*) See explanation in main text

Name W-to-S Operator Named Streams Intra windcw time Sequencing Pulse
STREAMING SPARQL RStream No No No No
C-SPARQL RStream Yes Yes P No Yes
CQELS IStream No No No No
SPARQLSTREAM RStream, IStream, DStream No Yo No No
EP-SPARQL RStream Yes Yes Yes No
TEF-SPARQL RStream No I Yes No
RSP-QL [38] RStream, IStream, DStream Yes oS No No(*)
STARQL RStream Yes Yes Yes Yes

ture of STARQL is Sequencing, that is, a user can build
a sequence of stream elements within a window, whic.
is also supported by EP-SPARQL and TEF-SPARQL.
Finally, the last rare feature of STARQL is a pulse a. ~a-
ration which handles the synchronization of outputs from
multiple streams. C-SPARQUL is the only other gr~rv lan-
guage which offers a pulse declaration—using tl : keyw. rd
EVERY.

RSP-QL [38] is the most recent suggestic « for an ~.0OF
query language on streams. It defines an Hper «tior al se-
mantics for a streaming extension of SPAR\y, . 43 such,
in principle, it also supports property p *hs of SPARQL
1.1. But as the language is not explcitly . “ated in [38]
and property paths are not discussed ... ‘ve, the “yes” entry
holds under the condition that the add on stream seman-
tics is separable from the semantics . nroperty paths for
ordinary (non-streaming) RDF ¢ cap’ s. Tiiple windows are
not explicitly discussed by [38] =d wenc we wrote “No” for
this feature slot, though a slicht « 'a-tation of RSP-QL
should also cover these. R .gardir ~ the pulse declaration,
we add the remark that tl ~re is n , explicit construct for
specifying a pulse in RP-,. At the same time, they
discuss a different con cruct 1. handle the synchronization
of different sliding wir lows: - ney describe the semantics
using an evaluation policy w.d w.r.t. a starting time t° not
specified by the qu >ty .co.gner but by the implementing
system.

EP-SPARQL [64] prays a unique role under the RDF
stream languages as it relies on the paradigms of event pro-
cessing and logic programming. The sequence operator is
quite different from that of STARQL. EP-SPARQL uses
the sequence operator to identify a sequence pattern in the

27

.~ ent stream, whereas in STARQL it is used to build a
se. 1ence of RDF graphs from a stream of timestamped
hOF elements.

We described with an example the operational semantics
of the window operator of STARQL. A full operational
model for the STARQL query language and a comparison
with the SECRET model described in [69] or with the
model of RSP-QL of [38] is saved for future work.

Data Stream Management System. One of the leading
edges in database management systems is to extend the re-
lational model to support for continuous queries based on
declarative languages analogous to SQL. Following this ap-
proach, systems such as TelegraphCQ [70], STREAM [71],
and Aurora [72] take advantage of existing Database Man-
agement technologies, optimisations, and implementations
developed over 30 years of research. In the era of big
data and cloud computing, a different class of DSMS has
emerged. Systems such as Storm'?, Flink!®, Kafka'?,
Heron'®, and Spark Streaming'® offer an API that allows
the user to submit dataflows of user defined operators. Ex-
ASTREAM unifies these two different approaches by allow-
ing to describe in a declarative way complex dataflows of
(possibly user-defined) operators. It should be noted that
several state-of-the-art systems for Big Data processing
are adopting a similar approach, providing for declarative

12 Apache Storm. http://storm.apache.org

13 Apache Flink. http://flink.apache.org

14 Apache Kafka. https://kafka.apache.org

15 Twitter Heron. https://apache.github.io/incubator-heron
168park Streaming. https://spark.apache.org/streaming

SQL-like languages for data processing. Apache Spark al-
lows to query structured data inside Spark programs using
SQL queries, while KSQL is a streaming SQL engine that
enables real-time data processing against Apache Kafka.
In Section 10 we explain how to take advantage of recent
advances in Big Data processing systems.

In Section 7.1 we have adapted existing indexing struc-
tures to accelerate query processing in actual industrial
diagnostics and monitoring of equipment in Siemens. We
have additionally presented the Adaptive Indexing tech-
nique that creates on the fly the appropriate structures
for indexing. The specific indexing structures were proved
to be the most beneficial for the Siemens scenarios that
assume join and range operation on non-overlapping win-
dows. We chose KD-trees [47] because they are in-memory
data structures that are very useful for join, range, and
nearest neighbour searches. Additionally building KD-tree
indexes is much faster compared to other multidimensional
indexes such as R-trees [73] and their variations. For sce-
narios that these conditions do not apply, other indexing
structures can be examined in combination with the Adap-
tive Indexing Technique. Index materialisation strategies
have been examined in the current bibliography, e.g. in
[74] a methodology for automatically selecting an appro-
priate set of materialised views and indexes is presented.
Our Adaptive Indexing Technique, contrary to other ir-
dexing strategies that are focus on static data processing,
takes advantage of what happened in the latest windows of
a stream in order to decide when to build the correspc. -
ing K D-tree index. A similar methodology for a different
problem has been presented in [75]. In [75] a g» - bro-
cessing mechanism reorders operators in a que y plan as
it runs.

