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Abstract

This chapter introduces modal logic as a tool for talking about graphs, or to use more traditional terminology, as a tool
for talking about Kripke models and frames. We want the reader to gain an intuitive appreciation of this perspective, and
a firm grasp of the key technical ideas (such as bisimulations) which underly it. We introduce the syntax and semantics of
basic modal logic, discuss its expressivity at the level of models, examine its computational properties, and then consider
what it can say at the level of frames. We then move beyond the basic modal language, examine the kinds of expressivity
offered by a number of richer modal logics, and try to pin down what it is that makes them all ‘modal’. We conclude by
discussing an example which brings many of the ideas we discuss into play: games.
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1 Introduction

This chapter introduces modal logic from a semantic perspective. That is, it presents modal logic as a tool for
talking aboutstructuresor models. But what kind of structures can modal logic talk about?

There is no single answer. For example, modal logic can be given analgebraic semantics, and under
this interpretation modal logic is a tool for talking about what are known as boolean algebras with operators.
Moreover, modal logic can be given atopological semantics, so it can also be viewed as a tool talking about
certain kinds of topologies. But this chapter is about modal logic as a tool for talking aboutgraphs. To
put it another way, this chapter is devoted to what is known as therelational or Kripke semantics for modal
logic. This is the best known and (with the exception of algebraic semantics) the best explored style of modal
semantics. It is also, arguably, the most intuitive. Over the years modal logic has been applied in many
different ways. It has been used as a tool for reasoning about time, beliefs, computational systems, necessity
and possibility, and much else besides. These applications, though diverse, have something important in
common: the key ideas they employ (flows of time, relations between epistemic states, transitions between
computational states, networks of possible worlds) can all be represented as simple graph-like structures. And
as we shall see, modal logic is an interesting tool for talking about such structures: it provides a internal
perspective on the information they contain.

But modal logic is not the only tool for talking about graphs, and this brings us to one of the major themes
of the chapter: the relationship between modal logic and other forms of logic. As we shall see, under the
graph-based perspective discussed here, modal logic is closely linked to both first- and second-order classical
logic. This immediately raises interesting questions. How does modal logic compare with these logics as a
tool for talking about graphs? Can modal expressivity over graphs be characterised in terms of classical logic?
We shall ask (and answer) such questions in the course of the chapter.

Games are another recurring motif. The simple way that modal formulas are interpreted on graphs naturally
gives rise to games and game-like concepts. The most important of these is the notion ofbisimulation. This is a
relation between two models, weaker than isomorphism, which can be thought of as transition-matching game
between two players. As we shall see, this concept holds the key to modal model theory and characterises the
link with first-order logic.

This chapter has two main pedagogical goals. The first is to provide a bread-and-butter introduction to
relational semantics for modal logic that can be used as a basis for tackling the more advanced chapters in
this handbook. Thus the reader will find here definitions and discussions of all the basic tools needed in
modal model theory (such as the standard translation, generated submodels, bounded morphisms, and so on).
Basic results about these concepts are stated and some simple proofs are given. But we have a second, more
ambitious, goal: to help the reader think semantically. We want to give the reader a sense of how modal
logicians view structure, and what they look for when exploring new logics. To this end we have tried to
isolate the intuitions that guide working modal logicians, and to present them vividly. We also make numerous
asides, some of which touch on advanced logical topics. Their purpose is to locate the key ideas in a wider
logical context, and even beginners should try to follow them.

We proceed as follows. In Section 2, we introduce basic modal languages and the graphs over which they
are interpreted. We give the satisfaction definition (which tells us how to interpret modal formulas in such
graphs) and the standard translation (which links modal logic with classical logic). With these preliminaries
out of the way, we are ready to go deeper. What can (and cannot) modal languages say about graphs? In
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Section 3 we introduce the notion of bisimulations and use it to develop some answers; among other things,
we characterise modal logic as a fragment of first-order logic. In Section 4 we examine the computability and
computational complexity of modal logic. A shift of topic? Not at all. In essence, this section examines modal
logic as a tool for talking aboutfinite graphs. In Section 5 we move to the level of frames and re-examine
the links between modal and classical logic from a number of different perspectives. We learn that there
is an important connection between modal logic and (monadic) second-order logic, discuss correspondences
between modal logic and first-order logic with fixed-point operators, and show that first-order logic itself can
be viewed as a modal logic. In Section 6 we move beyond the basic modal language and discuss a number
of richer languages that offer more expressivity. But what makes them all modal? As we shall see, many of
themes explored in earlier sections re-emerge, and point towards an idea that seems to lie at the heart of modal
logic: guarding. Section 7 closes the chapter with a brief discussion of the changing role of modal logic.

One final remark. Wedon’t discuss modal proof-theory or related notions such as completeness in any
detail (these topics are the focus of Chapter?? of this handbook). Although we haven’t banished all mention
of normal modal logics and completeness from the chapter, in our view traditional introductions to modal logic
tend to overemphasise these topics. We want this chapter to act as a counterbalance. As we hope to convince
the reader, simply asking the question “But what I can Isaywith these languages?” swiftly leads to interesting
territory.

2 Basic modal logic

In this section we introduce the basic modal language and its relational semantics. We define basic modal
syntax, introduce models and frames, and give the satisfaction definition. We then draw the reader’s attention
to the internal perspective that modal languages offer on relational structure, and explain why models and
frames should be thought of as graphs. Following this we give the standard translation. This enables us to
convert any basic modal formula into a first-order formula with one free variable. The standard translation is
a bridge between the modal and classical worlds, a bridge that underlies much of the work of this chapter.

2.1 First steps in relational semantics

Given proposition symbols PROP= {p, q, r, . . .}, and modality symbols MOD= {m,m′,m′′, . . .} (the
choice of PROP and MOD is often called thesignatureor similarity type) we define thebasic modal language
(over this signature) as follows:

ϕ ::= p | > |⊥| ¬ϕ | ϕ ∧ ψ | ϕ ∨ ψ | ϕ→ ψ | ϕ↔ ψ | 〈m〉ϕ | [m]ϕ.

That is, a basic modal formula is either a proposition symbol, a boolean constant, a boolean combination
of basic modal formulas, or (most interesting of all) a formula prefixed by a diamond or a box. There is
redundancy in the way we have defined basic modal languages: we don’t need all these boolean connectives as
primitives, and it will follow from the satisfaction definition given below that[m]ϕ is equivalent to¬〈m〉¬ϕ.
But we won’t bother picking out a preferred set of primitives, as this is not relevant to our discussion. If there
is only one modality in our language (that is, if MOD has only one element) we simply write3 and2 for its
diamond and box forms. We often tacitly assume that some signature has been fixed, and say things like “the
basic modal language”, or “the basic modal language with one diamond”.

A model(or Kripke model) M for the basic modal language (over some fixed signature) is a tripleM =
(W, {Rm}m∈MOD, V ), whereW is a non-empty set (whose elements we usually callpoints), eachRm is a
binary relation onW , andV is a function (the valuation) that assigns to each proposition symbolp in PROP
a subsetV (p) of W ; think of V (p) as the set of points inM wherep is true. The first two components
(W, {Rm}m∈MOD) of M are called theframeunderlying the model. If there is only one relation in the model,
we typically write(W,R) for its frame, and(W,R, V ) for the model itself. We encourage the reader to think
of Kripke models as graphs, and will shortly give some examples which show why this is helpful.
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Supposew is a point in a modelM = (W,R, V ). Then we inductively define the notion of a formulaϕ
beingsatisfied(or true) in M at pointw as follows (we omit some of the clauses for the booleans):

M, w |= p iff w ∈ V (p), wherep ∈ ϕ,
M, w |=⊥ never,

M, w |= ¬ϕ iff M, w 6|= ϕ,

M, w |= ϕ ∧ ψ iff M, w |= ϕ and M, w |= ψ,

M, w |= ϕ→ ψ iff M, w 6|= ϕ or M, w |= ψ,

M, w |= 〈m〉ϕ iff for somev ∈W such thatRmwv we haveM, v |= ϕ

M, w |= [m]ϕ iff for all v ∈W such thatRmwv we haveM, v |= ϕ.

A formula ϕ is globally true in a modelM if it is satisfied at all points inM, and if this is the case we
write M |= ϕ. A formulaϕ is valid if it is globally true in all models, and if this is the case we write|= ϕ.
A formulaϕ is satisfiable in a modelM if there is some point inM at whichϕ is true, andϕ is satisfiableif
there is some point in some model at which it is satisfied. These definitions are lifted to sets of formulas in the
obvious way. For example, a set of basic modal formulasΣ is satisfiable if there is some point in some model
at which all the formulas it contains are satisfied.

We now have all the concepts needed to begin exploring modal logic. But instead of moving on, let us
reflect upon the ideas just introduced. First, note theinternal character of the modal satisfaction definition:
modal formulas talk about Kripke models from the inside. In first-order classical logic, when we talk about a
model, we do so from the outside. Asentenceof first-order logic does not depend on the contextual information
contained in assignments of values to variables: sentences take a bird’s-eye-view of structure, and, irrespective
of the variable assignment we use, are simply true or false of a given model. Modal logic works differently:
we evaluate formulasinsidemodelsat some particular point. A modal formula is like an automaton placed
inside a structure at some pointw, and forced to explore by making transitions to accessible points. This may
seem a fanciful way of thinking about the satisfaction definition, but it turns out to be crucial. When we isolate
the mathematical content of this intuition, we are led, fairly directly, to the notion ofbisimulation, the key to
modal model theory, which we will introduce in Section 3.

Second, note that basic modal languages are syntactically extremely simple: we are working with lan-
guages of propositional logic augmented with additional unary operators. And yet these languages clearly
pack quantification punch. Diamonds and boxes can be thought of as macros that encode quantification over
Rm-accessible states in a perspicuous variable-free notation. We will shortly define thestandard translation,
which makes this ‘macro’ intuition precise.

Third, note that Kripke models can (and in our opinion should) be thought of as graphs. As we have
already mentioned, modal logic has been applied in many different area. What these areas have in common is
that they deal with applications in which the important ideas can be represented by relatively simple graph-like
structures. Let’s consider some examples,

A classic interpretation of Kripke models of the form(W,R, V ) is to regard the points inW as times, and
the relationR as the relation of temporal precedence (that is,Rww′ means that the timew is earlier than time
w′). Consider the graph in Figure 1. This shows a simple flow of time consisting of five points. Here we will

t1 t2 t3 t4 t5

p p,q q

Fig. 1. A simple temporal model

take the precedence relation to be the transitive closure of the next-time relation indicated by the arrows (after
all, we think of the flow of time as transitive) thus every pointti precedes all points to its right. Note that (as we
would expect from the internal perspective provided by modal languages) whether or not a formula is satisfied
depends on where (or in this example,when) it is evaluated. For example, the formulas3(p ∧ q) is satisfied
at pointst1, t2 andt3 (because all these points are to the left oft4 where bothp andq are true together) but
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not att4 andt5. On the other hand, becauseq is true att5, we have that3q is true att1, t2, t3 andt4. One
special case is worth remarking on: note that for any basic formulaϕ whatsoever,2ϕ is satisfied att5. Why?
Because the clause in the satisfaction definition for boxes says that2ϕ is satisfied if and only ifϕ is satisfied
atall R-accessible points. As no points areR-accessible fromt5 (it has no points to its right) this condition is
trivially met.

The idea of using modal logic as a tool for temporal reasoning is due to Arthur Prior [39]. His work
offers what is probably the clearest example of modal logic being appreciated for the internal perspective.
In languages such as English and Dutch, the default way of locating information temporally is to use tenses,
and tenses locate informationrelative to the point of speech. For example, if at some timet I say “Clarence
will fly”, then this will be true if at some future timet′ Clarence does in fact fly. Prior viewed tensed talk as
fundamental: we exist in time, and have to deal with temporal information from the inside. He believed that
the internal perspective offered by modal languages made it an ideal tool for capturing the situated nature of
our experience and the context-dependent way we talk about it. Prior called his systemtense logic. He wrote
F for the forward looking (or future) diamond, and had a second diamond, writtenP , for looking back into the
past (so in Figure 1,P (p ∧ q) is true att5, for this point is to the right oft4, wherep andq are true together).
Prior needed backward looking operators to mimic the effect of natural language past tense constructions.

Our next example brings us to one of the currently most influential ways of thinking about Kripke models;
to view them as pictures of computational systems (we examine to this perspective in more detail in Section 6
when we discuss Propositional Dynamic Logic and the modalµ-calculus, and the idea underlies Chapter??
of this handbook). Consider the graph shown in Figure 2. This shows a finite state automaton for the language

s t

a b

a b

Fig. 2. Finite state automaton foranbm(n,m > 0)

anbn (n,m > 0), that is, for the set of all strings consisting of a non-empty block ofas followed by a non-
empty block ofbs. But this is precisely the type of graph we can use to interpret a modal language. It this case
it would be natural to work with a language with two diamonds〈a〉 and〈b〉. The〈a〉 diamond will be used to
explore thea-transitions in the automaton, while the〈b〉 diamond explores theb-transitions. It follows that all
formulas of the form

〈a〉 · · · 〈a〉〈b〉 · · · 〈b〉>

(that is, an unbroken block of〈a〉 diamonds preceding an unbroken block of〈b〉 diamonds) are satisfied at the
start nodes as all (and indeed only) modality sequences of this form correspond to the strings accepted by
the automaton. Although simple, this example shows the key feature of many computational interpretations of
modal logic: the relations are thought of as processes (here our processes are ‘read the symbola’ and ‘read
the symbolb’). Note that in this case we are thinking in terms of deterministic processes (each relation is
a partial function) but we could just as well work with arbitrary relations, which amounts to working with
non-deterministic models of processes, and we shall do so in Section 6.

Another important application of modal languages is to model the logic of knowledge and belief. Again,
simple graph-based intuitions underly this application. Consider, for example, the graph shown in Figure 3.
Here we see the epistemic states of a very simple agent. One state, the agent’s current state, is markede. This
represents the agents current knowledge (the agent knows thatq is the case). The other states represent the
way the world might be. For example, although neitherp nor r are true in the current state, the agent views
states in whichp andq, andr andq (but notp andq andr together) as epistemically acceptable alternatives
to the current state. That is3(p ∧ q) (“p ∧ q is consistent with what the agent knows”) and3(r ∧ q) are both
satisfied ate. Moreover2p (“the agent knows thatp”) is satisfied ate, as at every epistemic alternative the
informationp holds.
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q,p q

q,rq

e

Fig. 3. Epistemic states of a simple agent

The next example is important for another reason. Modal logic is often veiwed as an intrinsicallyinten-
sional logic, interpreted usingpossible world semantics. This view comes from what is probably the most
historically influential interpretation of modal logic, namely as the logic of necessity and possibility. In this
interpretation,3 is read as “possibly”,2 is read is “necessarily”, and the points of the Kripke model are re-
garded as possible worlds. Unfortunately, this interpretation has tended to overshadow the others, at least in
certain research communities (some philosophers seem to view modal logic, intensionality, possible worlds
as inextricably intermingled). To ensure that this illusion is dispelled, our last example will be completely
extensional. Consider the graph in Figure 4.

loves

loves
loves

detests

detests

detests

judy

terry frank

johnny

Fig. 4. Ordinary individuals

This is the sort of extensional information that classical logics (such as first-order logic) are often used for.
But modal logic is at home here too. We can say lots of interesting things about such situations. For example

〈LOVES〉> ∧ 〈DETESTS〉〈LOVES〉>

is true when evaluated at Terry: he loves someone who detests someone who loves someone. Nowadays,
modal logic is widely used for reasoning about such extensional situations. In particular, thedescription logics
used in knowledge representation are essentially notational variants of modal languages. They are used in a
wide range of applications for representing and reasoning about extensional information. Description logics
are treated in depth in Chapter??of this handbook.

We’re almost ready to define the standard translation, but before doing so let’s deal with two other matters.
First, in most branches logic and mathematics, there is a notion of two structures beingisomorphic, which
can be glossed as “mathematically indistinguishable”. Let’s take this opportunity to be precise about what
isomorphism means in basic modal logic (we give the definition for models and frames with one relation; it
generalises straightforwardly to structures with multiple relations).

Definition 2.1 [Isomorphism] LetM = (W,R, V ) andM′ = (W ′, R′, V ′) be models, andf : W 7→ W ′ a
bijection. If for allw, v ∈W we have thatRwv if and only ifRf(w)f(v) then we say thatf is an isomorphism
between the frames(W,R) and(W ′, R′) and that these frames are isomorphic. If in addition we have, for all
proposition lettersp, thatw ∈ V (p) if and only if f(w) ∈ V ′(p) then we say thatf is an isomorphism between
the modelsM andM′ and that these models are isomorphic.

As this definition makes clear, if modelsM andM′ are isomorphic, each replicates perfectly the informa-
tion in the other. Hence the following result is unsurprising:

Proposition 2.2 Let f be an isomorphism between modelsM andM′. Then for all basic modal formulasϕ,
and all pointsw in M, we have thatM, w |= ϕ if and only ifM, f(w) |= ϕ.
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Proof. Immediate by induction on the construction ofϕ. (See Lemma 3.5, for an example of such a proof.)a

Second, we want to point out that it is possible to take a more dynamic perspective on the satisfaction
definition. In particular, we can think of it as a game. Let’s start with a concrete example. Consider the model
in Figure 5.

2 pp 1

3 4

Fig. 5. The formula323p is true at1 and4, but false at2 and3

As the reader should check,323p is true at points1 and4, but false at points2 and3. Now suppose we
play the followingevaluation game. This game has two players, a Verifier (V) and a Falsifier (F), who disagree
about the satisfiability of a formula in some model. The two player react differently to the connectives in the
formula: for example, occurrences of disjunction allow V to make a choice as to which disjunct to verify, and
force F to make both disjuncts false; negation switches the roles of the two players; and diamonds makes V
pick a successor of the current point, while boxes do the same for F. Moreover, for any propositional symbol
p, V wins thep-game ifp is true at the current state, otherwise F wins. A player also wins the game if the other
player must make a move for a modality but cannot.

3 F
V wins

1 V

2 V

4 F

4 p 1 p
V wins

2 p
V wins

4 V

Fig. 6. Initial segment of a game tree

So let’s play the game for323p at 1. Figure 6 shows an (initial segment of) the resulting game tree.
Note that V can always win. Her most obvious option is to play3 in response to the outermost diamond; this
leaves F with no possible response when faced with the task of falsifying23p. But V can also safely play
4 on her first move. As the tree shows, irrespective of F’s response, V can always reach a winning position.
What this example suggest is completely general: for any modalM, pointw, and basic formulaϕ, we have
thatM, w |= ϕ if and only if V has a winning strategy when theϕ game is played inM starting atw.

2.2 The standard translation

We now understand what modal languages are, how they can be interpreted in graphs, and why this can be an
interesting this to do. What next? Well, if we were following a traditional path, we would probably remark that
as modal languages are to be used for reasoning, some sort of proof system is called for. We might then point
out that the set of all modal validities (that is, theminimal modal logic) can be axiomatised by a Hilbert-style
proof system calledK . The axioms ofK are:
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(i) All propositional tautologies,

(ii) 2(ϕ→ ψ)→ (2ϕ→ 2ψ).

