Modal Logic: A Semantic Perspective

Patrick Blackburn and Johan van Benthem

Abstract

This chapter introduces modal logic as a tool for talking about graphs, or to use more traditional terminology, as a tool
for talking about Kripke models and frames. We want the reader to gain an intuitive appreciation of this perspective, and
a firm grasp of the key technical ideas (such as bisimulations) which underly it. We introduce the syntax and semantics of
basic modal logic, discuss its expressivity at the level of models, examine its computational properties, and then consider
what it can say at the level of frames. We then move beyond the basic modal language, examine the kinds of expressivity
offered by a number of richer modal logics, and try to pin down what it is that makes them all ‘modal’. We conclude by
discussing an example which brings many of the ideas we discuss into play: games.

Contents
[I_Infroduction 2
[2Basic modalTogic 3
[2.1" First steps in relational semantics 3
l2.2__The standard translation 7
[3 Simulation and definability 9
[3.1 Drawing distinctions 10
3.2 _Structural invariances: bisimulation 10
[3.3 " Tnvariance and definability in first-order logic 14
[3.4 Tnvariance and definability in modal lopjic 15
[3.5 ModalTogic and first-order logic compaled 16
[3.6 Bisimulation as a garme 18
[4 Computation and complex|ty 19
[4.1" Model checking 19
[4.2 Decidability 21
4.3 Complexity 23
[4.4 Other reasoning tagks 24
[> Richerlogick 25
[5.1 Axioms and relational frame properties 26
[5.2 Frame correspondence and second-order]logic 26
0.3 First-order definable modal axioms 27
[5.4 Correspondence in richer languages: fixed-point extensions 28
[>.5 Modally definable frame classes 29
[5.6 First-order Togic as modal logjic 29
[6 Richer languagés 30
[6.1 The universal modality 31
[6.2 Hybrid logi¢ 33
[6.3 Temporal logic with Until and Since operators 35

[6.4 Conditional logic 37

. e guarded fragment
6.5 The guarded fragmé 38

[6.6 Propositional Dynamic Lodic 40
[6.7 Modalu-calculus 42
[6.8 General perspectives 45
[/ New descriptive challenges 46
[7.1 An example where it all comes together: ggmes 46
Referencds 48

1 Introduction

This chapter introduces modal logic from a semantic perspective. That is, it presents modal logic as a tool for
talking aboutstructuresor models But what kind of structures can modal logic talk about?

There is no single answer. For example, modal logic can be giveadgatraic semantigsand under
this interpretation modal logic is a tool for talking about what are known as boolean algebras with operators.
Moreover, modal logic can be givent@pological semanti¢sso it can also be viewed as a tool talking about
certain kinds of topologies. But this chapter is about modal logic as a tool for talking gbaptis To
put it another way, this chapter is devoted to what is known asdllational or Kripke semantics for modal
logic. This is the best known and (with the exception of algebraic semantics) the best explored style of modal
semantics. It is also, arguably, the most intuitive. Over the years modal logic has been applied in many
different ways. It has been used as a tool for reasoning about time, beliefs, computational systems, necessity
and possibility, and much else besides. These applications, though diverse, have something important in
common: the key ideas they employ (flows of time, relations between epistemic states, transitions between
computational states, networks of possible worlds) can all be represented as simple graph-like structures. And
as we shall see, modal logic is an interesting tool for talking about such structures: it provides a internal
perspective on the information they contain.

But modal logic is not the only tool for talking about graphs, and this brings us to one of the major themes
of the chapter: the relationship between modal logic and other forms of logic. As we shall see, under the
graph-based perspective discussed here, modal logic is closely linked to both first- and second-order classical
logic. This immediately raises interesting questions. How does modal logic compare with these logics as a
tool for talking about graphs? Can modal expressivity over graphs be characterised in terms of classical logic?
We shall ask (and answer) such questions in the course of the chapter.

Games are another recurring motif. The simple way that modal formulas are interpreted on graphs naturally
gives rise to games and game-like concepts. The most important of these is the nbisimolation This is a
relation between two models, weaker than isomorphism, which can be thought of as transition-matching game
between two players. As we shall see, this concept holds the key to modal model theory and characterises the
link with first-order logic.

This chapter has two main pedagogical goals. The first is to provide a bread-and-butter introduction to
relational semantics for modal logic that can be used as a basis for tackling the more advanced chapters in
this handbook. Thus the reader will find here definitions and discussions of all the basic tools needed in
modal model theory (such as the standard translation, generated submodels, bounded morphisms, and so on).
Basic results about these concepts are stated and some simple proofs are given. But we have a second, more
ambitious, goal: to help the reader think semantically. We want to give the reader a sense of how modal
logicians view structure, and what they look for when exploring new logics. To this end we have tried to
isolate the intuitions that guide working modal logicians, and to present them vividly. We also make numerous
asides, some of which touch on advanced logical topics. Their purpose is to locate the key ideas in a wider
logical context, and even beginners should try to follow them.

We proceed as follows. In Sectiph 2, we introduce basic modal languages and the graphs over which they
are interpreted. We give the satisfaction definition (which tells us how to interpret modal formulas in such
graphs) and the standard translation (which links modal logic with classical logic). With these preliminaries
out of the way, we are ready to go deeper. What can (and cannot) modal languages say about graphs? In

2

Sectior| B we introduce the notion of bisimulations and use it to develop some answers; among other things,
we characterise modal logic as a fragment of first-order logic. In Sgdtion 4 we examine the computability and
computational complexity of modal logic. A shift of topic? Not at all. In essence, this section examines modal
logic as a tool for talking aboutnite graphs. In Sectioh|5 we move to the level of frames and re-examine
the links between modal and classical logic from a number of different perspectives. We learn that there
is an important connection between modal logic and (monadic) second-order logic, discuss correspondences
between modal logic and first-order logic with fixed-point operators, and show that first-order logic itself can
be viewed as a modal logic. In Sectioh 6 we move beyond the basic modal language and discuss a number
of richer languages that offer more expressivity. But what makes them all modal? As we shall see, many of
themes explored in earlier sections re-emerge, and point towards an idea that seems to lie at the heart of modal
logic: guarding Sectior] ¥ closes the chapter with a brief discussion of the changing role of modal logic.

One final remark. Welon't discuss modal proof-theory or related notions such as completeness in any
detail (these topics are the focus of Chafeof this handbook). Although we haven't banished all mention
of normal modal logics and completeness from the chapter, in our view traditional introductions to modal logic
tend to overemphasise these topics. We want this chapter to act as a counterbalance. As we hope to convince
the reader, simply asking the question “But what | caaywith these languages?” swiftly leads to interesting
territory.

2 Basic modal logic

In this section we introduce the basic modal language and its relational semantics. We define basic modal
syntax, introduce models and frames, and give the satisfaction definition. We then draw the reader’s attention
to the internal perspective that modal languages offer on relational structure, and explain why models and
frames should be thought of as graphs. Following this we give the standard translation. This enables us to
convert any basic modal formula into a first-order formula with one free variable. The standard translation is
a bridge between the modal and classical worlds, a bridge that underlies much of the work of this chapter.

2.1 First steps in relational semantics

Given proposition symbols PROR {p,q,r,...}, and modality symbols MOD= {m,m/,m”,...} (the
choice of PROP and MOD is often called thignatureor similarity type we define théasic modal language
(over this signature) as follows:

eu=p|T|L=pleA|eVi|o—=1|eei]| (m)ye|mle.

That is, a basic modal formula is either a proposition symbol, a boolean constant, a boolean combination
of basic modal formulas, or (most interesting of all) a formula prefixed by a diamond or a box. There is
redundancy in the way we have defined basic modal languages: we don’t need all these boolean connectives as
primitives, and it will follow from the satisfaction definition given below ttat]¢ is equivalent to-(m)—p.
But we won't bother picking out a preferred set of primitives, as this is not relevant to our discussion. If there
is only one modality in our language (that is, if MOD has only one element) we simply @réedO for its
diamond and box forms. We often tacitly assume that some signature has been fixed, and say things like “the
basic modal language”, or “the basic modal language with one diamond”.

A model(or Kripke model 9t for the basic modal language (over some fixed signature) is a fipte
(W,{R™}memop, V), whereW is a non-empty set (whose elements we usually paithty, eachR™ is a
binary relation ori?/, andV is a function (the valuation) that assigns to each proposition symimoPROP
a subset/(p) of W; think of V' (p) as the set of points it wherep is true. The first two components
(W, {R™}emop) Of M are called thérameunderlying the model. If there is only one relation in the model,
we typically write(W, R) for its frame, and W, R, V') for the model itself. We encourage the reader to think
of Kripke models as graphs, and will shortly give some examples which show why this is helpful.

3

Supposew is a point in a modedt = (W, R, V). Then we inductively define the notion of a formuta
beingsatisfied(or true) in 91 at pointw as follows (we omit some of the clauses for the booleans):

Mw=p iff weV(p), wherep € ¢,
Mw =L never
M w = —p iff M w e,
MwE Ay iff MwkEe and M w =,
MwE=p— iff MwpEe or Mw =,
M, w = (m)p iff for somev € W such thatR™wv we havedlt, v = ¢
M, w = [m]e Iiff forall v e W such thatR™wv we havedlt, v = ¢.

A formula ¢ is globally truein a model9t if it is satisfied at all points i®t, and if this is the case we
write M = ¢. A formulay is valid if it is globally true in all models, and if this is the case we wiitep.
A formula ¢ is satisfiable in a modebt if there is some point it at whichy is true, andy is satisfiableif
there is some point in some model at which it is satisfied. These definitions are lifted to sets of formulas in the
obvious way. For example, a set of basic modal formdlas satisfiable if there is some point in some model
at which all the formulas it contains are satisfied.

We now have all the concepts needed to begin exploring modal logic. But instead of moving on, let us
reflect upon the ideas just introduced. First, noteithiernal character of the modal satisfaction definition:
modal formulas talk about Kripke models from the insitfefirst-order classical logic, when we talk about a
model, we do so from the outside.s&ntencef first-order logic does not depend on the contextual information
contained in assignments of values to variables: sentences take a bird’'s-eye-view of structure, and, irrespective
of the variable assignment we use, are simply true or false of a given model. Modal logic works differently:
we evaluate formulamside modelsat some particular point A modal formula is like an automaton placed
inside a structure at some point and forced to explore by making transitions to accessible points. This may
seem a fanciful way of thinking about the satisfaction definition, but it turns out to be crucial. When we isolate
the mathematical content of this intuition, we are led, fairly directly, to the notidnsulation the key to
modal model theory, which we will introduce in Sect[gn 3.

Second, note that basic modal languages are syntactically extremely simple: we are working with lan-
guages of propositional logic augmented with additional unary operators. And yet these languages clearly
pack quantification punch. Diamonds and boxes can be thought of as macros that encode quantification over
R™-accessible states in a perspicuous variable-free notation. We will shortly defigiatigard translation
which makes this ‘macro’ intuition precise.

Third, note that Kripke models can (and in our opinion should) be thought of as graphs. As we have
already mentioned, modal logic has been applied in many different area. What these areas have in common is
that they deal with applications in which the important ideas can be represented by relatively simple graph-like
structures. Let’s consider some examples,

A classic interpretation of Kripke models of the foi#V, R, V') is to regard the points il as times, and
the relationR as the relation of temporal precedence (thakisu’ means that the time is earlier than time
w'). Consider the graph in Figuré 1. This shows a simple flow of time consisting of five points. Here we will

p p.q q
[4 @ @ @ @
t4 to tg tg tg

Fig. 1. A simple temporal model

take the precedence relation to be the transitive closure of the next-time relation indicated by the arrows (after
all, we think of the flow of time as transitive) thus every pdinprecedes all points to its right. Note that (as we
would expect from the internal perspective provided by modal languages) whether or not a formula is satisfied
depends on where (or in this examphgjen) it is evaluated. For example, the formukagp A ¢) is satisfied

at pointsty, t2 andts (because all these points are to the left pivhere bothp andq are true together) but

4

not att, andts. On the other hand, becaugés true att;, we have that>q is true atty, o, t3 andty. One
special case is worth remarking on: note that for any basic forrnwhatsoeverly is satisfied at;. Why?
Because the clause in the satisfaction definition for boxes say8lithat satisfied if and only ifp is satisfied
atall R-accessible points. As no points dReaccessible from; (it has no points to its right) this condition is
trivially met.

The idea of using modal logic as a tool for temporal reasoning is due to Arthur Prior [39]. His work
offers what is probably the clearest example of modal logic being appreciated for the internal perspective.
In languages such as English and Dutch, the default way of locating information temporally is to use tenses,
and tenses locate informatioelative to the point of speech. For example, if at some timiesay “Clarence
will fly”, then this will be true if at some future timé Clarence does in fact fly. Prior viewed tensed talk as
fundamental: we exist in time, and have to deal with temporal information from the inside. He believed that
the internal perspective offered by modal languages made it an ideal tool for capturing the situated nature of
our experience and the context-dependent way we talk about it. Prior called his sgstEntogic He wrote
I for the forward looking (or future) diamond, and had a second diamond, wittéor looking back into the
past (so in Figurg|1P(p A g) is true att5, for this point is to the right of,, wherep andq are true together).

Prior needed backward looking operators to mimic the effect of natural language past tense constructions.

Our next example brings us to one of the currently most influential ways of thinking about Kripke models;
to view them as pictures of computational systems (we examine to this perspective in more detail irf $ection 6
when we discuss Propositional Dynamic Logic and the mpdedlculus, and the idea underlies Chager
of this handbook). Consider the graph shown in Figlire 2. This shows a finite state automaton for the language

a b

a b
o

S t

Fig. 2. Finite state automaton fafb™ (n, m > 0)

a™b™ (n,m > 0), that is, for the set of all strings consisting of a non-empty blocksfollowed by a non-
empty block ofbs. But this is precisely the type of graph we can use to interpret a modal language. It this case
it would be natural to work with a language with two diamondsand(b). The (a) diamond will be used to
explore thex-transitions in the automaton, while tii@ diamond explores thetransitions. It follows that all
formulas of the form

(@)---(a){b)---(b)T
(that is, an unbroken block @f) diamonds preceding an unbroken block ®f diamonds) are satisfied at the
start nodes as all (and indeed only) modality sequences of this form correspond to the strings accepted by
the automaton. Although simple, this example shows the key feature of many computational interpretations of
modal logic: the relations are thought of as processes (here our processes are ‘read the'sgntbwbad
the symbolb’). Note that in this case we are thinking in terms of deterministic processes (each relation is
a partial function) but we could just as well work with arbitrary relations, which amounts to working with
non-deterministic models of processes, and we shall do so in Settion 6.

Another important application of modal languages is to model the logic of knowledge and belief. Again,
simple graph-based intuitions underly this application. Consider, for example, the graph shown if|Figure 3.
Here we see the epistemic states of a very simple agent. One state, the agent’s current state, és itaigked
represents the agents current knowledge (the agent knows thalhe case). The other states represent the
way the world might be. For example, although neithéror » are true in the current state, the agent views
states in whiclp andgq, andr andgq (but notp andq andr together) as epistemically acceptable alternatives
to the current state. That{s(p A ¢) (“p A ¢ is consistent with what the agent knows”) ab@- A ¢) are both
satisfied at. MoreoverOp (“the agent knows that”) is satisfied ate, as at every epistemic alternative the
informationp holds.

0]

a.p

2

q.r

Fig. 3. Epistemic states of a simple agent

The next example is important for another reason. Modal logic is often veiwed as an intrinsitahly
sional logic, interpreted usingossible world semanticsThis view comes from what is probably the most
historically influential interpretation of modal logic, namely as the logic of necessity and possibility. In this
interpretation is read as “possibly’d is read is “necessarily”, and the points of the Kripke model are re-
garded as possible worlds. Unfortunately, this interpretation has tended to overshadow the others, at least in
certain research communities (some philosophers seem to view modal logic, intensionality, possible worlds
as inextricably intermingled). To ensure that this illusion is dispelled, our last example will be completely
extensional Consider the graph in Figuré 4.

loves

judy johnny

detests

loves

detests

terry

detests

Fig. 4. Ordinary individuals

This is the sort of extensional information that classical logics (such as first-order logic) are often used for.
But modal logic is at home here too. We can say lots of interesting things about such situations. For example

(LOVES) T A (DETEST(LOVES) T

is true when evaluated at Terry: he loves someone who detests someone who loves someone. Nowadays,
modal logic is widely used for reasoning about such extensional situations. In particulestrgtion logics
used in knowledge representation are essentially notational variants of modal languages. They are used in a
wide range of applications for representing and reasoning about extensional information. Description logics
are treated in depth in Chaptg? of this handbook.

We're almost ready to define the standard translation, but before doing so let's deal with two other matters.
First, in most branches logic and mathematics, there is a notion of two structuresidmirayphi¢ which
can be glossed as “mathematically indistinguishable”. Let’s take this opportunity to be precise about what
isomorphism means in basic modal logic (we give the definition for models and frames with one relation; it
generalises straightforwardly to structures with multiple relations).

Definition 2.1 [Isomorphism] Lett = (W, R, V) and9’ = (W', R’, V') be models, ang : W — W' a
bijection. If for allw, v € W we have thaRwu if and only if R f (w) f (v) then we say thaf is an isomorphism
between the framedV, R) and (W', R) and that these frames are isomorphic. If in addition we have, for all
proposition letterg, thatw € V(p) ifand only if f(w) € V’(p) then we say thaf is an isomorphism between
the model9t and9t’ and that these models are isomorphic.

As this definition makes clear, if model® andMt’ are isomorphic, each replicates perfectly the informa-
tion in the other. Hence the following result is unsurprising:

Proposition 2.2 Let f be an isomorphism between mod®isand 91’. Then for all basic modal formulag,
and all pointsw in 21, we have thailt, w = ¢ if and only if I, f(w) E ¢.