The Materialised Window Signature sumu arisatiown, im-
plemented in EXASTREAM, is inspired fr m < .ata ware-
housing techniques for maintaining select :d ag e ates on
stored datasets [76, 77]. Though the i ~a of Materialise
Window Signatures (MWS) appears .o be _-tuitive, the
only similar methodology that we “sud in the bibliog-
raphy is presented by the state o' the art Data Canopy
system [78]. The Data Canopy svste.. stores basic aggre-
gates within an in-memory date strv ture and reuses them
for overlapping data parts ana “r varic as statistical mea-
sures. Consider that the we~'~ on "> . Data Canopy was
presented subsequently to he oui ‘ntroduction of Materi-
alise Window Signatures [13l.

10. Conclusion anc Futur. Work

We see our work as a wust step towards the develop-
ment of a solid tL ory awnd new full-fledged systems in
the space of analytics ‘ware ontology-based access to data
that is stored in differen formats such as static relational,
streaming, etc. To this end we proposed ontology, query,
and mapping languages that are not only capable of sup-
porting analytical tasks common for Siemens turbine di-
agnostics, but also we believe to other industrial settings.

28

Moreover, we developed a number of backend optimisa-
tion techniques that allow such tasks to be accomplished
in reasonable time as we have d smonstrated on large scale
Siemens data.

We believe that our work will v interesting for a wide
range of researchers and p- .. ‘itioners in the area of data
integration, semantic dat . acc :ss, and Internet of Things.
We also believe that our 1. 1lts will be inspiring for the
Semantic Web communiy, ‘n developing new fundamental
research as well as e”.c. nt algorithms for light-weight on-
tology languages e .hap .ea . ith analytical operators. Fi-
nally, we believe tha. <he next generation Semantic Sys-
tems such as O, UA-baseu should be in a tight integration
with analytics wnd our work contributes in this direction.

Finally, there .* a »- mber of important further research
and practi al di»~~tions that we plan to explore.

From tl ~ » acti al perspective, we plan to extend our
OBDA . stem *.h several important modules. First, in
order to faci. ate ontology and mapping development and
maine. "ance v e plan to work on novel ontology and map-
ping “oots..«pping [79, 80, 81, 82, 83, 84] and rule learning
techniou. * [85, 86]. Second, in order to facilitate formu-
la*on of analytical queries over analytics-aware ontologies
we pla. to work on end-user oriented query formulation
int i..ces, e.g., visual query systems [87, 88, 89, 90, 91] or
+ ceted search query interfaces [92, 93, 94, 95, 96, 97, 98,
99, Third, we plan to investigate access control policies
for analytics-aware OBDA [100, 101]

On the side of analytics-aware ontologies, since bag se-
mantics is natural and important in analytical tasks, we
see a need in exploring bag instead of set semantics for on-
tologies as it has been considered recently in OBDA and
data exchange [25, 26]. Besides, we plan to study how the
semantics and results of [56, 55, 58] and queries of [23] can
be adapted to our setting.

On the side of analytics-aware queries, an important fur-
ther direction is to align them with the terminology of the
W3C RDF Data Cube Vocabulary!'” and to provide ad-
ditional optimisations after the alignment. This direction
is important since this will improve the integration of an-
alytical data, produced by other queries with analytical
and non-analytical data stemming from further streams or
repositories. Moreover, we plan to conduct empirical eval-
uations to compare STARQL with other such languages.
Finally, we plan to investigate extensions of analytics-
aware queries with recursion, e.g., following the approach
of semantic diagnostic languages [102, 103, 53, 104, 105]

For backend optimisations, our future work involves the
adaptive adjustment of EXASTREAM’s topology into the
cloud’s demands. The rate of input streams may change
drastically from time to time. EXASTREAM’s future goal is
to keep the utilisation of the cloud always to hight percent-
ages using only the resources that are needed. This affects
both the data distribution and EXASTREAM’s stream pro-
cessing engine. For example our optimiser must support

Thttps://www.w3.org/TR/2014/REC-vocab-data- cube-20140116/

stream join reordering on the fly. The optimiser must take
into account the rate of the input tuples and change the or-
der without damaging the adaptive indexing technique and
the creation of the related structures. Another interesting
backend optimisation relates to the pre-computation of the
appropriate structures that will accelerate the aggregate-
query execution, e.g. materialised views and database in-
dexes. We intend to examine refined optimisation tech-
niques that combine information on the OBDA layer with
building of the appropriate structures on our DSMS (or
database engine). With the recent advances in stream
processing engines and the adoption of declarative lan-
guages from several Big Data frameworks, we intend to
examine Polystore architectures [106] for data integration
of streaming and static information via OBDA solutions.

Acknowledgements

This work was partially funded by the EU project Op-
tique (FP7-ICT-318338) and the EPSRC projects MaSI3
(EP/K00607X/1), DBOnto (EP/L012138/1), and ED3
(EP/N014359/1). It was also partially funded by the SIR-
IUS Centre, Norwegian Research Council project number
237898.

References

[1] D. Calvanese, G. Giacomo, D. Lembo, Ontologies and
Databases: The DL-Lite Approach, in: Reas. Web, 200¢

[2] I. Horrocks, M. Giese, E. Kharlamov, A. Waaler, Using .

mantic technology to tame the data variety challenge, IEEE

Internet Computing 20 (6) (2016) 62-66.

C. Bizer, A. Seaborne, D2RQ-Treating Non-RDF Datar ses

as Virtual RDF Graphs, in: ISWC, 2004.