There are two rules of proof:modus ponens(if ` ϕ and` ϕ→ ψ then` ψ) andmodal generalisation(if ` ϕ
then2ϕ). This looks like a standard axiomatisation of first-order logic with2 behaving like∀. But K has no
analogs of the first-order axioms with tricky side conditions on freedom and bondage of variables and terms,
such as∀xϕ → [t/x]ϕ. This is no coincidence. As the standard translation will make clear, modal logic is
essentially a perspicuous variable-free notation for a fragment of first-order logic.

But proof systems are not our goal. This chapter is concerned with semantic issues, so quite different
aspects of modal logic call for our attention. To get the ball rolling, let’s return to our basic semantic entities
(Kripke models) and ask what they actually are. This will provide a point of entry to one of the main themes
of the chapter: the relationship between modal and classical logic.

So what is a Kripke model? No mystery here. A Kripke model(W, {Rm}m∈MOD, V ) is what model
theorists call arelational structure. That is, we have a domain of quantificationW , a collection of binary
relations over this domain, and a collection of unary relations as well (after all,V (p) is a unary relation for
all p ∈ PROP). But this means that we are not forced to talk about Kripke models using modal languages:
they provide us with everything needed to interpret classical languages too. For example, to talk about a
model(W, {Rm}m∈MOD) using first-order logic we would simply make use of a first-order language with a
binary relation symbolRm for everym ∈ MOD, and a unary relation symbolP for everyp ∈ PROP. Modal
logicians have a name for this language: they call it thefirst-order correspondence languagefor the basic
modal language over PROP and MOD.

Why “correspondence language”? Because every basic modal formula (in the language over PROP and
MOD) can corresponds to a first-order formula from this language via thestandard translation:

STx(p) = Px

STx(⊥) = ⊥

STx(¬ϕ) = ¬ STx(ϕ)

STx(ϕ ∧ ψ) = STx(ϕ) ∧ STx(ψ)

STx(〈m〉ϕ) = ∃y(Rmxy ∧ STy(ϕ))

STx([m]ϕ) = ∀y(Rmxy → STy(ϕ)).

That is, the standard translation maps propositional symbols to unary predicates, commutes with booleans,
and handles boxes and diamonds by explicit first-order quantification overRm-accessible points. The variable
y used in the clauses for diamonds and boxes is chosen to be any new variable (that is, one that has not been
used so far in the translation). We remarked earlier that diamonds and boxes were essentially a simple macro
notation encoding quantification over accessible states; the standard translation simply expands these macros.
Note thatSTx(ϕ) always contains exactly one free variable (namelyx). This free variable is what allows the
internal perspective, typical of modal logic, to be mirrored in a classical language: assigning a value to this
variable is analogous to evaluating a modal formula inside a modal at a certain point.

Here’s an example of the translation at work:

STx(p→ 3p) = STx(p)→ STx(3p)

= Px→ STx(3p)

= Px→ ∃y(Rxy ∧ STy(p))

= Px→ ∃y(Rxy ∧ Py).
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As the reader can easily check,p→ 3p and its standard translationPx→ ∃y(Rxy ∧ Py) are equisatisfiable
in the following sense: for any modelM, and any pointw in M, we have thatM, w |= p → 3p if and only
if M |= Px → ∃y(Rxy ∧ Py)[x ← w], where the notation[x ← w] means assignw to the free variablex.
Unsurprisingly, this relationship is completely general:

Proposition 2.3 For any modal formulaϕ, any modelM, and any pointw in M we have thatM, w |=
ϕ iff M |= STx(ϕ)[x← w].

Proof. There is practically nothing to prove. The clauses of the standard translation mirror the clauses of the
satisfaction definition. Hence the result is immediate by induction on the structure of modal formulas.a

Thus the standard translation gives us a bridge between the modal and classical worlds. And we can
immediately use this bridge to transfer results for first-order logic to modal logic.

Proposition 2.4 Basic model logic has the compactness property. That is, ifΣ is a set of basic modal formu-
las, and every finite subset ofΣ is satisfiable, thenΣ itself is satisfiable. Moreover, basic model logic has the
Löwenheim-Skolem property. That is, if a set of basic modal formulasΣ is satisfiable in at least one infinite
model, then it is satisfiable in models of every infinite cardinality.

Proof. Suppose the L̈owenheim-Skolem property fails. Then there is a set of basic modal formulasΣ that has
at least one infinite model, but lacks models of some infinite cardinalities. But this is impossible. LetSTx(Σ)
be the set of (first-order) formulas obtained by standardly translating all the formulas inΣ. Now, asΣ has an
infinite model, by Proposition 2.3 so doesSTx(Σ). But first-order logic has the L̈owenheim-Skolem property,
henceSTx(Σ) has a model of every infinite cardinality. But, again by appeal to Proposition 2.3, each of these
models satisfiesΣ, and we conclude that basic modal logic must have the Löwenheim-Skolem property after
all. The argument showing that it has the Compactness property is analogous. a

Another easy consequence of the standard translation is that the set of validities (in basic modal languages)
is recursively enumerable. Again, by appealing to the fact that first-order logic has this property, we swiftly
generate a contradiction from the supposition that basic modal languages do not.

Let’s sum up what we have learned so far. Propositional modal languages are syntactically simple lan-
guages that offer a neat (variable-free) notation for talking about relational structures. They talk about rela-
tional structures from the inside, using the modal operators to access information at accessible states. This
internal perspective on models, coupled with the simplicity of modal syntax, means that propositional modal
logic is an attractive tool for certain applications. Moreover, viewed as a tool for talking about models, any
basic model language can be regarded as a fragment of its corresponding first-order language: the standard
translation systematically maps modal formulas to first-order formulas (in one free variable) and makes the
quantification over accessible states explicit. This allows us to quickly establish some basic modal meta-theory
by appeal to known results for first-order logic.

3 Simulation and definability

With the basics behind us it is time to look deeper. In particular, it is time to start mapping the expressive
strengths and weaknesses of the basic modal language. Now, the expressive power of a language is usually
measured in terms of the distinctions it can draw. A language with just the two expressions “like” and “dislike”
would provide only the roughest possible classification of the world, whereas a richer language of assent and
dissent would make it possible to draw finer distinctions inside the accepted and rejected situations. So what
distinctions can modal languages draw? In this section we discuss this question at the level of models, and
in Section 5 we shall reconsider it at the level of frames. In what follows it will often be useful to think in
terms ofpointed models. That is, we shall often present models together with an explicit distinguished point
to indicate where we are trying to find a difference.
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3.1 Drawing distinctions

A modal language (and indeed any logical language whose formulas form a set) can distinguish between
some models(M, s) and(N, t), but not between all such pairs. For example, our basic modal language can
distinguish the pair of models shown in Figure 7 (in these graphs all points are irreflexive).

M

s t

N

Fig. 7.M andN are modally distinguishable.

Here2(2 ⊥ ∨32 ⊥) is a modal formula that distinguishes these models: it is true inM at s, but false
in N at t. But now consider the pair of models shown in Figure 8 (in these graphs,u is reflexive, and all other
points are irreflexive).

M

s

K

u

Fig. 8.M andK are not modally distinguishable.

Is it possible tomodallydistinguish(M, s) from (K, u)? That is, is it possible to find a (basic) modal formula
that is true inM at s, but false inK atu? Note that is easy to distinguish them if we are allowed to use first-
order logic: all points inM (includings) are irreflexive, while pointu in K is reflexive, hence the first-order
formulaRxx is not satisfiable (under any variable assignment) in modelM, but it is satisfied inK whenu
is assigned tox. But no matter how ingenious you are, are you will not find any formula in the basic modal
language that distinguishes these models at their designated points. Why is this?

3.2 Structural invariances: bisimulation

A natural approach to this question is to consider its dual: when should two models be viewed as modally
identical? For example, given a process interpretation, when would we view two transition diagrams as rep-
resentations of the same process? The modelM andK of Figure 7 provide an intuitive example: they seem
to stand for the same process when we look at possible actions and deadlocks. At each live stage, the process
can opt for a deadlock. By contrast,M andN are different, as not every state has an immediate dead-lock op-
tion. Or consider the epistemic interpretation: when would we want to say that two graphs represent the same
epistemic information? For example we would probably want to identify the two epistemic models shown in
Figure 9 at their distinguished pointss andt.
After all, in essence both models present us with a two way choice: either we are in ap knowledge state, and
there is a distinct knowledge stateq that is compatible with what we know, or vice versa. The intuition that
both these diagrams code the same information is captured by our modal language: the reader will not find any
modal formula that distinguishes them.
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qp

Fig. 9. Two epistemically equivalent models.

The modal logician’s idea of asking when two distinct structures are modally identical (that is, make the
same modal formulas true) lies within an older (and broader) tradition of looking for the structure preserving
morphisms in a given mathematical domain, and letting the corresponding theory describe those notions that
are invariant for such morphisms. This is the spirit of Klein’s Program in geometry, proposed around 1870,
and still influential in many fields. Of course, there is no unique answer to the question of when two structures
are the same. This insight was stated forcefully in recent years by President Clinton during the Lewinsky
hearings: “It all depends on what you mean by ‘is’”. Clinton’s Principle for modal logic means that we should
first try to stipulate some notion of structural equivalence for models that is appropriate for modal languages.
This is the purpose of the following definition, which is best understood as a notion of equivalence between
modal models viewed as process graphs. We state it here for models with one relationR, but the definition
generalises straightforwardly to models with any number of atomic relations.

Definition 3.1 (Bisimulation) A bisimulation between modelsM = (W,R, V ) andM′ = (W ′, R′, V ′) is a
non-empty binary relationE between their points (that is,E ⊆ W ×W ′) such that wheneverwEw′ we have
that:

Atomic harmony:w andw′ satisfy the same proposition symbols,

Zig: if Rwv, then there exists a pointv′ (in M′) such thatvEv′ andR′w′v′, and

Zag: if R′w′v′, then there exists a pointv (in M) such thatvEv′ andRwv.

If there is a bisimulation between two modelsM andN, then we say thatM andN are bisimilar. Moreover,
we say that two states are bisimilar if they are related by some bisimulation.

Putting this in words: two states are bisimilar if they make the same atomic information true and if, in
addition, their transition possibilities match. That is, if a transition to a related state is possible in one model,
then the bisimulation must deliver a matching transition possibility in the other. Atomic harmony coupled with
the matching transitions concept embodied in the zigzag clauses make bisimulation a natural notion of process
equivalence, and indeed bisimulations were independently discovered in computer science.

Returning to the modelsM, K, andN considered above (and disregarding proposition symbols) it is easy
to see thatM andK are bisimilar: the dotted lines in Figure 10 indicate the required bisimulation (note that
the indicated bisimulation links the two designated points). Furthermore, it is easy to see that there is no
bisimulation that links the designated points ofN andK. Why not? Because a move fromt to the right-hand
world in N has no matching move inK: moving downwards fromu is no option (end-points never bisimulate
with points having successors) but neither is moving reflexively fromu to itself (as one can move fromu to a
successor which is an endpoint, but this can’t be done from the right-hand world inN).

Given any modal modelM, bisimulations can be used in at a number of ways. The so-calledbisimulation
contractionmakesM as small as possible. To define this, note that it follows from Definition 3.1 that any
union of bisimulations between two models is itself a bisimulation. Therefore the union of all bisimulations
between two models is a maximal bisimulation between them. Now define a quotient ofM whose points are
the equivalence classes of the maximal bisimulation onM itself, setting|w|R|v| iff the equivalence classes
|w| and |v| contain pointsw′ and v′ such thatw′Rv′. The map from points to their equivalence classes
is a bisimulation. For example, the bisimulation shown in Figure 10 betweenM andK is a bisimulation
contraction. Bisimulation contractions are the most compact representation of processes, at least from a modal
standpoint. They remove all the redundancies in the representation — but also all aesthetic symmetries. (A
butterfly is a redundant object, as one wing contains enough information under this perspective.)

11



M

s t

NK

u

Fig. 10.M andK are bisimilar,K andN are not.

But bisimulations can also be used to make bigger models: a pointed model(M, w) can be made as large
as possible using a construction calledtree unraveling. To unravel a model we take all finiteR-sequences of
points inM that start at some pointw. These sequences form a tree with one-step extensions of sequences as
the tree-successor relation. Projection from a sequence to its last element is a bisimulation onto the originalM.
As an example, consider the unraveling of modelK around its distinguished pointu to the infinite comb-like
structure shown in Figure 11 (we usev as the name of the unique successor ofu).

<u> <u,v>

<u,u> <u,u,v>

<u,u,u> <u,u,u,v>

.

.

.

Fig. 11. UnravelingK aroundu.

Reasoning about trees is often easier than reasoning about arbitrary graphs, and so this method is of consid-
erable theoretical utility. Moreover, as we shall see, tree unraveling is relevant to thedecidabilityof modal
logic.

Three other model constructions used in modal logic, namelydisjoint unions, generated submodels, and
bounded morphisms(or p-morphisms) are also bisimulations. Historically, all three constructions were widely
used in modal logic more than decade before the unifying concept of a bisimulations was introduced. All three
constructions are fundamental tools in many areas of modal logic (for example, they are key ingredients in the
Goldblatt-Thomason Theorem which we discuss in Section 5) so we take this opportunity to define them for
models with one accessibility relation. These definitions generalise straightforwardly to models of arbitrary
signature.

The simplest construction is forming disjoint unions. If we have a pair of disjoint models (that is a pair of
models(W,R, V ) and(W ′, R′, V ′) such thatW andW ′ are disjoint) then their disjoint union is the model
(W ∪ W ′, R ∪ R′, V + V ′), whereV + V ′ is the valuation defined byV + V ′(p) = V (p) ∪ V ′(p), for
all proposition symbolsp. That is, forming a disjoint union of two models means lumping together all the
information in the two graphs. What if the graphs are not disjoint? Then we simply take disjoint isomorphic
copies, and form the disjoint union of the copies (after all, in modal logic we are only interested in models up
to isomorphism). This lumping together process can be generalised to arbitrarily many models, which prompts
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the following definition.

Definition 3.2 (Disjoint Unions) Given a collection of mutually disjoint modelsMi = (Wi, Ri, Vi), where
i ranges over the elements of some index setI, we define the disjoint union of these models to beM =
(W,R, V ), whereW =

⋃
i∈I Wi, R =

⋃
i∈I Ri, andV (p) =

⋃
i∈I Vi(p) for all proposition symbolsp. To

form the disjoint union of a collection of models that are not mutually disjoint, we first take mutually disjoint
isomorphic copies, and then form the disjoint union of the copies.

It is immediate from this definition that any component modelMi of a disjoint unionM is bisimilar with
M: for the bisimulation relationE we simply take the identify relation. Identity clearly satisfies the atomic
harmony and zigzag conditions required of bisimulations.

Disjoint unions build bigger models from (collections of) smaller ones. Generated submodels do the
reverse. They arise by restricting attention to subgraphs of a given graph that are closed under relational
transitions. For example, consider the two graphs in Figure 12.

ss

Fig. 12. A generated submodel.

It is clear that the graph on the right arises by restricting attention to a certain transition-closed subgraph
of the graph on the left, namely the set of point reachable by taking sequences of transitions froms. This
motivates the following definition.

Definition 3.3 (Generated Submodels)Let M = (W,R, V ) be a model and letW ′ ⊆ W . We say that a
modelM′ = (W ′, R′, V ′) is the restriction ofM toW ′ if R′ = R∩ (W ′×W ′) and for all proposition symbol
p we have thatV ′(p) = V (p) ∩W ′. We say thatW ′ is R-closed if for allu ∈ W ′, if Ruv thenv ∈ W ′.
Finally, we say thatM′ is a generated submodel ofM iff M′ is the restriction ofM to anR-closed subset of
W .

If M′ = (W ′, R′, V ′) is a generated submodel ofM = (W,R, V ), andS ⊆ W ′ has the property that
everyw′ ∈ W ′ is reachable via a finite sequence ofR-transitions from somes ∈ S, then we say thatM′ is
the submodel ofM generated byS. If S is a singleton set{s}, then we say thatM′ is the submodel ofM
generated by the points.

A generated submodel is bisimilar to the model that gave rise to it: as with disjoint unions, the identity
relation relates the two models in the appropriate way. (Incidentally, note that every component model of a
disjoint union is a generated submodel of the disjoint union).

Finally we turn to bounded morphisms (orp-morphisms as they are often called).

Definition 3.4 (Bounded morphism) A bounded morphism between modelsM = (W,R, V ) and M′ =
(W ′, R′, V ′) is a functionf with domainW and rangeW ′ such that:

Atomic harmony: Points inW and theirf -images satisfy the same proposition symbols (that is,w ∈ V (p)
iff f(w) ∈ V ′(p), for all proposition symbolsp).

Morphism: if Rwv, thenR′f(u)f(v).

Zag: if R′w′v′, then there exists av (in M) such thatf(v) = v′ andRwv.

If f is a bounded morphism fromM to M′ and f is surjective, then we say thatM′ is a bounded morphic
image ofM.

Bounded morphisms are bisimulations: a bounded morphism is simply a bisimulation in which the bisim-
ulation relationE is aR-preserving morphismf (note that the only essential difference between the two defi-
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nitions is that the morphism clause replaces the zig clause, and clearly morphism implies zig). Historically, it
was the definition of bounded morphisms that inspired the definition of bisimulations.

As an example of a bounded morphism between models, consider Figure 13 (again we ignore proposition
symbols).

0 1 2 3 4
. . .

Fig. 13. Bounded morphism collapsing the natural numbers to a reflexive point.

Here we have collapsed the natural numbers in their usual order to a single reflexive point. It clear that this
map satisfies both the morphism and zig clauses, so it is indeed a bounded morphism.

3.3 Invariance and definability in first-order logic

Structural invariances preserve certain patterns definable in appropriate languages. Before pursuing the match
between bisimulation and modal logic, let us examine the situation in first-order logic. The archetypal struc-
tural invariance isisomorphismbetween models. As we saw earlier (recall Proposition 2.2) modal formulas
are invariant for isomorphism. Moreover, it is well known that iff is an isomorphism betweenM andN,
then for each first-order formulaϕ(x1, . . . , xk), and each matching tuple of objects〈d1, . . . , dk〉 in M, the
following equivalence holds:

M |= ϕ[d1, . . . , dk] iff N |= ϕ[f(d1), . . . , f(dk)],

or stated in words: first-order formulas are invariant for isomorphism.
On special models, the converse also holds. For example, it is a well-known elementary fact that any two

finite models with the same first-order theory are isomorphic. But no general converse holds, as there are many
more isomorphism classes of models than complete first-order theories. Invariance for isomorphism is even a
defining condition for any logic in abstract model theory. But no matter how strong the logic, the converse still
fails whenever its formulas form a set, as opposed to the proper class of isomorphism types.

Thus it makes sense to look at invariance conditions for weaker notions of structural equivalence. For
example, apotential isomorphismbetween two modelsM andN is a non-empty setI of finite partial isomor-
phisms satisfying the back-and-forth extension conditions that, wheneverf ∈ I andd ∈ M, then there is an
e ∈ N such thatf∪{(d, e)} ∈ I, and vice-versa. Note that isomorphisms induce potential isomorphisms: sim-
ply takeI to be the family of all finite restrictions. The converse is not true. Matching up all finite sequences of
rational numbers with equally long sequences of real numbers (in the same order) is a potential isomorphism
betweenQ andR, even though these two structures are not order-isomorphic for cardinality reasons.