6

Proof. Immediate by induction on the constructionof(See Lemmp 3]5, for an example of such a proof)

Second, we want to point out that it is possible to take a more dynamic perspective on the satisfaction
definition. In particular, we can think of it as a game. Let’s start with a concrete example. Consider the model

in Figure[.

p1 2p

°
. ‘O
Fig. 5. The formula®>O<p is true atl and4, but false a and3

As the reader should checkO<$p is true at pointd and4, but false at point& and3. Now suppose we
play the followingevaluation gameThis game has two players, a Verifier (V) and a Falsifier (F), who disagree
about the satisfiability of a formula in some model. The two player react differently to the connectives in the
formula: for example, occurrences of disjunction allow V to make a choice as to which disjunct to verify, and
force F to make both disjuncts false; negation switches the roles of the two players; and diamonds makes V
pick a successor of the current point, while boxes do the same for F. Moreover, for any propositional symbol
p, V wins thep-game ifp is true at the current state, otherwise F wins. A player also wins the game if the other
player must make a move for a modality but cannot.

1V

.A 4F
3F
V wins
[®

4p 2p 1p
V wins V wins

Fig. 6. Initial segment of a game tree

So let’s play the game fo®O<p at 1. Figure[6 shows an (initial segment of) the resulting game tree.
Note that V can always win. Her most obvious option is to fag response to the outermost diamond; this
leaves F with no possible response when faced with the task of falsifyityg But V can also safely play
4 on her first move. As the tree shows, irrespective of F’s response, V can always reach a winning position.
What this example suggest is completely general: for any n®@tgbointw, and basic formula, we have
thatdt, w = ¢ if and only if V has a winning strategy when thegame is played if)t starting atw.

2.2 The standard translation

We now understand what modal languages are, how they can be interpreted in graphs, and why this can be an
interesting this to do. What next? Well, if we were following a traditional path, we would probably remark that

as modal languages are to be used for reasoning, some sort of proof system is called for. We might then point
out that the set of all modal validities (that is, tnimal modal logi¢ can be axiomatised by a Hilbert-style

proof system calle&. The axioms oK are:

(i) All propositional tautologies,

(i) D(e —¢) — (Op — OY).
There are two rules of proofnodus ponengf - ¢ and- ¢ — 9 thent) andmodal generalisatiofif - ¢
thenOy). This looks like a standard axiomatisation of first-order logic witbehaving likev. ButK has no
analogs of the first-order axioms with tricky side conditions on freedom and bondage of variables and terms,
such asvze — [t/z]p. This is no coincidence. As the standard translation will make clear, modal logic is
essentially a perspicuous variable-free notation for a fragment of first-order logic.

But proof systems are not our goal. This chapter is concerned with semantic issues, so quite different
aspects of modal logic call for our attention. To get the ball rolling, let’s return to our basic semantic entities
(Kripke models) and ask what they actually are. This will provide a point of entry to one of the main themes
of the chapter: the relationship between modal and classical logic.

So what is a Kripke model? No mystery here. A Kripke mo@él, { R },,emop, V') is what model
theorists call aelational structure That is, we have a domain of quantificati&ii, a collection of binary
relations over this domain, and a collection of unary relations as well (afte¥ i) is a unary relation for
all p € PROP). But this means that we are not forced to talk about Kripke models using modal languages:
they provide us with everything needed to interpret classical languages too. For example, to talk about a
model (W, {R™}emop) using first-order logic we would simply make use of a first-order language with a
binary relation symboR™ for everym € MOD, and a unary relation symbat for everyp € PROP. Modal
logicians have a name for this language: they call itfirs-order correspondence languader the basic
modal language over PROP and MOD.

Why “correspondence language”? Because every basic modal formula (in the language over PROP and
MOD) can corresponds to a first-order formula from this language viatdredard translation

ST.(p) = Px

ST,(L) =1

STo(mp) = =STu(y)
STa(p AY) = STa(p) A STa()
STz({m)p) = Fy(R™zy A STy(p))
STa([m]e) = Vy(R™zy — sTy(p)).

That is, the standard translation maps propositional symbols to unary predicates, commutes with booleans,
and handles boxes and diamonds by explicit first-order quantification/tieaccessible points. The variable
y used in the clauses for diamonds and boxes is chosen to be any new variable (that is, one that has not been
used so far in the translation). We remarked earlier that diamonds and boxes were essentially a simple macro
notation encoding quantification over accessible states; the standard translation simply expands these macros.
Note thatsT,(y) always contains exactly one free variable (namélyThis free variable is what allows the
internal perspective, typical of modal logic, to be mirrored in a classical language: assigning a value to this
variable is analogous to evaluating a modal formula inside a modal at a certain point.

Here’s an example of the translation at work:

STz(p — ©Op) = STu(p) — ST(Op)
= Pz — ST,(Cp)
= Pz — Jy(Ray A STy(p))
= Px — Jy(Rxy A Py).
8

As the reader can easily chegk;— <p and its standard translatidhe — Jy(Rzy A Py) are equisatisfiable
in the following sense: for any mod&h, and any pointv in 9%, we have thaiit, w = p — <p if and only
if M = Px — Jy(Rzy A Py)[z — w], where the notatiofz < w] means assign to the free variable:.
Unsurprisingly, this relationship is completely general:

Proposition 2.3 For any modal formulap, any modeflt, and any pointw in 9t we have thatht,w =
pIff M |= ST, () [z — w).

Proof. There is practically nothing to prove. The clauses of the standard translation mirror the clauses of the
satisfaction definition. Hence the result is immediate by induction on the structure of modal formulas.

Thus the standard translation gives us a bridge between the modal and classical worlds. And we can
immediately use this bridge to transfer results for first-order logic to modal logic.

Proposition 2.4 Basic model logic has the compactness property. That i,i8 a set of basic modal formu-
las, and every finite subset Bfis satisfiable, then> itself is satisfiable. Moreover, basic model logic has the
Lowenheim-Skolem property. That is, if a set of basic modal forniligssatisfiable in at least one infinite
model, then it is satisfiable in models of every infinite cardinality.

Proof. Suppose the @awenheim-Skolem property fails. Then there is a set of basic modal formutzeat has

at least one infinite model, but lacks models of some infinite cardinalities. But this is impossibkr, [}

be the set of (first-order) formulas obtained by standardly translating all the formasNow, as¥ has an
infinite model, by Proposition 2.3 so doss, (X). But first-order logic has thedwenheim-Skolem property,
hencesT,(X) has a model of every infinite cardinality. But, again by appeal to Propon 2.3, each of these
models satisfie&l, and we conclude that basic modal logic must have thednheim-Skolem property after

all. The argument showing that it has the Compactness property is analogous. -

Another easy consequence of the standard translation is that the set of validities (in basic modal languages)
is recursively enumerable. Again, by appealing to the fact that first-order logic has this property, we swiftly
generate a contradiction from the supposition that basic modal languages do not.

Let's sum up what we have learned so far. Propositional modal languages are syntactically simple lan-
guages that offer a neat (variable-free) notation for talking about relational structures. They talk about rela-
tional structures from the inside, using the modal operators to access information at accessible states. This
internal perspective on models, coupled with the simplicity of modal syntax, means that propositional modal
logic is an attractive tool for certain applications. Moreover, viewed as a tool for talking about models, any
basic model language can be regarded as a fragment of its corresponding first-order language: the standard
translation systematically maps modal formulas to first-order formulas (in one free variable) and makes the
guantification over accessible states explicit. This allows us to quickly establish some basic modal meta-theory
by appeal to known results for first-order logic.

3 Simulation and definability

With the basics behind us it is time to look deeper. In particular, it is time to start mapping the expressive
strengths and weaknesses of the basic modal language. Now, the expressive power of a language is usually
measured in terms of the distinctions it can draw. A language with just the two expressions “like” and “dislike”
would provide only the roughest possible classification of the world, whereas a richer language of assent and
dissent would make it possible to draw finer distinctions inside the accepted and rejected situations. So what
distinctions can modal languages draw? In this section we discuss this question at the level of models, and
in Section b we shall reconsider it at the level of frames. In what follows it will often be useful to think in
terms ofpointed modelsThat is, we shall often present models together with an explicit distinguished point

to indicate where we are trying to find a difference.

9

3.1 Drawing distinctions

A modal language (and indeed any logical language whose formulas form a set) can distinguish between
some modelgt, s) and (91, ¢), but not between all such pairs. For example, our basic modal language can
distinguish the pair of models shown in Fig{ife 7 (in these graphs all points are irreflexive).

A

e

o o
nm n

Fig. 7.9t and91 are modally distinguishable.

HereO(O L v<oO 1) is a modal formula that distinguishes these models: it is truBtiat s, but false
in 9T at¢. But now consider the pair of models shown in Figure 8 (in these grapkseflexive, and all other
points are irreflexive).

[
piY K

Fig. 8.9t and & are not modally distinguishable.

Is it possible tamodallydistinguish(9t, s) from (&, «)? That is, is it possible to find a (basic) modal formula
that is true ird at s, but false ing atu? Note that is easy to distinguish them if we are allowed to use first-
order logic: all points i)t (including s) are irreflexive, while point. in & is reflexive, hence the first-order
formula Rzx is not satisfiable (under any variable assignment) in m@tiebut it is satisfied inR whenw

is assigned ta:. But no matter how ingenious you are, are you will not find any formula in the basic modal
language that distinguishes these models at their designated points. Why is this?

3.2 Structural invariances: bisimulation

A natural approach to this question is to consider its dual: when should two models be viewed as modally
identical? For example, given a process interpretation, when would we view two transition diagrams as rep-
resentations of the same process? The m@@dleind R of Figure[T provide an intuitive example: they seem

to stand for the same process when we look at possible actions and deadlocks. At each live stage, the process
can opt for a deadlock. By contra9)f and9t are different, as not every state has an immediate dead-lock op-
tion. Or consider the epistemic interpretation: when would we want to say that two graphs represent the same
epistemic information? For example we would probably want to identify the two epistemic models shown in
Figure[9 at their distinguished pointsandt.

After all, in essence both models present us with a two way choice: either we agekimosvledge state, and

there is a distinct knowledge stajghat is compatible with what we know, or vice versa. The intuition that

both these diagrams code the same information is captured by our modal language: the reader will not find any
modal formula that distinguishes them.

10

< X

Fig. 9. Two epistemically equivalent models.

The modal logician’s idea of asking when two distinct structures are modally identical (that is, make the
same modal formulas true) lies within an older (and broader) tradition of looking for the structure preserving
morphisms in a given mathematical domain, and letting the corresponding theory describe those notions that
are invariant for such morphisms. This is the spirit of Klein’s Program in geometry, proposed around 1870,
and still influential in many fields. Of course, there is no unique answer to the question of when two structures
are the same. This insight was stated forcefully in recent years by President Clinton during the Lewinsky
hearings: 1t all depends on what you mean by *isClinton’s Principle for modal logic means that we should
first try to stipulate some notion of structural equivalence for models that is appropriate for modal languages.
This is the purpose of the following definition, which is best understood as a notion of equivalence between
modal models viewed as process graphs. We state it here for models with one r8lakionthe definition
generalises straightforwardly to models with any number of atomic relations.

Definition 3.1 (Bisimulation) A bisimulation between model® = (W, R, V) and9’ = (W', R, V') is a
non-empty binary relatio between their points (that i€y C W x W') such that whenever Ew’ we have
that:

Atomic harmony:w andw’ satisfy the same proposition symbols,
Zig: if Rwv, then there exists a point (in 9') such thatv Ev’ and R'w'v’, and
Zag: if R'w'v’, then there exists a point(in 9t) such thaw Ev' and Rww.

If there is a bisimulation between two modglsand 91, then we say tha®t and 9t are bisimilar. Moreover,
we say that two states are bisimilar if they are related by some bisimulation.

Putting this in words: two states are bisimilar if they make the same atomic information true and if, in
addition, their transition possibilities match. That is, if a transition to a related state is possible in one model,
then the bisimulation must deliver a matching transition possibility in the other. Atomic harmony coupled with
the matching transitions concept embodied in the zigzag clauses make bisimulation a natural notion of process
equivalence, and indeed bisimulations were independently discovered in computer science.

Returning to the modeB®t, K, and9t considered above (and disregarding proposition symbols) it is easy
to see thaft and R are bisimilar: the dotted lines in Figure]10 indicate the required bisimulation (note that
the indicated bisimulation links the two designated points). Furthermore, it is easy to see that there is no
bisimulation that links the designated pointsddfand 8. Why not? Because a move franto the right-hand
world in 91 has no matching move ii: moving downwards from is no option (end-points never bisimulate
with points having successors) but neither is moving reflexively froim itself (as one can move fromto a
successor which is an endpoint, but this can’t be done from the right-hand wérld in

Given any modal modébt, bisimulations can be used in at a number of ways. The so-daikgdulation
contractionmakest as small as possible. To define this, note that it follows from Definjtioh 3.1 that any
union of bisimulations between two models is itself a bisimulation. Therefore the union of all bisimulations
between two models is a maximal bisimulation between them. Now define a quot®hinfose points are
the equivalence classes of the maximal bisimulatio®iitself, setting|w|R|v| iff the equivalence classes
|w| and |v| contain pointsw’ and v’ such thatw’Rv’. The map from points to their equivalence classes
is a bisimulation. For example, the bisimulation shown in Figure 10 betW&eand £ is a bisimulation
contraction. Bisimulation contractions are the most compact representation of processes, at least from a modal
standpoint. They remove all the redundancies in the representation — but also all aesthetic symmetries. (A
butterfly is a redundant object, as one wing contains enough information under this perspective.)

11

Fig. 10.97t and R are bisimilar,8 and9t are not.

But bisimulations can also be used to make bigger models: a pointed (Midel) can be made as large
as possible using a construction calteze unraveling To unravel a model we take all finite-sequences of
points in9t that start at some point. These sequences form a tree with one-step extensions of sequences as
the tree-successor relation. Projection from a sequence to its last element is a bisimulation onto thé&®driginal
As an example, consider the unraveling of mafedround its distinguished pointto the infinite comb-like
structure shown in Figufe L1 (we useas the name of the unique successou)of

<u> > <u,v>

<u,u> —> <u,u,v>

<u,u,u> ————¥ <Uu,u,u,v>

Fig. 11. Unraveling’R aroundu.

Reasoning about trees is often easier than reasoning about arbitrary graphs, and so this method is of consid-
erable theoretical utility. Moreover, as we shall see, tree unraveling is relevant dec¢idability of modal
logic.

Three other model constructions used in modal logic, namisipint unions generated submodeland
bounded morphism®r p-morphismgare also bisimulations. Historically, all three constructions were widely
used in modal logic more than decade before the unifying concept of a bisimulations was introduced. All three
constructions are fundamental tools in many areas of modal logic (for example, they are key ingredients in the
Goldblatt-Thomason Theorem which we discuss in Se¢fion 5) so we take this opportunity to define them for
models with one accessibility relation. These definitions generalise straightforwardly to models of arbitrary
signature.

The simplest construction is forming disjoint unions. If we have a pair of disjoint models (that is a pair of
models(W, R, V') and (W', R', V') such thatW and W’ are disjoint) then their disjoint union is the model
(WUW',RUR,V + V'), whereV + V' is the valuation defined by + V'(p) = V(p) U V'(p), for
all proposition symbolg. That is, forming a disjoint union of two models means lumping together all the
information in the two graphs. What if the graphs are not disjoint? Then we simply take disjoint isomorphic
copies, and form the disjoint union of the copies (after all, in modal logic we are only interested in models up
to isomorphism). This lumping together process can be generalised to arbitrarily many models, which prompts

12

the following definition.

Definition 3.2 (Disjoint Unions) Given a collection of mutually disjoint mode®; = (W;, R;,V;), where

i ranges over the elements of some index/sete define the disjoint union of these models tdie=
(W,R, V), whereW = (J,c; Wi, R = U;c; Ri, andV (p) = U, Vi(p) for all proposition symbolg. To

form the disjoint union of a collection of models that are not mutually disjoint, we first take mutually disjoint
isomorphic copies, and then form the disjoint union of the copies.

It is immediate from this definition that any component maddglof a disjoint uniort is bisimilar with
M. for the bisimulation relatior? we simply take the identify relation. Identity clearly satisfies the atomic
harmony and zigzag conditions required of bisimulations.

Disjoint unions build bigger models from (collections of) smaller ones. Generated submodels do the
reverse. They arise by restricting attention to subgraphs of a given graph that are closed under relational
transitions. For example, consider the two graphs in Figure 12.

A4S S

Fig. 12. A generated submodel.

It is clear that the graph on the right arises by restricting attention to a certain transition-closed subgraph
of the graph on the left, namely the set of point reachable by taking sequences of transitions fftins
motivates the following definition.

Definition 3.3 (Generated Submodels).et 9 = (W, R, V) be a model and letV’ C W. We say that a
model’ = (W', R', V") is the restriction ob)t to W' if " = RN (W' x W') and for all proposition symbol
p we have thal’’(p) = V(p) N W’'. We say thatV’ is R-closed if for allu € W', if Ruv thenv € W',
Finally, we say thaf)t’ is a generated submodel 9 iff 21’ is the restriction 0Bt to an R-closed subset of
w.

If M = (W', R, V') is a generated submodel 8t = (W, R, V), andS C W' has the property that
everyw’ € W' is reachable via a finite sequence Bftransitions from some < S, then we say thadt’ is
the submodel ot generated bys. If S is a singleton se{s}, then we say tha®t’ is the submodel din
generated by the point

A generated submodel is bisimilar to the model that gave rise to it: as with disjoint unions, the identity
relation relates the two models in the appropriate way. (Incidentally, note that every component model of a
disjoint union is a generated submodel of the disjoint union).

Finally we turn to bounded morphisms (@morphisms as they are often called).

Definition 3.4 (Bounded morphism) A bounded morphism between mod®ks = (W, R, V) and M’ =
(W', R', V') is a functionf with domainl¥ and rangelV’ such that:

Atomic harmony: Points inTV and their f-images satisfy the same proposition symbols (thatis, V' (p)
iff f(w) € V'(p), for all proposition symbolg).

Morphism: if Rwv, thenR' f(u)f(v).
Zag: if R'w'v’, then there exists a (in 90t) such thatf (v) = v" and Rwwv.

If fis a bounded morphism froft to M’ and f is surjective, then we say tha®’ is a bounded morphic
image ofi.

Bounded morphisms are bisimulations: a bounded morphism is simply a bisimulation in which the bisim-
ulation relationE is a R-preserving morphisnf (note that the only essential difference between the two defi-

13

nitions is that the morphism clause replaces the zig clause, and clearly morphism implies zig). Historically, it
was the definition of bounded morphisms that inspired the definition of bisimulations.

As an example of a bounded morphism between models, consider Figure 13 (again we ignore proposition
symbols).