D. Calvanese, G. De Giacomo, D. Lembo, M. . nze .ni,

A. Poggi, M. Rodriguez-Muro, R. Rosati, M. R .zzi, D. F. _avo,

The MASTRO System for Ontology-Based Jata Acce 3., Se-

mantic Web 2 (1) (2011) 43-53.

F. Priyatna, O. Corcho, J. Sequeda, Forr alisation. 1d Expe-

riences of R2RML-Based SPARQL to S 4. Duery Translation

Using Morph, in: WWW, 2014, pp. 474-490.

M. Rodriguez-Muro, R. Kontchal M. Zakharyaschev,

Ontology-Based Data Access: Ontec , of I itabases., in: ISWC,

2013, pp. 558-573.

K. Munir, M. Odeh, R. McCla’ chey, . ~tology-Driven Rela-

tional Query Formulation Usin | the Jemantic and Assertional

Capabilities of OWL-DL., Kr wl.-",ased Syst. 35 (2012) 144—

159.

J. Sequeda, D. P. Mirank ., Jltraw.. p: SPARQL Execution

on Relational Data., JW' 22 (201) 19-39.

J. Calbimonte, O. Corch¢ A. J. C Gray, Enabling ontology-

based access to streaming « ‘~ -~ Jurces, in: ISWC, 2010, pp.

96-111.

L. Fischer, T. Schar =nbach, : Bernstein, Scalable linked data

stream processing vi. networ .-aware workload scheduling, in:

SSWKBSQISWC. 2015, ... 81-96.

D. Calvanese, .° wLic A. Mosca, J. Remesal, M. Rezk,

G. Rull, Ontology b sed Data Integration in EPNet: Produc-

tion and Distributio. of Food During the Roman Empire, Eng.

Appl. of AT 51 (2016) 212-229.

C. Civili, M. Console, G. De Giacomo, D. Lembo, M. Lenz-

erini, L. Lepore, R. Mancini, A. Poggi, R. Rosati, M. Ruzzi,

V. Santarelli, D. F. Savo, MASTRO STUDIO: managing

ontology-based data access applications, PVLDB 6 (12) (2013)

1314-1317.

(3l

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

29

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

|<1]

[22]

23]

[24]

25]

[26]

27]

(28]

[29]

(30]

31]

E. Kharlamov, D. Hovland, E. Jiménez-Ruiz, D. Lanti, H. Lie,
C. Pinkel, M. Rezk, M. G. Skjeveland, E. Thorstensen,
G. Xiao, D. Zheleznyakov, I. Horrocks, Ontology based access
to exploration data at statoil. .n: ISWC, 2015, pp. 93-112.

E. Kharlamov, D. Hovland “71. G. Skjeeveland, D. Bilidas,
E. Jiménez-Ruiz, G. Xiac, A. . vlu, D. Lanti, M. Rezk,
D. Zheleznyakov, M. Gies- H. Lie, Y. E. Ioannidis, Y. Ko-
tidis, M. Koubarakis, A Wa: er, Ontology based data access
in statoil, J. Web Sem. 4 (7,17) 3-36.

E. Kharlamov, N. Solomak.. ~a, O. L. Ozcep, D. Zheleznyakov,
T. Hubauer, S. Lampa. '»r, M. Roshchin, A. Soylu, S. Wat-
son, How Semantic 7 >chno.. “es Can Enhance Data Access at
Siemens Energy, a: If "7 2014.

E. Kharlamov, " G Skjeeveland, T. Mailis, E. Jiménez-Ruiz,
G. Xiao, A. Soylu, . Lie, A. Waaler, Finding Data Should be
Easier than " inding Ou, in: BigData, 2018.

M. Rodrigr 2z-Muro, D. Calvanese, High Performance Query
Answering « ‘ver DL- .ite Ontologies, in: KR, 2012.

E. Kharl~mov, 7 ".otidis, T. Mailis, C. Neuenstadt, C. Niko-
laou, 7s. L. ©* ~ep, C. Svingos, D. Zheleznyakov, S. Brandt,
I. Ho. ~oc! ., Y. E. Ioannidis, S. Lamparter, R. Moller, To-
wards Analytic, Aware Ontology Based Access to Static and
Strea.. mg vata, in: ISWC, 2016, pp. 344-362.

O. L.. Oz, 'p, R. Mdller, Ontology based data access on tem-
¢ al and streaming data, in: M. Koubarakis, G. Stamou,
G. 5. 7' 5, 1. Horrocks, P. Kolaitis, G. Lausen, G. Weikum
(£, Reasoning Web. Reasoning and the Web in the Big
T _ra, Vol. 8714. of Lecture Notes in Computer Science,
2014.

. M. Tsangaris, G. Kakaletris, H. Kllapi, G. Papanikos,
7 Pentaris, P. Polydoras, E. Sitaridi, V. Stoumpos, Y. E.
Toannidis, Dataflow Processing and Optimization on Grid and
Cloud Infrastructures, IEEE Data Eng. Bull. 32 (1) (2009)
67-74.

H. Kllapi, P. Sakkos, A. Delis, D. Gunopulos, Y. Ioannidis,
Elastic Processing of Analytical Query Workloads on IaaS
Clouds, in: arXiv, 2015.