It is easy to show that all first-order formulas are invariant for potential isomorphism, but the real match
is with a stronger language: two models are potentially isomorphic iff they have the same complete theory in
the infinitary first-order logicL∞ω. This formalism also gives rise to much stronger definability results. For
example, for each modelM there is a sentenceδM of L∞ω which holds only in those modelsN which have a
potential isomorphism withM; that is, models can be defined up to potential isomorphism. Moreover, count-
able models can even be defined (modulo isomorphism) using only countable conjunctions and disjunctions.
This is all very nice of course, but infinitary logic is a bit outlandish from a practical viewpoint.

Better matches between structural invariance and first-order definability arise in the more fine-grained
setting of Ehrenfeucht-Fraı̈sśe comparison games between modelsM andN played between a Spoiler and a
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Duplicator. ModelsM andN have the same first-order theory up to quantifier depthk iff the Duplicator has a
winning strategy in their comparison game overk rounds. We forgo the details here, as we will define a modal
comparison game of this sort at the end of the section.

3.4 Invariance and definability in modal logic

With these analogies in mind, let us now investigate the modal situation. For a start, modal formulas are
invariant for bisimulation:

Lemma 3.5 (Bisimulation Invariance Lemma) If E is a bisimulation betweenM = (W,R, V ) andM′ =
(W ′, R′, V ′), andwEw′, thenw andw′ satisfy the same basic modal formulas.

Proof. By induction on the construction of modal formulas. The case for proposition symbols is immediate
by atomic harmony. The inductive steps for the boolean connectives are straightforward. And the inductive
step for3 formulas shows exactly what the zigzag clauses were designed for. For consider the left to right
direction. GivenM, w |= 3ϕ andwEw′, we want to show thatM′, w′ |= 3ϕ. Now,M, w |= 3ϕ means that
there is somev in M such thatRwv andM, v |= ϕ. But then (by zig) there must be a pointv′ in N′ such that
vEv′ andR′w′v′. By the induction hypothesis,M′, v′ |= ϕ, henceM′, w′ |= 3ϕ as required. The argument
for the right to left direction is essentially the same, but uses zag in place of zig. a

The result allows us to quickly show failures of bisimulation. For example, we have already sketched an
argument showing that the modelsM andN of Figure 7 have no bisimulation between their designated points,
but a quicker proof is now possible: these pointscannotbe bisimilar because there are modal formulas (for
example2(2 ⊥ ∨32 ⊥)) which is satisfied at one point but not the other. On the other hand, the dotted
lines in Figure 10 show thatM andK are bisimilar; it follows that all points linked by a dotted line in these
graphs make exactly the same modal formulas true. Another typical application of this result is to show the
undefinability of certain structural notions. For example, we can show that irreflexivity is modally undefinable:
no modal formula holds in exactly those pointsw of models such that¬Rww. To prove this, it suffices to find
two bisimilar points in two models, one of which is reflexive, the other irreflexive. One such example is the
bisimulation between the designated points ofM andK.

Another consequence of this result is that the disjoint union, generated submodel, and bounded morphism
constructions are all satisfaction preserving. More precisely:

Lemma 3.6 Modal satisfaction is invariant under the formation of disjoint unions, generated submodels, and
bounded morphisms. That is:

(i) If M = (W,R, V ) is the disjoint union ofMi = (Wi, Ri, Vi), for i from some index setI, then for all
w ∈Wi and all i ∈ I we have thatM, w |= ϕ iff Mi, w |= ϕ.

(ii) If M′ = (W ′, R′, V ′) is a generated submodel ofM = (W,R, V ) , then for allw′ ∈ W ′ we have that
M, w′ |= ϕ iff M′, w′ |= ϕ.

(iii) If M′ = (W ′, R′, V ′) is a bounded morphic image ofM = (W,R, V ) under the bounded morphismf ,
then for allw ∈W we have thatM, w |= ϕ iff M′, f(w) |= ϕ.

Proof. All three results could be proved by induction on the structure onϕ. But such proofs are unnecessary:
we know that disjoint unions, generated submodels, and bounded morphisms are all examples of bisimulations,
hence these results follow from Lemma 3.5. a

To sum up the discussion so far, bisimulation implies modal equivalence. But what about the converse?
For finite models, we have the following.

Proposition 3.7 If pointsw andw′ from two finite modelsM andN satisfy the same modal formulas, then
there is a bisimulationE betweenM andN such thatwEw′.

Proof. Assume we are working with models containing only a single relationR. We shall construct the
required bisimulation by showing that the relation of modal equivalence is itself a bisimulation. That is, we
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Fig. 14. Modally equivalent but not bisimilar.

define the bisimulation relationE bywEw′ iff w andw′ make the same modal formulas true. We now verify
thatE so-defined is indeed a bisimulation.

It is immediate thatE satisfies atomic harmony. As for zig, assume thatwEw′ andRwv. Assume for the
sake of contradiction that there is nov′ in M′ such thatR′w′v′ andvEv′. LetS′ = {u′ | R′w′u′}. Now, asw
has anR-successorv, we haveM, w |= 3>. AswEw′, we haveM′, w′ |= 3> too, henceS′ is non-empty.
Furthermore, asM′ is finite, S′ must be finite too, so we can write it as{w′1, . . . , w′n}. By assumption, for
everyw′i ∈ S′ there exists a formulaψi such thatM, v |= ψi butM′, w′i 6|= ψi. It follows that

M, w |= 3(ψ1 ∧ · · · ∧ ψn) and M′, w′ 6|= 3(ψ1 ∧ · · · ∧ ψn),

which contradicts our assumption thatwEw′. HenceE satisfies zig. A symmetric argument shows thatE
satisfies zag too, hence it is a bisimulation.

a

Thus on finite models, the expressive power of modal languages matches up exactly with bisimulation in-
variance. This result can be extended to broader model classes, such as models with finite branching width
for successors (note that the proof just given does not depend on the models involved being finite: it would
also work for infinite models in which each point has only finally manyR-successors) and suitably saturated
models in a model-theoretic sense. But no general converse can hold, for the reason mentioned earlier for
first-order logic. Indeed, the converse does not hold generally even for countable models: not all modally
equivalent countable models are bisimilar. The two models in Figure 3.4 satisfy the same modal formulas at
their roots, but if there were a bisimulation between them, the infinite chain on the right would also have to
occur on the left.

This counterexample can be repaired by passing to aninfinitary model languageL∞ with arbitrary (count-
able) conjunctions and disjunctions. Infinitary modal equivalence occurs between countable models(M, s)
and (N, t) whenever there is a bisimulation linkings to t. Furthermore, every countable model(M, s) is
defined up to bisimulation by someL∞ formulaδM,s. Again, such infinitary languages are somewhat imprac-
tical, but there are some useful bisimulation invariant formalisms which lie between the basic modal language
and its infinitary extension. Two example arepropositional dynamic logicandmodalµ-calculus, which are
discussed in Section 6.

Lemma 3.5 and its partial converses do not exhaust said about the role played by bisimulations in modal
model theory. But to gain a deeper understanding, we need to bring in a third component: the first-order
correspondence language. Let’s do this right away,

3.5 Modal logic and first-order logic compared

The basic modal language can be viewed as a sort of miniature version of full first-order logic over graph
models. The standard translation defined in the previous section shows that each modal formulaϕ corresponds
to a first-order formulasSTx(ϕ) containing a free variablex. But the converse does not hold: some first-
order formulas in the correspondence language are not modally definable. We have already see an example.
As the bisimulation between modelsM andK shows (recall Figure 10) no modal formula defines¬Rxx.
Thus, viewed as a tool for talking about models, modal logic is strictly less expressive than the full first-order
correspondence language. And this prompts a further question: given that a modal language can be viewed
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as a proper expressive fragment of the corresponding first-order language, exactly which fragment is it? This
question has an elegant answer. First, a preliminary definition.

Definition 3.8 A first-order formulaϕ(x) is invariant for bisimulation if for all modelsM andM′, and all
pointsw in M andw′ in M′, and all bisimulationsE betweenM and M′ such thatwEw′, we have that
M |= ϕ(x)[w] iff M′ |= ϕ(x)[w′].

We can now state the main result: modal languages correspond to the fragment of their first-order corre-
spondence language that is invariant for bisimulation. More precisely:

Theorem 3.9 (Modal Characterisation Theorem)The following are equivalent for all first-order formulas
ϕ(x) in one free variablex:

(i) ϕ(x) is invariant for bisimulation.

(ii) ϕ(x) is equivalent to the standard translation of a basic model formula.

Proof. That clause(ii) implies(i) is a more or less immediate consequence of Lemma 3.5. The hard direction
is showing that clause(i) implies (ii) . A model-theoretic proof of this result is given in Chapter?? of this
handbook. a

Nowadays many different proofs are known for this result, and for various extensions and variants. In
particular, the result also holds in finite model theory where the standard model-theoretic results (such as
compactness) cannot be applied. More recently it was shown that the modal equivalent in the clause(ii) can
be restricted to a formula of modal operator depth2K , wherek is the quantifier depth ofϕ(x). Incidentally,
determining whether a given first-order formula is equivalent to a modal one isundecidable. This complexity
is not as bad as it sounds, because the same is true for most significant fragments of first-order logic that are
defined semantically.

Basic modal logic and first-order logic are analogous in many ways. As we mentioned in Section 2, via the
standard translation modal logic immediately inherits basic properties of its more powerful neighbour, such
as the Compactness and Löwenheim-Skolem theorems. But not all such transfer is automatic. Consider the
Craig Interpolationproperty:

If ϕ |= ψ then there exists a formulaθ whose vocabulary is included in that of bothϕ andψ such that
ϕ |= θ andθ |= ψ.

If we want the same result for modal formulas such thatϕ |= ψ, this result gives us a first-order formulaθ such
thatSTx(ϕ) |= θ andθ |= STxψ. But what guarantees that this interpolant is modally definable? Interpolation
does in fact hold for the basic modal language, but additional work is needed to prove this.

While we are on the topic, it’s worth mentioning that interpolation meshes well with the above preservation
results. Here is an improvement on the Modal Invariance Theorem. Let us say that a first-order formulaϕ
impliesψ along bisimulationif the following implication always holds: ifE is a bisimulation between(M, s)
and(N, t), andM, s |= ϕ, thenN, t |= ϕ.

Theorem 3.10 (Modal Preservation/Interpolation Theorem) The following are equivalent for all first-
order formulasϕ(x):

(i) ϕ(x) impliesψ(x) along bisimulation.

(ii) There is a modally definableθ in the common vocabulary ofϕ andψ such thatϕ |= θ andθψ.

The Modal Invariance Theorem follows by takingϕ(x) equal toϕ(x). This result does not imply ordinary
modal interpolation as it stands: additional work is needed again.

Behind the above observations is the fact that the cheaply transferred properties are universal in some sense,
whereas the universal-existential property of interpolation requires honest work. Even so, there is an intuition
(based on decades of positive experience with transferring results) that modal logic and first-order logic share
all general meta-properties (except decidability). No proof has been found so far significant formulations
of this idea, but we can point to some broad analogies regarding methods. Generally speaking, bisimulation
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plays the same role for modal logic that potential isomorphism does for first-order logic. This can even be made
precise in the following sense. To each first-order modelM we can associate a modal model whose points
are the variable assignments intoM, and whose accessibility relations are changes from one assignmentg to
anotherg(x := d) that resets the value for the variablex to the objectd ∈ M. Then two modelsM andN

have a potential isomorphism between them iff their associated modal models are bisimilar.
We conclude this discussion with two general transfer results that allow us to switch between modal and

first-order relations between models. In essence, both results have the form of a commutative diagram.

Lemma 3.11 (First Lifting Lemma) The following are equivalent for all models(M, s) and(N, t):

(i) (M, s) and(N, t) are modally equivalent.

(ii) (M, s) and (N, t) have elementary extensions to models(M+, s) and (N+, t) which are elementarily
equivalent.

Lemma 3.12 (Second Lifting Lemma)The following are equivalent for all models(M, s) and(N, t):

(i) (M, s) and(N, t) are modally equivalent.

(ii) (M, s) and(N, t) are bisimilar to models(M+, s) and(N+, t) which are elementarily equivalent.

The first result is the key item in (some proofs of) the Characterisation Theorem (the+-models are suitably
saturated elementary extensions). The second result involves judicious tree unraveling of the two models, du-
plicating sub-trees to create uniformity, coupled with an Ehrenfeucht-Fraı̈sśe argument to establish elementary
equivalence.

3.6 Bisimulation as a game

We have said that bisimulation is a sort of process equivalence. The dynamic character of the notion can be
brought out by viewing it as a game. Consider a game between Duplicator (the analogy player) and Spoiler
(the difference player) comparing successive pairs(s, t) in two modelM andN:

In each round Spoiler chooses a stateu in one model which is a successor of the currents or t, and
Duplicator responds with a matching successorv in the other model. Ifu and v differ in their atomic
properties, Spoiler wins. If Duplicator cannot find a matching successor, Spoiler wins as well.

This game captures the zigzag behaviour of bisimulations in an obvious sense. It is alsodetermined: one of
the two players has a winning strategy. (This is because it is an open Gale-Stewart game in the sense of game
theory.) For example, retuning yet again to the modelsM, N andK considered at the start of this section, we
see that Duplicator has a winning strategy in the comparison game for the modelsM andK starting from their
matched designated points, while Spoiler has one forM andN. The following result clarifies the role of these
games precisely:

Theorem 3.13 (Adequacy of modal comparison games)

(i) There is an explicit correspondence between Spoiler’s winning strategies in ak-round comparison game
between(M, s) and(N, t) and modal formulas of modal operator depthk on whichs andt disagree.

(ii) There is an explicit correspondence between Duplicator’s winning strategies over an infinite-round com-
parison game between(M, s) and(N, t) and the set of all bisimulations betweenM andN linking s to
t.

For example, in the game between the modelsM andK given earlier, Duplicator wins by choosing re-
sponses that stick to the bisimulation links. And in the game betweenM andN, Spoiler can win in at most
three rounds by using the earlier modal difference formula2(2 ⊥ ∨32 ⊥) of modal operator depth three. In
each round he can make sure that some modal difference remains at the current match, with the operator depth
descending each time.
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4 Computation and complexity

We view modal logic as a tool for representing and reasoning about graphs. Our discussion of expressivity has
given us some insight into the representational capabilities of modal logic (at least at the level of models) but
what about reasoning?

In this section we discuss modal reasoning from a computational perspective. We concentrate on the
model checking taskand thesatisfiability and validityproblems, but also make some remarks about theglobal
satisfiabilityand themodel comparisontasks. As we shall see, the complexity of the modal version of these
tasks is lower than that of their first-order counterparts.

Before going further, two general remarks. First, although we are about to study reasoning, we are not
about to embark on the study of modal proof systems; the standard proof systems are only relevant to sat-
isfiability and validity checking, and there is more to modal reasoning than this. Secondly, although we are
ostensibly moving on from expressivity issues to computational issues, the two topics are intertwined: the
positive computational results reported here arise from negative expressivity results, such as the inability of
the basic modal language to force the existence of infinite models.

4.1 Model checking

Here’s a simple formulation of model checking task (for the basic modal language):

Given a (finite) modelM, a pointw in M, and a basic modal formulaϕ, isϕ satisfied inM atw?

But is this really areasoningtask? In our view, yes. In essence, a model is a ‘flat’ store of information: it
consists of a collection of entities, together with a specification of which entities have which atomic properties,
and which entities are related by which atomic relations. A modal formula, on the other hand, is a recursively
constructed tree. The embedding of connectives and modalities within one another permits relatively short
formulas to make interesting assertions, assertions that go way beyond the mere listing of atomic facts. If we
add to these differences the practical observation that in typical applications the formula will be much smaller
than the model, we see that model checking is about synchronising two very different forms of information: it
tests whether the abstract information embodied in the formula is implicitly present in the model. Viewed this
way, model checking is a quintessential reasoning task.

Moreover, model checking has turned out to be of great practical importance — indeed, one of the more
salutory lessons computer science has taught logic is just how important this modest looking form of reasoning
actually is. Nowadays the practical importance of modal model checking dwarfs that of determining modal
satisfiability or validity (the tasks logicians have traditionally viewed as paramount) as a wide range of practical
tasks can be directly expressed in terms of model checking. A classic example is hardware verification. A chip
can be thought of as a model: abstractly conceived, a chip is a (very large) collection of entities, bearing certain
properties, and related in various ways. But if a chip is to work satisfactorily, it should also possess a number
of high-level ‘emergent’ properties: for example, it should not deadlock. If we have a modal language that can
express the desired properties, then by checking the formula in the model we can determine whether the chip
is well-designed.

So how should we perform model checking? There’s a good way and a bad way — let’s start with the
bad. If we are computationally naive, we might proceed as follows: we’d write a program that takes a model
M, a pointw, and a formulaϕ, and then applies the satisfaction definition in a top-down fashion toϕ and
all its subformulas. That is, the program would recursively breakϕ down into its components and evaluate
them in the manner described in the satisfaction definition; in particular, each occurrence of a2 or 3 prefixed
subformula would be evaluated at the relevant accessible points.

To see why this approach can be bad, consider the following configuration of points:
Suppose we evaluate23ϕ at t. As we are working top down, this means we have to evaluate3ϕ at both

u andv. But this in turn means we will evaluateϕ atw twice, once while working fromu, and once while
working fromv. This (senseless) re-evaluation of formulas renders the naive top-down algorithm impractical:
it is liable to be swamped by unnecessary work.
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Fortunately, there’s a better way. Instead of working top-down, use a bottom-uplabelling algorithm:
simply label every node in the model with all of the subformulasϕ that are true there. We start with the
proposition symbols: the valuation tells us where these are true, so we label all the appropriate points. We
then label with more complex formulas. The booleans are handled in the obvious way: for example, we label
w with ψ ∧ θ if w is labeled with bothψ andθ. As for the modalities, we labelw with 3ϕ if one of itsR-
successors is labeled withϕ, and we label it with2ϕ if all of its R-successors are labeled withϕ. The beauty
of this algorithm is that we never need to duplicate work: once a point is labeled as makingϕ true, that’s it.
This makes the algorithm run in time polynomial in the size of the input formula and model: the algorithm
takes time of the order of

con(ϕ)× nodes(M)× nodes(M),

wherecon(ϕ) is the number of connectives inϕ, andnodes(M) is the number of nodes inM. Note, inciden-
tally, that the algorithm actually supplies us with a more detailed answer than we asked for: instead of just
telling us whetherϕ is true inM atw, it gives us a complete listing of all the points (if any) whereϕ is true in
M.

The labelling algorithm adapts, fairly straightforwardly, to many more powerful modal languages. As we
said above, when modal checking we want to work with a language capable of expressing interesting high-
level properties, and the ordinary2 and3 usually aren’t strong enough. Far more useful is the binaryUntil
modality:

M, s |= U(ψ, θ) iff there is at such thatsR∗t andM, t |= ψ,

and for allu such thatsR∗u anduR+t we haveM, u |= θ.

(HereR∗ is the reflexive transitive closure of an irreflexive accessibility relationR, andR+ is its transitive
closure.) TheUntil modality (which comes in several related forms) has proved useful in many model checking
applications, and we can label for it as follows. First, if any pointw is labeled withψ, labelw with U(ψ, θ) for
all subformulasθ of the input formula. Second, if any pointw is labeled withθ and at least oneR-successor
of w is labeled withU(ψ, θ), then labelw with U(ψ, θ).