2 BE % g
~ \ \ / 4
\\ \\ \ / //
AN \ \ / /
SN 7
\\\\\ r,
Nabr,/

Fig. 13. Bounded morphism collapsing the natural numbers to a reflexive point.

Here we have collapsed the natural numbers in their usual order to a single reflexive point. It clear that this
map satisfies both the morphism and zig clauses, so it is indeed a bounded morphism.

3.3 Invariance and definability in first-order logic

Structural invariances preserve certain patterns definable in appropriate languages. Before pursuing the match
between bisimulation and modal logic, let us examine the situation in first-order logic. The archetypal struc-
tural invariance issomorphisrbetween models. As we saw earlier (recall Propos[tioh 2.2) modal formulas

are invariant for isomorphism. Moreover, it is well known thaffifs an isomorphism betweelt and 1,

then for each first-order formula(z4, ..., z;), and each matching tuple of objecis, . .., d;) in 9, the

following equivalence holds:

M= pldy, ... di] 1ff N = @[f(dr), ..., fdw)],

or stated in words: first-order formulas are invariant for isomorphism.

On special models, the converse also holds. For example, it is a well-known elementary fact that any two
finite models with the same first-order theory are isomorphic. But no general converse holds, as there are many
more isomorphism classes of models than complete first-order theories. Invariance for isomorphism is even a
defining condition for any logic in abstract model theory. But no matter how strong the logic, the converse still
fails whenever its formulas form a set, as opposed to the proper class of isomorphism types.

Thus it makes sense to look at invariance conditions for weaker notions of structural equivalence. For
example, gotential isomorphisretween two model¥t and9t is a non-empty sef of finite partial isomor-
phisms satisfying the back-and-forth extension conditions that, wherfegef andd € 91, then there is an
e € MsuchthatfU{(d,e)} € I, and vice-versa. Note that isomorphisms induce potential isomorphisms: sim-
ply takel to be the family of all finite restrictions. The converse is not true. Matching up all finite sequences of
rational numbers with equally long sequences of real numbers (in the same order) is a potential isomorphism
betweernQ andR, even though these two structures are not order-isomorphic for cardinality reasons.

It is easy to show that all first-order formulas are invariant for potential isomorphism, but the real match
is with a stronger language: two models are potentially isomorphic iff they have the same complete theory in
theinfinitary first-order logicL...,. This formalism also gives rise to much stronger definability results. For
example, for each modélt there is a sentenely of L., which holds only in those modef’ which have a
potential isomorphism witft; that is, models can be defined up to potential isomorphism. Moreover, count-
able models can even be defined (modulo isomorphism) using only countable conjunctions and disjunctions.
This is all very nice of course, but infinitary logic is a bit outlandish from a practical viewpoint.

Better matches between structural invariance and first-order definability arise in the more fine-grained
setting of Ehrenfeucht-Fisee comparison games between modeisand9t played between a Spoiler and a

14

Duplicator. Model9t and9t have the same first-order theory up to quantifier dégththe Duplicator has a
winning strategy in their comparison game okepunds. We forgo the details here, as we will define a modal
comparison game of this sort at the end of the section.

3.4 Invariance and definability in modal logic

With these analogies in mind, let us now investigate the modal situation. For a start, modal formulas are
invariant for bisimulation

Lemma 3.5 (Bisimulation Invariance Lemma) If E is a bisimulation betweett = (W, R, V) and’' =
(W', R, V"), andwEw’, thenw andw’ satisfy the same basic modal formulas.

Proof. By induction on the construction of modal formulas. The case for proposition symbols is immediate
by atomic harmony. The inductive steps for the boolean connectives are straightforward. And the inductive
step for<$ formulas shows exactly what the zigzag clauses were designed for. For consider the left to right
direction. Giverthit, w = ¢ andwEw’, we want to show thadt’, v’ = ¢p. Now, I, w = & means that

there is some in 91 such thatRwv and9M, v |= ¢. But then (by zig) there must be a poiritin 91 such that

vEv and R'w’v’. By the induction hypothesiSit', v = ¢, hencet’, w’ = <y as required. The argument

for the right to left direction is essentially the same, but uses zag in place of zig. .

The result allows us to quickly show failures of bisimulation. For example, we have already sketched an
argument showing that the mod@)i and9t of Figure 7 have no bisimulation between their designated points,
but a quicker proof is now possible: these poicésnotbe bisimilar because there are modal formulas (for
exampleO(d L v<oO 1)) which is satisfied at one point but not the other. On the other hand, the dotted
lines in Figurg ID show thant and & are bisimilar; it follows that all points linked by a dotted line in these
graphs make exactly the same modal formulas true. Another typical application of this result is to show the
undefinability of certain structural notions. For example, we can show that irreflexivity is modally undefinable:
no modal formula holds in exactly those point®f models such that Rww. To prove this, it suffices to find
two bisimilar points in two models, one of which is reflexive, the other irreflexive. One such example is the
bisimulation between the designated pointSidofind {.

Another consequence of this result is that the disjoint union, generated submodel, and bounded morphism
constructions are all satisfaction preserving. More precisely:

Lemma 3.6 Modal satisfaction is invariant under the formation of disjoint unions, generated submodels, and
bounded morphisms. That is:

(i) If M = (W, R, V) is the disjoint union of)t; = (W, R;, V;), for ¢ from some index sdt, then for all
w € W and alli € I we have thaflt, w = ¢ iff M;, w = ¢.
(i) If ' = (W', R, V') is a generated submodel 8 = (W, R, V) , then for allw’ € W’ we have that
Mw' | iff M w' = p.
(i) 1f 9 = (W', R',V’) is a bounded morphic image 8t = (W, R, V') under the bounded morphisfi
then for allw € W we have thafit, w = ¢ iff I, f(w) = ¢.

Proof. All three results could be proved by induction on the structureooBut such proofs are unnecessary:
we know that disjoint unions, generated submodels, and bounded morphisms are all examples of bisimulations,
hence these results follow from Lemmal3.5. .

To sum up the discussion so far, bisimulation implies modal equivalence. But what about the converse?
For finite models, we have the following.

Proposition 3.7 If pointsw and w’ from two finite model§)t and 91 satisfy the same modal formulas, then
there is a bisimulatiorEZ betweerdt and 9t such thatv Ew’.

Proof. Assume we are working with models containing only a single relaffonWe shall construct the
required bisimulation by showing that the relation of modal equivalence is itself a bisimulation. That is, we

15

Fig. 14. Modally equivalent but not bisimilar.

define the bisimulation relatioR by wFw' iff w andw’ make the same modal formulas true. We now verify
that £’ so-defined is indeed a bisimulation.

It is immediate thaf satisfies atomic harmony. As for zig, assume thatw’ and Rwv. Assume for the
sake of contradiction that there is nbin 9 such thatR'w'v" andvEv'. Let S’ = {«' | R'w'u’}. Now, asw
has anR-successon, we havedlt, w = OT. AswEw’, we havedlt’, w’ = OT too, henceS’ is non-empty.
Furthermore, a§it’ is finite, S’ must be finite too, so we can write it é8/,...,w/ }. By assumption, for
everyw), € S’ there exists a formula; such thatt, v |= «; butd’, w] F~ ;. It follows that

M, w b O A Ay) and M, w' [O(h1 A= A i),

which contradicts our assumption thaf/w’. HenceE satisfies zig. A symmetric argument shows that
satisfies zag too, hence it is a bisimulation.
_|

Thus on finite models, the expressive power of modal languages matches up exactly with bisimulation in-
variance. This result can be extended to broader model classes, such as models with finite branching width
for successors (note that the proof just given does not depend on the models involved being finite: it would
also work for infinite models in which each point has only finally ma@guccessors) and suitably saturated
models in a model-theoretic sense. But no general converse can hold, for the reason mentioned earlier for
first-order logic. Indeed, the converse does not hold generally even for countable models: not all modally
equivalent countable models are bisimilar. The two models in Fjgufe 3.4 satisfy the same modal formulas at
their roots, but if there were a bisimulation between them, the infinite chain on the right would also have to
occur on the left.

This counterexample can be repaired by passing tofaritary model languagé€ ., with arbitrary (count-
able) conjunctions and disjunctions. Infinitary modal equivalence occurs between countable (Piodels
and (M, t) whenever there is a bisimulation linkingto ¢t. Furthermore, every countable modén, s) is
defined up to bisimulation by soni&,, formuladgy ;. Again, such infinitary languages are somewhat imprac-
tical, but there are some useful bisimulation invariant formalisms which lie between the basic modal language
and its infinitary extension. Two example grmpositional dynamic logiandmodal p-calculus which are
discussed in Sectidn 6.

Lemma 3.5 and its partial converses do not exhaust said about the role played by bisimulations in modal
model theory. But to gain a deeper understanding, we need to bring in a third component: the first-order
correspondence language. Let'’s do this right away,

3.5 Modal logic and first-order logic compared

The basic modal language can be viewed as a sort of miniature version of full first-order logic over graph
models. The standard translation defined in the previous section shows that each modalgarantéaponds

to a first-order formula$T, (¢) containing a free variable. But the converse does not hold: some first-

order formulas in the correspondence language are not modally definable. We have already see an example.
As the bisimulation between model® and £ shows (recall Figurg 10) no modal formula defireBzz.

Thus, viewed as a tool for talking about models, modal logic is strictly less expressive than the full first-order
correspondence language. And this prompts a further question: given that a modal language can be viewed

16

as a proper expressive fragment of the corresponding first-order language, exactly which fragment is it? This
question has an elegant answer. First, a preliminary definition.

Definition 3.8 A first-order formulap(z) is invariant for bisimulation if for all model§)t and 9, and all
pointsw in M and w’ in M, and all bisimulationsk betweertlt and M’ such thatwEw’, we have that

M = p(a)[w] iff M = o(x)[w].
We can now state the main result: modal languages correspond to the fragment of their first-order corre-
spondence language that is invariant for bisimulation. More precisely:

Theorem 3.9 (Modal Characterisation Theorem) The following are equivalent for all first-order formulas
©(z) in one free variabler:

() ¢(x) is invariant for bisimulation.
(i) o(z) is equivalent to the standard translation of a basic model formula.

Proof. That clauseii) implies(i) is a more or less immediate consequence of Leinma 3.5. The hard direction
is showing that clausé) implies (ii). A model-theoretic proof of this result is given in Chap®rof this
handbook. -

Nowadays many different proofs are known for this result, and for various extensions and variants. In
particular, the result also holds in finite model theory where the standard model-theoretic results (such as
compactness) cannot be applied. More recently it was shown that the modal equivalent in théitlaase
be restricted to a formula of modal operator depth wherek is the quantifier depth ap(z). Incidentally,
determining whether a given first-order formula is equivalent to a modal amadiscidable This complexity
is not as bad as it sounds, because the same is true for most significant fragments of first-order logic that are
defined semantically.

Basic modal logic and first-order logic are analogous in many ways. As we mentioned in $gction 2, via the
standard translation modal logic immediately inherits basic properties of its more powerful neighbour, such
as the Compactness anéwenheim-Skolem theorems. But not all such transfer is automatic. Consider the
Craig Interpolationproperty:

If o = ¢ then there exists a formukawhose vocabulary is included in that of bathand ¢) such that
v =0 andf = .

If we want the same result for modal formulas such that «, this result gives us a first-order formulauch
thatST,(¢) = 6 andf = ST,¢. But what guarantees that this interpolant is modally definable? Interpolation
does in fact hold for the basic modal language, but additional work is needed to prove this.

While we are on the topic, it's worth mentioning that interpolation meshes well with the above preservation
results. Here is an improvement on the Modal Invariance Theorem. Let us say that a first-order formula
impliesy along bisimulationf the following implication always holds: ifZ is a bisimulation betwee(, s)
and(91,t), andd, s = ¢, thenMN, ¢ = ¢.

Theorem 3.10 (Modal Preservation/Interpolation Theorem) The following are equivalent for all first-
order formulaspy(z):

() ¢(x) impliesy (x) along bisimulation.

(i) There is a modally definabkein the common vocabulary gf and) such thaty = 6 and .

The Modal Invariance Theorem follows by takiggz) equal top(z). This result does not imply ordinary
modal interpolation as it stands: additional work is needed again.

Behind the above observations is the fact that the cheaply transferred properties are universal in some sense,
whereas the universal-existential property of interpolation requires honest work. Even so, there is an intuition
(based on decades of positive experience with transferring results) that modal logic and first-order logic share
all general meta-properties (except decidability). No proof has been found so far significant formulations
of this idea, but we can point to some broad analogies regarding methods. Generally speaking, bisimulation

17

plays the same role for modal logic that potential isomorphism does for first-order logic. This can even be made
precise in the following sense. To each first-order magielve can associate a modal model whose points
are the variable assignments ifMid, and whose accessibility relations are changes from one assiggrtent
anotherg(z := d) that resets the value for the variahl¢o the objectd € 9t. Then two model$)t andDt
have a potential isomorphism between them iff their associated modal models are bisimilar.

We conclude this discussion with two general transfer results that allow us to switch between modal and
first-order relations between models. In essence, both results have the form of a commutative diagram.

Lemma 3.11 (First Lifting Lemma) The following are equivalent for all mode|¥1, s) and (N, ¢):
(i) (9, s) and(N,t) are modally equivalent.

(i) (M, s) and (N, t) have elementary extensions to mod@®8™, s) and (917, ¢) which are elementarily
equivalent.

Lemma 3.12 (Second Lifting Lemma) The following are equivalent for all mode31, s) and (1, ¢):
(i) (9, s) and(MN,t) are modally equivalent.
(i) (901, s) and (M, t) are bisimilar to modelgM ™, s) and (91, ¢) which are elementarily equivalent.

The first result is the key item in (some proofs of) the Characterisation Theorerm-(tioelels are suitably
saturated elementary extensions). The second result involves judicious tree unraveling of the two models, du-
plicating sub-trees to create uniformity, coupled with an Ehrenfeuclis€rargument to establish elementary
equivalence.

3.6 Bisimulation as a game

We have said that bisimulation is a sort of process equivalence. The dynamic character of the notion can be
brought out by viewing it as a game. Consider a game between Duplicator (the analogy player) and Spoiler
(the difference player) comparing successive pairs) in two model?t andM:

In each round Spoiler chooses a staten one model which is a successor of the currerdr ¢, and
Duplicator responds with a matching successoin the other model. If. and v differ in their atomic
properties, Spoiler wins. If Duplicator cannot find a matching successor, Spoiler wins as well.

This game captures the zigzag behaviour of bisimulations in an obvious sense. Itdet@isoined one of

the two players has a winning strategy. (This is because it is an open Gale-Stewart game in the sense of game
theory.) For example, retuning yet again to the mo@#&|Dt and R considered at the start of this section, we

see that Duplicator has a winning strategy in the comparison game for the rfiGdeid 8 starting from their

matched designated points, while Spoiler has on&tand)t. The following result clarifies the role of these

games precisely:

Theorem 3.13 (Adequacy of modal comparison games)

() There is an explicit correspondence between Spoiler’'s winning strategiels-mwand comparison game
between M, s) and (91, t) and modal formulas of modal operator degtlon whichs and¢ disagree.

(i) There is an explicit correspondence between Duplicator’'s winning strategies over an infinite-round com-
parison game betweg, s) and (91, ¢) and the set of all bisimulations betwe®h and 1 linking s to
t.

For example, in the game between the mod&sand K given earlier, Duplicator wins by choosing re-
sponses that stick to the bisimulation links. And in the game bet@Bemd)t, Spoiler can win in at most
three rounds by using the earlier modal difference formula L v<O L) of modal operator depth three. In
each round he can make sure that some modal difference remains at the current match, with the operator depth
descending each time.

18

4 Computation and complexity

We view modal logic as a tool for representing and reasoning about graphs. Our discussion of expressivity has
given us some insight into the representational capabilities of modal logic (at least at the level of models) but
what about reasoning?

In this section we discuss modal reasoning from a computational perspective. We concentrate on the
model checking tasknd thesatisfiability and validityproblems, but also make some remarks abougtbieal
satisfiabilityand themodel comparisotasks. As we shall see, the complexity of the modal version of these
tasks is lower than that of their first-order counterparts.

Before going further, two general remarks. First, although we are about to study reasoning, we are not
about to embark on the study of modal proof systems; the standard proof systems are only relevant to sat-
isfiability and validity checking, and there is more to modal reasoning than this. Secondly, although we are
ostensibly moving on from expressivity issues to computational issues, the two topics are intertwined: the
positive computational results reported here arise from negative expressivity results, such as the inability of
the basic modal language to force the existence of infinite models.

4.1 Model checking

Here’s a simple formulation of model checking task (for the basic modal language):
Given a (finite) modent, a pointw in M, and a basic modal formula, is ¢ satisfied it at w?

But is this really areasoningtask? In our view, yes. In essence, a model is a ‘flat’ store of information: it
consists of a collection of entities, together with a specification of which entities have which atomic properties,
and which entities are related by which atomic relations. A modal formula, on the other hand, is a recursively
constructed tree. The embedding of connectives and modalities within one another permits relatively short
formulas to make interesting assertions, assertions that go way beyond the mere listing of atomic facts. If we
add to these differences the practical observation that in typical applications the formula will be much smaller
than the model, we see that model checking is about synchronising two very different forms of information: it
tests whether the abstract information embodied in the formula is implicitly present in the model. Viewed this
way, model checking is a quintessential reasoning task.

Moreover, model checking has turned out to be of great practical importance — indeed, one of the more
salutory lessons computer science has taught logic is just how important this modest looking form of reasoning
actually is. Nowadays the practical importance of modal model checking dwarfs that of determining modal
satisfiability or validity (the tasks logicians have traditionally viewed as paramount) as a wide range of practical
tasks can be directly expressed in terms of model checking. A classic example is hardware verification. A chip
can be thought of as a model: abstractly conceived, a chip is a (very large) collection of entities, bearing certain
properties, and related in various ways. But if a chip is to work satisfactorily, it should also possess a number
of high-level ‘emergent’ properties: for example, it should not deadlock. If we have a modal language that can
express the desired properties, then by checking the formula in the model we can determine whether the chip
is well-designed.

So how should we perform model checking? There's a good way and a bad way — let’s start with the
bad. If we are computationally naive, we might proceed as follows: we'd write a program that takes a model
M, a pointw, and a formulap, and then applies the satisfaction definition in a top-down fashign and
all its subformulas. That is, the program would recursively breadown into its components and evaluate
them in the manner described in the satisfaction definition; in particular, each occurrericeofaprefixed
subformula would be evaluated at the relevant accessible points.