C. Lutz, L. Seylan, F. Wolter, Ontology-based data access with
closed predicates is inherently intractable(sometimes), in: 1J-
CAI 2013, Proceedings of the 23rd International Joint Con-
ference on Artificial Intelligence, Beijing, China, August 3-9,
2013, 2013, pp. 1024-1030.

D. Calvanese, E. Kharlamov, W. Nutt, C. Thorne, Aggregate
Queries Over Ontologies, in: ONISW, 2008, pp. 97-104.

E. V. Kostylev, J. L. Reutter, Complexity of Answering Count-
ing Aggregate Queries Over DL-Lite, J. of Web Sem. 33 (2015)
94-111.

C. Nikolaou, E. V. Kostylev, G. Konstantinidis, M. Kaminski,
B. Cuenca Grau, I. Horrocks, The bag semantics of ontology-
based data access, in: IJCAI, 2017, pp. 1224-1230.

A. Hernich, P. G. Kolaitis, Foundations of information inte-
gration under bag semantics, in: LICS, 2017, pp. 1-12.

E. Kharlamov, T. Mailis, G. Mehdi, C. Neuenstadt, O. L.
Ozcep, M. Roshchin, N. Solomakhina, A. Soylu, C. Svingos,
S. Brandt, M. Giese, Y. E. Ioannidis, S. Lamparter, R. Mdéller,
Y. Kotidis, A. Waaler, Semantic access to streaming and static
data at Siemens, J. Web Sem. 44 (2017) 54-74.

Ozgiir. L. Ozcep, R. Méller, C. Neuenstadt, Stream-query com-
pilation with ontologies, in: B. Pfahringer, J. Renz (Eds.),
Poceedings of the 28th Australasian Joint Conference on Arti-
ficial Intelligence 2015 (AI 2015), Vol. 9457 of LNAI, Springer
International Publishing, 2015.

S. Borgwardt, M. Lippmann, V. Thost, Temporal query an-
swering in the description logic dl-lite, in: FroCoS, 2013, pp.
165-180.

A. Arasu, S. Babu, J. Widom, The cql continuous query lan-
guage: Semantic foundations and query execution, VLDBJ
15 (2) (2006) 121-142.

E. Kharlamov, S. Brandt, M. Giese, E. Jiménez-Ruiz, Y. Ko-
tidis, S. Lamparter, T. Mailis, C. Neuenstadt, O. L. Ozcep,
C. Pinkel, A. Soylu, C. Svingos, D. Zheleznyakov, I. Horrocks,

32]

(33]

(34

(35]

[36]

37]

(38]

39]

[40]

[41]

[42]

[43]

[44]

[45]

Y. E. Ioannidis, R. Moller, A. Waaler, Enabling semantic ac-
cess to static and streaming distributed data with optique:
demo, in: DEBS Demo, 2016, pp. 350-353.

E. Kharlamov, S. Brandt, E. Jimenez-Ruiz, Y. Kotidis,
S. Lamparter, T. Mailis, C. Neuenstadt, O. Ozcep, C. Pinkel,
C. Svingos, D. Zheleznyakov, 1. Horrocks, Y. loannidis,
R. Méller, Ontology-Based Integration of Streaming and Static
Relational Data with Optique, SIGMOD demo.

E. Kharlamov, S. Brandt, M. Giese, E. Jiménez-Ruiz, S. Lam-
parter, C. Neuenstadt, O. L. Ozcep, C. Pinkel, A. Soylu,
D. Zheleznyakov, M. Roshchin, S. Watson, 1. Horrocks, Se-
mantic Access to Siemens Streaming Data: the Optique Way,
in: ISWC, 2015.

E. Kharlamov, E. Jiménez-Ruiz, C. Pinkel, M. Rezk, M. G.
Skjeeveland, A. Soylu, G. Xiao, D. Zheleznyakov, M. Giese,
I. Horrocks, A. Waaler, Optique: Ontology-Based Data Access
Platform, in: ISWC P&D, 2015.

E. Kharlamov, E. Jiménez-Ruiz, D. Zheleznyakov, D. Bilidas,
M. Giese, P. Haase, I. Horrocks, H. Kllapi, M. Koubarakis,
O. L. Ozcep, M. Rodriguez-Muro, R. Rosati, M. Schmidt,
R. Schlatte, A. Soylu, A. Waaler, Optique: Towards OBDA
Systems for Industry, in: ESWC (Selected Papers), 2013, pp.
125-140.

E. Kharlamov, M. Giese, E. Jiménez-Ruiz, M. G. Skjeeveland,
A. Soylu, D. Zheleznyakov, T. Bagosi, M. Console, P. Haase,
I. Horrocks, S. Marciuska, C. Pinkel, M. Rodriguez-Muro,
M. Ruzzi, V. Santarelli, D. F. Savo, K. Sengupta, M. Schmidt,
E. Thorstensen, J. Trame, A. Waaler, Optique 1.0: Semantic
Access to Big Data: The Case of Norwegian Petroleum Direc-
torate FactPages, in: ISWC Posters & Demos, 2013.

Ozgiir. Ozgep, R. Méller, C. Neuenstadt, A Stream-Temporal
Query Language for Ontology Based Data Access, in: Proceed-
ings of the 37th German Conference on AI (KI 2014), 2014, p
183-194.