Throughout the above discussion (and indeed, in the discussion that follows) we have tacitly assumed that
we have some way of representing formulas and finite models that is suitable for computational implementa-
tion. It is probably not worth sketching details of this: nowadays it seems safe to assume that most readers of a
technical book on logic have at least a nodding acquaintance with programming (indeed, we suspect that most
of our readers would find it straightforward to devise a computational syntax for models and modal languages,
and to implement programs for working with them).

Nonetheless, such issues cannot be taken lightly. A major factor in the spectacular progress of model
checking has been the development ofOrdered Binary Decision Diagrams(OBBDs), a compact representation
for boolean expressions, together with sophisticated algorithms for working with them. The use of OBDDs in
model checking lead to a breakthrough in the early 1990s in the size of the models that could be handled. The
reader should not underestimate the gap between the labelling algorithm sketched above, and what it takes to
make a working model checker handle a large model. Crossing this gap requires a combination of theoretical
insight and computational expertise, and an entire research community exists that explores the issues involved.
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But let’s conclude our discussion on another note: what does model checking look like from a first-order
perspective? That is, how difficult is it to model check if we are free to give an arbitrary first-order formula
as input? A little thought reveals that the task is likely to be difficult: there seems to be no simple way to
extend the labelling algorithm to handle the quantifiers. And in fact, model checking first-order formulas is a
PSPACE-complete task. That is, it is possible to write an algorithm that solves the task using an amount of
computer memory that is only polynomial in the size of the input model and formula, though the algorithm
may well require time exponential in the size of the input. Incidentally, there does not seem to be much work
on first-order model checking. First-order logic, although so much more complex, does not seem to offer the
kind of expressivity required for typical model checking applications. TheUntil family of modalities offer the
basic expressivity required, and when more is needed the natural next step is to move to the modalµ-calculus,
a richer modal language which enables fixed points to be dealt with (something that is beyond the scope of
first-order logic). Surprisingly, it was recently shown that the model checking task for modalµ-calculus can
also be carried out polynomial time.

4.2 Decidability

It is often said that modal logic is decidable. This can be read as shorthand for the following claim: thevalidity
problemfor the basic modal language (given a basic modal formulaϕ, is ϕ valid?) is decidable. That is, it
is possible (ignoring constraints of time and space) to write a computer program which takes a basic modal
formula as input, and halts after a finite number of steps and correctly tells us whether it is valid or not.

The decidability of model logic can also be viewed as a claim that thesatisfiability problemfor the basic
modal language (given a basic modal formulaϕ, is ϕ satisfiable in some model?) is decidable. That is, it
is possible (again, ignoring constraints of time and space) to write a computer program which takes a basic
modal formula as input, and halts after a finite number of steps and correctly tells us whether it is satisfiable
in some model or not. The validity and satisfiability problems aredual problems: a modal formulaϕ is valid
iff ¬ϕ is not satisfiable, hence if we have a method for solving one problem, we have a method for solving the
other. In what follows we show that both problems are decidable; we’ll talk in terms of satisfiability.

A lot is known about the decidability of satisfiability problems for various logics, so it is not too difficult to
establish modal decidability: we can do so by reducing the problem to known results for other logics. Here’s an
easy example. The satisfiability problem for thetwo variable fragmentof first-order logic (that is, the fragment
of first-order logic in which every formula contains only two variables) is decidable. Now, every basic modal
formula can be translated into a formula in the two-variable fragment. To see this we need simply make a
small adjustment to the standard translationST x. Whenever we translate a3 or a2, instead of choosing a
completely new variable to quantify over accessible points, we use a second fixed variable (sayy). If we later
encounter another3 or 2, we flip back to the original variablex, and so on. More precisely, we redefine
ST x so it always usesy to quantify over accessible points, and define a twin translationST y which always
quantifies usingx. Here are the key clauses:

ST x(3ϕ) = ∃y (Rxy ∧ ST y(ϕ)) ST y(3ϕ) = ∃x (Ryx ∧ ST x(ϕ))

ST x(2ϕ) = ∀y (Rxy → ST y(ϕ)) ST y(2ϕ) = ∀x (Ryx→ ST x(ϕ)).

The interleaving ofST x andST y guarantees that for any basic modal formulaϕ, STx(ϕ) will contain only
the two variablesx andy, and it should be clear that the modified translation is equivalent to the original
translation. It follows that the satisfiability problem for the basic modal language must be decidable: to test a
modal formula for satisfiability, simply translate it with this new version of the standard translation, and then
apply the satisfiability algorithm for the two-variable fragment to the output.

It is pleasant that modal decidability can be established so easily, but the proof doesn’t tell us very much
aboutwhymodal logic is decidable. The following semantic argument is more revealing. We shall show that
the basic modal language has thefinite model property, or to put it another way, that it does not have the
expressive strength required to force the existence of infinite models. Needless to say, this is in sharp contrast
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with first-order logic: even such a simple first-order formula as

∀x¬Rxx ∧ ∀x∀y∀z(Rxy ∧Ryz → Rxz) ∧ ∀x∃yRxy

has only infinite models. In fact, the basic modal language has a rather strong form of the finite model property.
We shall show the following:

Theorem 4.1 (Strong Finite Model Property) Letϕ be a basic modal formula. Ifϕ is satisfiable, then it is
satisfiable on a finite model containing at most2s(ϕ) points, where2s(ϕ) is the number of subformulas ofϕ.

The decidability of the modal satisfiability problem follows immediately from this result. If a modal formulaϕ
is satisfiable at all, it is satisfiable on a model containing at most2s(ϕ) points. As there are (up to isomorphism)
only finitely many such models, exhaustive (and exhausting!) search through them all will settle the issue of
ϕ’s satisfiability.

Just as important as the result is the method we shall use to prove it:filtrations. These are a standard item
in the modal logician’s toolkit, and have been used to prove completeness and decidability results for many
different modal systems. The basic idea underlying the method is simplicity itself: given a modal formulaϕ
and a modelM that satisfies it, we make a finite modelM by collapsing to a single point all the points within
M that satisfy the same subformulas ofϕ. But there is a tricky issue: how should we define the relation on the
collapsed points in such a way thatϕ remains true in the finite model? Let’s work through the details and see.

We shall say that a set of basic modal formulasΣ is subformula closedif every subformula of every formula
in Σ is a member ofΣ (that is, ifϕ ∧ ψ ∈ Σ then so areϕ andψ, and if¬ϕ ∈ Σ then so isϕ; and if2ϕ ∈ Σ,
then so isϕ, and so on). We now define:

Definition 4.2 (Filtrations) Let M = (W,R, V ) be a model, letΣ be a subformula closed set of formulas,
and let!Σ be the equivalence relation on the states ofM defined as follows:

w !Σ v iff for all ϕ in Σ: (M, w |= ϕ iff M, v |= ϕ).

The official notation for the equivalence class of a pointw of M with respect to!Σ is |w|Σ, but in what
follows we’ll usually assume thatΣ is clear from context and simply write|w|.

LetWΣ = {|w|Σ | w ∈W}. SupposeMf
Σ is any model(W f , Rf , V f ) such that:

(i) W f = WΣ.

(ii) If Rwv thenRf |w||v|.
(iii) If Rf |w||v| then for all3ϕ ∈ Σ, if M, v |= ϕ thenM, w |= 3ϕ.

(iv) V f (p) = {|w| |M, w |= p}, for all proposition symbolsp in Σ.

ThenM
f
Σ is called a filtration ofM throughΣ. In what follows we’ll drop the subscripts and writeMf instead

of Mf
Σ.

Two points should be made about this definition. First, observeMf is a filtration ofM through a subfor-
mula closed set of formulasΣ, thenMf contains at most2|Σ| nodes, where|Σ| is the cardinality of|Σ|. This
should be clear: after all, the points ofMf simply are the equivalence classes inWΣ, and there cannot be more
than2|Σ| of these. Second, note that the previous definition doesnot specify an accessibility relation onWΣ

— it only imposes constraints (namely clauses (ii) and (iii)) on the properties a suitable accessibility relation
Rf should have. That the constraints imposed are sensible is shown by the following result:

Theorem 4.3 (Filtration Theorem) Let Mf (= (WΣ, R
f , V f )) be a filtration ofM through a subformula

closed set of basic modal formulasΣ. Then for all formulasσ ∈ Σ, and all nodesw in M, we haveM, w |= σ
iff Mf , |w| |= σ.

Proof. By induction on the structure of formulas. The case for proposition symbols is immediate from the
definition ofV f , and because thatΣ is closed under subformulas, the inductive step for the boolean connectives
is immediate.
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So suppose3σ ∈ Σ andM, w |= 3σ. Then there is av such thatRwv andM, v |= σ. As Mf is a
filtration, by the first constraint onRf (clause (ii) of the previous definition) we have thatRf |w||v|. As Σ is
subformula closed,σ ∈ Σ, hence by the inductive hypothesisMf , |v| |= σ. HenceMf , |w| |= 3σ.

Conversely, suppose3σ ∈ Σ andMf , |w| |= 3σ. Then there is a state|v| in Mf such thatRf |w||v| and
Mf , |v| |= σ. As σ ∈ Σ, by the inductive hypothesisM, v |= σ. Making use of the second constraint onRf

(clause (iii) of the previous definition) we conclude thatM, w |= 3σ. a

It only remains to verify that relations satisfying the constraints demanded ofRf actually exist. They do.
Define:

(i) Rs|w||v| iff ∃w′ ∈ |w|∃v′ ∈ |v|Rw′v′.
(ii) Rl|w||v| iff for all formulas3ϕ in Σ: M, v |= ϕ impliesM, w |= 3ϕ.

It is straightforward to show that both relations satisfy the required constraints. Actually, you can show a little
more: ifRf is any relation satisfying the above constraints thenRs ⊆ Rf ⊆ Rl. For this reason,Rs andRl

are said to give rise to the smallest and largest filtrations respectively.
So we have proved Theorem 4.1: the basic modal language indeed has the strong finite model property.

As we argued above, this is turn shows the decidability of the basic modal satisfiability problem. Now, as is
well known, the satisfiability problem for full first-order logic is undecidable. First-order logic is the classic
example of a language where expressivity has been purchased at the expense of decidability. The basic modal
language reverses this trade-off: decidability is regained at the expense of expressivity.

4.3 Complexity

What do the decidability proofs just given tell us about the computational complexity of the modal satisfiability
problem? Only that it can be solved in NEXPTIME (that is, non-deterministic exponential time). This is clear
from the filtration proof: to see ifϕ is decidable, we can nondeterministically choose a model containing at
most2s(ϕ) points, and then check whether or not it satisfiesϕ (which takes time exponential in the size ofϕ).
The reduction to the satisfiability problem for the two-variable fragment yields the same upper bound, as this
problem is NEXPTIME-complete.

But the satisfiability problem for basic modal logic is not NEXPTIME-complete, it is PSPACE-complete.
That is, given a modal formulaϕ, it is possible to write an algorithm to determine whether or notϕ is satisfiable
that uses an amount of computer memory that is only polynomial in the size ofϕ. Now, most complexity
theorists believe that PSPACE-complete problems are harder than the satisfiability problem for propositional
logic (the classic NP-complete problem) but easier than EXPTIME-complete problems, which in turn are
believed to be easier than NEXPTIME-complete problems. So the modal satisfiability problem is probably
much easier than our earlier decidability proofs suggest.

How do we design a PSPACE algorithm for modal satisfiability? We cannot give a detailed answer here,
but we can point to an expressive weakness of modal logic which should make it plausible that PSPACE
algorithms for modal satisfiability exist:

Lemma 4.4 LetM = (W,R, V ) be a model, letw ∈ W , letn be a natural number, letSn,w be the subset of
W containingw and all points inW reachable fromw by making at mostn R-transitions, and letN be the
submodel(Sn,w, R|S , V |S), whereR|S andV |S are the restrictions ofR andV respectively toSn,w. Then,
for all basic modal formulasϕ such that md(ϕ) ≤ n we have that:M, w |= ϕ iff N, w |= ϕ.

That is, if we take a modelM, and extract a submodelN from it by throwing away all points that are more
thann steps away fromw, then no formula of modal depth less thann can distinguish the two models atw.
Modal formulas have shallow vision. And if we combine this lemma with what we have already learned about
finite models and bisimulations, we obtain the following:

Theorem 4.5 Every formulaϕ in the basic modal language is satisfiable in a model based on a finite tree of
depth at most md(ϕ).
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Proof. As model logic has the finite model property, if a modal formula is satisfiable, it is satisfiable on a
finite modelM at some pointw. As we remarked in the previous section, it is always possible to unravel a
model into an equivalent tree-based model. Now, if we unravelM aboutw, we don’t necessarily obtain a finite
model, but (asM is finite) we do obtain a model based on a tree with a finite branch factor, and this model
satisfiesϕ at its root. If we then chop off all points more thanmd(ϕ) away from the root we obtain a finite
model which (by the previous lemma) satisfiesϕ at its root. a

So every modal formula is satisfiable on a shallow tree, and we are now in a position to appreciate how
PSPACE algorithms for modal satisfiability work. In essence, they construct shallow trees branch by branch.
If a branch is successfully constructed (something which takes only space polynomial in the size of the input
formula, as the length of the branch is bounded bymd(ϕ)) the branch is discarded (thus freeing up the memory)
and the next branch is then constructed. There may be many branches, so it may take exponential time to
construct them all, but as all branches are discarded once they constructed, such an algorithm runs in PSPACE.
This sketch has neglected some important issues (such algorithms require space for recording book-keeping
details, and we need to ensure that the space used for this is not excessive) but it does describe, in broad terms,
how many modal satisfiability algorithms (notably those based on tableaux or games) work.

4.4 Other reasoning tasks

We have discussed the ‘big three’ (model checking, and satisfiability and validity checking) but this by no
means exhausts the reasoning tasks of interest. To conclude this section, let’s briefly consider some others.

Although we have stressed the locality of modal logic, some problems demand a global perspective. In
particular, if we view a modal formula as a general backgroundconstraint, we will typically want it to be
globally satisfied: that is, we will be interested in modelsM such thatM |= ϕ. The importance of the global
satisfiability problem has been strongly emphasized by the description logic community. Indeed, description
logic builds into its architecture the idea of aT-Box, a collection of (multi-modal) formulas that encode back-
ground knowledge about some domain (for example, that all men are mortal, that all Martians own flying
saucers, or that each employee has a social security number). Description logicians are interested in models in
which the T-Box is globally satisfied, for these are the models that reflect all the background assumptions.

Once the importance of background constraints is realised, it becomes clear that it is not the pure global
satisfiability task itself that is of primary interest. Rather, it is thelocal-global satisfiability task: given formu-
lasϕ andψ, is there a model which locally satisfiesϕ and globally satisfiesψ? That is, is it possible to satisfy
ϕ subject to the global constraintψ?

Here’s an example. Suppose we’re working in a zoological setting, and are interested in the interaction of
maternal love and professional responsibility on the feeding of our furry ursine bretheren. To put it another
way, suppose we have the following T-Box:

bear∨ human bear→ 〈mother〉bear

bear→ ¬human bear→ [fedby](zoo-keeper∨mother)

Let’s call this T-Boxbear-care. The sort of queries we might be interested in posing are: is it possible to
globally satisfybear-care and simultaneously to locally satisfy

〈mother〉(bear∧ human)?

(No, it’s not.) And is it possible to globally satisfybear-care and simultaneously to locally satisfy

〈fedby〉(¬human ∧ ¬mother)?

(Yes, it is:bear-care doesn’t rule out having bears as zoo-keepers. This may well be a bug in the knowledge
base.)
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Local-global satisfaction problems are also natural in the setting of parsing problems. It is possible to
encode various kinds of grammars (such as regular grammars or context-free grammars) as modal formulas.
Then, given a string of symbols, the parsing problem is to decide whether it is possible to find a model which
embodies all the constraints encoded in the grammar, and which simultaneously satisfies the formula encoding
the input string. That is, we would like to globally satisfy the modal formulagrammar and simultaneously
locally satisfyinput-string.

Unsurprisingly, both the global, and the local-global satisfiability tasks are tougher than the ordinary satis-
fiability problem:

Theorem 4.6 Suppose we are working with a multi-modal languageL in which all the modalities are unary
and are interpreted by arbitrary binary relations. Then both the local-global satisfiability task forL and the
global satisfiability task forL are EXPTIME-complete.

EXPTIME-complete problems are decidable but provably intractable: they contain problem instances that
will require time exponential in the size of the input to solve (which can mean that they require more time than
the expected lifetime of the universe). This, however, is a worst-case measure. One of the most interesting
recent developments in computational logic has come from the description logic community, who have shown
it is possible to specify and implement algorithms for such problems that are remarkably efficient in practice.

We conclude with a remark on themodel comparisontask. As bisimulation is the modally fundamental
notion of graph equivalence, it is natural to wonder how difficult it is to determine when two models are
bisimilar. The corresponding problems for first-order logic (namely, testing for graph isomorphism) is thought
to be difficult: there is no known polynomial algorithm for testing for graph isomorphism testing, though the
problem has not been shown to be NP-complete either. In fact, the problem of identifying isomorphic graphs
is sometimes regarded as giving rise to special complexity class of its own.

Testing for bisimulation, however, turns out to be easy. There are elegant polynomial algorithms which
work by discarding pairs of point that cannot make it into any bisimulation. Again an expressivity result lies
behind this result: the maximal bisimulation between two modelsM andN is explicitly definable in a first-
order fixed-point language over the disjoint unionM]N of the two models. Such languages have been studied
extensively in computer science, and they are known to have good computational behaviour.

5 Richer logics

Until now, we have been acting as if there was merely one modal logic, namely the set of formulas true in every
model or (to put it syntactically) the set of formulas generated by the systemK . But traditional presentations
of modal logic tend to emphasise themultiplicity of modal logic. Nowadays most attention is devoted to logics
richer thanK , for example logics such asT, K4, S4, S5, GL , andGrz. Logics weaker thanK are studied too,
but we won’t say anything about them here.

Where do these richer logics come from? Basically, from the level offrames. Different applications of
modal logic typically validate different modal axioms — axioms over and above those to be found in the
minimal systemK . For example, if we view our models as flows of times, it is reasonable to assume that the
accessibility relation is transitive, and (as the reader can easily check) the formula2p → 22p cannot be
falsified. As this formula is not provable inK , if we want a logic for working with transitive temporal flows
we should add it as an extra axiom; doing so gives us the logicK4. We shall begin this section by discussing
such axiomatic extensions ofK in a little further.

But this chapter is about expressivity, not proof systems, and as we shall see there is a fundamental ex-
pressive distinction between the level of models and the level of frames: whereas modal logic at the level
of models is essentially the (bisimulation invariant fragment of) first-order logic, modal logic at the level of
frames is essentially a fragment of second-order logic.
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5.1 Axioms and relational frame properties

One of the most attractive features of modal logic to its students is the illumination provided by the fact that
modal axioms reflect properties of the accessibility relation. A typical modal completeness theorem reads like
this:

Theorem 5.1 A formula is provable inK4 (that is,K plus all instances of the axiom schema2ϕ→ 22ϕ) iff
it is true in all models based on frames whose accessibility relation is transitive.