To see why this approach can be bad, consider the following configuration of points:

Suppose we evaluateCy att. As we are working top down, this means we have to evalGatat both
u andv. But this in turn means we will evaluate at w twice, once while working from:, and once while
working fromuv. This (senseless) re-evaluation of formulas renders the naive top-down algorithm impractical:
it is liable to be swamped by unnecessary work.

19

/N
\/

Fortunately, there’s a better way. Instead of working top-down, use a bottolabefling algorithm
simply label every node in the model with all of the subformufathat are true there. We start with the
proposition symbols: the valuation tells us where these are true, so we label all the appropriate points. We
then label with more complex formulas. The booleans are handled in the obvious way: for example, we label
w with i A 6 if w is labeled with both) andf. As for the modalities, we label with o if one of its R-
successors is labeled with and we label it witidy if all of its R-successors are labeled with The beauty
of this algorithm is that we never need to duplicate work: once a point is labeled as mating, that's it.
This makes the algorithm run in time polynomial in the size of the input formula and model: the algorithm
takes time of the order of

con(y) x nodegM) x nodegM),

wherecon(y) is the number of connectives in andnodeg) is the number of nodes Mt. Note, inciden-

tally, that the algorithm actually supplies us with a more detailed answer than we asked for: instead of just
telling us whethetr is true in9t atw, it gives us a complete listing of all the points (if any) wheres true in

M.

The labelling algorithm adapts, fairly straightforwardly, to many more powerful modal languages. As we
said above, when modal checking we want to work with a language capable of expressing interesting high-
level properties, and the ordinary and< usually aren’t strong enough. Far more useful is the bitdmtjl
modality:

M, s = U(y,0) iff thereis at such thatsR*t anddN, ¢ = 1,
and for allu such thats R*u anduR ™t we havel, u = 6.

(Here R* is the reflexive transitive closure of an irreflexive accessibility relafiprand R is its transitive
closure.) TheJntil modality (which comes in several related forms) has proved useful in many model checking
applications, and we can label for it as follows. First, if any pains labeled withy), labelw with U (v, 6) for

all subformulad of the input formula. Second, if any pointis labeled with? and at least on&-successor

of w is labeled withU (1, 6), then labeko with U (¢, 6).

Throughout the above discussion (and indeed, in the discussion that follows) we have tacitly assumed that
we have some way of representing formulas and finite models that is suitable for computational implementa-
tion. It is probably not worth sketching details of this: nowadays it seems safe to assume that most readers of a
technical book on logic have at least a nodding acquaintance with programming (indeed, we suspect that most
of our readers would find it straightforward to devise a computational syntax for models and modal languages,
and to implement programs for working with them).

Nonetheless, such issues cannot be taken lightly. A major factor in the spectacular progress of model
checking has been the developmen®oflered Binary Decision Diagram{©BBDs), a compact representation
for boolean expressions, together with sophisticated algorithms for working with them. The use of OBDDs in
model checking lead to a breakthrough in the early 1990s in the size of the models that could be handled. The
reader should not underestimate the gap between the labelling algorithm sketched above, and what it takes to
make a working model checker handle a large model. Crossing this gap requires a combination of theoretical
insight and computational expertise, and an entire research community exists that explores the issues involved.

20

But let’'s conclude our discussion on another note: what does model checking look like from a first-order
perspective? That is, how difficult is it to model check if we are free to give an arbitrary first-order formula
as input? A little thought reveals that the task is likely to be difficult: there seems to be no simple way to
extend the labelling algorithm to handle the quantifiers. And in fact, model checking first-order formulas is a
PSPACE-complete task. That is, it is possible to write an algorithm that solves the task using an amount of
computer memory that is only polynomial in the size of the input model and formula, though the algorithm
may well require time exponential in the size of the input. Incidentally, there does not seem to be much work
on first-order model checking. First-order logic, although so much more complex, does not seem to offer the
kind of expressivity required for typical model checking applications. Thal family of modalities offer the
basic expressivity required, and when more is needed the natural next step is to move to the-cabdals,

a richer modal language which enables fixed points to be dealt with (something that is beyond the scope of
first-order logic). Surprisingly, it was recently shown that the model checking task for meckdtulus can
also be carried out polynomial time.

4.2 Decidability

Itis often said that modal logic is decidable. This can be read as shorthand for the following clavalidftg
problemfor the basic modal languaggiyen a basic modal formula, is ¢ valid?) is decidable. That is, it

is possible (ignoring constraints of time and space) to write a computer program which takes a basic modal
formula as input, and halts after a finite number of steps and correctly tells us whether it is valid or not.

The decidability of model logic can also be viewed as a claim thas#tisfiability problenfor the basic
modal languagegiven a basic modal formule, is ¢ satisfiable in some modégl4s decidable. That is, it
is possible (again, ignoring constraints of time and space) to write a computer program which takes a basic
modal formula as input, and halts after a finite number of steps and correctly tells us whether it is satisfiable
in some model or not. The validity and satisfiability problemsdaral problemsa modal formulap is valid
iff — is not satisfiable, hence if we have a method for solving one problem, we have a method for solving the
other. In what follows we show that both problems are decidable; we’'ll talk in terms of satisfiability.

A lot is known about the decidability of satisfiability problems for various logics, so it is not too difficult to
establish modal decidability: we can do so by reducing the problem to known results for other logics. Here’s an
easy example. The satisfiability problem for th® variable fragmenof first-order logic (that is, the fragment
of first-order logic in which every formula contains only two variables) is decidable. Now, every basic modal
formula can be translated into a formula in the two-variable fragment. To see this we need simply make a
small adjustment to the standard translatiof,. Whenever we translate<a or ad, instead of choosing a
completely new variable to quantify over accessible points, we use a second fixed varialyle (Eaxe later
encounter anothe® or 40, we flip back to the original variable, and so on. More precisely, we redefine
ST, so it always useg to quantify over accessible points, and define a twin translafifp which always
guantifies using:. Here are the key clauses:

ST2(C¢) = Fy (Ray A STy(p)) STy(Op) = 3z (Ryx A STx(p))
ST(Op) =Vy (Rzy — STy(p)) STy(Op) = Vo (Ryz — ST4(p)).

The interleaving ofST, and ST, guarantees that for any basic modal formuleST, () will contain only

the two variablest andy, and it should be clear that the modified translation is equivalent to the original
translation. It follows that the satisfiability problem for the basic modal language must be decidable: to test a
modal formula for satisfiability, simply translate it with this new version of the standard translation, and then
apply the satisfiability algorithm for the two-variable fragment to the output.

It is pleasant that modal decidability can be established so easily, but the proof doesn't tell us very much
aboutwhymodal logic is decidable. The following semantic argument is more revealing. We shall show that
the basic modal language has fiite model propertyor to put it another way, that it does not have the
expressive strength required to force the existence of infinite models. Needless to say, this is in sharp contrast

21

with first-order logic: even such a simple first-order formula as
Vz-Rxx AVaVyVz(Rxy A Ryz — Rxz) AVxIyRry

has only infinite models. In fact, the basic modal language has a rather strong form of the finite model property.
We shall show the following:

Theorem 4.1 (Strong Finite Model Property) Let ¢ be a basic modal formula. If is satisfiable, then it is
satisfiable on a finite model containing at m@&¥) points, where3¥) is the number of subformulas of

The decidability of the modal satisfiability problem follows immediately from this result. If a modal forgnula
is satisfiable at all, it is satisfiable on a model containing at 2t points. As there are (up to isomorphism)
only finitely many such models, exhaustive (and exhausting!) search through them all will settle the issue of
©'s satisfiability.
Just as important as the result is the method we shall use to prdiedtions. These are a standard item
in the modal logician’s toolkit, and have been used to prove completeness and decidability results for many
different modal systems. The basic idea underlying the method is simplicity itself: given a modal fgrmula
and a modeft that satisfies it, we make a finite mod@ by collapsing to a single point all the points within
<M that satisfy the same subformulasofBut there is a tricky issue: how should we define the relation on the
collapsed points in such a way tharemains true in the finite model? Let’'s work through the details and see.
We shall say that a set of basic modal formuas subformula closed every subformula of every formula
in 3 is a member ok (that is, if o A ¢ € X then so are» andy, and if—p € X then so isp; and if Op € %,
then so isp, and so on). We now define:

Definition 4.2 (Filtrations) Let9t = (W, R, V') be a model, leE be a subformula closed set of formulas,
and let«~y, be the equivalence relation on the stateSloflefined as follows:

w ey v iff forall inX: (M, w = ¢ iff M=).

The official notation for the equivalence class of a painbf 9t with respect to~~y; is |w|s, but in what
follows we’ll usually assume that is clear from context and simply write)|.

LetWy, = {|w|z | w € W}. Suppos@ny; is any mode(W/, Rf, V) such that:
(i) Wl =Ws.
(i) If RwvthenRY |wl|v|.
(i) If Rf|w||v| then for allCyp € %, if M, v = ¢ thend, w = O
(iv) V/(p) = {|w| | M, w = p}, for all proposition symbolg in .
Thenimg is called a filtration o)t throughX. In what follows we’ll drop the subscripts and wri@/ instead
of M.

Two points should be made about this definition. First, obsgVeis a filtration of9t through a subfor-
mula closed set of formulas, then9/ contains at most'*! nodes, wheré¢Y| is the cardinality ofX|. This
should be clear: after all, the points®t/ simply are the equivalence classe$lik, and there cannot be more
than2!/* of these. Second, note that the previous definition dméspecify an accessibility relation difrs;

— it only imposes constraints (namely clauses (ii) and (iii)) on the properties a suitable accessibility relation
RY should have. That the constraints imposed are sensible is shown by the following result:

Theorem 4.3 (Filtration Theorem) Let9/ (= (Wx, R/, V7)) be a filtration of9 through a subformula
closed set of basic modal formul&s Then for all formulagr € X, and all nodesv in 9t, we havellt, w = o

iff M7, |w| = o.

Proof. By induction on the structure of formulas. The case for proposition symbols is immediate from the

definition of V/, and because thatis closed under subformulas, the inductive step for the boolean connectives
is immediate.

22

So suppos&o € ¥ anddM, w = <o. Then there is a such thatRwv andM,v = 0. AsM/ is a
filtration, by the first constraint o’/ (clause (i) of the previous definition) we have ttt|w||v|. As X is
subformula closeds € %, hence by the inductive hypothe§i®/, [v| = o. Hencet/, jw| = ©o.

Conversely, supposeo € ¥ andM/, jw| = Oo. Then there is a state| in M/ such thatk/ |w||v| and
M/ |v| = 0. Aso € %, by the inductive hypothestst, v |= . Making use of the second constraint Bh
(clause (iii) of the previous definition) we conclude thtw = <o. -

It only remains to verify that relations satisfying the constraints demande®f aictually exist. They do.
Define:

(i) Re|w||v]iff 3w’ € |w|F" € |v] Rw'v'.
(i) R'|wl||v]| iff for all formulas O¢ in X: M, v = ¢ impliesM, w = Op.

It is straightforward to show that both relations satisfy the required constraints. Actually, you can show a little
more: if R' is any relation satisfying the above constraints tf&nC R/ C R!. For this reasonRk® and R!
are said to give rise to the smallest and largest filtrations respectively.

So we have proved Theorgm K.1: the basic modal language indeed has the strong finite model property.
As we argued above, this is turn shows the decidability of the basic modal satisfiability problem. Now, as is
well known, the satisfiability problem for full first-order logic is undecidable. First-order logic is the classic
example of a language where expressivity has been purchased at the expense of decidability. The basic modal
language reverses this trade-off: decidability is regained at the expense of expressivity.

4.3 Complexity

What do the decidability proofs just given tell us about the computational complexity of the modal satisfiability
problem? Only that it can be solved in NEXPTIME (that is, nhon-deterministic exponential time). This is clear
from the filtration proof: to see ip is decidable, we can nondeterministically choose a model containing at
most25(¥) points, and then check whether or not it satisfigsvhich takes time exponential in the size.f
The reduction to the satisfiability problem for the two-variable fragment yields the same upper bound, as this
problem is NEXPTIME-complete.

But the satisfiability problem for basic modal logic is not NEXPTIME-complete, it is PSPACE-complete.
That s, given a modal formulg, it is possible to write an algorithm to determine whether ormistsatisfiable
that uses an amount of computer memory that is only polynomial in the size dfow, most complexity
theorists believe that PSPACE-complete problems are harder than the satisfiability problem for propositional
logic (the classic NP-complete problem) but easier than EXPTIME-complete problems, which in turn are
believed to be easier than NEXPTIME-complete problems. So the modal satisfiability problem is probably
much easier than our earlier decidability proofs suggest.

How do we design a PSPACE algorithm for modal satisfiability? We cannot give a detailed answer here,
but we can point to an expressive weakness of modal logic which should make it plausible that PSPACE
algorithms for modal satisfiability exist:

Lemma 4.4 Let = (W, R, V') be a model, letv € W, letn be a natural number, le$,, ., be the subset of
W containingw and all points inW¥ reachable fromw by making at most R-transitions, and ledt be the
submodel S, .., R|s, V]s), whereR|s and V| are the restrictions of? and V' respectively taS, ,,. Then,
for all basic modal formulag such that m@lp) < n we have thatdt, w = ¢ iff N, w = ¢.

That is, if we take a modé¥i, and extract a submod®l from it by throwing away all points that are more
thann steps away fromw, then no formula of modal depth less thaman distinguish the two models at
Modal formulas have shallow vision. And if we combine this lemma with what we have already learned about
finite models and bisimulations, we obtain the following:

Theorem 4.5 Every formulay in the basic modal language is satisfiable in a model based on a finite tree of
depth at most m@).

23

Proof. As model logic has the finite model property, if a modal formula is satisfiable, it is satisfiable on a
finite model9t at some pointv. As we remarked in the previous section, it is always possible to unravel a
model into an equivalent tree-based model. Now, if we un@valboutw, we don’t necessarily obtain a finite
model, but (a9 is finite) we do obtain a model based on a tree with a finite branch factor, and this model
satisfiesp at its root. If we then chop off all points more thamd(p) away from the root we obtain a finite
model which (by the previous lemma) satisfieat its root. o

So every modal formula is satisfiable on a shallow tree, and we are now in a position to appreciate how
PSPACE algorithms for modal satisfiability work. In essence, they construct shallow trees branch by branch.
If a branch is successfully constructed (something which takes only space polynomial in the size of the input
formula, as the length of the branch is boundedra))) the branch is discarded (thus freeing up the memory)
and the next branch is then constructed. There may be many branches, so it may take exponential time to
construct them all, but as all branches are discarded once they constructed, such an algorithm runs in PSPACE.
This sketch has neglected some important issues (such algorithms require space for recording book-keeping
details, and we need to ensure that the space used for this is not excessive) but it does describe, in broad terms,
how many modal satisfiability algorithms (notably those based on tableaux or games) work.

4.4 Other reasoning tasks

We have discussed the ‘big three’ (model checking, and satisfiability and validity checking) but this by no
means exhausts the reasoning tasks of interest. To conclude this section, let’s briefly consider some others.

Although we have stressed the locality of modal logic, some problems demand a global perspective. In
particular, if we view a modal formula as a general backgrocmasstraint we will typically want it to be
globally satisfied: that is, we will be interested in mod®issuch thatht = ¢. The importance of the global
satisfiability problem has been strongly emphasized by the description logic community. Indeed, description
logic builds into its architecture the idea offaBox a collection of (multi-modal) formulas that encode back-
ground knowledge about some domain (for example, that all men are mortal, that all Martians own flying
saucers, or that each employee has a social security number). Description logicians are interested in models in
which the T-Box is globally satisfied, for these are the models that reflect all the background assumptions.

Once the importance of background constraints is realised, it becomes clear that it is not the pure global
satisfiability task itself that is of primary interest. Rather, it is ltteal-global satisfiability taskgiven formu-
lasp andv, is there a model which locally satisfigsand globally satisfieg? That is, is it possible to satisfy
 subject to the global constraiit?

Here’s an example. Suppose we're working in a zoological setting, and are interested in the interaction of
maternal love and professional responsibility on the feeding of our furry ursine bretheren. To put it another
way, suppose we have the following T-Box:

bearVv human bear— (MoTHER)bear

bear — —human bear— [FEDBY|(z00-keepex mother)

Let’s call this T-BoxBEAaR-CARE. The sort of queries we might be interested in posing are: is it possible to
globally satisfysear-cAarRE and simultaneously to locally satisfy

(MOTHER) (bear A humar)?
(No, it's not.) And is it possible to globally satishrar-carRE and simultaneously to locally satisfy
(FEDBY) (—human A —mothen?

(Yes, it is: BEAR-cARE doesn’t rule out having bears as zoo-keepers. This may well be a bug in the knowledge
base.)

24

Local-global satisfaction problems are also natural in the setting of parsing problems. It is possible to
encode various kinds of grammars (such as regular grammars or context-free grammars) as modal formulas.
Then, given a string of symbols, the parsing problem is to decide whether it is possible to find a model which
embodies all the constraints encoded in the grammar, and which simultaneously satisfies the formula encoding
the input string. That is, we would like to globally satisfy the modal formutamvar and simultaneously
locally satisfyiNPUT-STRING.

Unsurprisingly, both the global, and the local-global satisfiability tasks are tougher than the ordinary satis-
fiability problem:

Theorem 4.6 Suppose we are working with a multi-modal langudgim which all the modalities are unary
and are interpreted by arbitrary binary relations. Then both the local-global satisfiability task famd the
global satisfiability task foiL are EXPTIME-complete.

EXPTIME-complete problems are decidable but provably intractable: they contain problem instances that
will require time exponential in the size of the input to solve (which can mean that they require more time than
the expected lifetime of the universe). This, however, is a worst-case measure. One of the most interesting
recent developments in computational logic has come from the description logic community, who have shown
it is possible to specify and implement algorithms for such problems that are remarkably efficient in practice.