D. Dell’Aglio, E. D. Valle, J. Calbimonte, O. Corcho, RSP-QL
semantics: A unifying query model to explain heteroge =iu,
of RDF stream processing systems, Int. J. Semantic Web 1.
Syst. 10 (4) (2014) 17-44.

A. Toshniwal, S. Taneja, A. Shukla, K. Ramasamy, .7 ... atel,
S. Kulkarni, J. Jackson, K. Gade, M. Fu, J. Dor iam, et “l.,
Storm@ twitter, in: Proceedings of the 2014 AC. * SIGM(D
international conference on Management of da’a, AC. "~ 2 14,
pp. 147-156.

T. Akidau, R. Bradshaw, C. Chambers, S Che nyak R. J.
Ferndndez-Moctezuma, R. Lax, S. McVeet, D. . ‘lls, " . Perry,
E. Schmidt, et al., The dataflow model: 1 practica. approach
to balancing correctness, latency, and cos. in massive-scale,
unbounded, out-of-order data processing, Proc -dings of the
VLDB Endowment 8 (12) (2015) 177 .—_203.

D. Calvanese, G. De Giacomo, J. L' mbo, M. Lenzerini,
R. Rosati, Tractable reasoning ana ‘ient query answering
in description logics: The DL-L .e famu, TAR 39 (3).

C. Neuenstadt, R. Moller, O L. ¢ zcep, OBDA for tempo-
ral querying and streams, in: © M.ckla', O. L. Ozcep (Eds.),
Proceedings of the 1st Workshop ~n {igh-Level Declarative
Stream Processing co-loc .ed with tne 38th German AI con-
ference (KI 2015), Dresc 2n, Gern any, September 22, 2015.,
Vol. 1447 of CEUR Wor. shop P sceedings, CEUR-WS.org,
2015, pp. 70-75.

URL http://ceur-r s.org/" "1-1447/paper6.pdf

C. Neuenstadt, R. . 16ller, O: ziir. L. Ozcep, OBDA for Tem-
poral Querying and . ‘ream with STARQL, in: D. Nicklas,
Ozgiir. L. Ozge~ (Fds.), rroceedings of the 1st Workshop on
High-Level Decl. -ativ . ._eam Processing co-located with the
38th German AI - aference (KI 2015), Dresden, Germany,
September 22, 2015, 1iDeSt’15, Vol. 1447 of CEUR Proceed-
ings, 2015.

D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini,
A. Poggi, M. Rodriguez-Muro, R. Rosati, M. Ruzzi, D. F. Savo,
The mastro system for ontology-based data access, Semantic

Web 2 (1) (2011) 43-53.
M. Owens, Embedding an sql database with sqlite, Linux Jour-

30

[46]
[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]
I]

[51]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

nal 2003 (110) (2003) 2.

M. Owens, G. Allen, SQLite, Springer, 2010.

J. L. Bentley, Multidimensional binary search trees used for as-
sociative searching, Communir «tions of the ACM 18 (9) (1975)
509-517.

P. Indyk, R. Motwani, Ap proxu. *e nearest neighbors: to-
wards removing the curse -~ 1imensiouality, in: Proceedings of
the thirtieth annual AC} = syn >osium on Theory of computing,
ACM, 1998, pp. 604-6. *

A. Gionis, P. Indyk, R. M “wani, et al., Similarity search in
high dimensions via hc. “ing, .a: VLDB, Vol. 99, 1999, pp.
518-529.

K. Georgoulas, ¥ . Kc " “s. Distributed similarity estimation
using derived d' nens ons, VLDB J. 21 (1) (2012) 25-50.

N. Giatrakos, Y. ’‘atidis, A. Deligiannakis, V. Vassalos,
Y. Theodor’ .is, In-network approximate computation of out-
liers with juality g arantees, Information Systems 38 (8)
(2013) 1285 1308.

D. L. Pkroc, " ao-Tran, J. X. Parreira, M. Hauswirth,
A Nat ve ar ' Adaptive Approach for Unified Processing of
Linke St .ams and Linked Data, in: ISWC, 2011, pp. 370—
388

G. Mc 1, k. Kharlamov, O. Savkovic, G. Xiao, E. G. Kalayci,
S. Brandt, 1. Horrocks, M. Roshchin, T. A. Runkler, Semantic
1. le-Base: Equipment Diagnostics, in: ISWC, 2017, pp. 314—
333.

k. “"harlamov, O. Savkovic, G. Xiao, R. Penaloza, G. Mehdi,
T 7T___ocks, M. Roshchin, Semantic Rules for Machine Diag-
nostics: Execution and Management, in: CIKM, 2017.

U Savkovic, D. Calvanese, Introducing Datatypes in DL-Lite,
"~ ECAI, 2012, pp. 720-725.

A. Artale, V. Ryzhikov, R. Kontchakov, DL-Lite with At-
tributes and Datatypes, in: ECAI, 2012, pp. 61-66.

F. Baader, S. Borgwardt, M. Lippmann, Query rewriting for
dl-lite with n-ary concrete domains, in: IJCAI, 2017, pp. 786—
792.