That is, the theorems ofK4 are true in all graphs with a transitive relation, while its non-theorems have
some transitive counter-example; the additional axiom2ϕ → 22ϕ reflects a simple visualisable geometric
condition in the semantics. There are many techniques for proving such completeness results, ranging from
simple inspection of thecanonical modelconstructed from all complete theories in the logic, to various types of
model surgery (such as filtration and unraveling). Moreover, the motivations for proving modal completeness
theorems may differ. Sometimes we start with an independently interesting proof system and try to find a
useful corresponding class of frames (the classic example of this is the proof systemGL , that isK plus the
Löb axiom2(2p → p) → p, which arose via the study of arithmetical provability, and was later proved
complete with respect to the class of finite trees). Sometimes, however, we might start with a natural model
class — say an interesting space-time structure — and try axiomatise its modal validities. The literature is
replete with both variants.

Nowadays a lot is known about axiomatic extensions ofK . For start, it turns out that there are uncountably
many suchnormal modal logics, as they are often called. The cartography of this landscape is an object of
study in its own right; here we shall only mention that it contains two major highways, because of the following
result due to Makinson:

Theorem 5.2 Every normal modal logic is either a subset of the logicId (with characteristic axiomϕ↔ 2ϕ
or of Un (with characteristic axiom2 ⊥).

The systemsT, K4, S4, andS5 lie on the first road, andGL lies on the second.
But perhaps the most interesting fact to have emerged about normal modal logics is that not all of them

have frame-based characterisations. Frame completeness results (such as the theorem forK4 noted above) are
the exception, rather than the rule. We won’t explore suchframe incompletenessresults further here, but the
underlying source of them is the second order expressivity that modal logic exhibits at the level of frames, the
topic to which we now turn.

5.2 Frame correspondence and second-order logic

There is another way of thinking about axiomatic extensions ofK : instead of viewing them as giving rise to
brand new modal logics, we can simply view them astheoriesconstructed over the minimal logicK in much
the same way as the first-order theory of (say, linear order) is constructed over the set of first-order validities.
Nothing of substance hangs on this, but it fits more naturally with our focus on expressivity. We say very little
about deduction in what follows; we will simply investigate what modal formulas can say about frames.

First some terminology and notation. We shall call a modal formulaϕ(p1, . . . , pn) true in a frameF =
(W,R) at a worlds if, for each valuationV for its proposition symbolsp1,. . . ,pn, we have thatϕ holds in the
model; in such a case we writeF, s |= ϕ. We shall call a modal formulaϕ true in a frameF (or valid in F)
if it is true at each point inF, and we write this asF |= ϕ. Moreover, we say that a modal formula istrue (or
valid) on a class of framesF if it is true on each frameF in F. Finally, we say thatϕ definesa class of frames
if it is true on precisely the frames inF.

Let’s consider some examples.2p→ 22p defines the class of transitive frames (or more simply: defines
transitivity). for a straightforward argument shows that

F, s |= 2p→ 22p iff F |= ∀y(Rxy → ∀z(Ryz → Rxz))[s].

Similarly,2p→ p, theT axiom, defines the class of reflexive frames (or: defines reflexivity) for an even easier
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argument shows that

F, s |= 2p→ p iff F |= ∀x(Rxy → ∀z(Ryz → Rxz))[s].

Furthermore, it is simple to see thatϕ ↔ 2ϕ, the Id axiom, defines the class of frames consisting of a
collection of isolated reflexive points, and that2 ⊥, theUn axiom, defines the class of frames consisting of a
collection of isolated irreflexive points.

Note that all four classes of frames are definable by simple first-order formulas — and this is actually rather
puzzling. After all, if we think about the definition given above of what it means for a formulaϕ(p1, . . . , pn)
to be true in a frame, we see that this concept is essentiallysecond-order: we quantify across all valuations,
and valuations assignsubsetsof frames to proposition symbols.

We can make this second-order perspective precise in terms of our Standard TranslationSTx over models:
frame truth treats modal formulasϕ asmonadic second-orderclosures of their standard first-order translations
on relational models, that is, as monadicΠ1

1 formulas of the form

∀P1 · · ·PxSTxϕ.

Now, some well known axioms do involve genuine non-first-order conditions. A famous case is Löb’s
axiom, 2(2p → p) → 2p. This defines the conjunction of the transitivity ofR with the upward well-
foundedness ofR. This frame condition is essentially second-order: no first-order formula can express it.
Another well-known non-first-order definable modal axiom is the McKinsey Axiom23p → 32p. So we
are confronted by an interesting situation. At the level of frames, modal formulas systematically correspond
to second-order conditions on frames. Nonetheless, in many common cases these second-order conditions
turn out to be equivalent to first-order conditions. This raises an obvious question: is there anything systematic
about this? That is, are there any criteria for demarcating essentially first-order modal formulas from genuinely
second-order ones?

5.3 First-order definable modal axioms

Before answering this question, let us say a little more about first-order definable modal axioms. For a start,
these include many of the modal axioms one is likely to encounter in practice. As we’ve just seen, the char-
acteristic axioms of the systemsT andK4 are first-order, and so are many of the axioms of newer systems
arising in applications. For example, recall that in Section?? we said that a binary modality3(ϕ,ψ) might
be viewed as describing a ternary composition relation for state transitions or symbol sequences. But if we are
serious about this interpretation we should demand that composition beassociative, that is, that the following
first-order frame condition holds:

∀xyzu((Rxyz ∧Rzuv)→ ∃s(Rsyu ∧Rxsv)).

And it turns out that there is a simple modal formula that corresponds to this:

3(ϕ,3(ψ, θ))→ 3(3(ϕ,ψ), θ).

Secondly, modal axiomsϕ corresponding to first-order frame conditions have the following pleasant prop-
erty:

If a modal formulaϕ defines a first-order frame conditionα , then the set of modal consequences ofϕ is
recursively enumerable.

The reason is that a modal formulaψ is true on frames forϕ iff its standard translationSTx(ψ) is true in
all models of the first-order formulaα. Thus first-order definable modal logics can draw on techniques from
first-order theorem proving, and standard first-order model theory is available for their semantic analysis.

So let’s turn to the systematicity issue. Upon closer inspection, first-order conditions often turn out to be
computable from the shape of the given modal axiom — for example the quantifier shape of the first-order
formula for transitivity is matched precisely by the sequence of modal boxes in theK4-axiom. A key result
explaining these correspondences is the
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Theorem 5.3 (Sahlqvist Correspondence Theorem)There is an effective method for computing first-order
equivalents for modal axiomsϕ→ ψ with antecedentsϕ constructed from atoms (possibly prefixed by boxes)
using conjunctions, disjunctions and diamonds, while consequentsψ can be any modal formula with only
positive occurrences of proposition symbols.

The proof proceeds by substituting first-order descriptions of ‘minimal syntactic values’ for proposition
symbols that validate the antecedent of the modal axiom. For example, theK4 axiom 2p → 22p has a
first-order standard translation of the form

∀y(Rxy → Py)→ ∀y(Rxy → ∀z(Ryz → Pz)).

A minimal valuation forp making the antecedent true isPu := Rxu. Substituting this description for the
unary predicateP and dropping the then tautologically true antecedent, we are left with a consequent formula

∀y(Rxy → ∀z(Ryz → Pz)),

involving only the relationR, which is precisely first-order transitivity. By similar considerations about mini-
mal values (combined with some pulling out of diamonds to become universal prefix quantifiers) the algorithm
will show, for example, that the ubiquitous modal.2 axiom corresponds to the well known relational property
of confluence:

F, s |= 32p→ 23p iff F, s |= ∀xy(Rxy → ∀z(R→ ∃u(Ryu ∧Rzu))).

The Sahlqvist Theorem and its proof method are very powerful: it applies to multi-modal languages with
arbitrary arity modalities. Nevertheless there are also first-order definable modal axioms that do not fall under
the method. TheK4.1 axiom

(2p→ 22p) ∧ (23p→ 32p)

is a conjunction of theK4 axiom with the McKinsey axiom. It defines the frames with a transitive relation
where every point has a successor. But this first-order equivalence cannot be computed using the substitution
method (van Benthem 1985).

Are there other general things we can say about the modal formulas that give rise to first-order definable
axioms? Here is a semantic characterization (again from van Benthem 1985) that uses some elementary model
theory: A modal formula defines a first-order frame property iff it is preserved under taking ultrapowers of
frames. Still, this is a abstract feature, and it is not easy to use it to recognise whether a given modal formula
is first-order over frames. In fact, the problem of determining whether a modal formula expresses a first-order
condition on frames turns out to be undecidable (Chagrova 1985).

Many formulas that violate the syntactic constraints demanded by the Sahlqvist Theorem turn out to be
non-first-order; a notable example is the McKinsey axiom. Results like this are proved by showing that the
modal axiom in question lacks some typical first-order property, such as preservation under ultraproducts, or
Löwenheim-Skolem properties. Most of these results have been studied in depth only for the basic modal
language, which has served as sort of mathematical laboratory for the model theory of modal languages and
logics. But there are some extensions to richer formalisms.

5.4 Correspondence in richer languages: fixed-point extensions

The substitution algorithm runs into difficulties with more complex antecedents. Consider Löb’s axiom
2(2p → p) → p. The point of computing minimal antecedent values in Sahlqvist axiomsϕ → ψ is this.
Firstly, a Sahlqvist antecedentϕ is true under any value for its proposition symbols iff it is true under their
minimal values. Secondly, the latter minimal predicates are first-order definable. Now, the Löb antecedent
does not support the second part of this analysis. But this does not mean that all that can be said here is that
the Löb’s axiom is second-order definable — for there is indeed a smallest semantic value for the predicateP
which will make the L̈ob antecedent true! This is the set of points in the frame obtained by taking theintersec-
tion of all predicatesP validating2(2p→ p) wherep is interpreted asP . Such a set must exist, because this
antecedent has a special syntactic form. Call a first-order formulaϕ(P ) intersectiveif it is one of the forms:
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(i) ∀x(ϕ(P,Q, x)→ Px), with P occurring only positively inϕ(P,Q, x).

(ii) ψ(P,Q) ,with P occurring only negatively inψ.

It is easy to show that all formulasϕ(P ) of this form have the above-mentionedintersection property: if ϕ(P )
holds for any predicateP it holds for the intersection of all predicatesP satisfying it.

Thus it makes sense to talk aboutminP.ϕ(P ), theminimalsatisfying predicate. It is not hard to show that
minimal predicates for intersective first-order-formulas are definable in a well-known extension of first-order
logic, namelyLFP(FO), first-order logic withmonotonic fixed-points. LFP(FO) has many uses in computer
science. It lies between first-order and second-order logic, and retains many useful model-theoretic properties
such as invariance for potential isomorphism.

Now, once we have such a minimal value for the antecedent predicates, it can be substituted into the
consequent to obtain a frame equivalent just as before — though now we obtain an equivalent inLFP(FO).
As an illustration, the L̈ob antecedent∀y((Rxy ∧ ∀z(Ryz → Pz))→ Py) is indeed intersective in the above
sense. Therefore, the corresponding frame property of the Löb Axiom can be computed to be inLFP(FO).
Of course, in this particular case this is already known independently, for this is just the property of well-
foundedness. But the method given here works more generally. For example, consider the less well known
modal axiom ofcyclic return:

(3p ∧2(p→ 2p))→ p.

Again this fails the Sahlqvist criterion. But again, the antecedent is intersective, and gives rise to a simple
fixed-point computation for an equivalent frame property:

Every pointx with anR-successory can be reached fromy by a finite sequence of successiveR-steps.

This is the beginning of a further layering of modal axioms with respect to semantic complexity. For there
are also modal formulas with frame equivalents not even inLFP(FO). One example is the well known axiom
in tense logic expressing Dedekind Completeness of linear orders, which is not preserved under the potential
isomorphism between the rationals and the reals. Indeed (van Benthem 2003) also has a purely modal exam-
ple — but the most obvious candidate for non-LFP(FO)-ness is the McKinsey Axiom, whose antecedent is
typically non-intersective.

5.5 Modally definable frame classes

For a given modal axiom one can ask what kind of frame property it defines. But, conversely, one can also
ask whether given frame properties are definable by means of modal formulas. Of the several basic results of
this sort, we mention the following result due to Goldblatt and Thomason 1974. It characterises the modally
definable first-order frame properties in terms of their special semantic behaviour.

Theorem 5.4 (Goldblatt-Thomason Theorem)A first-order frame property is modally definable iff it is pre-
served under taking generated subframes, p-morphic frame images, disjoint unions, and inverse ultrafilter
extensions.

Again, this is an abstract characterization, obtained using a modal version of the Stone Representation
Theorem plus the Birkhoff Theorem from Universal Algebra. It is not known which syntactic first-order forms
of the frame conditionα(R) are necessary and sufficient to guarantee this behaviour.

5.6 First-order logic as modal logic

We said at the beginning that a broad landscape of possible modal logics (note the plural) is a typical feature
distinguishing modal logic from standard first-order logic. But then we suggested that there may be just one
true modal logic, the minimal logic K, whereas the others are more properly viewed as special theories with
additional axioms. After all, we would call the theory of linear order the ‘predicate logic of linearity’. Now
let’s turn the tables. We can also take a modal look at first-order logic itself, and then find that it becomes such
a specialised theory itself! To see this, recall the truth condition for the existential quantifier:
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M, s |= ∃ϕ iff there exists ad in DM such thatM, s[x := d] |= ϕ

This has the familiar pattern for evaluating an existential modality〈x〉

M, s |= 〈x〉ϕ iff there exists at such thatRxst andM, t |= ϕ

Thus a first-order becomes a modal universe of ‘states’, the usual variable assignments, which are related
by accessibility relations for individual variables:

Rxst iff s(x) = t(y) for all variablesy distinct formX

Now the usual validities of first-order logic can be deconstructed into several layers. First, there is a
decidable core consisting of the minimal modal logic, which contains such ubiquitous laws as monotonicity of
first-order quantifiers:

∀x(ϕ→ ψ)→ (∀xϕ→ ∀xψ)

This level makes no presuppositions whatsoever concerning the form of first-order models, which could
have any kind of ‘states’ and ‘variable shift relations’Rx. At the next level, we find laws recording universal
effects of having states be variable assignments, with the special shift relation ‘agreeing up to the value forx’.
For example

∀x→ ∀x∀xϕ

expresses the transitivity ofRx, and indeed, all the laws ofS5hold here. Models of this sort need not contain
all variable assignments, and such gaps can make some variables dependent on others in the way they can
change their object values. The resulting logic, without blanket assumptions of variable independence is still
decidable. Finally, most specifically, some first-order laws expressexistenceproperties requiring that there be
enough states to create some pattern. Here is another well-known principle for reasoning with quantifiers. It
resembles the earlier modal.2 axiom.

∃x∀yϕ→ ∀y∃xϕ

which expresses confluence: wheneverRxst andRysu then there also exists a statev such thatRytv and
uRxv.

Thus modal analysis reveals unexpected fine-structure inside the apparently monolithic class of ‘standard
validities’ of first-order logic: they can be valid for different geometrical reasons. Summing up, we get a highly
unorthodox view. the modal core of standard logic is decidable — and the usual undecidability of first-order
logic just means piling up special existential model conditions to make state sets behave so much like full
function spaces over the model domain that their logic encodes enough mathematics to become undecidable.

6 Richer languages

The purpose of this section is to discuss a typical, but not yet widely appreciated, aspect of contemporary
modal logic: flexible language (re-)design. As we have seen, the basic modal language has a number of
attractive properties, and as the bisimulation invariant fragment of the first-order correspondence language it
is a special tool when it comes to talking about graphs. Nonetheless, many of its design parameters were fixed
by historical accident. Perhaps judicious experimentation could lead to improvements, or at least to interesting
variants? Modal logicians have been carrying our such experiments for years, and in this section we survey
some of their work.

But what should count as a richer modal language? It’s easier to explain what shouldn’t. Here’s an obvious
example. It is straightforward to extend our basic definitions to covern-place diamonds (and boxes). Simply
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work with models in which there is ann+ 1-place relationRm for everyn-place diamond〈m〉. We interpret
using the following satisfaction clause:

M, w |= 〈m〉(ϕ1, . . . , ϕn) iff for somev1, . . . , vn ∈W such thatRmwvi . . . vn

we haveM, v1 |= ϕ1 and . . . andM, vn |= ϕn.

Now, suchn-place modalities are undeniably useful for certain purposes, but developing their theory (stan-
dard translation, bisimulation, and so on) is essentially a matter of sprinkling our earlier work with additional
indices. These operators don’t give rise to richer languages in any logically interesting sense.

As we shall see, the richer languages explored in this section offer more. Moreover, their richness arises
from different sources. Sometimes the enrichment consists of taking a standard language and insisting that
a modality be interpreted by some mathematically fundamental relation (the universal modality is a good
example). Sometimes the enrichment takes the form of more complex satisfaction definitions (both temporal
logic with Until and Since and conditional logic are examples of this). In other cases, syntactic enhancements
are introduced to support novel semantic capabilities (hybrid logic, propositional dynamic logic, and the modal
µ-calculus all do this) and in one case (the guarded fragment) we even enrich by abandoning modal syntax and
using first-order syntax instead!

This variety raises a question of its own: what, if anything, do all these richer languages have in common?
That is, what makes them all modal? This is not an easy question to answer. Nonetheless, as we work our way
through this landscape a number of themes will recur: robust decidability, the importance of bisimulations,
and characterisations of fragments of first- and second-order logic. As we shall see at the end of the section,
the idea of restricted quantification that underlies the guarded fragment goes a long way towards accounting
for these properties, for both first- and second-order enrichments.

6.1 The universal modality

Let’s start by feeding the bears again. As we said in Section 4, some problems demand a global perspective.
We sometimes want to view a modal formula as a general background constraint, something that must be
satisfied atall points in a model. Indeed, because of the importance of background constraints, in many
practical situations we are primarily interested in the local-global satisfiability task, which we formulated as
follows: given basic modal formulasϕ andψ, is there a model which locally satisfiesϕ and globally satisfies
ψ? Now, description logic, with its two level architecture of TBox and ABox, acknowledges the importance
of this problem (the information in TBoxes has to be globally satisfied, while the information in ABoxes only
has to be locally satisfied). But this architectural distinction is not reflected in the object language, and this
raises an interesting question. Is it possible to internalise the notion of global satisfiability in a modal language
— and if so, what happens?

Let’s introduce theuniversal modalityand find out. To keep things simple, suppose we are working in a
language with just one modality. We shall add a second modality, and will writeE for its diamond form, and
A for its box form. The interpretation ofE andA is fixed: in any modelM = (W,R, V ), both modalities must
be interpreted using the universal relationW ×W . That is, the satisfaction definition for these modalities is:

M, w |= Eϕ iff there is au ∈W such thatM, u |= ϕ

M, w |= Aϕ iff for all u ∈W we haveM, u |= ϕ.

ThusEϕ scans the entire model for a point that satisfiesϕ, while Aϕ asserts thatϕ holds everywhere. We have
imported the metatheoretic notion of global truth into our modal object language, or to put it another way, we
have internalised the TBox. Accordingly, we callE the universal diamond, andA the universal box. If it is
irrelevant whether we meanE or its dual, we simply talk of theuniversal modality.