We conclude with a remark on theodel comparisotask. As bisimulation is the modally fundamental
notion of graph equivalence, it is natural to wonder how difficult it is to determine when two models are
bisimilar. The corresponding problems for first-order logic (namely, testing for graph isomorphism) is thought
to be difficult: there is no known polynomial algorithm for testing for graph isomorphism testing, though the
problem has not been shown to be NP-complete either. In fact, the problem of identifying isomorphic graphs
is sometimes regarded as giving rise to special complexity class of its own.

Testing for bisimulation, however, turns out to be easy. There are elegant polynomial algorithms which
work by discarding pairs of point that cannot make it into any bisimulation. Again an expressivity result lies
behind this result: the maximal bisimulation between two mofigland9t is explicitly definable in a first-
order fixed-point language over the disjoint uniBiw 91 of the two models. Such languages have been studied
extensively in computer science, and they are known to have good computational behaviour.

5 Richer logics

Until now, we have been acting as if there was merely one modal logic, namely the set of formulas true in every
model or (to put it syntactically) the set of formulas generated by the systdBut traditional presentations

of modal logic tend to emphasise thriltiplicity of modal logic. Nowadays most attention is devoted to logics
richer tharK, for example logics such &g K4, S4, S5 GL, andGrz. Logics weaker thaK are studied too,

but we won't say anything about them here.

Where do these richer logics come from? Basically, from the levélamfies Different applications of
modal logic typically validate different modal axioms — axioms over and above those to be found in the
minimal systenK. For example, if we view our models as flows of times, it is reasonable to assume that the
accessibility relation is transitive, and (as the reader can easily check) the farmula OOp cannot be
falsified. As this formula is not provable K, if we want a logic for working with transitive temporal flows
we should add it as an extra axiom; doing so gives us the KgicWe shall begin this section by discussing
such axiomatic extensions Kfin a little further.

But this chapter is about expressivity, not proof systems, and as we shall see there is a fundamental ex-
pressive distinction between the level of models and the level of frames: whereas modal logic at the level
of models is essentially the (bisimulation invariant fragment of) first-order logic, modal logic at the level of
frames is essentially a fragment of second-order logic.

25

5.1 Axioms and relational frame properties

One of the most attractive features of modal logic to its students is the illumination provided by the fact that
modal axioms reflect properties of the accessibility relation. A typical modal completeness theorem reads like
this:

Theorem 5.1 A formula is provable ifK4 (that is,K plus all instances of the axiom schema — OO¢) iff
it is true in all models based on frames whose accessibility relation is transitive.

That is, the theorems df4 are true in all graphs with a transitive relation, while its non-theorems have
some transitive counter-example; the additional axiogn — OOy reflects a simple visualisable geometric
condition in the semantics. There are many techniques for proving such completeness results, ranging from
simple inspection of theanonical modetonstructed from all complete theories in the logic, to various types of
model surgery (such as filtration and unraveling). Moreover, the motivations for proving modal completeness
theorems may differ. Sometimes we start with an independently interesting proof system and try to find a
useful corresponding class of frames (the classic example of this is the proof $gktethat isK plus the

Lob axiomO(Op — p) — p, which arose via the study of arithmetical provability, and was later proved
complete with respect to the class of finite trees). Sometimes, however, we might start with a natural model
class — say an interesting space-time structure — and try axiomatise its modal validities. The literature is
replete with both variants.

Nowadays a lot is known about axiomatic extensionk ofFor start, it turns out that there are uncountably
many suchnhormal modal logicsas they are often called. The cartography of this landscape is an object of
study in its own right; here we shall only mention that it contains two major highways, because of the following
result due to Makinson:

Theorem 5.2 Every normal modal logic is either a subset of the ldgi¢with characteristic axionp « O
or of Un (with characteristic axionid).

The systemd, K4, S4, andS5lie on the first road, an@L lies on the second.

But perhaps the most interesting fact to have emerged about normal modal logics is that not all of them
have frame-based characterisations. Frame completeness results (such as the thégtemotéat above) are
the exception, rather than the rule. We won’t explore duaime incompletenesgsults further here, but the
underlying source of them is the second order expressivity that modal logic exhibits at the level of frames, the
topic to which we now turn.

5.2 Frame correspondence and second-order logic

There is another way of thinking about axiomatic extensioni :ahistead of viewing them as giving rise to
brand new modal logics, we can simply view thenttasoriesconstructed over the minimal logi€ in much
the same way as the first-order theory of (say, linear order) is constructed over the set of first-order validities.
Nothing of substance hangs on this, but it fits more naturally with our focus on expressivity. We say very little
about deduction in what follows; we will simply investigate what modal formulas can say about frames.

First some terminology and notation. We shall call a modal formula, . .., p,) true in a frameg =
(W, R) at a worlds if, for each valuatiori/ for its proposition symbolg;,. .. p,, we have thap holds in the
model; in such a case we wrife s = ¢. We shall call a modal formula true in a frame§ (or valid in §)
if it is true at each point ir§, and we write this a§ = . Moreover, we say that a modal formulatige (or
valid) on a class of frameB if it is true on each fram& in F. Finally, we say thap definesa class of frames
if it is true on precisely the frames

Let's consider some examplgSp — OOp defines the class of transitive frames (or more simply: defines
transitivity). for a straightforward argument shows that

§,s = Op — O0Op iff § | Vy(Rry — Vz(Ryz — Rxz))[s].

Similarly, Op — p, theT axiom, defines the class of reflexive frames (or: defines reflexivity) for an even easier
26

argument shows that
§,s =0Op — p iff §=Ve(Rey — Vz(Ryz — Rxz))[s|.

Furthermore, it is simple to see that «— Oy, the ld axiom, defines the class of frames consisting of a
collection of isolated reflexive points, and thatl, theUn axiom, defines the class of frames consisting of a
collection of isolated irreflexive points.

Note that all four classes of frames are definable by simple first-order formulas — and this is actually rather
puzzling. After all, if we think about the definition given above of what it means for a forqa@la, . . ., py,)
to be true in a frame, we see that this concept is essensiaignd-order we quantify across all valuations,
and valuations assiggubset®f frames to proposition symbols.

We can make this second-order perspective precise in terms of our Standard TragSlatear models:
frame truth treats modal formulasasmonadic second-orderosures of their standard first-order translations
on relational models, that is, as monatiit formulas of the form

VP, --- P,ST.

Now, some well known axioms do involve genuine non-first-order conditions. A famous ca$®'’ss L
axiom, O0(Op — p) — Op. This defines the conjunction of the transitivity &f with the upward well-
foundedness of?. This frame condition is essentially second-order: no first-order formula can express it.
Another well-known non-first-order definable modal axiom is the McKinsey Axiotrp — <Op. So we
are confronted by an interesting situation. At the level of frames, modal formulas systematically correspond
to second-order conditions on frames. Nonetheless, in many common cases these second-order conditions
turn out to be equivalent to first-order conditions. This raises an obvious question: is there anything systematic
about this? That is, are there any criteria for demarcating essentially first-order modal formulas from genuinely
second-order ones?

5.3 First-order definable modal axioms

Before answering this question, let us say a little more about first-order definable modal axioms. For a start,
these include many of the modal axioms one is likely to encounter in practice. As we've just seen, the char-
acteristic axioms of the systenisandK4 are first-order, and so are many of the axioms of newer systems
arising in applications. For example, recall that in Sec@we said that a binary modalitp (¢, v/) might

be viewed as describing a ternary composition relation for state transitions or symbol sequences. But if we are
serious about this interpretation we should demand that compositiassoeiativethat is, that the following
first-order frame condition holds:

Vayzu((Rryz A Rzuv) — 3s(Rsyu A Rxsv)).

And it turns out that there is a simple modal formula that corresponds to this:
O, (¥, 0)) = (O,), 0).

Secondly, modal axiomg corresponding to first-order frame conditions have the following pleasant prop-
erty:

If a modal formulay defines a first-order frame conditian, then the set of modal consequences @
recursively enumerable.

The reason is that a modal formulais true on frames for iff its standard translatioi$T,(¢) is true in
all models of the first-order formula. Thus first-order definable modal logics can draw on techniques from
first-order theorem proving, and standard first-order model theory is available for their semantic analysis.

So let’s turn to the systematicity issue. Upon closer inspection, first-order conditions often turn out to be
computable from the shape of the given modal axiom — for example the quantifier shape of the first-order
formula for transitivity is matched precisely by the sequence of modal boxes Kdtrexiom. A key result
explaining these correspondences is the

27

Theorem 5.3 (Sahlqvist Correspondence TheoremYhere is an effective method for computing first-order
equivalents for modal axioms — v with antecedents constructed from atoms (possibly prefixed by boxes)
using conjunctions, disjunctions and diamonds, while consequerctn be any modal formula with only
positive occurrences of proposition symbols.

The proof proceeds by substituting first-order descriptions of ‘minimal syntactic values’ for proposition
symbols that validate the antecedent of the modal axiom. For exampl&4tlaxiom Op — OOp has a
first-order standard translation of the form

VYy(Rzy — Py) — Vy(Rxy — Vz(Ryz — Pz)).

A minimal valuation forp making the antecedent true B := Rzxu. Substituting this description for the
unary predicaté® and dropping the then tautologically true antecedent, we are left with a consequent formula

Vy(Rzy — Vz(Ryz — Pz)),

involving only the relationRk, which is precisely first-order transitivity. By similar considerations about mini-
mal values (combined with some pulling out of diamonds to become universal prefix quantifiers) the algorithm
will show, for example, that the ubiquitous mod2laxiom corresponds to the well known relational property

of confluence:

3, s | <Op — OOp iff §,s EVay(Rxy — Vz(R — Ju(Ryu A Rzu))).

The Sahlgvist Theorem and its proof method are very powerful: it applies to multi-modal languages with
arbitrary arity modalities. Nevertheless there are also first-order definable modal axioms that do not fall under
the method. Th&4.1 axiom

(Op — OOp) A (OOp — <Op)

is a conjunction of thé&4 axiom with the McKinsey axiom. It defines the frames with a transitive relation
where every point has a successor. But this first-order equivalence cannot be computed using the substitution
method (van Benthem 1985).

Are there other general things we can say about the modal formulas that give rise to first-order definable
axioms? Here is a semantic characterization (again from van Benthem 1985) that uses some elementary model
theory: A modal formula defines a first-order frame property iff it is preserved under taking ultrapowers of
frames Still, this is a abstract feature, and it is not easy to use it to recognise whether a given modal formula
is first-order over frames. In fact, the problem of determining whether a modal formula expresses a first-order
condition on frames turns out to be undecidable (Chagrova 1985).

Many formulas that violate the syntactic constraints demanded by the Sahlqvist Theorem turn out to be
non-first-order; a notable example is the McKinsey axiom. Results like this are proved by showing that the
modal axiom in question lacks some typical first-order property, such as preservation under ultraproducts, or
Lowenheim-Skolem properties. Most of these results have been studied in depth only for the basic modal
language, which has served as sort of mathematical laboratory for the model theory of modal languages and
logics. But there are some extensions to richer formalisms.

5.4 Correspondence in richer languages: fixed-point extensions

The substitution algorithm runs into difficulties with more complex antecedents. Congiiés &xiom

O(Op — p) — p. The point of computing minimal antecedent values in Sahlgvist axipms 1) is this.

Firstly, a Sahlgvist antecedeatis true under any value for its proposition symbols iff it is true under their
minimal values. Secondly, the latter minimal predicates are first-order definable. Nowptharitecedent

does not support the second part of this analysis. But this does not mean that all that can be said here is that
the LOb’s axiom is second-order definable — for there is indeed a smallest semantic value for the pfedicate
which will make the b antecedent true! This is the set of points in the frame obtained by takiigéhgec-

tion of all predicatesP validatingd(Op — p) wherep is interpreted ag. Such a set must exist, because this
antecedent has a special syntactic form. Call a first-order formuPj intersectivef it is one of the forms:

28

() Vz(p(P,Q,x) — Px), with P occurring only positively inp(P, Q,).
(i) ¥ (P, Q) ,with P occurring only negatively inp.

It is easy to show that all formulas(P) of this form have the above-mentioniediersection propertyif ¢ (P)
holds for any predicat® it holds for the intersection of all predicatéssatisfying it.

Thus it makes sense to talk abaninP.o(P), theminimalsatisfying predicate. It is not hard to show that
minimal predicates for intersective first-order-formulas are definable in a well-known extension of first-order
logic, namelyLFP(FO), first-order logic withmonotonic fixed-pointsLFP(FO) has many uses in computer
science. It lies between first-order and second-order logic, and retains many useful model-theoretic properties
such as invariance for potential isomorphism.

Now, once we have such a minimal value for the antecedent predicates, it can be substituted into the
consequent to obtain a frame equivalent just as before — though now we obtain an equivalER(RO).

As an illustration, the bb antecedenty((Rxy A Vz(Ryz — Pz)) — Py) is indeed intersective in the above
sense. Therefore, the corresponding frame property of titeAxiom can be computed to be P (FO).

Of course, in this particular case this is already known independently, for this is just the property of well-
foundedness. But the method given here works more generally. For example, consider the less well known
modal axiom ofcyclic return

(CpAD(p — Op)) — p.

Again this fails the Sahlqvist criterion. But again, the antecedent is intersective, and gives rise to a simple
fixed-point computation for an equivalent frame property:

Every pointz with an R-successoy can be reached from by a finite sequence of successRusteps.

This is the beginning of a further layering of modal axioms with respect to semantic complexity. For there
are also modal formulas with frame equivalents not evdrHR(FO). One example is the well known axiom

in tense logic expressing Dedekind Completeness of linear orders, which is not preserved under the potential
isomorphism between the rationals and the reals. Indeed (van Benthem 2003) also has a purely modal exam-
ple — but the most obvious candidate for nloRP(FO)ness is the McKinsey Axiom, whose antecedent is
typically non-intersective.

5.5 Modally definable frame classes

For a given modal axiom one can ask what kind of frame property it defines. But, conversely, one can also
ask whether given frame properties are definable by means of modal formulas. Of the several basic results of
this sort, we mention the following result due to Goldblatt and Thomason 1974. It characterises the modally
definable first-order frame properties in terms of their special semantic behaviour.

Theorem 5.4 (Goldblatt-Thomason Theorem)A first-order frame property is modally definable iff it is pre-
served under taking generated subframes, p-morphic frame images, disjoint unions, and inverse ultrafilter
extensions.

Again, this is an abstract characterization, obtained using a modal version of the Stone Representation
Theorem plus the Birkhoff Theorem from Universal Algebra. It is not known which syntactic first-order forms
of the frame conditiorx(R) are necessary and sufficient to guarantee this behaviour.

5.6 First-order logic as modal logic

We said at the beginning that a broad landscape of possible modal logics (note the plural) is a typical feature
distinguishing modal logic from standard first-order logic. But then we suggested that there may be just one
true modal logic, the minimal logic K, whereas the others are more properly viewed as special theories with
additional axioms. After all, we would call the theory of linear order the ‘predicate logic of linearity’. Now
let’s turn the tables. We can also take a modal look at first-order logic itself, and then find that it becomes such
a specialised theory itself! To see this, recall the truth condition for the existential quantifier:

29

M, s = 3 iff there exists al in DM such thatV/, s[z := d] |= ¢

This has the familiar pattern for evaluating an existential modéality

M, s |= (x)y iff there exists & such thatR*st andM, t = ¢

Thus a first-order becomes a modal universe of ‘states’, the usual variable assignments, which are related
by accessibility relations for individual variables:

R*stiff s(xz) = t(y) for all variablesy distinct formX

Now the usual validities of first-order logic can be deconstructed into several layers. First, there is a
decidable core consisting of the minimal modal logic, which contains such ubiquitous laws as monotonicity of
first-order quantifiers:

Va(p — ¥) — (Vop — V)

This level makes no presuppositions whatsoever concerning the form of first-order models, which could
have any kind of ‘states’ and ‘variable shift relatiorfg”. At the next level, we find laws recording universal
effects of having states be variable assignments, with the special shift relation ‘agreeing up to the value for
For example

Vo — VaVzp

expresses the transitivity ¢t*, and indeed, all the laws &5hold here. Models of this sort need not contain

all variable assignments, and such gaps can make some variables dependent on others in the way they can
change their object values. The resulting logic, without blanket assumptions of variable independence is still
decidable. Finally, most specifically, some first-order laws exmrstenceroperties requiring that there be
enough states to create some pattern. Here is another well-known principle for reasoning with quantifiers. It
resembles the earlier modalaxiom.

JxVyp — VYydze

which expresses confluence: whenetst and RYsu then there also exists a statesuch thatkRY¢v and
uR"v.

Thus modal analysis reveals unexpected fine-structure inside the apparently monolithic class of ‘standard
validities’ of first-order logic: they can be valid for different geometrical reasons. Summing up, we get a highly
unorthodox view. the modal core of standard logic is decidable — and the usual undecidability of first-order
logic just means piling up special existential model conditions to make state sets behave so much like full
function spaces over the model domain that their logic encodes enough mathematics to become undecidable.

6 Richer languages

The purpose of this section is to discuss a typical, but not yet widely appreciated, aspect of contemporary
modal logic: flexible language (re-)design. As we have seen, the basic modal language has a number of
attractive properties, and as the bisimulation invariant fragment of the first-order correspondence language it
is a special tool when it comes to talking about graphs. Nonetheless, many of its design parameters were fixed
by historical accident. Perhaps judicious experimentation could lead to improvements, or at least to interesting
variants? Modal logicians have been carrying our such experiments for years, and in this section we survey
some of their work.
But what should count as a richer modal language? It's easier to explain what shouldn’t. Here’s an obvious

example. It is straightforward to extend our basic definitions to covellace diamonds (and boxes). Simply

30

work with models in which there is am+ 1-place relationR™ for everyn-place diamondm). We interpret
using the following satisfaction clause:

M, w = (m)(p1,...,pn) iff for somewvy, ..., v, € W such thatR™wv; . .. v,
we havedlt, vy = ¢1 and ... and, v, = op.

Now, suchn-place modalities are undeniably useful for certain purposes, but developing their theory (stan-
dard translation, bisimulation, and so on) is essentially a matter of sprinkling our earlier work with additional
indices. These operators don'’t give rise to richer languages in any logically interesting sense.