F. Baader, U. Sattler, Description logics with aggregates and
concrete domains, IS 28 (8) (2003) 979-1004.

A. Bolles, M. Grawunder, J. Jacobi, Streaming sparql extend-
ing spargl to process data streams, in: Proceedings of the 5"
European semantic web conference on The semantic web: re-
search and applications, Springer-Verlag, 2008, pp. 448-462.
D. F. Barbieri, D. Braga, S. Ceri, E. Della Valle, M. Gross-
niklaus, C-sparql: Sparql for continuous querying, in: Pro-
ceedings of the 18" international conference on World wide
web, ACM, 2009, pp. 1061-1062.

D. F. Barbieri, D. Braga, S. Ceri, M. Grossniklaus, An execu-
tion environment for c-sparql queries, in: Proceedings of the
13" International Conference on Extending Database Tech-
nology, ACM, 2010, pp. 441-452.

J.-P. Calbimonte, H. Jeung, O. Corcho, K. Aberer, Enabling
query technologies for the semantic sensor web, Int. J. Semant.
Web Inf. Syst. 8 (1) (2012) 43-63.

J.-P. Calbimonte, Ontology-based access to sensor data
streams, dissertation, Universidad Politecninca de Madrid
(2013).

URL http://oa.upm.es/15320/1/JEAN_PAUL_CALBIMONTE.pdf
D. Anicic, P. Fodor, S. Rudolph, N. Stojanovic, Ep-sparql: a
unified language for event processing and stream reasoning, in:
WWW, 2011, pp. 635-644.

J. Kietz, T. Scharrenbach, L. Fischer, A. Bernstein, K. Nguyen,
Tef-sparql: The ddis query-language for time annotated event
and fact triple-streams, Tech. rep., Technical report, University
of Zurich, Department of Informatics (2013).

D. F. Barbieri, D. Braga, S. Ceri, E. D. Valle, M. Grossniklaus,
C-SPARQL: A Continuous Query Language for RDF Data
Streams, Int. J. Sem. Computing 4 (1) (2010) 3-25.

D. Le-Phuoc, M. Dao-Tran, M.-D. Pham, P. Boncz, T. Eiter,
M. Fink, Linked Stream Data Processing Engines: Facts and
Figures, in: ISWC, 2012, pp. 300-312.

J.-P. Calbimonte, J. Mora, O. Corcho, Query rewriting in rdf

[69]

[70]

[71]

[72]

(73]

[74]

[75]

[76]

[77]

[78]

[79]

(80]

(81]

82]

(83]

(84]

(85]

(86]

stream processing, in: Proceedings of the 13th International
Conference on The Semantic Web. Latest Advances and New
Domains - Volume 9678, Springer-Verlag New York, Inc., New
York, NY, USA, 2016, pp. 486-502.

N. Dindar, N. Tatbul, R. J. Miller, L. M. Haas, I. Botan, Mod-
eling the execution semantics of stream processing engines with
secret, The VLDB Journal 22 (4) (2013) 421-446.

S. Chandrasekaran, O. Cooper, A. Deshpande, M. J. Franklin,
J. M. Hellerstein, W. Hong, S. Krishnamurthy, S. R. Madden,
F. Reiss, M. A. Shah, TelegraphCQ: Continuous Dataflow Pro-
cessing, in: SIGMOD, 2003, pp. 668-668.

A. Arasu, B. Babcock, S. Babu, M. Datar, K. Ito, I. Nishizawa,
J. Rosenstein, J. Widom, STREAM: the stanford stream data
manager, in: SIGMOD, 2003, p. 665.

D. Abadi, D. Carney, U. Cetintemel, M. Cherniack, C. Convey,
C. Erwin, E. Galvez, M. Hatoun, A. Maskey, A. Rasin, et al.,
Aurora: A Data Stream Management System, in: SIGMOD,
2003, pp. 666—666.

A. Guttman, R-trees: A dynamic index structure for spatial
searching, in: SIGMOD’84, Proceedings of Annual Meeting,
Boston, Massachusetts, USA, June 18-21, 1984, 1984, pp. 47—
57.

S. Agrawal, S. Chaudhuri, V. R. Narasayya, Automated se-
lection of materialized views and indexes in sql databases, in:
VLDB, Vol. 2000, 2000, pp. 496-505.

R. Avnur, J. M. Hellerstein, Eddies: Continuously adaptive
query processing, ACM sigmod record 29 (2) (2000) 261-272.
Y. Kotidis, N. Roussopoulos, DynaMat: A Dynamic View
Management System for Data Warehouses, in: SIGMOD,
1999, pp. 371-382.

J. Gray, S. Chaudhuri, A. Bosworth, A. Layman, D. Reichart,
M. Venkatrao, F. Pellow, H. Pirahesh, Data Cube: A Re-
lational Aggregation Operator Generalizing Group-by, Cros
tab, and Sub-totals, Data mining and knowl. discovery 1 (1,
(1997) 29-53.

A. Wasay, X. Wei, N. Dayan, S. Idreos, Data canopy: . -~
erating exploratory statistical analysis, in: Proceedings of ti.
2017 ACM International Conference on Management of Data,
ACM, 2017, pp. 557-572.

E. Jiménez-Ruiz, E. Kharlamov, D. Zheleznyakov. .. Horro. ks,
C. Pinkel, M. G. S. veland, E. Thorstensen, J. Mc ~ BootC X:
Practical Mapping of RDBs to OWL 2, in: ISV'C, 2y~

C. Pinkel, C. Binnig, E. Jiménez-Ruiz, E. Khe tamc ;, W. May,
A. Nikolov, A. S. Bastinos, M. G. Skjevela 1, A Soli- 1ando,
M. Taheriyan, C. Heupel, I. Horrocks, RMDI: . ~uct narking
relational-to-ontology mapping generati- a quality, Semantic
Web 9 (1) (2018) 25-52.