How can we be sure that adding the universal modality really increases the expressive power at our dis-
posal? That is, are we certain thatE andA are not already definable in the basic modal language? We are.
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One way to see this is via a bisimulation argument (see Example 2.4 in [7] for such a proof). But an easy
complexity-theoretic argument also establishes this. Letϕ andψ be basic modal formulas. Then the formula
Aψ expresses the global satisfiability problem (for the basic modal language) in our new language, and the
formulaϕ ∧ Aψ expresses the local-global satisfiability problem (for the basic modal language) again in our
new language. Now, we remarked in Section 4 that both these problems are EXPTIME-complete. However the
satisfiability problem for the basic modal language is PSPACE-complete. Hence (assuming that PSPACE is
strictly contained in EXPTIME , the standard assumption) our ability to express these problems in the enriched
language shows that the apparent increase in expressive power is genuine.

This in turn raises a new question. Because it can encode these problems, the satisfiability problem for the
enriched language is at least EXPTIME-hard. But are some problem-instances even harder? No. Everything
is solvable in EXPTIME.

Theorem 6.1 The satisfiability problem for the basic modal language enriched with the universal modality is
EXPTIME-complete.

Proof. See Hemaspaandra [24], or her earlier PhD thesis Spaan [44]. a

But the universal modality not only gives us extra expressivity at the level of models, it also increases
our ability to define new classes of frames. Moreover, an elegant variant of the Goldblatt-Thomason theorem
holds for the enriched language. We’ll discuss this result shortly, but let’s first consider two examples of newly
definable frame classes.

The class of frames of cardinality less than or equal to some natural numbern (that is, frames in which
|W | ≤ n) is not definable in the basic modal language. Why not? Because basic modal validity is closed
under the formation of disjoint unions. Hence any basic modal formulaϕ which allegedly defined this frame
class could easily be shown to fail: simply by sticking together enough frames we could validateϕ on frames
of cardinality greater thann.

But this conditionis definable with the help of the universal modality:

n+1∧
i=1

Epi →
∨
i6=j

E(pi ∧ pj).

As the reader can easily check, this formula is valid on any frame where|W | ≤ n, and can be falsified on
any larger frame (in essence, the formula encodes the pigeonhole principle forn+ 1 pigeons andn holes). It
follows that validity in the enriched language is not preserved under the formation of disjoint unions. This,
of course, is as it should be. We want a genuineuniversalmodality, not something that can be fooled by the
addition of new components.

Here’s a second example. The condition∀x∃y Ryx is not definable in basic modal logic. Why not?
Because modal validity is preserved under the formation of generated subframes. Any basic modal formula
which putatively defined this class would have to be valid on the frame(N, R), whereRnm iff n > m, the
natural numbers under the reverse ordering. But (by preservation under generated subframes) it would then
have to be valid on the subframe generated by any numbern. But in any such subframe,n has no predecessor,
hence the condition is not basic modal definable.

But it is definable with the help of the universal modality:

p→ E3p.

It is easy to check that this formula defines the required condition, hence it follows that validity in the enriched
language is not preserved under generated subframes. Again, this is the way it should be. A genuinely
universal modality will not let us throw away points: its purpose is to keep an eye on the entire frame. It
should be intolerant of both additions (disjoint unions) and deletions (generated submodels).

And now for the promised result: when it comes to defining elementary frame classes, intolerance towards
disjoint unions and generated submodels is precisely what distinguishes the enriched language from the basic
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modal language. For the following result is the Goldblatt-Thomason Theorem for the basic modal language,
with closure under disjoint unions and generated subframes stripped away.

Theorem 6.2 A first-order definable class of frames is definable in the basic modal language enriched with
the universal modality iff it is closed under taking bounded morphic images, and reflects ultrafilter extensions.

Proof. See Goranko and Passy [21]. a

Three comments. First, adding the universal modality also increases our ability to define non-elementary
frame classes. For example, the class of frames where the converse of the accessibility relationR is well-
founded (that is, where it is impossible to form infiniteR-successorship chains) is not definable in basic
modal logic. L̈ob’s formula,2(2p→ p)→ p) doesn’t quite pin this condition down (recall that it defines the
conjunction of transitivity and converse well foundedness). But the following Löb-like formula in the enriched
language does:

A(2p→ p)→ p.

(This example is from Goranko and Passy [21], the key reference on the universal modality.) Second, it is
straightforward to extend the definition of bisimulation so that it works for the basic modal language enriched
with the universal modality; all that needs to be done is to insist that the bisimulation betotal, that is, that
every element in each model is related to at least one point in the other; see de Rijke [42] for a brief discussion.
Third, the universal modality has a big brother, thedifference operator. The diamond form of this operator is
writtenD, andDϕ is satisfied at a pointw in a model if and only ifϕ is satisfied at somedifferentpointv (that
is, the difference operator is interpreted using the6= relation onW ). The difference operator is strong enough
to define the universal modality (Eϕ is justϕ ∨Dϕ) butD cannot be defined usingE (we leave the proof as
an exercise). The difference operator arises naturally in many setting and, like the universal modality, has a
smooth metatheory; see de Rijke [11] for more information.

6.2 Hybrid logic

Basic modal languages have an obvious expressive weakness: they cannot name points. We cannot say this
happenedthen, or that someparticular individual has some property, or that two distinct sequences of pro-
cesses take us from the current state toidenticalstates. For example, in Figure 4 we let the nodes represent
particular individuals such as Terry and Judy — but the basic modal language doesn’t let us pick out these
individuals. First-order logic, of course, lets us do this. We use constants to name individuals of interest, and
the equality symbol for reasoning about their identity. No analogous mechanisms exist in basic modal logic.
Thebasic hybrid languageis the result of adding them.

At the heart of hybrid logic lies a simple idea, first introduced by Arther Prior [39,40] in the 1960s: sort the
propositional symbols, and useformulas as terms. Let’s do this right away. Take a language of basic modal
logic (with propositional symbolsp, q, r, and so on) and add a second sort of propositional symbol. The new
symbols are callednominals, and are typically writteni, j, k, andl. Both types of propositional symbol can
be freely combined to form more complex formulas in the usual way. And now for the key change:insist that
each nominal be true at exactly one pointin any model. That is, insist (for any valuationV and nominali) that
V (i) be a singleton set. We call the unique point inV (i) thedenotationof i. A nominal ‘names’ its denotation
by being true there and nowhere else.

This change is far from negligible: already we have a more expressive logic. Consider the following basic
modal formula:

3(r ∧ p) ∧3(r ∧ q)→ 3(p ∧ q).

This formula can be falsified, as thep-witnessing andq-witnessing points given by the antecedent may be
distinct. But now consider the following hybrid formula:

3(i ∧ p) ∧3(i ∧ q)→ 3(p ∧ q).
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This is identical to the preceding formula, except that we have replaced the propositional symbolr by the
nominal i. But the resulting formula is valid. For now we have extra information: thep-witnessing and
q-witnessing successors both makei true, so they are true at the same point, namely the denotation ofi.

The addition of nominals is the crucial step towards the basic hybrid language, but we need a second
ingredient too:satisfaction operators. These are operators of the form@i, wherei is a nominal. The formula
@iϕ asserts thatϕ is satisfied at the (unique) point named by the nominali. That is:

M, w |= @iϕ iff M, u |= ϕ, whereu is denotation ofi.

Syntactically, satisfaction operators are modalities. And they are semantically well-behaved. For a start, all
instances of the modal distribution schema are valid:

@i(ϕ→ ψ)→ (@iϕ→ @iψ).

Moreover, satisfaction operators also admit the modal generalisation law: ifϕ is valid, then so is@iϕ (for any
choice ofi). Hence satisfaction operators are normal modal operators. Moreover, they are self-dual nodalities,
for all instances of@iϕ ↔ ¬@i¬ϕ are valid. So we are free to regard satisfaction operators are either boxes
or diamonds.

But for present purposes, the most important point about satisfaction operators is that they give us a modal
perspective on the equality relation. To see this, note that formulas like

@ij

are well formed. What does this formula assert? It says that “at the denotation ofi, the nominalj is satisfied”,
or to put it another way, “the point namedi is identical to the point namedj”. Hence the following schemas
are valid:@ii (reflexivity of equality),@ij → @ji (symmetry of equality),@ij ∧@jk → @ik (transitivity of
equality), and@iϕ ∧@ij → @jϕ (replacement). As we hoped, a modal theory of equality is emerging.

We will shortly characterise this theory, but before doing so let’s glance at what is happening at the level
of frames. Here too there is an increase in expressivity. None of the four first-order definable frame conditions
listed below can be defined in basic modal logic. But it is easy to check that each is defined by the hybrid
formula written next to it:

∀x¬Rxx i→ ¬3i

∀x∀y(Rxy → ¬Ryx) i→ ¬33i

∀x∀y(Rxy ∧Ryx→ x = y) i→ 2(3i→ i)

∀x∀y(Rxy ∨ x = y ∨Ryx) @j3i ∨@ji ∨@i3j.

And now for the main result. Hybridisation has given us some sort of modal theory of equality. But
how much of the corresponding first-order theory have we captured? Of course, now when we talk about
“corresponding first-order theory” we mean: theory in the first-order correspondence languageenriched with
constants and the equality symbol.

The first step towards an answer is to extend the standard translation to cover nominals and satisfaction
operators. So enrich the first-order correspondence language with constants and the equality symbol; to keep
the notation uncluttered, we’ll re-use the nominals as first-order constants. Then add the following clauses to
the standard translation:

STx(i) = (x = i)

STx(@iϕ) = STi(ϕ).

That is, nominalsi are translated into first-order constantsi, and satisfaction operators are translated by sub-
stituting the relevant first-order constant for the free-variablex. Note that this translation returns first-order
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formulas with at most one free variablex, not exactly one. This is because a constant may be substituted for
the free occurrence ofx. For example, the hybrid formula@ii translates into the first-ordersentencei = i.

The second step is to extend the notion of bisimulation given in Definition 3.1 to make it suitable for the
basic hybrid language and for the constant-enriched first-order correspondence language:

Definition 6.3 (Bisimulation-with-names) A bisimulation-with-names between modelsM = (W,R, V ) and
M′ = (W ′, R′, V ′) is a non-empty binary relationE between their points (that is,E ⊆ W ×W ′) such that
wheneverwEw′ we have that:

Atomic harmony:w andw′ satisfy the same proposition symbols, and the same nominals.

Zig: if Rwv, then there exists a pointv′ (in M′) such thatvEv′ andR′w′v′, and

Zag: if R′w′v′, then there exists a pointv (in M) such thatvEv′ andRwv.

Closure: All points named by nominals are related byZ.

Lemma 6.4 (Bisimulation-with-names Invariance Lemma) If E is a bisimulation-with-names betweenM =
(W,R, V ) andM′ = (W ′, R′, V ′), andwEw′, thenw andw′ satisfy the same basic hybrid formulas.

Proof. An easy extension of the inductive proof of Lemma 3.5. There are only two new cases to check.a

And now for the key result:

Theorem 6.5 (Hybrid Characterisation Theorem) The following are equivalent for all first-order formulas
ϕ(x) in at most one free variablex:

(i) ϕ(x) is invariant for bisimulation-with-names.

(ii) ϕ(x) is equivalent to the standard translation of a basic hybrid formula.

Proof. That clause(ii) implies(i) is a more or less immediate consequence of Lemma 6.4. The hard direction
is showing that clause(i) implies(ii) . The original proof can be found in Areces, Blackburn and Marx [3].a

In short, basic hybrid logic is a simple notation for capturingexactlythe bisimulation-invariant fragment
of first-order logic with constants and equality, or to put it another way, basic hybridization is a mechanism for
equality reasoning in propositional modal logic. And it comes cheap. Up to a polynomial, the complexity of
the resulting decision problem is no worse than for the basic modal language we started with:

Theorem 6.6 The satisfiability problem for the basic hybrid language over arbitrary models is PSPACE-
complete.

Proof. See Areces, Blackburn and Marx [3]. a

For a detailed overview of hybrid logic, see Chapter??of this handbook.

6.3 Temporal logic with Until and Since operators

We turn now to another historically early enrichment: the addition of the binaryU (Until) and S (Since)
operators. These were introduced in the late 1960s by Hans Kamp [30], who added them to Arthur Prior’s
basic (F andP based) tense logic, and proved an elegant result:U andS are expressively complete with
respect to Dedekind complete strict total orders (we discuss Kamp’s result below). But, beautiful though
this is, it is not what led to the present popularity of these operators. Rather, around 1980, Gabbay, Pnueli,
Shelah and Stavi [19] observed that Until offers precisely what is required to stateguarantee properties, and
this led to its widespread adoption for reasoning about programs. Given the number of researchers currently
active in temporal logic for program verification, Until may well be the best known and most widely used
modal operator of all: it is a key component of LTL (Linear Time Temporal Logic), CTL (Computational
Tree Logic), and CTL∗ (a highly expressive system that contains both LTL and CTL as sublogics). For an
introduction to these logics from a computer science perspective, see Clarke, Grumberg and Peled [9].

Now, we briefly met the Until operator in Section 4 when we discussed model checking. There we placed
a restriction on the relations that could interpret it (we insisted on working with the transitive closure of an

35



t t t t t
t t

t t t
t

���*
HHHY

���*
HHHY

���*
HHHY

I �I � I �

w0 w1

t0

v0

u

v1

t1

w′

u′

v′

t′p

q

p

q

p

Fig. 15. Until not definable in basic modal logic

irreflexive relation). Here we drop this requirement and define Until and Since in their most general form:

M, w |= U(ϕ,ψ) iff there is av such thatRwv andM, v |= ϕ,

and for allu such thatRwu andRuv we haveM, u |= ψ.

M, w |= S(ϕ,ψ) iff there is av such thatRvw andM, v |= ϕ,

and for allu such thatRvu andRuw we haveM, u |= ψ.

Putting this in words, Until asserts that there issomepoint in the future whereϕ holds, and that atall points
between the point of evaluation and this futureϕ-witnessing point,ψ holds. Since functions in the same way,
but towards the past. Note the∃∀ pattern of quantification in the satisfaction definitions. These operators are
neither diamonds nor boxes; they are something new and (as we shall see) more powerful.

What can we say with them? For a start, they have all the power of ordinary diamonds:U(ϕ,>) has
the same meaning as3ϕ. But now we can say more: these operators are tailor-made for stating guarantee
properties, requirements of the form “Some event will happen, and until that event takes place, a certain
condition will hold”. For if we represent the event byϕ and the condition byψ, thenU(ϕ,ψ) clearly captures
what is required.

But how can we be sure that we can’t state guarantee requirements in the basic modal language? A simple
bisimulation argument demonstrates this. Consider the two models shown in Figure 15; we are interested in
the transitive closure of the relation indicated by the arrows. These models are bisimilar (linkw0 andw1 with
w′, link t0 andt1 with t′, and so on). So suppose that there is some formula in the basic modal language that
captures the effect ofU(p, q). Any such formula would be true in the left-hand model at pointsw0 andw1.
For consider what happens atw0 (the argument forw1 is analogous). There is a point to its future (namely
v1) that makesp true and at all points lying in between (and there is only one, namelyu) we have thatq is
satisfied. However any such formula would befalsein the right-hand model atw′, for here there aretwopoints
betweenw′ andv′ (namelyu′ andt′) andt′ does not satisfyq. Asw′ is bisimilar tow0 andw1, we conclude
that no basic modal formula can capture the effect of Until. This result can be strengthened. Even if we restrict
ourselves to linear models, the basic modal language can’t define Until (see Proposition 7.10 in [7] for a proof
that it can’t even do so on the real numbers).

So addingS andU to the basic modal language yields new expressivity — but how much? We shall state
Kamp’s theorem, which shows that on certain classes of structures (a class that includes the real numbers)
these operators capture the entire one free variable fragment of the first-order correspondence language.

First, note that Until and Since correspond to fragments of the familiar first-order correspondence language
that we have been working with throughout the chapter. After all, we can translate them as follows:

ST x(U(ϕ,ψ)) = ∃z (Rxz ∧ ST z(ϕ) ∧ ∀y (Rxy ∧Ryz → ST y(ψ)))

ST x(S(ϕ,ψ)) = ∃z (Rzx ∧ ST z(ϕ) ∧ ∀y (Rzy ∧Ryx→ ST y(ψ))).

(Incidentally, observe that we need three variables to specify this translation. Thus the translation doesn’t give
us an easy decidability result for the enriched language, though in fact its satisfiability problem is decidable
over arbitrary models.)
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So what does Kamp’s theorem say? First some preliminary definitions. LetK be a class of models. We say
that a modal language isexpressively complete overK, if every formula (in one free variable) from the first-
order correspondence language is equivalent to a formula in the modal language (when we restrict attention to
models fromK). Which class of models is Kamp’s theorem about? Astrict total orderis any frame (with one
binary relationR) that is transitive, irreflexive, and linear (that is,∀xy(Rxy ∨ x = y ∨ Ryx)). A strict total
order isDedekind completeif every subset with an upper bound has a least upper bound. Standard examples of
Dedekind complete strict total order are the real numbers(R, <) and the natural numbers(N, <) under their
usual orderings. And now we have:

Theorem 6.7 (Kamp’s Theorem) The basic modal language enriched withU andS is expressively complete
with respect to models based on Dedekind complete strict total orders.

Proof. The original proof is in Kamp’s thesis [30]. Elegant modern proofs (and proofs of related results) can
be found in Gabbay, Hodkinson and Reynolds [18]. a

Much more could be said about the Until and Since operators, but we will confine ourselves to the following
remark. Because of their∃∀ pattern of quantification, for some time it was unclear how best to define a suitable
notion of bisimulation. However, in 1997, Kurtonina and de Rijke [33] gave a definition which enabled a
Characterisation Theorem to be proved.

6.4 Conditional logic

Although formulas of the formϕ → ψ are often glossed as “ifϕ thenψ”, the truth conditions that classical
logic gives to uses of the→ symbol (and in particular, the fact thatϕ→ ψ is true whenϕ is false) means that
→ does not mirror the more interesting meanings that conditionals can have in natural language. This has in-
spired numerous attempt to introduce conditional connectives (say,>) that better mimic the logic(s) of natural
language conditionals. Indeed, such aspirations have given birth to an entire branch of logic, namely Relevance
Logic, which nowadays is a well-established branch of the study of substructural logics (see Restall [41]).

But there is a modal approach to conditionals too. Its motivation comes from the following intuition:
a conditionalϕ > ψ can (often) be read as aninvitation to assume the antecedent (perhaps making some
adjustments to accommodate its truth) and check if the consequent is true. A characteristic inferential feature
of this reading is the failure ofmonotonicityin the antecedent. “If I catch the 6.22 train at Amsterdam Central
(ϕ), I will be home on time (ψ)” is true on most readings of the conditional, but adding an unusual further
condition may make it false, as the sentence “If I catch the 6.22 train at Amsterdam Central (ϕ), and the dikes
break (θ), I will be home on time (ψ)” demonstrates.