As we shall see, the richer languages explored in this section offer more. Moreover, their richness arises
from different sources. Sometimes the enrichment consists of taking a standard language and insisting that
a modality be interpreted by some mathematically fundamental relation (the universal modality is a good
example). Sometimes the enrichment takes the form of more complex satisfaction definitions (both temporal
logic with Until and Since and conditional logic are examples of this). In other cases, syntactic enhancements
are introduced to support novel semantic capabilities (hybrid logic, propositional dynamic logic, and the modal
pu~-calculus all do this) and in one case (the guarded fragment) we even enrich by abandoning modal syntax and
using first-order syntax instead!

This variety raises a question of its own: what, if anything, do all these richer languages have in common?
That is, what makes them all modal? This is not an easy question to answer. Nonetheless, as we work our way
through this landscape a number of themes will recur: robust decidability, the importance of bisimulations,
and characterisations of fragments of first- and second-order logic. As we shall see at the end of the section,
the idea of restricted quantification that underlies the guarded fragment goes a long way towards accounting
for these properties, for both first- and second-order enrichments.

6.1 The universal modality

Let's start by feeding the bears again. As we said in Seffion 4, some problems demand a global perspective.
We sometimes want to view a modal formula as a general background constraint, something that must be
satisfied atall points in a model. Indeed, because of the importance of background constraints, in many
practical situations we are primarily interested in the local-global satisfiability task, which we formulated as
follows: given basic modal formulas and+, is there a model which locally satisfigsand globally satisfies
1? Now, description logic, with its two level architecture of TBox and ABox, acknowledges the importance
of this problem (the information in TBoxes has to be globally satisfied, while the information in ABoxes only
has to be locally satisfied). But this architectural distinction is not reflected in the object language, and this
raises an interesting question. Is it possible to internalise the notion of global satisfiability in a modal language
— and if so, what happens?

Let's introduce thauniversal modalityand find out. To keep things simple, suppose we are working in a
language with just one modality. We shall add a second modality, and will @ifie its diamond form, and
Afor its box form. The interpretation & andA is fixed: in any moded)t = (W, R, V'), both modalities must
be interpreted using the universal relatidhx W. That is, the satisfaction definition for these modalities is:

M, w = Ep iff there is au € W such thabt, u = ¢
M, w = Agp iff for all w € W we havedlt, u = .

ThusEy scans the entire model for a point that satisfiewhile Ay asserts thap holds everywhere. We have
imported the metatheoretic notion of global truth into our modal object language, or to put it another way, we
have internalised the TBox. Accordingly, we cBlthe universal diamondandA the universal box If it is
irrelevant whether we medhor its dual, we simply talk of theniversal modality

How can we be sure that adding the universal modality really increases the expressive power at our dis-
posal? That is, are we certain tHaeandA are not already definable in the basic modal language? We are.

31

One way to see this is via a bisimulation argument (see Example 2.4 in [7] for such a proof). But an easy
complexity-theoretic argument also establishes this.d ahdy be basic modal formulas. Then the formula
Ay expresses the global satisfiability problem (for the basic modal language) in our new language, and the
formulap A Ay expresses the local-global satisfiability problem (for the basic modal language) again in our
new language. Now, we remarked in Secfipn 4 that both these problems are EXPTIME-complete. However the
satisfiability problem for the basic modal language is PSPACE-complete. Hence (assuming that PSPACE is
strictly contained in EXPTIME , the standard assumption) our ability to express these problems in the enriched
language shows that the apparent increase in expressive power is genuine.

This in turn raises a new question. Because it can encode these problems, the satisfiability problem for the
enriched language is at least EXPTIME-hard. But are some problem-instances even harder? No. Everything
is solvable in EXPTIME.

Theorem 6.1 The satisfiability problem for the basic modal language enriched with the universal modality is
EXPTIME-complete.

Proof. See Hemaspaandia[24], or her earlier PhD thesis Spaan [44]. -

But the universal modality not only gives us extra expressivity at the level of models, it also increases
our ability to define new classes of frames. Moreover, an elegant variant of the Goldblatt-Thomason theorem
holds for the enriched language. We'll discuss this result shortly, but let’s first consider two examples of newly
definable frame classes.

The class of frames of cardinality less than or equal to some natural numm(tieat is, frames in which
|[W| < n) is not definable in the basic modal language. Why not? Because basic modal validity is closed
under the formation of disjoint unions. Hence any basic modal formauidnich allegedly defined this frame
class could easily be shown to fail: simply by sticking together enough frames we could validatieames
of cardinality greater than.

But this conditionis definable with the help of the universal modality:

n+1

N\ Epi — \/ E(pi A py).
i=1 oy

As the reader can easily check, this formula is valid on any frame whgfe< n, and can be falsified on

any larger frame (in essence, the formula encodes the pigeonhole principle-fopigeons and: holes). It
follows that validity in the enriched language is not preserved under the formation of disjoint unions. This,
of course, is as it should be. We want a genuineversalmodality, not something that can be fooled by the
addition of new components.

Here's a second example. The conditidndy Ryx is not definable in basic modal logic. Why not?
Because modal validity is preserved under the formation of generated subframes. Any basic modal formula
which putatively defined this class would have to be valid on the frlWe?), where Rnm iff n > m, the
natural numbers under the reverse ordering. But (by preservation under generated subframes) it would then
have to be valid on the subframe generated by any numbBut in any such subframe, has no predecessor,
hence the condition is not basic modal definable.

But it is definable with the help of the universal modality:

p — ECOp.

It is easy to check that this formula defines the required condition, hence it follows that validity in the enriched
language is not preserved under generated subframes. Again, this is the way it should be. A genuinely
universal modality will not let us throw away points: its purpose is to keep an eye on the entire frame. It
should be intolerant of both additions (disjoint unions) and deletions (generated submodels).

And now for the promised result: when it comes to defining elementary frame classes, intolerance towards
disjoint unions and generated submodels is precisely what distinguishes the enriched language from the basic

32

modal language. For the following result is the Goldblatt-Thomason Theorem for the basic modal language,
with closure under disjoint unions and generated subframes stripped away.

Theorem 6.2 A first-order definable class of frames is definable in the basic modal language enriched with
the universal modality iff it is closed under taking bounded morphic images, and reflects ultrafilter extensions.

Proof. See Goranko and Pass$y [21]. .

Three comments. First, adding the universal modality also increases our ability to define non-elementary
frame classes. For example, the class of frames where the converse of the accessibility Reistioell-
founded (that is, where it is impossible to form infinii2successorship chains) is not definable in basic
modal logic. ob’s formula,0(0p — p) — p) doesn't quite pin this condition down (recall that it defines the
conjunction of transitivity and converse well foundedness). But the followiitgtlike formula in the enriched
language does:

A(Dp — p) — P.

(This example is from Goranko and Passyl[21], the key reference on the universal modality.) Second, it is
straightforward to extend the definition of bisimulation so that it works for the basic modal language enriched
with the universal modality; all that needs to be done is to insist that the bisimulatitstadethat is, that

every element in each model is related to at least one point in the other; see dé Rijke [42] for a brief discussion.
Third, the universal modality has a big brother, tifference operatarThe diamond form of this operator is
written D, andDy is satisfied at a point in a model if and only ify is satisfied at somdifferentpointv (that

is, the difference operator is interpreted using#heelation onl). The difference operator is strong enough

to define the universal modality{p is justy vV D) but D cannot be defined using (we leave the proof as

an exercise). The difference operator arises naturally in many setting and, like the universal modality, has a
smooth metatheory; see de Rijke[11] for more information.

6.2 Hybrid logic

Basic modal languages have an obvious expressive weakness: they cannot name points. We cannot say this
happenedhen or that someoarticular individual has some property, or that two distinct sequences of pro-
cesses take us from the current statéemntical states. For example, in Figurg 4 we let the nodes represent
particular individuals such as Terry and Judy — but the basic modal language doesn't let us pick out these
individuals. First-order logic, of course, lets us do this. We use constants to name individuals of interest, and
the equality symbol for reasoning about their identity. No analogous mechanisms exist in basic modal logic.
Thebasic hybrid languagés the result of adding them.

At the heart of hybrid logic lies a simple idea, first introduced by Arther Priaf [39,40] in the 1960s: sort the
propositional symbols, and usermulas as termsLet’s do this right away. Take a language of basic modal
logic (with propositional symbolg, ¢, r, and so on) and add a second sort of propositional symbol. The new
symbols are calledominals and are typically written, j, k£, andl. Both types of propositional symbol can
be freely combined to form more complex formulas in the usual way. And now for the key chiasigethat
each nominal be true at exactly one pam&any model. That is, insist (for any valuatidhand nominat) that
V(i) be a singleton set. We call the unique pointit) thedenotatiornof i. A nominal ‘names’ its denotation
by being true there and nowhere else.

This change is far from negligible: already we have a more expressive logic. Consider the following basic
modal formula:

O(rAp) ANO(rAg) — O(pAg).

This formula can be falsified, as thewitnessing and;-witnessing points given by the antecedent may be
distinct. But now consider the following hybrid formula:

CENAP) ANO(ING) — O(pAg).
33

This is identical to the preceding formula, except that we have replaced the propositional syimbtiie
nominali. But the resulting formula is valid. For now we have extra information: iweitnessing and
g-witnessing successors both makeue, so they are true at the same point, namely the denotation of

The addition of nominals is the crucial step towards the basic hybrid language, but we need a second
ingredient toosatisfaction operatorsThese are operators of the forf@, wherei is a nominal. The formula
@;p asserts thap is satisfied at the (unique) point named by the nomind@hat is:

M, w = Qp iff M, u = ¢, whereu is denotation of.

Syntactically, satisfaction operators are modalities. And they are semantically well-behaved. For a start, all
instances of the modal distribution schema are valid:

Qi(p = ¢¥) = (Qip — Q1))

Moreover, satisfaction operators also admit the modal generalisation lavis ifalid, then so i€; (for any
choice ofi). Hence satisfaction operators are normal modal operators. Moreover, they are self-dual nodalities,
for all instances ofd;p — —@;—y are valid. So we are free to regard satisfaction operators are either boxes
or diamonds.

But for present purposes, the most important point about satisfaction operators is that they give us a modal
perspective on the equality relation. To see this, note that formulas like

Q;j

are well formed. What does this formula assert? It says that “at the denotatigim@iominalj is satisfied”,
or to put it another way, “the point nameds identical to the point nameff. Hence the following schemas
are valid: @Q;: (reflexivity of equality),@;; — @;i (symmetry of equality)Q;;j A Q;k — @;k (transitivity of
equality), anda;p A Q;5 — Q;¢ (replacement). As we hoped, a modal theory of equality is emerging.

We will shortly characterise this theory, but before doing so let’'s glance at what is happening at the level
of frames. Here too there is an increase in expressivity. None of the four first-order definable frame conditions
listed below can be defined in basic modal logic. But it is easy to check that each is defined by the hybrid
formula written next to it:

Ve-Rxx 1 — 00
VaVy(Rxy — - Ryx) i — =000
VaVy(Rxy A Ryr — x = y) i — O(Ci — 1)
VaVy(Rxy V x =y V Ryzx) @i Vv Qi V@O

And now for the main result. Hybridisation has given us some sort of modal theory of equality. But
how much of the corresponding first-order theory have we captured? Of course, now when we talk about
“corresponding first-order theory” we mean: theory in the first-order correspondence lamyuigped with
constants and the equality symbol

The first step towards an answer is to extend the standard translation to cover nominals and satisfaction
operators. So enrich the first-order correspondence language with constants and the equality symbol; to keep
the notation uncluttered, we'll re-use the nominals as first-order constants. Then add the following clauses to
the standard translation:

L6 ==
ST.(Q;p) = STi(p).

That is, nominalg are translated into first-order constaitand satisfaction operators are translated by sub-
stituting the relevant first-order constant for the free-variabldNote that this translation returns first-order

34

formulas with at most one free variabie not exactly one. This is because a constant may be substituted for
the free occurrence af. For example, the hybrid formul@;: translates into the first-ordeentenceé = i.

The second step is to extend the notion of bisimulation given in Defirjitign 3.1 to make it suitable for the
basic hybrid language and for the constant-enriched first-order correspondence language:

Definition 6.3 (Bisimulation-with-names) A bisimulation-with-names between mod®ts= (W, R, V') and
om = (W', R', V') is a non-empty binary relatio®’ between their points (that iy C W x W’) such that
whenever Ew’ we have that:

Atomic harmony:w andw’ satisfy the same proposition symbols, and the same nominals.
Zig: if Rwv, then there exists a point (in 9’) such tha Ev' and R'w’v’, and

Zag: if R'w'v’, then there exists a point(in 9t) such thaw Ev' and Rww.

Closure: All points named by nominals are related By

Lemma 6.4 (Bisimulation-with-names Invariance Lemma) If E is a bisimulation-with-names betwe®h =
(W,R,V)andO' = (W', R, V'), andwEw’, thenw andw’ satisfy the same basic hybrid formulas.

Proof. An easy extension of the inductive proof of Lemmg 3.5. There are only two new cases to chedk.
And now for the key result:

Theorem 6.5 (Hybrid Characterisation Theorem) The following are equivalent for all first-order formulas
©(x) in at most one free variable:

(i) (=) is invariant for bisimulation-with-names.
(i) ¢(x) is equivalent to the standard translation of a basic hybrid formula.

Proof. That clausdii) implies(i) is a more or less immediate consequence of Leinmja 6.4. The hard direction
is showing that claus@) implies(ii). The original proof can be found in Areces, Blackburn and Marx [3}.

In short, basic hybrid logic is a simple notation for capture@ctlythe bisimulation-invariant fragment
of first-order logic with constants and equality, or to put it another way, basic hybridization is a mechanism for
equality reasoning in propositional modal logic. And it comes cheap. Up to a polynomial, the complexity of
the resulting decision problem is no worse than for the basic modal language we started with:

Theorem 6.6 The satisfiability problem for the basic hybrid language over arbitrary models is PSPACE-
complete.

Proof. See Areces, Blackburn and Mafx [3]. .

For a detailed overview of hybrid logic, see Chapeof this handbook.

6.3 Temporal logic with Until and Since operators

We turn now to another historically early enrichment: the addition of the biba@ntil) and S (Since)
operators. These were introduced in the late 1960s by Hans Karnp [30], who added them to Arthur Prior's
basic ¢ and P based) tense logic, and proved an elegant regiland S are expressively complete with
respect to Dedekind complete strict total orders (we discuss Kamp’s result below). But, beautiful though
this is, it is not what led to the present popularity of these operators. Rather, around 1980, Gabbay, Pnueli,
Shelah and Stavi [19] observed that Until offers precisely what is required togstatantee propertiesand
this led to its widespread adoption for reasoning about programs. Given the number of researchers currently
active in temporal logic for program verification, Until may well be the best known and most widely used
modal operator of all: it is a key component of LTL (Linear Time Temporal Logic), CTL (Computational
Tree Logic), and CTL (a highly expressive system that contains both LTL and CTL as sublogics). For an
introduction to these logics from a computer science perspective, see Clarke, Grumberg arid Peled [9].

Now, we briefly met the Until operator in Sectiph 4 when we discussed model checking. There we placed
a restriction on the relations that could interpret it (we insisted on working with the transitive closure of an

35

Vo 1 v

t.o /]; \1: /]; \t.l u’. /]; \t.’

\ /,/ q \\ /,/ q \ //’
e Wo e W1 o W

Fig. 15. Until not definable in basic modal logic

irreflexive relation). Here we drop this requirement and define Until and Since in their most general form:

M, w = Ul(p,) iff thereis av such thatRwv anddt, v = ¢,

and for allu such thatRwu and Ruv we havedlt, u = .
M, w = S(p,) iff thereis av such thatRvw andM, v = ¢,

and for allu such thatRvu and Ruw we havedlt, u = 1.

Putting this in words, Until asserts that thersdsnepoint in the future where holds, and that all points
between the point of evaluation and this futyrevitnessing pointy holds. Since functions in the same way,
but towards the past. Note tA¥ pattern of quantification in the satisfaction definitions. These operators are
neither diamonds nor boxes; they are something new and (as we shall see) more powerful.

What can we say with them? For a start, they have all the power of ordinary diambiigds:T) has
the same meaning asy. But now we can say more: these operators are tailor-made for stating guarantee
properties, requirements of the forrsdme event will happen, and until that event takes place, a certain
condition will hold'. For if we represent the event kyand the condition by, thenU (¢, v) clearly captures
what is required.

But how can we be sure that we can't state guarantee requirements in the basic modal language? A simple
bisimulation argument demonstrates this. Consider the two models shown in [Figure 15; we are interested in
the transitive closure of the relation indicated by the arrows. These models are bisimilarylémdw, with
w’, link to andt; with ¢/, and so on). So suppose that there is some formula in the basic modal language that
captures the effect df (p, ¢). Any such formula would be true in the left-hand model at poingsandw; .

For consider what happensay (the argument forv; is analogous). There is a point to its future (hamely

v1) that make true and at all points lying in between (and there is only one, namelye have that is
satisfied. However any such formula wouldfaksein the right-hand model at’, for here there arevo points
betweenw’ andv’ (namelyw’ andt’) andt’ does not satisfy. Asw’ is bisimilar tow, andw;, we conclude

that no basic modal formula can capture the effect of Until. This result can be strengthened. Even if we restrict
ourselves to linear models, the basic modal language can't define Until (see Proposition(7.10 in [7] for a proof
that it can’t even do so on the real numbers).

So addingS andU to the basic modal language yields new expressivity — but how much? We shall state
Kamp’s theorem, which shows that on certain classes of structures (a class that includes the real numbers)
these operators capture the entire one free variable fragment of the first-order correspondence language.

First, note that Until and Since correspond to fragments of the familiar first-order correspondence language
that we have been working with throughout the chapter. After all, we can translate them as follows:

ST (U(p,v)) = Iz (Rxz A ST.(p) AVy (Rey A Ryz — STy(1))))
ST (S(p,v)) = 3z (Rzx A ST (p) ANVy (Rzy A Ryx — STy(¢))).
(Incidentally, observe that we need three variables to specify this translation. Thus the translation doesn'’t give

us an easy decidability result for the enriched language, though in fact its satisfiability problem is decidable
over arbitrary models.)