C. Pinkel, C. Binnig, E. Jiménez-Ruiz, r. Kharlamov,
A. Nikolov, A. Schwarte, C. Heupe’, . Kraska, IncMap: A
Journey towards Ontology-based I ata I' cegration, in: BTW,
2017, pp. 145-164.

E. Jiménez-Ruiz, E. Kharlame /;, D. . -~leznyakov, I. Hor-
rocks, C. Pinkel, M. G. Skjeev' .and . Thorstensen, J. Mora,
BootOX: Bootstrapping OWL ° O tolos es and R2RML Map-
pings from Relational Databases, .. - I¢ WC Posters & Demon-
strations Track, 2015.

C. Pinkel, C. Binnig, E Jiméne. Ruiz, W. May, D. Ritze,
M. G. Skjeeveland, A. S 'imande E. Kharlamov, RODI: A
benchmark for autom~’"= ma,, _.g generation in relational-to-
ontology data integy ition, i ESWC, 2015, pp. 21-37.

C. Pinkel, C. Binn », E. Kb rlamov, P. Haase, Pay as you
go matching of relat. nal sc .emata to OWL ontologies with
incmap, in: ISV Posters & Demonstrations, 2013, pp. 225—
228.

V. T. Ho, D. Ste, - nova, M. H. Gad-Elrab, E. Kharlamov,
G. Weikum, Rule L rning from Knowledge Graphs Guided
by Embedding Models, in: ISWC, 2018, pp. 72-90.

V. T. Ho, D. Stepanova, M. H. Gad-Elrab, E. Kharlamov,
G. Weikum, Learning rules from incomplete kgs using embed-
dings, in: ISWC Posters & Demonstrations, 2018.

31

(87]

(88]

(89]

[90]

[91]

[92]

[93]

[94]

[95]

6]

[97]

[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

A. Soylu, M. Giese, E. Jiménez-Ruiz, E. Kharlamov,
D. Zheleznyakov, I. Horrocks, Ontology-based end-user visual

query formulation: Why, what, who, how, and which?, Univer-
sal Access in the Information ¢ ociety 16 (2) (2017) 435-467.
A. Soylu, M. Giese, R. Sch] -te, E. Jiménez-Ruiz, E. Khar-
lamov, O. L. Ozcep, C. Ne .ensw. 't. S. Brandt, Querying in-
dustrial stream-temporal data: An c.itology-based visual ap-
proach, JAISE 9 (1) (20" ¢) « —95.
A. Soylu, E. Kharlame 7, D. Zheleznyakov, E. Jiménez-Ruiz,
M. Giese, M. G. Skja. and, D. Hovland, R. Schlatte,
S. Brandt, H. Lie, 1. "~rrocs. Optiquevgs: A visual query
system over ontolo~~s for .. Tustry, Semantic Web 9 (5) (2018)
627-660.
A. Soylu, E. K" arlar ov, v. Zheleznyakov, E. Jiménez-Ruiz,
M. Giese, I. Horre = s, Ontology-based visual query formula-
tion: An ind- ...y expe. ‘ence, in: ISVC, 2015, pp. 842-854.
A. Soylu, M. Gui e, E. Jiménez-Ruiz, E. Kharlamov,
D. Zhelezn, akov, I. Jorrocks, Why not simply google?, in:
NordiCHI. 2. * »~ 1039-1042.
E. Khs ramov L. Giacomelli, E. Sherkhonov, B. C. Grau, E. V.
Kosty =v, 7 Ho. -ocks, Semfacet: Making hard faceted search
easier, ... CIK™ (, 2017, pp. 2475-2478.
E. k. rlan.c., L. Giacomelli, E. Sherkhonov, B. C. Grau, E. V.
Kostylev, ™. Horrocks, Ranking, aggregation, and reachability
faceted earch with semfacet, in: ISWC Posters & Demon-
stra. e 2017.
r.. Sherkhonov, B. C. Grau, E. Kharlamov, E. V. Kostylev,
@~~~ jc faceted search with aggregation and recursion, in:
ISWC, 2017, pp. 594-610.
. " Arenas, B. C. Grau, E. Kharlamov, S. Marciuska,
T Zheleznyakov, Faceted search over rdf-based knowledge
graphs, J. Web Sem. 37-38 (2016) 55-74.
B. C. Grau, E. Kharlamov, S. Marciuska, D. Zheleznyakov,
M. Arenas, Semfacet: Faceted search over ontology enhanced
knowledge graphs, in: ISWC Posters & Demonstrations, 2016.
M. Arenas, B. C. Grau, E. Kharlamov, S. Marciuska,
D. Zheleznyakov, Faceted search over ontology-enhanced RDF
data, in: CIKM, 2014, pp. 939-948.
M. Arenas, B. C. Grau, E. Kharlamov, S. Marciuska,
D. Zheleznyakov, E. Jiménez-Ruiz, Semfacet: semantic faceted
search over yago, in: WWW, 2014, pp. 123-126.
M. Arenas, B. C. Grau, E. Kharlamov, S. Marciuska,
D. Zheleznyakov, Towards semantic faceted search, in: WWW,
2014, pp. 219-220.
B. C. Grau, E. Kharlamov, E. V. Kostylev, D. Zheleznyakov,
Controlled query evaluation for datalog and OWL 2 profile
ontologies, in: IJCAI, 2015, pp. 2883—-2889.
B. C. Grau, E. Kharlamov, E. V. Kostylev, D. Zheleznyakov,
Controlled query evaluation over OWL 2 RL ontologies, in:
ISWC, 2013, pp. 49-65.
E. Kharlamov, O. Savkovic, G. Xiao, R. Penaloza, G. Mehdi,
M. Roshchin, I. Horrocks, Semantic rules for machine diagnos-
tics: Execution and management, in: CIKM, 2017, pp. 2131-
2134.
G. Mehdi, E. Kharlamov, O. Savkovic, G. Xiao, E. G. Kalayci,
S. Brandt, I. Horrocks, M. Roshchin, T. A. Runkler, Semdia:
Semantic rule-based equipment diagnostics tool, in: CIKM,
2017, pp. 2507-2510.
G. Mehdi, E. Kharlamov, O. Savkovic, G. Xiao, E. G. Kalayci,
S. Brandt, I. Horrocks, M. Roshchin, T. A. Runkler, Semantic
rule-based equipment diagnostic, in: ISWC Posters & Demon-
strations, 2017.
E. Kharlamov, O. Savkovic, M. Ringsquandl, G. Xiao,
G. Mehdi, E. G. Kalayci, W. Nutt, M. Roshchin, I. Horrocks,
T. A. Runkler, Diagnostics of trains with semantic diagnostics
rules, in: ILP, 2018, pp. 54-71.
J. Duggan, A. J. Elmore, M. Stonebraker, M. Balazinska,
B. Howe, J. Kepner, S. Madden, D. Maier, T. Mattson,
S. Zdonik, The bigdawg polystore system, ACM Sigmod
Record 44 (2) (2015) 11-16.