Models for modal-style conditional reasoning are triplesM = 〈W,C, V 〉. HereW is a set of worlds,V
is a valuation, andC is a ternary relation ofrelative similarity , or (as it is sometimes put in the literature)
a relation of relative ‘comparison’ or ‘preference’ between worlds. It is useful to writeCwuv asCwuv and
to read this as saying that “worldu has more in common with worldw than worldv does”. It is standard
to demand thatC satisfies∀uvz(Cwuv ∧ Cwvz → Cwuz), w-centred transitivity, and∀uCwuu, w-centred
reflexivity. Moreover, some authors, most famously David Lewis, also demandw-centred comparability, that
is, ∀uv(Cwuv ∨ Cwvu). A good way to visualise the relationCwuv is to think ofu andv as two concentric
circles aroundw. If u andv are distinct, thenu is a concentric circleclosertow thanv is.

The simplest truth condition for conditionals is the following, which come from David Lewis’s ground-
breaking book “Counterfactuals” [10]. It fits in well with our intuitions (at least on finite models):

M, w |= ϕ > ψ iff all minimalϕ-worlds in thew-centred orderingCwuv areψ worlds.

Note thatϕ-minimal worlds aroundw are the only ones we consider. That is, this satisfaction definition
is not given purely in terms of simple frame conditions (such as the “inspect theR-successor states” familiar
from the basic language) it also takes into account which formulas are true and where. As the minimal worlds
satisfying the stronger conditionϕ ∧ θ need not be the ones satisfyingϕ, in this way we get a semantic
distinction which accounts for the failure of left-monotonicity.
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But what aboutinfinite models? Then there need not be any minimal worlds satisfying the antecedent
(we might have a chain ofϕ-satisfying concentric circles coming ever closer tow). Here’s a way of handling
this: switch to the following more complex truth condition (to keep thing readable, we shall write useϕ(v) as
shorthand forM, v |= ϕ, and similarly forψ):

M, w |= ϕ > ψ iff ∀u(ϕ(u)⇒ ∃v(Cwvu & ϕ(v) & ∀z((Cwvz & ϕ(v))⇒ ψ(z)).

This says that the conditionalϕ > ψ holds if, wheneverϕ holds at some circleu, then there is some smaller
circlev whereϕ holds such that all circlesz within v satisfyϕ. This is rather awkward to process in first-order
logic, but it can be clearly expressed in modal logic if we make use of a unary modality〈c〉 (which looks
inwards for a circle closer to the centre) together with the universal modalityA. For then we can simply say:

ϕ > ψ =def A(ϕ→ 〈c〉(ϕ ∧ [c](ϕ→ ψ)).

This more complex truth-condition validates a minimal logic which includes such principles as upward
monotonicity in the consequent:ϕ > ψ impliesϕ > (ψ ∨ θ). Further properties of the similarity ordering
enforce special axioms via standard frame correspondences. Assuming just reflexivity and transitivity yields
the minimal conditional logic originally axiomatised by Burgess [8] and Veltman [49], while assuming also
comparability of the ordering gives rise to the logics obtained by Davis Lewis.

What about complexity? A number of interesting results are known:

Theorem 6.8 The satisfiability problem for the minimal conditional logic (that is, whereCwuv is transitive
and reflexive) is PSPACE-complete when formulas with arbitrary nestings of conditionals are allowed, and
NP-complete (that is, no worse than propositional logic) for formulas with bounded nesting of conditionals. If
uniformity is assumed (that is, if we assume that all worlds agree on what worlds are possible) the complexity
rises to EXPTIME-complete, even for formulas with bounded nesting. If absoluteness is assumed (that is, if we
assume that all worlds agree on all conditional statements) the decision problem is NP-complete for formulas
with arbitrary nesting.

Proof. See Friedman and Halpern [17]. a

In general, conditional logic has not been studied semantically in the same style as most modal languages,
though there is no reason why it cannot be. For example, bisimulations could be defined for> is much the
same spirit as they are defined for temporal logics with Until and Since. Likewise, issues of frame definability
beyond the minimal setting can be explored; for example, van Benthem’s [47] survey of correspondence theory
examines conditional axioms corresponding to the triangle inequalities of concrete geometrical relations of
relative nearness in space. Many recent technical developments in conditional logic, however, have to do with
its connection withbelief revision theory(see G̈ardenfors and Rott [20]). In that setting, a conditionalϕ > ψ
means “if I revise my current beliefs with the information thatϕ, thenψ will be among my new beliefs”; the
approach was first introduced and explored in Ryan and Schobbens [43].

6.5 The guarded fragment

The richer modal languages so far examined have clearly been ‘modal’ in a syntactic sense; all use the typical
“apply operator to formula” syntax. The guarded fragment, however, arises as an attempt to isolate fragments
of first-order logic that can plausibly be called modal. So the modal languages we shall consider here are
syntactically first-order.

The clue leading to the guarded fragment is the standard translation of the modalities. This treats modalities
as ‘macros’ embodyingrestrictedforms of first-order quantification, in particular, quantification restricted to
successor states:

STx(3ϕ) = ∃y(Rxy ∧ STy(ϕ))

STx(2ϕ) = ∀y(Rxy → STy(ϕ)).
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As we saw earlier, it is this restricted form of quantification that lets bisimulation emerge as the key model-
theoretic notion. And bisimulation, via the tree model property, leads to decidability. Thus at least one pleasant
property of modal logic can plausibly be traced back to its use of a restricted form of quantification. So it is
natural to ask whether other first-order fragments defined by restricted quantification have such properties.
This line of enquiry leads to the guarded fragment and its relatives.

The first step takes us to the guarded fragment, which was introduced by Andréka, van Benthem, and
Németi [2]. Guarded formulasϕ are built up as follows:

ϕ ::= Qx | ¬ϕ | ϕ ∧ ψ | ϕ→ ψ | ∃y(G(x, y) ∧ ϕ(x, y)) | ∀y(G(x, y)→ ϕ(x, y)).

Herex andy are finite tuples of variables,Q is a predicate symbol (of appropriate arity for the tuplex), and
G, the guard, is a predicate symbol too. The key point to observe is that the free variables ofϕ are also free in
the guard. The set of all guarded first-order formulas is called the guarded fragment.

Theorem 6.9 The guarded fragment is decidable. Its satisfiability problem is 2EXPTIME-complete, and
EXPTIME-complete if we have a fixed upper bound on the arity of predicates. Moreover, the guarded fragment
has the finite model property.

Proof. See Gr̈adel [22] for the complexity results and a direct proof of the finite model property. An earlier
(algebraic) proof of the finite model property can be found in Andréka, Hodkinson, and Ńemeti [1]. a

The guarded fragment is a natural generalisation of the first-order formulas obtainable under the standard
translation, but does it go far enough? For example, adding Until to a basic modal language yields a decidable
logic, but the standard translation ofU(p, q), namely

∃y (Rxy ∧ Py ∧ ∀z ((Rxz ∧Rzy)→ Qz)),

does not belong to the guarded fragment, and it can be shown that it is not equivalent to a formula in the
guarded fragment either. This suggests that it may be possible to pin down richer restricted-quantification
first-order fragments that retain decidability, and several closely related extensions of the guarded fragment,
such as the loosely guarded fragment (see van Benthem [6]) and the packed fragment (see Marx [35]) have
been proposed which do precisely this. Let’s take a quick look at the packed fragment.

The packed fragment allows us to use allowcomposite guardsγ instead of merely atomic guardsG: guards
are now conjunctions of the following kinds of formulas:

xi = xj orR(xi1 , . . . , xin) or ∃xj1 . . .∃xjm R(xi1 , · · · , xin) or ∀xj1 . . .∀xjm R(xi1 , · · · , xin).

The crucial point, however, is to state some restriction on the way we quantify variables to ensure that decid-
ability is retained. In the packed fragment we do this as follows. We say that a guardϕ is apacked guardif
for every pair of distinct free variablexi andxj it contains, there is a conjunct inϕ in which xi andxj both
occur free. Then packed formulas are built up as follows:

ϕ ::= Qx | ¬ϕ | ϕ ∧ ψ | ϕ→ ψ | ∃y(γ ∧ ϕ). | ∀y(γ → ϕ),

whereγ is a packed guard,ϕ is a packed formula, and (as with the guarded fragment) all variables free inϕ
are free inγ. The set of all packed first-order formulas is called the packed fragment.

As an example, consider again the standard translation ofU(p, q), namely

∃y (Rxy ∧ Py ∧ ∀z ((Rxz ∧Rzy)→ Qz)).

This is not packed as the guard of the subformula∀z ((Rxz ∧ Rzy) → Qz)) has no conjunct in whichx and
y occur together. But this is easy to fix. The following (logically equivalent) formulais packed:

∃x (Rxy ∧ Py ∧ ∀z ((Rxz ∧Rzy ∧Rxy)→ Qz)).

The packed fragment is also computationally well-behaved:
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Theorem 6.10 The packed fragment is decidable. Its satisfiability problem is 2EXPTIME-complete. More-
over, it has the finite model property.

Proof. The complexity result follows from results in Grädel [22]. The original proof of the finite model
property for the packed fragment (and the loosely guarded fragment) can be found in Hodkinson [25]; a more
elegant proof can be found in Hodkinson and Otto [26]. a

In short, we have isolated two decidable fragments of first-order logic which are expressive enough to gener-
alise many common modal languages. Moreover, these fragments have attractive properties besides decidabil-
ity. Basic modal logic resembles first-order logic in most of its meta-properties, even ‘existential’ ones (such
as Craig Interpolation, Beth definability, and the standard model-theoretic preservation theorems) that do not
follow straightforwardly from the fact that it is a sublogic. The guarded fragment shares this good behaviour
to some extent, witness the Łos-style preservation theorem for submodels given in Andréka, van Benthem,
and Ńemeti [2]. But subsequent work has shown that the picture is somewhat mixed. There is indeed a nat-
ural notion of ‘guarded bisimulation’ (again see [2]) which characterises the guarded fragment as fragment
of first-order logic. Moreover, Beth definability holds (see Hoogland, Marx and Otto [28]). However Craig
interpolation fails in its strong form — though it holds when we view guard predicates as part of the logical
vocabulary (see Hoogland and Marx [27]).

6.6 Propositional Dynamic Logic

The richer modal languages so far discussed extend the first-order expressive power available for talking about
models: the universal modality adds quantification overW × W , hybridisation gives access to constants
and equality, Until and Since and conditional logic add richer∃∀ quantificational patterns, and the guarded-
fragment cheerfully replaces modal syntax with first-order syntax. But the next two languages we shall discuss
take us in a different direction: both addsecond-orderexpressive power. Now, in Section 5 we saw that
modal languages have second-order expressive power (via the concept of validity) at the level offrames.
But in the languages we now consider, second-order expressivity arises directly: it is hardwired into the
satisfaction definitions, and hence is available at the level ofmodels. In particular, Propositional Dynamic
Logic (henceforth PDL) offers us an (infinite collection of) transitive closure operators, and the modalµ-
calculus offers us a general mechanism for forming fixed-points. Significantly, both PDL and the modal
µ-calculus were born in theoretical computer science. Finite structures are crucial to the theory and practice
of computation, and basic results of finite model theory (see Ebbinghaus and Flum [12]) show that first-order
logic is badly behaved when interpreted over such structures. Nowadays it is routine to extend first-order
languages with second-order constructs (such as the ability to take transitive closure or form fix-points) when
working with finite models, and in the languages we now consider, such ideas are put to work in modal logic.

Let’s start by looking at the weaker of the two languages, namely PDL. The underlying idea (to extend
modal logic with a modality for every program) is due to Vaughan Pratt [37], and the language now called PDL
was first investigated by Fisher and Ladner [15,16]. PDL contains an infinite collection of diamonds. Each has
the form〈π〉, whereπ denotes a non-deterministic program. The intended interpretation of〈π〉ϕ is that “some
terminating execution ofπ from the current state leads to a state with the informationϕ”. The dual assertion
[π]ϕ states that “every execution ofπ from the current state leads to a state with the informationϕ”. Crucially,
the inductive structure of the programs is made explicit in PDL’s syntax. Complex programs are built out of
basic programs using four program constructors, and the diamonds reflect this. Suppose we have fixed a set of
basic programsa, b, c, and so on. We are allowed to define complex programsπ over this base as follows:

Choice: if π1 andπ2 are programs, then so isπ1 ∪ π2. It non-deterministically executes eitherπ1 or π2.
Composition: if π1 andπ2 are programs, then so isπ1 ; π2. It first executesπ1 and then executesπ2.
Iteration: If π is a program, then so isπ∗. It executesπ a finite (possibly zero) number of times.
Test: if ϕ is a formula, thenϕ? is a program. It tests whetherϕ holds, and if so, continues; if not, it fails.

Hence PDL makes available the following (inductively defined) algebra of diamonds. First we have dia-
monds〈a〉, 〈b〉, 〈c〉, and so on, for working with the basic programs. Then, if〈π1〉 and〈π2〉 are diamonds
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andϕ is a formulas,〈π1 ∪ π2〉, 〈π1 ; π2〉, 〈π∗1〉 and〈ϕ?〉 are diamonds too. Note the unusual syntax of the
test constructor diamond: it makes a modality out of a formula (incidentally, this means that the sets of PDL
formulas and modalities are defined by mutual induction).

How do we interpret PDL? Syntactically we’re simply dealing with a basic modal language in which the
modalities are indexed by a structured set. So a model for PDL will have the form we are used to, namely

(W, {Rπ | π is a program}, V ),

a suitably indexed collection of relations together with a valuation. Moreover, the usual satisfaction definition
is all that is required: diamonds existentially quantify over the relevant transitions, and boxes universally
quantify. Nonetheless, something more needs to be said. Given the intended interpretation of PDL, most of
these models are uninteresting. We want models built over frames which do justice to the intended meaning
of our program constructors. Which models are these?

Nothing much needs to be said about the interpretation of the basic programs: any binary relation can be
regarded as a transition relation for a non-deterministic program (though if we were interested indetermin-
istic programs, we would insist on working with frames in which each basic program was interpreted by a
partial function). Nor need much be said about the test operator. Unusual though its syntax is, its intended
interpretation is simply

Rϕ? = {(x, y) | x = y andy |= ϕ}.

This makes sense in any model; no additional frame conditions need to be imposed here. But the three
remaining constructors certainlydodemand additional frame structure. Here’s what is required:

Rπ1∪π2 = Rπ1 ∪Rπ2 ,

Rπ1;π2 = Rπ1 ◦Rπ2 (= {(x, y) | ∃z (Rπ1xz ∧Rπ2zy)}),

Rπ∗1 = (Rπ1)∗, the reflexive transitive closure ofRπ1 .

These restriction are the natural set-theoretic ways of capturing the “either-or” nature of non-deterministic
choices (forRπ1∪π2), the idea of executing two programs in a sequence (forRπ1;π2) and the idea of iterating
the execution of a program finitely many times (forRπ∗1 ). Accordingly, we make the following definition.
Let Π be the smallest set of programs containing the basic programs and the programs constructed over them
using the constructors∪, ;, and∗. Then aregular frameoverΠ is a frame(W, {Rπ | π ∈ Π}) whereRa is a
binary relation for each basic programa, and for all complex programsπ,Rπ is the binary relation constructed
inductively using the above clauses. Aregular modelover Π is a model built over a regular frame (that is,
regular models are regular frames together with a valuation). When working with PDL over the programs inΠ,
we be interested in regular models forΠ, for these are the models that capture the intended interpretation. All
very simple and natural — but by insisting thatRπ∗1 be interpreted by the reflexive transitive closure ofRπ1 , we
have given PDL genuinelysecond-orderexpressive power. A straightforward application of the Compactness
Theorem shows that first-order logic cannot define the transitive closures of arbitrary binary relations, so with
this definition we’ve moved beyond the confines of first-order logic.

What can we say with PDL? At the level of models we can express some familiar programming constructs:

(p? ; a) ∪ (¬p? ; b) if p then a else b.

a; (¬p?; a)∗ repeat a until a.

(p?; a)∗;¬a? while p do a.

Note the crucial role played by∗ in capturing the effect of the two loop constructors.
Moreover, the second-order expressivity built in at the level of models spills over into the level of frames.

Here’s a nice illustration. Via the concept of validity, PDL itself is strong enough to define the class of regular
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frames (something which cannot be done in a first-order language). Now, it is not hard to give conditions that
capture choice and composition. The formula

〈π1 ∪ π2〉p↔ 〈π1〉p ∨ 〈π2〉p

is valid on precisely those frames whereRπ1∪π2 = Rπ1 ∪Rπ2 , and the formula

〈π1;π2〉p↔ 〈π1〉〈π2〉p

is valid on precisely those frames satisfyingRπ1;π2 = Rπ1 ◦ Rπ2 . But these are first-order conditions. What
about iteration? We demanded that the relationRπ∗ used for the programπ∗ be the reflexive, transitive closure
of the relationRπ used forπ. This constraint cannot be expressed in first-order logic; how can we impose it
via PDL validity?

As follows. First we demand that
〈π∗〉ϕ↔ ϕ ∨ 〈π ; π∗〉ϕ

be valid. This says that a state satisfyingϕ can be reached by executingπ a finite number of times if and only
if we ϕ is satisfied in the current state, or we can executeπ once and then find a state satisfyingϕ after finitely
many more iterations ofπ. Second, we demand that

[π∗](ϕ→ [π]ϕ)→ (ϕ→ [π∗]ϕ)

be valid too. This is calledSegerberg’s axiom. Work through what it says: as you will see, in essence it is
an induction schema. A frame validates all instances of the four schemas just introduced if and only if it is a
regular frame.

Summing, both at the level of models and frames, PDL has a great deal of expressive power. Hence the
following result is all the more surprising:

Theorem 6.11 PDL has the finite model property and is decidable. Its satisfiability problem is EXPTIME-
complete.

Proof. The finite model property, decidability, and EXPTIME-hardness results for PDL were proved in Fisher
and Ladner [15,16]. The existence of an EXPTIME algorithm for PDL satisfiability was proved in Pratt [38].

a

But we are only half-way through our story. With the modalµ-calculus we will climb even higher in
second-order expressivity hierarchy — and we will do so without leaving EXPTIME.

6.7 Modalµ-calculus

The modalµ-calculus is the basic modal language extended with a mechanism for forming least (and greatest)
fixed-points. It is highly expressive (as we shall see, it is stronger than PDL) and computationally well-
behaved. Moreover it has an beautiful bisimulation-based characterisation. All in all, it is one of the most
significant languages on the modal landscape. It was introduced in its present form by Dexter Kozen [31].

The idea underlying the modalµ-calculus is to view modal formulas asset theoretic operators, and to add
mechanisms for specifying their fixed-points. Now, a set-theoretic operator on a setW is simply a function
F : 2W 7→ 2W . But how can we view modal formulas as set-theoretic operators? Consider a formulaϕ
containing some propositional variable (sayp). In any model,ϕ will be satisfied at some set of points. If
we systematically vary the set of points that the valuation assigns top, the set of points whereϕ is satisfied
will typically vary too. So we can viewϕ as inducing an operator over the points of some model, namely the
operator that takes as argument the subset ofW that is assigned top, and returns the set of points whereϕ is
satisfied with respect to this assignment.

Let’s make this precise. We will work in a language with a collection of diamonds〈π〉, so models have the
form M = (W, {Rπ}π∈MOD, V ). For any propositional symbolp, V (p) is the set of points inM wherep is
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satisfied. Let’s extendV to a function that returns, for arbitrary formulasϕ, the set of points inM that satisfy
ϕ (we won’t invent a new name for this ‘extended valuation’, we’ll simply call itV ). The required definition
is a simple reformulation the satisfaction definition for the basic modal language:

V (p) = V (p) for all proposition symbolsp

V (¬ϕ) = W\V (ϕ)

V (ϕ ∧ ψ) = V (ϕ) ∩ V (ψ)

V (〈π〉ϕ) = {w | for somev ∈W ,Rπwv andv ∈ V (ϕ)}.