36

So what does Kamp’s theorem say? First some preliminary definition& heta class of models. We say
that a modal language expressively complete ovEr if every formula (in one free variable) from the first-
order correspondence language is equivalent to a formula in the modal language (when we restrict attention to
models fromK). Which class of models is Kamp’s theorem about8trct total orderis any frame (with one
binary relationR) that is transitive, irreflexive, and linear (that ¥y (Rxy V = = y V Ryx)). A strict total
order isDedekind completi every subset with an upper bound has a least upper bound. Standard examples of
Dedekind complete strict total order are the real numprs<) and the natural numbe(&, <) under their
usual orderings. And now we have:

Theorem 6.7 (Kamp’s Theorem) The basic modal language enriched wiftandSS is expressively complete
with respect to models based on Dedekind complete strict total orders.

Proof. The original proof is in Kamp’s thesis [30]. Elegant modern proofs (and proofs of related results) can
be found in Gabbay, Hodkinson and Reynolds [18]. -

Much more could be said about the Until and Since operators, but we will confine ourselves to the following
remark. Because of theiiv pattern of quantification, for some time it was unclear how best to define a suitable
notion of bisimulation. However, in 1997, Kurtonina and de Rijkel [33] gave a definition which enabled a
Characterisation Theorem to be proved.

6.4 Conditional logic

Although formulas of the fornp —) are often glossed as “if thent)”, the truth conditions that classical
logic gives to uses of the> symbol (and in particular, the fact that— 1 is true wheny is false) means that
— does not mirror the more interesting meanings that conditionals can have in natural language. This has in-
spired numerous attempt to introduce conditional connectivesx*9dhiat better mimic the logic(s) of natural
language conditionals. Indeed, such aspirations have given birth to an entire branch of logic, namely Relevance
Logic, which nowadays is a well-established branch of the study of substructural logics (see Restall [41]).

But there is a modal approach to conditionals too. Its motivation comes from the following intuition:
a conditionaly > 1 can (often) be read as amvitation to assume the antecedent (perhaps making some
adjustments to accommodate its truth) and check if the consequent is true. A characteristic inferential feature
of this reading is the failure ahonotonicityin the antecedent. “If | catch the 6.22 train at Amsterdam Central
(), | will be home on time ¢)” is true on most readings of the conditional, but adding an unusual further
condition may make it false, as the sentence “If | catch the 6.22 train at Amsterdam Ceghteald the dikes
break @), | will be home on time ¢{))” demonstrates.

Models for modal-style conditional reasoning are triglgs= (W, C, V). HereW is a set of worlds}
is a valuation, and’ is a ternary relation ofelative similarity, or (as it is sometimes put in the literature)
a relation of relative ‘comparison’ or ‘preference’ between worlds. It is useful to wtiteww asC,uv and
to read this as saying that “world has more in common with world than worldv does”. It is standard
to demand tha€' satisfiesvuvz(Cypuv A Cyvz — Cyuz), w-centred transitivity, anduC,,uu, w-centred
reflexivity. Moreover, some authors, most famously David Lewis, also demarehtred comparability, that
is, Vuv(Cypuv V Cyou). A good way to visualise the relatiafi,uv is to think of u andv as two concentric
circles aroundy. If v andv are distinct, then: is a concentric circleloserto w thanwv is.

The simplest truth condition for conditionals is the following, which come from David Lewis’s ground-
breaking book “Counterfactualg” [110]. It fits in well with our intuitions (at least on finite models):

M, w = ¢ > ¢ iff all minimal p-worlds in thew-centred ordering’,,uv arey worlds.

Note thatp-minimal worlds aroundv are the only ones we consider. That is, this satisfaction definition
is not given purely in terms of simple frame conditions (such as the “inspedt-theccessor states” familiar
from the basic language) it also takes into account which formulas are true and where. As the minimal worlds
satisfying the stronger conditiop A 8 need not be the ones satisfyigg in this way we get a semantic
distinction which accounts for the failure of left-monotonicity.

37

But what abouinfinite models? Then there need not be any minimal worlds satisfying the antecedent
(we might have a chain a@f-satisfying concentric circles coming ever closeidp Here's a way of handling
this: switch to the following more complex truth condition (to keep thing readable, we shall writg{usas
shorthand fof, v = ¢, and similarly fori)):

M w = e > iff Yu(p(u) = Jv(Cpou & p(v) & Vz2((Cyoz & o(v)) = ¥(2)).

This says that the conditional >) holds if, whenevery holds at some circle, then there is some smaller
circle v wherey holds such that all circleswithin v satisfyp. This is rather awkward to process in first-order
logic, but it can be clearly expressed in modal logic if we make use of a unary modalifwhich looks
inwards for a circle closer to the centre) together with the universal modalifor then we can simply say:

> =aef Alp = ()@ N[l —).

This more complex truth-condition validates a minimal logic which includes such principles as upward
monotonicity in the consequeny: > v impliesy > (¢ Vv 0). Further properties of the similarity ordering
enforce special axioms via standard frame correspondences. Assuming just reflexivity and transitivity yields
the minimal conditional logic originally axiomatised by Burgess [8] and Veltmah [49], while assuming also
comparability of the ordering gives rise to the logics obtained by Davis Lewis.

What about complexity? A number of interesting results are known:

Theorem 6.8 The satisfiability problem for the minimal conditional logic (that is, wh€tguv is transitive

and reflexive) is PSPACE-complete when formulas with arbitrary nestings of conditionals are allowed, and
NP-complete (that is, no worse than propositional logic) for formulas with bounded nesting of conditionals. If
uniformity is assumed (that is, if we assume that all worlds agree on what worlds are possible) the complexity
rises to EXPTIME-complete, even for formulas with bounded nesting. If absoluteness is assumed (that is, if we
assume that all worlds agree on all conditional statements) the decision problem is NP-complete for formulas
with arbitrary nesting.

Proof. See Friedman and Halpein [17]. -

In general, conditional logic has not been studied semantically in the same style as most modal languages,
though there is no reason why it cannot be. For example, bisimulations could be definedsfaruch the
same spirit as they are defined for temporal logics with Until and Since. Likewise, issues of frame definability
beyond the minimal setting can be explored; for example, van Benthem'’s [47] survey of correspondence theory
examines conditional axioms corresponding to the triangle inequalities of concrete geometrical relations of
relative nearness in space. Many recent technical developments in conditional logic, however, have to do with
its connection withbelief revision theorysee Grdenfors and Rott [20]). In that setting, a conditiopat 1
means “if | revise my current beliefs with the information thatthend will be among my new beliefs”; the
approach was first introduced and explored in Ryan and Schobbens [43].

6.5 The guarded fragment

The richer modal languages so far examined have clearly been ‘modal’ in a syntactic sense; all use the typical
“apply operator to formula” syntax. The guarded fragment, however, arises as an attempt to isolate fragments
of first-order logic that can plausibly be called modal. So the modal languages we shall consider here are
syntactically first-order.

The clue leading to the guarded fragment is the standard translation of the modalities. This treats modalities
as ‘macros’ embodyingestrictedforms of first-order quantification, in particular, quantification restricted to
successor states:

ST (Ow) = Jy(Ray A sTy(p))
ST:(Op) = Vy(Rry — STy(p)).
38

As we saw earlier, it is this restricted form of quantification that lets bisimulation emerge as the key model-
theoretic notion. And bisimulation, via the tree model property, leads to decidability. Thus at least one pleasant
property of modal logic can plausibly be traced back to its use of a restricted form of quantification. So it is
natural to ask whether other first-order fragments defined by restricted quantification have such properties.
This line of enquiry leads to the guarded fragment and its relatives.

The first step takes us to the guarded fragment, which was introduced bgkendran Benthem, and
Németi [2]. Guarded formulag are built up as follows:

¢ u=QF | ¢ | oAy | ¢ — Y| GEEY) A E,T) | VIGET,T) — 0F,7)).

Herez andy are finite tuples of variables) is a predicate symbol (of appropriate arity for the tupjeand
G, the guard, is a predicate symbol too. The key point to observe is that the free variaplagedadlso free in
the guard. The set of all guarded first-order formulas is called the guarded fragment.

Theorem 6.9 The guarded fragment is decidable. Its satisfiability problem is 2EXPTIME-complete, and
EXPTIME-complete if we have a fixed upper bound on the arity of predicates. Moreover, the guarded fragment
has the finite model property.

Proof. See Gadel [22] for the complexity results and a direct proof of the finite model property. An earlier
(algebraic) proof of the finite model property can be found in A&kdr; Hodkinson, and &meti [1]. -

The guarded fragment is a natural generalisation of the first-order formulas obtainable under the standard
translation, but does it go far enough? For example, adding Until to a basic modal language yields a decidable
logic, but the standard translationGfp, ¢), namely

Jy (Rzy A Py AVz ((Rzz A Rzy) — Qz)),

does not belong to the guarded fragment, and it can be shown that it is not equivalent to a formula in the
guarded fragment either. This suggests that it may be possible to pin down richer restricted-quantification
first-order fragments that retain decidability, and several closely related extensions of the guarded fragment,
such as the loosely guarded fragment (see van Benthem [6]) and the packed fragment (s€elMarx [35]) have
been proposed which do precisely this. Let's take a quick look at the packed fragment.

The packed fragment allows us to use allmmposite guards instead of merely atomic guards guards
are now conjunctions of the following kinds of formulas:

Ty = X OrR($il,. . .,xin) or El.Ijl C El:L‘jm R(l’il,- . ,l’in) OrVCL‘jl .. .VCL‘jm R(l’il, s ,xin).

The crucial point, however, is to state some restriction on the way we quantify variables to ensure that decid-
ability is retained. In the packed fragment we do this as follows. We say that a guarapacked guardf
for every pair of distinct free variable; andz; it contains, there is a conjunct inin which z; andx; both
occur free. Then packed formulas are built up as follows:
pu=QT |~ |oANY e —¢ |y Ae) | VI —),

where~ is a packed guardy is a packed formula, and (as with the guarded fragment) all variables free in
are free iny. The set of all packed first-order formulas is called the packed fragment.
As an example, consider again the standard translatiéi(pfq), namely

Jy (Rxy A Py AVz ((Rzz A Rzy) — Q2)).

This is not packed as the guard of the subformid@(Rxz A Rzy) — Qz)) has no conjunct in whick and
y occur together. But this is easy to fix. The following (logically equivalent) fornmitsacked:

dx (Rxy A Py AVz ((Rxz A Rzy A Rzy) — Qz)).
The packed fragment is also computationally well-behaved:

39

Theorem 6.10 The packed fragment is decidable. Its satisfiability problem is 2EXPTIME-complete. More-
over, it has the finite model property.

Proof. The complexity result follows from results in &del [22]. The original proof of the finite model
property for the packed fragment (and the loosely guarded fragment) can be found in Hodkinson [25]; a more
elegant proof can be found in Hodkinson and Gittd [26]. -

In short, we have isolated two decidable fragments of first-order logic which are expressive enough to gener-
alise many common modal languages. Moreover, these fragments have attractive properties besides decidabil-
ity. Basic modal logic resembles first-order logic in most of its meta-properties, even ‘existential’ ones (such
as Craig Interpolation, Beth definability, and the standard model-theoretic preservation theorems) that do not
follow straightforwardly from the fact that it is a sublogic. The guarded fragment shares this good behaviour
to some extent, witness the tos-style preservation theorem for submodels given &k&ndgan Benthem,

and Nemeti [2]. But subsequent work has shown that the picture is somewhat mixed. There is indeed a nat-
ural notion of ‘guarded bisimulation’ (again see [2]) which characterises the guarded fragment as fragment
of first-order logic. Moreover, Beth definability holds (see Hoogland, Marx and Otio [28]). However Craig
interpolation fails in its strong form — though it holds when we view guard predicates as part of the logical
vocabulary (see Hoogland and Marx [27]).

6.6 Propositional Dynamic Logic

The richer modal languages so far discussed extend the first-order expressive power available for talking about
models: the universal modality adds quantification odérx W, hybridisation gives access to constants
and equality, Until and Since and conditional logic add richerguantificational patterns, and the guarded-
fragment cheerfully replaces modal syntax with first-order syntax. But the next two languages we shall discuss
take us in a different direction: both adecond-orderexpressive power. Now, in Sectiph 5 we saw that
modal languages have second-order expressive power (via the concept of validity) at the Fexelesf
But in the languages we now consider, second-order expressivity arises directly: it is hardwired into the
satisfaction definitions, and hence is available at the levehadels In particular, Propositional Dynamic
Logic (henceforth PDL) offers us an (infinite collection of) transitive closure operators, and the modal
calculus offers us a general mechanism for forming fixed-points. Significantly, both PDL and the modal
u-calculus were born in theoretical computer science. Finite structures are crucial to the theory and practice
of computation, and basic results of finite model theory (see Ebbinghaus and Flum [12]) show that first-order
logic is badly behaved when interpreted over such structures. Nowadays it is routine to extend first-order
languages with second-order constructs (such as the ability to take transitive closure or form fix-points) when
working with finite models, and in the languages we now consider, such ideas are put to work in modal logic.
Let's start by looking at the weaker of the two languages, namely PDL. The underlying idea (to extend
modal logic with a modality for every program) is due to Vaughan Fratt [37], and the language now called PDL
was first investigated by Fisher and Ladner[15,16]. PDL contains an infinite collection of diamonds. Each has
the form(r), wherer denotes a non-deterministic program. The intended interpretatipn ofis that “some
terminating execution of from the current state leads to a state with the informatianThe dual assertion
[]p states that “every execution offrom the current state leads to a state with the informagiorCrucially,
the inductive structure of the programs is made explicit in PDL's syntax. Complex programs are built out of
basic programs using four program constructors, and the diamonds reflect this. Suppose we have fixed a set of
basic programs, b, ¢, and so on. We are allowed to define complex prograrager this base as follows:

Choice: if m; andwy are programs, then sois U 9. It non-deterministically executes either or 5.
Composition: if 1 andwy are programs, then sois ; m». It first executesr; and then executes;.
Iteration: If 7 is a program, then so is*. It executesr a finite (possibly zero) number of times.

Test: if p is a formula, therp? is a program. It tests whetherholds, and if so, continues; if not, it fails.

Hence PDL makes available the following (inductively defined) algebra of diamonds. First we have dia-
monds(a), (b), (c), and so on, for working with the basic programs. Thenif) and (r2) are diamonds

40

andy is a formulas,(m; U m2), (71 ; m2), (7)) and(e?) are diamonds too. Note the unusual syntax of the
test constructor diamond: it makes a modality out of a formula (incidentally, this means that the sets of PDL
formulas and modalities are defined by mutual induction).

How do we interpret PDL? Syntactically we're simply dealing with a basic modal language in which the
modalities are indexed by a structured set. So a model for PDL will have the form we are used to, namely

(W, {R™ | wis a program}, V),

a suitably indexed collection of relations together with a valuation. Moreover, the usual satisfaction definition
is all that is required: diamonds existentially quantify over the relevant transitions, and boxes universally
guantify. Nonetheless, something more needs to be said. Given the intended interpretation of PDL, most of
these models are uninteresting. We want models built over frames which do justice to the intended meaning
of our program constructors. Which models are these?

Nothing much needs to be said about the interpretation of the basic programs: any binary relation can be
regarded as a transition relation for a non-deterministic program (though if we were interedegdrimin-
istic programs, we would insist on working with frames in which each basic program was interpreted by a
partial function). Nor need much be said about the test operator. Unusual though its syntax is, its intended
interpretation is simply

R = {(z,y) |z =yandy |- ¢}.

This makes sense in any model; no additional frame conditions need to be imposed here. But the three
remaining constructors certaintip demand additional frame structure. Here’s what is required:

Rﬂ'lUﬂ'Q — R7r1 U ‘R7l'27
R™™2 = R™ o R™ (= {(z,y) | 3z (RMzz A R™2y)}),

R™ = (R™)*, the reflexive transitive closure &f™.

These restriction are the natural set-theoretic ways of capturing the “either-or” nature of non-deterministic
choices (forR™Y™), the idea of executing two programs in a sequencegfoi™) and the idea of iterating
the execution of a program finitely many times (#f1). Accordingly, we make the following definition.
Let IT be the smallest set of programs containing the basic programs and the programs constructed over them
using the constructors, ;, and*. Then aregular frameoverIl is a frame(W, {R™ | = € II}) whereR® is a
binary relation for each basic prograimand for all complex programs, R™ is the binary relation constructed
inductively using the above clauses. régular modeloverII is a model built over a regular frame (that is,
regular models are regular frames together with a valuation). When working with PDL over the progiams in
we be interested in regular models 1@y for these are the models that capture the intended interpretation. All
very simple and natural — but by insisting tif2f be interpreted by the reflexive transitive closure?sf, we
have given PDL genuinelgecond-ordeexpressive power. A straightforward application of the Compactness
Theorem shows that first-order logic cannot define the transitive closures of arbitrary binary relations, so with
this definition we've moved beyond the confines of first-order logic.

What can we say with PDL? At the level of models we can express some familiar programming constructs:

(p?;a) U (—p?;b) if pthen aelse b.
a; (—p?;a)* repeat auntil a.
(p?;a)*;—a? while pdo a.
Note the crucial role played byin capturing the effect of the two loop constructors.

Moreover, the second-order expressivity built in at the level of models spills over into the level of frames.
Here’s a nice illustration. Via the concept of validity, PDL itself is strong enough to define the class of regular

41

frames (something which cannot be done in a first-order language). Now, it is not hard to give conditions that
capture choice and composition. The formula

(1 Um2)p < (m1)p V (m2)p

is valid on precisely those frames whe#é'V™ = R™ U R™, and the formula

(15 ma)p < (m1){T2)P

is valid on precisely those frames satisfyiRg*'™ = R™ o R™. But these are first-order conditions. What
about iteration? We demanded that the relafifn used for the program* be the reflexive, transitive closure
of the relationR™ used forr. This constraint cannot be expressed in first-order logic; how can we impose it
via PDL validity?

As follows. First we demand that

() oV {m;m)e

be valid. This says that a state satisfyingan be reached by executinga finite number of times if and only
if we ¢ is satisfied in the current state, or we can exeeut@ce and then find a state satisfyip@fter finitely
many more iterations af. Second, we demand that

[e = [7lp) = (¢ = [7lp)

be valid too. This is calle®egerberg’s axiomWork through what it says: as you will see, in essence it is
an induction schema. A frame validates all instances of the four schemas just introduced if and only if it is a
regular frame.

Summing, both at the level of models and frames, PDL has a great deal of expressive power. Hence the
following result is all the more surprising:

Theorem 6.11 PDL has the finite model property and is decidable. Its satisfiability problem is EXPTIME-
complete.