Appendix A. Data Analysis Example

In Table A.3 we illustrate the shape of SQL® queries
that were used during our experimental evaluation. The
query corresponding to the one in the table computes the
Pearson correlation of a live stream with a varying number
of archived streams. Each new stream record provides in-
formation related to a temperature sensor such as: (i) the

32

time when the measurement was made: the timestamp at-
tribute; (ii) the id of the sensor that took the measurement:
the sensor attribute; (iii) the frature that was measured:
the feature attribute; (iv) th value of the measurement:
the value attribute. Archi ed s..~ams also contain one
additional attribute next ‘. ~ach ot their records corre-
sponding to the window "4 Wi . of the measurement.

Table A.3: SQL® Generated Query

/%
* Compares the last window of live stream with all archived windowsand returns the num. -~ of archived
* windows for which the pearson correlation between it and the streaming one are av e O0.c

*/

ATTACH DATABASE ’/home/optique/demo/tc255_8.db’> AS tc255;

-- CREATE a static table with all appropriate windows
CREATE TEMP TABLE static_wids AS

SELECT wid

FROM tc255_8

GROUP BY widgroup BY wid

-- Get the stream for sensor TC260

CREATE TEMP VIEW stream AS WCACHE

SELECT =

FROM (newtimeslidingwindow timewindow:10 frequency:10 granularity:1 equ. ~lence:floor
SELECT cast(strftime(’%s’, timestamp) as long) as epoch, *
FROM (file dialect:json ’http://optique-ubuntu-04:8989/union. *aset’
where sensor = ’TC2607);

-- Get the last window statistics

CREATE TEMP VIEW stream_wids AS WCACHE
SELECT wid, max(timestamp) AS window_time
FROM stream

GROUP BY wid;

-- We need to add the one window "next" to another. So e mak. a join between the wids and aboxes.
-- This stream tells for the current window with wich w.>. must compared.
CREATE TEMP VIEW matches AS WCACHE
SELECT stream_wids.wid AS stream_wid,
stream_wids.window_time AS window_time,
static_wids.wid AS static_wid
FROM stream_wids, static_wids;

-- Add the one window "next" to archived ones

CREATE TEMP VIEW final AS ORDERED

SELECT matches.stream_wid AS stream_wid,
matches.window_time AS window_time,
matches.static_wid AS static_wid,
stream.value AS stream_value,
tc255_8.value AS static_value

FROM matches, stream, tc255_8

where stream.wid = matches.stream_wid ¢ d
tc255_8.wid = matches.static_wicd au
tc255_8.abox = stream.abox;

-- Take the final results
CREATE TEMP VIEW all_with_all AS OK. " <&D
SELECT *, latency((cast(strftimr (’%s’, <ndow_time) as integer))) as latency
FROM (
SELECT stream_wid, wi' fow_ ime static_wid, pearson(stream_value, static_value) AS pearson
FROM final
GROUP BY stream_wid tatic. .d
HAVING pearson > 0 5

-- Get statistics
SELECT window_time AS imestemp,
>TC260° AS str am_sens. 7,
count (*) AS sunr window: _matched,
(SELECT count (%) TROM (SELECT * FROM tc255_8 GROUP BY wid)) AS sum_static_windows,
latency
FROM all_with_all
GROUP BY stream_wid,

33

