Elsevier

Journal of Web Semantics

Volume 75, January 2023, 100741
Journal of Web Semantics

Towards the Web of Embeddings: Integrating multiple knowledge graph embedding spaces with FedCoder

https://doi.org/10.1016/j.websem.2022.100741Get rights and content
Under a Creative Commons license
open access

Abstract

The Semantic Web is distributed yet interoperable: Distributed since resources are created and published by a variety of producers, tailored to their specific needs and knowledge; Interoperable as entities are linked across resources, allowing to use resources from different providers in concord. Complementary to the explicit usage of Semantic Web resources, embedding methods made them applicable to machine learning tasks. Subsequently, embedding models for numerous tasks and structures have been developed, and embedding spaces for various resources have been published. The ecosystem of embedding spaces is distributed but not interoperable: Entity embeddings are not readily comparable across different spaces. To parallel the Web of Data with a Web of Embeddings, we must thus integrate available embedding spaces into a uniform space.

Current integration approaches are limited to two spaces and presume that both of them were embedded with the same method — both assumptions are unlikely to hold in the context of a Web of Embeddings. In this paper, we present FedCoder— an approach that integrates multiple embedding spaces via a latent space. We assert that linked entities have a similar representation in the latent space so that entities become comparable across embedding spaces. FedCoder employs an autoencoder to learn this latent space from linked as well as non-linked entities.

Our experiments show that FedCoder substantially outperforms state-of-the-art approaches when faced with different embedding models, that it scales better than previous methods in the number of embedding spaces, and that it improves with more graphs being integrated whilst performing comparably with current approaches that assumed joint learning of the embeddings and were, usually, limited to two sources. Our results demonstrate that FedCoder is well adapted to integrate the distributed, diverse, and large ecosystem of embeddings spaces into an interoperable Web of Embeddings.

Keywords

Knowledge graphs
Knowledge graph embedding
Embedding space integration
Web of Embeddings

Cited by (0)