Furthermore, for any propositional symbolp and anyU ⊆ W we shall writeV[p←U ] for the (extended) valua-
tion that differs from the (extended) valuationV , if at all, only in that it assignsU top. That is,V[p←U ](p) = U ,
and for anyq 6= p, V[p←U ](q) = V (q). Then the operator induced by a formulaϕ (relative to a propositional
variablep) is the function that maps anyU ⊆W to V[p←U ](ϕ).

Now to bring fixed-points into the picture. A subsetX of W is a fixed-point of a set-theoretic operatorF
onW if F (X) = X. This is clearly a special property: which set-theoretic operators have fixed-points, and
how do we calculate them? The Knaster-Tarski theorem gives important answers. Firstly, this theorem tells
us that fixed-points exist when we work withmonotoneset theoretic operators (an operatorF is monotone if
X ⊆ Y implies thatF (X) ⊆ F (Y )). Secondly, this theorem tells us that ifF is a monotone operator on a set
W , thenF has a least fixed-pointµF , which is equal to⋂

{U ⊆W | F (U) ⊆ U},

and also a greatest fixed-pointνF , which is equal to⋃
{U ⊆W | U ⊆ F (U)}.

That is, bothµF andνF are solutions to the equationF (X) = X, and furthermore, for any other solutionZ,
we have thatµF ⊆ Z ⊆ νF . The least and greatest fixed-points given by the Knaster-Tarski Theorem are the
fixed-points the modalµ-calculus works with.

But how can we specify these fixed-points using modal formulas? By enriching the syntax with an operator
µ that binds occurrences of propositional variables. That is, we shall write expressions likeµp.ϕ, in which
all free occurrence of the propositional variablep in ϕ are bound by theµ. The intended interpretation of
µp.ϕ is that it denotes the subset ofW that is the least fixed-point of the set-theoretic operator induced by
ϕ with respect top. Fine — but how do we know that this fixed-point exists? Ifϕ is arbitrary, we don’t.
However if all free occurrences ofp in ϕ occur positively (that is, if they all occur under the scope of an even
number of negations) then a simple inductive argument shows that the set-theoretic operator induced byϕ is
monotone, and hence (by the Knaster-Tarski theorem) has least (and greatest) fixed-points. Accordingly we
impose the syntactic restriction that theµ operator can only be used to bind a propositional variable when all
free occurrences of the variable occur positively. With this restriction in mind we define:

V (µp.ϕ) =
⋂
{U ⊆W | V[p→U ](U) ⊆ U}.

That is, the set assigned toµp.ϕ is the least fixed-point (as specified by the Knaster-Tarski Theorem) of the
operator induced byϕ.

What can we say with the modalµ-calculus? Consider the expressionµp.(ϕ∨〈π〉p). Read this as defining
“the least property (subset)p such that eitherϕ is in p or 〈π〉p is in p”. What is this set? A little experiment
will convince you that it must be

{w ∈W |M, w |= ϕ or there is a finite sequence ofRπ related points fromw to v such thatM, v |= ϕ}.

(The reader should check that this set really is the one given to us by the Knaster-Tarski Theorem.) Note that
this is exactly the set of points that make the PDL formula〈π∗〉ϕ true.
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How do we specify greatest fixed-points? With the help of theν operator. This is defined as follows:

νp.ϕ =def ¬µp.¬ϕ(¬p/p),

whereϕ(¬p/p) is the result of replacing occurrences ofp by ¬p is ϕ. This expression is well-formed: ifϕ
is a formula that we could legitimately apply theµ operator to (that is, if all occurrences ofp occur under the
scope of an even number of negations), then so is¬ϕ(¬p/p). The reader should check that this operator picks
out the following set:

V (νp.ϕ) =
⋃
{U ⊆W | U ⊆ V[p→U ](U)}.

That is (in accordance with the Knaster-Tarski theorem) it picks out the greatest fixed-point of the operator
induced byϕ. As a further exercise, the reader should check thatνp.(ϕ ∧ [π]p) denotes the following set:

{w ∈W |M, w |= ϕ and at everyv reachable fromw by a finite sequence ofRπ related points,M, v |= ϕ}.

Note that this is exactly the set of pointsw that make the PDL formula[π∗]ϕ true.
In view of these examples, it should not come as a surprise that PDL can be translated into the modal

µ-calculus. We do so as follows:

(p)mu = p

(¬ϕ)mu = ¬(ϕ)mu

(ϕ ∨ ψ)mu = (ϕ)mu∨ (ψ)mu

(〈π〉ϕ)mu = 〈π〉(ϕ)mu

(〈π1;π2〉ϕ)mu = 〈π1〉〈π2〉(ϕ)mu

(〈π1 ∪ π2〉ϕ)mu = 〈π1〉(ϕ)mu∨ 〈π2〉(ϕ)mu

(〈π∗〉ϕ)mu = µp.((ϕ)mu∨ (〈π〉p)mu), wherep does not occur inϕ

In fact the modalµ-calculus, is strictly more expressive than PDL. The simplest example of construct that
PDL cannot model but that the modalµ-calculus can is therepeatoperator. The expressionrepeat(π) is true
at a statew if and only if there is an infinite sequence ofRπ transitions leading fromw. Proving that this is
not expressible in PDL is tricky, but it is can be expressed in modalµ-calculus: the formulaνp.〈π〉p does so.
Moreover, the temporal logics standardly used in computer science, such as LTL, CTL, and CTL∗, can also be
embedded in modalµ-calculus. For remarks and references on this topic, see Chapter??of this handbook.

All in all, the modalµ-calculus is a highly expressive language. In spite of this, it is extremely well
behaved, both computationally and in other respects. For a start we have that:

Theorem 6.12 The modalµ-calculus has the finite model property and is decidable. Its satisfiability problem
is EXPTIME-complete.

Proof. The original decidability proof was given Kozen and Parikh [32]. The finite model property was first
established in Street and Emerson [45]. The complexity result is from Emerson and Jutla [13]. a

Furthermore, in practice the modalµ-calculus also seems computationally well behaved when it comes to
model checking — indeed it is widely believed that its model checking problem can be performed in polyno-
mial time. However, at the time of writing, this conjecture has resisted all attempts to prove it.

Furthermore, the modalµ-calculus has a elegant semantic characterisation. Suppose we add the following
clause to the standard translation for basic modal logic:

STx(µp.ϕ) = ∀P (∀y((STx(ϕ)→ Py)→ Py)).
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Note that by adding this clause we are viewing the standard translation as taking us tomonadic second-order
logic, for here we bind the unary predicate symbolP . Thus the modalµ-calculus can be viewed as a fragment
of monadic second-order logic. Which fragment? This one:

Theorem 6.13 The modalµ-calculus is the bisimulation invariant fragment of monadic second-order logic.

Proof. See Janin and Walukiewicz [29]. a

For more on the modalµ-calculus, see Chapter??of this handbook. As well as giving a detailed technical
overview, the chapter also gives an informal introduction to thinking in terms of fixed-points, which is often a
stumbling block when the modalµ-calculus is encountered for the first time.

6.8 General perspectives

Moving to richer languages better fitted for particular applications is a standard feature of current research.
It is true that in some quarters sticking to the poorest modal base language of the founding fathers (despite
its evident handicaps in expressive power and mathematical convenience) is still something of a religion. But
the idea of designing extensions is not some new-fangled notion; its roots stretch back to the work of von
Wright [50] and Prior [39,40], and the idea was central to the work of the ‘Sofia School’ (see, for example,
Passy and Tinchev [36] for insightful comments on what modal logic is and why one might want to enrich
it). Still, pointing to a noble heritage is not enough. We need to address a tricky question: what makes these
languages ‘modal’? Being precise here is difficult. As we have seen, there is a wide range of extensions.
Moreover, each application imposes its own concerns and peculiarities. Nevertheless, there is a guiding idea
that lies behind most examples of this form of language design: obtaining a reasonable balance between
expressive power and computational complexity. So the question we should focus on is: what makes such
natural balances arise?

As we have seen, many richer modal languages are fragments of the full language of first-order logic,
over some appropriate similarity type of relations and properties. We can see this by translation, just as we
did with the basic modal language (we saw that the complex truth conditions for the Until and Since are
definable by first-order formulas, and the same is true for the conditional connective). Now, there have been
various attempts to find general patterns explaining which parts of first-order logic are involved in ‘modal’
languages. Gabbay observed that modal languages tend to translate into so-calledfinite variable fragmentsof
first-order logics, that is, fragments using only some finite number of variables, fixed or bound. For example,
we have seen that the basic modal language can make do with only two variables, and temporal logic with
Until and Since, and conditional logic, only require three. Finite variable fragments have some pleasant
computational behaviour; for example, their uniform model checking complexity is in PTIME (see Vardi [?])
as opposed to PSPACE for the full first-order language. On the other hand, satisfiability is already undecidable
for first-order fragments with three variables, so the real reason for the low complexity of modal languages
lies elsewhere. A different type of analysis for the latter phenomenon was given in Vardi [48] “Why is modal
logic so robustly decidable?”), which emphasises the semantic adequacy of tree-like models obtainable via
bisimulation unravelling of arbitrary graph models. This type of explanation transcends first-order logic, but it
does not provide concrete syntactic explanation. For the latter, the current best explanation is that provided by
the guarded fragment and it relatives (which are, arguably, the strongest known modal languages).

As we saw, such fragments locate the essence of modal logic in therestrictionon the quantification per-
formed by the modalities. One attractive property of this analysis it its logical resilience: it turns out that it ex-
tends beyond the setting of first-order enrichments to second-order enrichment (something that was not forseen
when the guarded fragment was first isolated). A striking example is the result in Grädel and Walukiewicz [23]
that the extension of the guarded fragment with the fixed-point operatorsµ andν remains decidable. By way
of contrast, validity for the full first-order logic extended with these operators in non-axiomatisable, indeed,
non-arithmetical! This observation shows that the modal philosophy embodied in the idea of guarded frag-
ments is not restricted to first-order logic: often modal fragments can bear the weight of additional higher-order
constructions (such as fixed-point operators) which would send the full first-order correspondence languages
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into a tailspin complexity wise. Our discussion of PDL and the modalµ-calculus has shown that this is the
case for the basic modal language. Grädel and Walukiewicz’s result for the guarded fragment shows that this
type of behaviour persists higher up: guarded quantification can support higher-order constructions too.

Perhaps guarding can be a fruitful strategy in even more exotic modal settings? One setting worth exploring
is infinitary modal logic. This logic (which was used extensively in Barwise and Moss [?] and Baltag [?])for
investigating non-well founded set theory provides a perfect match with bisimulation: two pointed models are
bisimilar if and only if they satisfy the same formulas in a modal language that allows arbitrary infinite con-
junctions and disjunctions, and moreover a modal invariance theorem holds. Now, decidability is a non-issue
in this setting, but what about existential semantic properties such as interpolation and Beth Definability? It is
known that interpolation holds for infinitary modal logic (see Barwise and van Benthem [5]); do such results
hold for infinitary guarded fragments? Another setting worth exploring in this way issecond-order proposi-
tional modal logic, in which we can quantify over proposition symbols (see Fine [14] for some early results
and ten Cate [46] for a more recent discussion. The equation “modality = guarding” should be simultaneously
be regarded as a hypothesis to be tested in richer settings, and as a useful heuristic for isolating further logics
worth calling modal.

Not that we should put all our eggs in one basket. Perhaps the notion of ‘modality’ is too diffuse for any
single approach to exhaust, and in any case it is worth looking for alternatives. One such approach is to apply
ideas form abstract model theory (see Barwise and Feferman [4]). This was first done in de Rijke [42], who
proved a modal analog of Lindström’s [34] celebrated characterisation of first-order logic, in which bisimu-
lation replaced Lindstr̈om’s use of isomorphism. More recently, ten Cate [46] has use the approach to search
for general results on which classes of modal logics can have such properties as interpretation. Perhaps such
investigations do not tell us what the space of modal logics actually is, but they give us a clearer idea of what
is out there.

7 New descriptive challenges

Traditional motivations for and applications of modal logic came from philosophy, and the study of such topics
as modality, knowledge, conditionals, and obligations. Some strands also concerned mathematics: witness
modal logics of time, space, or provability. Gradually, in the 1960s and 1970s further influences arose that
made the areas much more diverse. Sources included computer science (for modal logics of computation
and general processes) Artificial Intelligence (for modal logics for knowledge representation, non-monotonic
reasoning, and belief revision), linguistics (for modal logics of grammatical structure) and the internet (for
modal logics of trees). This web of new interfaces is still growing. Modern computer science, with its emphasis
on new information carriers and networks of intelligent computing agents, also brings in modal logics of
image processing, agency and security. And the empirical social sciences are joining in too, witness current
applications of modal logic in economic game theory, or powers of agents in social choice theory. Many of
these applications fit squarely into the perspective represented in this chapter. But some also raise technical
issues of their own. For example, some logics make use ofweakerlanguage than the basic modal language,
not extensions. And when (for example) the booleans are gone, modal logic becomes quite a different game.

7.1 An example where it all comes together: games

An interesting example which shows the issues in modern applications are games. Games are a natural con-
tinuation of the process view of model semantics, bringing it in line with the realities of modern computing,
as they describeinteractive processesbetween different agents. But they also bring in other strands from our
presentation, in particular the epistemic stance, as they crucially involve the beliefs preferences and intentions
of the players. Games have occurred so far int our presentation as tools for bringing out the interactive essence
of key logical tasks, such as model checking or model comparison. Such games are calledlogic games, and
the lead to interesting connections with game theory. For example, most logic games are two-player zero-sum
games of finite depth, and Zermelo’s theorem form 1913 then tells us that any such game is ‘determined’: one
of the two players must have a winning strategy. For example, either Duplicator or Spoiler wins any given
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finite length model comparison game; there is not further option. But modal logic also applied to arbitrary
games, for whatever purpose, providing so-calledgame logicsthat describe both external reasoning about and
internal reasoning by players of a game. Chapter?? of this handbook is devoted to this interface, but for our
purposes here it may be useful to point out how much modal logic occurs with the single setting of a game.
We restrict ourselves to so-called ‘extensive games’ — even though modal style analysis is also quite feasible
for so-called ‘strategic games’ where one only records players entire strategies and the outcomes of playing
them.

Modal logics of moves
For a start, an extensive game involves a tree of possible histories generated by moves available to players
at their turns, while ending in final states where some pay-off may occur. As they stand, such structures are
models for a basic modal language with several modalities. For example, assuming the Player 1 moves first,
and then Player 2 the formula[move-1]〈move-2〉p says that Player 2 has guaranteed response to whatever
Player 1 does which guarantees thatp will occur. In game-theoretic terms, Player 2 has astrategyensuring
thatp. With logier games, chains of modalities of the form232323 · · · express the existence of various
strategies.

Dynamic logic of strategies
To discuss these strategies more explicitly, note that a strategy for a player is a map to available moves — or
in a more general setting, a relation constraining possible moves at relevant turns, An obvious formalism for
defining such relations is PDL, and indeed the program constructors encountered there make immediate sense
for games as well: strategies are iterative constructs out of conditional instructions of the form “if she plays
this, then I play that”.

Fixed-point definitions of strategic equilibria
Nevertheless, general notions of game solution may go beyond PDL, and Zermelo’s theorem is an example.
Defining the two mutually exclusive predicate “Player 1 has a winning strategy]] and “Player 2” has a winning
strategy as properties of nodes in a game tree requires inductive definition in the modalµ-calculus, And
the same fixed-point language is needed for more complex notions of game solution that involve numerical
utilities, such as the Nash equilibrium.

Strategies once more, threats, and conditonal logic
A strategy is a rule telling us what what to do under all circumstances, even those that do not actually occur.
My response is prescribed for every move you could play, even though a single run of the game only allows
one move by you. And even more mysteriously, my strategy will lead to just a part of the game tree, while
forgoing others; but even so, the strategy also prescribes moves at my turns in those ‘inaccessible parts’! This
is relevant to threats, where you might reason about what would happen were I to act differently from my
benevolent current intention, This counterfactual character of strategies (emphasized in Stalnaker (199X) [?])
naturally brings in statements of the form “ifa were to happen, then I would playb”. Hence, a really full-
fledged modal logic of strategies also involves conditional logic.

Knowledge and rationality
But possible moves and strategies are not the whole story. Even games of perfect information, where players
know all relevant moves, and can observe every relevant fact that happens, involve players’ reasoning about
what others will do, and their uncertainty about future moves, We cannot predict how the game will unfold,
unless we make assumptions about the capacities and rational intentions of other players. This brings in issues
of knowledge and belief, which have infiltrated game theory since the 1970s when Aumann independently
rediscovered Hintikka’s epistemic logic. As an example of such reasoning, even standard game-theoretic
solution algorithms such as ‘backward Induction’ or ‘Iterated Removal of Strictly Dominated Strategies’ only
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make sense by making various epistemic assumptions that can be brought to light in suitable modal languages
(Aumann, de Bruinn 2004), van Benthem 2002).

Preference logics
Most game logics so far have emphasized available moves and strategies, and the ‘control’ players have over
outcomes, or just courses, of the game. But the heart of any rationality analysis is what players will do
given the utilities they attach to outcomes. Alternatively, we can assume that players have preference rela-
tions allowing them to compare various outcomes. Making the latter structure explicit again requires modal
languages, this time with modalities accessing binary or ternary preference relations (see Harrenstein van der
Hoek and Wooldrige 200x, van Benthem, van Otterloo and Roy 2005 for fully explicit characterisations of
game-theoretic equilibria in such formalisms.

Imperfect informaition
So far, uncertainty played a role in what players know or believe about the future course of a game which is
fully transparent by itself. But many games involve ‘imperfect information’. For example, in a card game
we typically do not see each player’s hand, and it is this limited observational capacity plus our powers of
reasoning and anticipation that drive the whole process. Games of imperfect information again involve epis-
temic logic, this time also in the form of uncertainties about player’s exact position in the game tree. Thus by
combining knowledge and action modalities we can express typical game-ttheoretic quandaries, such as

K(〈a〉 ∨ 〈b〉p) ∧ ¬K〈a〉p ∧ ¬K〈b〉p.

I know that I have a move (a or b) allowing me to achievep, but I do not know which one.

Dynaics: update and revision
Finally, with all this descriptive apparatus in place to describe the static structure of a game at successive stages
of its development, there is still the issue of explicit dynamics as the game moves forward. For example, in a
card game, weupdateour information in a systematic manner as cards fall on the table. Saying just how this
happens requires dynamic-epistemic logics of information update. Moreover, as a game proceeds, surprising
things may happen that lead us to question our earlier assumptions about other players — instead of a hard-
nosed egotist we may observe a gentle altruist at work. If that happens we need to revise current beliefs
about the development of the game, and belief revision comes in — which fits in with the earlier-mentioned
conditional logic of strategies.

This the concrete phenomenon of games that we are all familiar with involves just about every strand of
modal logic that we have seen — and these strands need to be put together in delicate ways.
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