Proof. The finite model property, decidability, and EXPTIME-hardness results for PDL were proved in Fisher
and Ladner{[15,16]. The existence of an EXPTIME algorithm for PDL satisfiability was proved in[Pratt [38].
_|

But we are only half-way through our story. With the mogatalculus we will climb even higher in
second-order expressivity hierarchy — and we will do so without leaving EXPTIME.

6.7 Modaly-calculus

The modalu-calculus is the basic modal language extended with a mechanism for forming least (and greatest)
fixed-points. It is highly expressive (as we shall see, it is stronger than PDL) and computationally well-
behaved. Moreover it has an beautiful bisimulation-based characterisation. All in all, it is one of the most
significant languages on the modal landscape. It was introduced in its present form by Dexteli Kozen [31].
The idea underlying the modatcalculus is to view modal formulas aet theoretic operatorsand to add
mechanisms for specifying their fixed-points. Now, a set-theoretic operator or/ sesimply a function
F : 2 — 2W . But how can we view modal formulas as set-theoretic operators? Consider a fasmula
containing some propositional variable (say In any model,p will be satisfied at some set of points. If
we systematically vary the set of points that the valuation assigpstte set of points wherg is satisfied
will typically vary too. So we can view as inducing an operator over the points of some model, namely the
operator that takes as argument the subsél’dhat is assigned tp, and returns the set of points whesds
satisfied with respect to this assignment.
Let's make this precise. We will work in a language with a collection of diamdnglsso models have the
form M = (W, {R™ }remop, V). For any propositional symbal, V' (p) is the set of points i)t wherep is

42

satisfied. Let's extendl” to a function that returns, for arbitrary formulasthe set of points it that satisfy
 (we won't invent a new name for this ‘extended valuation’, we’ll simply calf')t The required definition
is a simple reformulation the satisfaction definition for the basic modal language:

V(p) = V(p) for all proposition symbolg
Vimp) = WA\V(e)
VieAy) =V(e)NV ()

V((m)e) = {w | for somev € W, R"wv andv € V(p)}.

Furthermore, for any propositional symh@oand anyU C W we shall writeV},_; for the (extended) valua-
tion that differs from the (extended) valuatibh if at all, only in that it assign#’ to p. Thatis,V},_y(p) = U,
and for anyg # p, V,_y1(q) = V(g). Then the operator induced by a formyidrelative to a propositional
variablep) is the function that maps arty C W to V|, ().

Now to bring fixed-points into the picture. A subsgtof W is a fixed-point of a set-theoretic operafor
onW if F(X) = X. This is clearly a special property: which set-theoretic operators have fixed-points, and
how do we calculate them? The Knaster-Tarski theorem gives important answers. Firstly, this theorem tells
us that fixed-points exist when we work witlonotoneset theoretic operators (an operators monotone if
X CY implies thatF'(X) C F(Y')). Secondly, this theorem tells us thatifis a monotone operator on a set
W, thenF has a least fixed-pointF', which is equal to

(U W |FU)CU},
and also a greatest fixed-pow#’, which is equal to
Jivcw|UucFro)}

That is, bothuF' andv F' are solutions to the equatidi(X) = X, and furthermore, for any other solutidh
we have thapF' C Z C vF'. The least and greatest fixed-points given by the Knaster-Tarski Theorem are the
fixed-points the modal-calculus works with.

But how can we specify these fixed-points using modal formulas? By enriching the syntax with an operator
u that binds occurrences of propositional variables. That is, we shall write expressiop®.liken which
all free occurrence of the propositional variablén ¢ are bound by the.. The intended interpretation of
up- is that it denotes the subset @f that is the least fixed-point of the set-theoretic operator induced by
o with respect top. Fine — but how do we know that this fixed-point exists?ylfs arbitrary, we don't.
However if all free occurrences pfin ¢ occur positively (that is, if they all occur under the scope of an even
number of negations) then a simple inductive argument shows that the set-theoretic operator induced by
monotone, and hence (by the Knaster-Tarski theorem) has least (and greatest) fixed-points. Accordingly we
impose the syntactic restriction that theperator can only be used to bind a propositional variable when all
free occurrences of the variable occur positively. With this restriction in mind we define:

V(pp-p) = (U S W | Vipery(U) C U}

That is, the set assigned tg.p is the least fixed-point (as specified by the Knaster-Tarski Theorem) of the
operator induced by.

What can we say with the modaicalculus? Consider the expressjan(y V (7)p). Read this as defining
“the least property (subset)such that eithep is in p or (7)p is in p”. What is this set? A little experiment
will convince you that it must be

{w e W | M, w = ¢ or there is a finite sequence Bf related points fromw to v such thabht, v = ¢}.

(The reader should check that this set really is the one given to us by the Knaster-Tarski Theorem.) Note that
this is exactly the set of points that make the PDL formi&) o true.

43

How do we specify greatest fixed-points? With the help ofittogerator. This is defined as follows:

vp.p =det ~up-—e(—p/p),

wherep(—p/p) is the result of replacing occurrencesoby —p is ¢. This expression is well-formed: i

is a formula that we could legitimately apply theoperator to (that is, if all occurrences @bccur under the
scope of an even number of negations), then sai&-p/p). The reader should check that this operator picks
out the following set:

Vpg) = (U CSW U CVipty(U)}-
That is (in accordance with the Knaster-Tarski theorem) it picks out the greatest fixed-point of the operator
induced byyp. As a further exercise, the reader should check#paty A [7]p) denotes the following set:

{w e W | M, w = ¢ and at every reachable fromw by a finite sequence dt™ related points)t, v = ¢}.

Note that this is exactly the set of pointsthat make the PDL formular*|p true.
In view of these examples, it should not come as a surprise that PDL can be translated into the modal
pu-calculus. We do so as follows:

(™ =p
(m)™ = =(p)™
(o V)™ = (p)™V ()™
((m)p)™ = (m) ()™
({13 m2)0)™ = (1) (m2) ()™
({1 Uma))™ = (1) () ™V (m2) ()™
(m*)o)™ = up.((¢)™V ({(m)p)™), wherep does not occur irp

In fact the modalu-calculus, is strictly more expressive than PDL. The simplest example of construct that
PDL cannot model but that the modalcalculus can is theepeatoperator. The expressioapeat(r) is true
at a stataw if and only if there is an infinite sequence Bf transitions leading fronw. Proving that this is
not expressible in PDL is tricky, but it is can be expressed in mpdadlculus: the formulap.(r)p does so.
Moreover, the temporal logics standardly used in computer science, such as LTL, CTL, ahd@&Thlso be
embedded in modal-calculus. For remarks and references on this topic, see CH#poéthis handbook.

All in all, the modal i-calculus is a highly expressive language. In spite of this, it is extremely well
behaved, both computationally and in other respects. For a start we have that:

Theorem 6.12 The modalu-calculus has the finite model property and is decidable. Its satisfiability problem
is EXPTIME-complete.

Proof. The original decidability proof was given Kozen and Parikh [32]. The finite model property was first
established in Street and Emersonl [45]. The complexity result is from Emerson and Jutla [13]. .

Furthermore, in practice the modaicalculus also seems computationally well behaved when it comes to
model checking — indeed it is widely believed that its model checking problem can be performed in polyno-
mial time. However, at the time of writing, this conjecture has resisted all attempts to prove it.

Furthermore, the modail-calculus has a elegant semantic characterisation. Suppose we add the following
clause to the standard translation for basic modal logic:

ST.(up-w) = VP(Vy((STz(p) — Py) — Py)).
44

Note that by adding this clause we are viewing the standard translation as takinmmasddic second-order
logic, for here we bind the unary predicate symbBolThus the modgl-calculus can be viewed as a fragment
of monadic second-order logic. Which fragment? This one:

Theorem 6.13 The modaj:-calculus is the bisimulation invariant fragment of monadic second-order logic.
Proof. See Janin and Walukiewicz [29]. -

For more on the modal-calculus, see Chapt@r of this handbook. As well as giving a detailed technical
overview, the chapter also gives an informal introduction to thinking in terms of fixed-points, which is often a
stumbling block when the modalkcalculus is encountered for the first time.

6.8 General perspectives

Moving to richer languages better fitted for particular applications is a standard feature of current research.
It is true that in some quarters sticking to the poorest modal base language of the founding fathers (despite
its evident handicaps in expressive power and mathematical convenience) is still something of a religion. But
the idea of designing extensions is not some new-fangled notion; its roots stretch back to the work of von
Wright [50] and Prior[[39,40], and the idea was central to the work of the ‘Sofia School’ (see, for example,
Passy and TincheV [36] for insightful comments on what modal logic is and why one might want to enrich
it). Still, pointing to a noble heritage is not enough. We need to address a tricky question: what makes these
languages ‘modal’? Being precise here is difficult. As we have seen, there is a wide range of extensions.
Moreover, each application imposes its own concerns and peculiarities. Nevertheless, there is a guiding idea
that lies behind most examples of this form of language design: obtaining a reasonable balance between
expressive power and computational complexity. So the question we should focus on is: what makes such
natural balances arise?

As we have seen, many richer modal languages are fragments of the full language of first-order logic,
over some appropriate similarity type of relations and properties. We can see this by translation, just as we
did with the basic modal language (we saw that the complex truth conditions for the Until and Since are
definable by first-order formulas, and the same is true for the conditional connective). Now, there have been
various attempts to find general patterns explaining which parts of first-order logic are involved in ‘modal’
languages. Gabbay observed that modal languages tend to translate into stiritdledriable fragmentsf
first-order logics, that is, fragments using only some finite number of variables, fixed or bound. For example,
we have seen that the basic modal language can make do with only two variables, and temporal logic with
Until and Since, and conditional logic, only require three. Finite variable fragments have some pleasant
computational behaviour; for example, their uniform model checking complexity is in PTIME (see Yhrdi [
as opposed to PSPACE for the full first-order language. On the other hand, satisfiability is already undecidable
for first-order fragments with three variables, so the real reason for the low complexity of modal languages
lies elsewhere. A different type of analysis for the latter phenomenon was given in[Vardi [48] “Why is modal
logic so robustly decidable?”), which emphasises the semantic adequacy of tree-like models obtainable via
bisimulation unravelling of arbitrary graph models. This type of explanation transcends first-order logic, but it
does not provide concrete syntactic explanation. For the latter, the current best explanation is that provided by
the guarded fragment and it relatives (which are, arguably, the strongest known modal languages).

As we saw, such fragments locate the essence of modal logic mesktréction on the quantification per-
formed by the modalities. One attractive property of this analysis it its logical resilience: it turns out that it ex-
tends beyond the setting of first-order enrichments to second-order enrichment (something that was not forseen
when the guarded fragment was first isolated). A striking example is the resubidelznd Walukiewicz [23]
that the extension of the guarded fragment with the fixed-point operatanslz remains decidable. By way
of contrast, validity for the full first-order logic extended with these operators in non-axiomatisable, indeed,
non-arithmetical! This observation shows that the modal philosophy embodied in the idea of guarded frag-
ments is not restricted to first-order logic: often modal fragments can bear the weight of additional higher-order
constructions (such as fixed-point operators) which would send the full first-order correspondence languages

45

into a tailspin complexity wise. Our discussion of PDL and the medehlculus has shown that this is the
case for the basic modal language 4@« and Walukiewicz'’s result for the guarded fragment shows that this
type of behaviour persists higher up: guarded quantification can support higher-order constructions too.

Perhaps guarding can be a fruitful strategy in even more exotic modal settings? One setting worth exploring
is infinitary modal logic. This logic (which was used extensively in Barwise and M®@jsarid Baltag P])for
investigating non-well founded set theory provides a perfect match with bisimulation: two pointed models are
bisimilar if and only if they satisfy the same formulas in a modal language that allows arbitrary infinite con-
junctions and disjunctions, and moreover a modal invariance theorem holds. Now, decidability is a non-issue
in this setting, but what about existential semantic properties such as interpolation and Beth Definability? It is
known that interpolation holds for infinitary modal logic (see Barwise and van Benthem [5]); do such results
hold for infinitary guarded fragments? Another setting worth exploring in this wagaésnd-order proposi-
tional modal logi¢ in which we can quantify over proposition symbols (see Finé [14] for some early results
and ten Cate [46] for a more recent discussion. The equation “modality = guarding” should be simultaneously
be regarded as a hypothesis to be tested in richer settings, and as a useful heuristic for isolating further logics
worth calling modal.

Not that we should put all our eggs in one basket. Perhaps the notion of ‘modality’ is too diffuse for any
single approach to exhaust, and in any case it is worth looking for alternatives. One such approach is to apply
ideas form abstract model theory (see Barwise and Feferman [4]). This was first done in dé Rijke [42], who
proved a modal analog of Lindsim’s [34] celebrated characterisation of first-order logic, in which bisimu-
lation replaced Lindstim’s use of isomorphism. More recently, ten Cate [46] has use the approach to search
for general results on which classes of modal logics can have such properties as interpretation. Perhaps such
investigations do not tell us what the space of modal logics actually is, but they give us a clearer idea of what
is out there.

7 New descriptive challenges

Traditional motivations for and applications of modal logic came from philosophy, and the study of such topics
as modality, knowledge, conditionals, and obligations. Some strands also concerned mathematics: witness
modal logics of time, space, or provability. Gradually, in the 1960s and 1970s further influences arose that
made the areas much more diverse. Sources included computer science (for modal logics of computation
and general processes) Artificial Intelligence (for modal logics for knowledge representation, non-monotonic
reasoning, and belief revision), linguistics (for modal logics of grammatical structure) and the internet (for
modal logics of trees). This web of new interfaces is still growing. Modern computer science, with its emphasis
on new information carriers and networks of intelligent computing agents, also brings in modal logics of
image processing, agency and security. And the empirical social sciences are joining in too, witness current
applications of modal logic in economic game theory, or powers of agents in social choice theory. Many of
these applications fit squarely into the perspective represented in this chapter. But some also raise technical
issues of their own. For example, some logics make useeakerlanguage than the basic modal language,

not extensions. And when (for example) the booleans are gone, modal logic becomes quite a different game.

7.1 An example where it all comes together: games

An interesting example which shows the issues in modern applications are games. Games are a natural con-
tinuation of the process view of model semantics, bringing it in line with the realities of modern computing,

as they describmteractive processdsetween different agents. But they also bring in other strands from our
presentation, in particular the epistemic stance, as they crucially involve the beliefs preferences and intentions
of the players. Games have occurred so far int our presentation as tools for bringing out the interactive essence
of key logical tasks, such as model checking or model comparison. Such games aréogidlgamesand

the lead to interesting connections with game theory. For example, most logic games are two-player zero-sum
games of finite depth, and Zermelo’s theorem form 1913 then tells us that any such game is ‘determined’: one
of the two players must have a winning strategy. For example, either Duplicator or Spoiler wins any given

46

finite length model comparison game; there is not further option. But modal logic also applied to arbitrary
games, for whatever purpose, providing so-caflathe logicghat describe both external reasoning about and
internal reasoning by players of a game. Chapfeof this handbook is devoted to this interface, but for our
purposes here it may be useful to point out how much modal logic occurs with the single setting of a game.
We restrict ourselves to so-called ‘extensive games’ — even though modal style analysis is also quite feasible
for so-called ‘strategic games’ where one only records players entire strategies and the outcomes of playing
them.

Modal logics of moves

For a start, an extensive game involves a tree of possible histories generated by moves available to players
at their turns, while ending in final states where some pay-off may occur. As they stand, such structures are
models for a basic modal language with several modalities. For example, assuming the Player 1 moves first,
and then Player 2 the formulaove-1({move-2p says that Player 2 has guaranteed response to whatever
Player 1 does which guarantees tpawill occur. In game-theoretic terms, Player 2 hastrategyensuring

thatp. With logier games, chains of modalities of the fom®O<CO<$ - - - express the existence of various
strategies.

Dynamic logic of strategies

To discuss these strategies more explicitly, note that a strategy for a player is a map to available moves — or
in a more general setting, a relation constraining possible moves at relevant turns, An obvious formalism for
defining such relations is PDL, and indeed the program constructors encountered there make immediate sense
for games as well: strategies are iterative constructs out of conditional instructions of the form “if she plays
this, then | play that”.

Fixed-point definitions of strategic equilibria

Nevertheless, general notions of game solution may go beyond PDL, and Zermelo’s theorem is an example.
Defining the two mutually exclusive predicate “Player 1 has a winning strategy]] and “Player 2” has a winning
strategy as properties of nodes in a game tree requires inductive definition in the mcalalilus, And

the same fixed-point language is needed for more complex notions of game solution that involve numerical
utilities, such as the Nash equilibrium.

Strategies once more, threats, and conditonal logic

A strategy is a rule telling us what what to do under all circumstances, even those that do not actually occur.
My response is prescribed for every move you could play, even though a single run of the game only allows
one move by you. And even more mysteriously, my strategy will lead to just a part of the game tree, while
forgoing others; but even so, the strategy also prescribes moves at my turns in those ‘inaccessible parts’! This
is relevant to threats, where you might reason about what would happen were | to act differently from my
benevolent current intention, This counterfactual character of strategies (emphasized in Stalnaker199X) [
naturally brings in statements of the form ¢fwere to happen, then | would pldy. Hence, a really full-

fledged modal logic of strategies also involves conditional logic.

Knowledge and rationality

But possible moves and strategies are not the whole story. Even games of perfect information, where players
know all relevant moves, and can observe every relevant fact that happens, involve players’ reasoning about
what others will do, and their uncertainty about future moves, We cannot predict how the game will unfold,
unless we make assumptions about the capacities and rational intentions of other players. This brings in issues
of knowledge and belief, which have infiltrated game theory since the 1970s when Aumann independently
rediscovered Hintikka’'s epistemic logic. As an example of such reasoning, even standard game-theoretic
solution algorithms such as ‘backward Induction’ or ‘Iterated Removal of Strictly Dominated Strategies’ only

47

make sense by making various epistemic assumptions that can be brought to light in suitable modal languages
(Aumann, de Bruinn 2004), van Benthem 2002).

Preference logics

Most game logics so far have emphasized available moves and strategies, and the ‘control’ players have over
outcomes, or just courses, of the game. But the heart of any rationality analysis is what players will do
given the utilities they attach to outcomes. Alternatively, we can assume that players have preference rela-
tions allowing them to compare various outcomes. Making the latter structure explicit again requires modal
languages, this time with modalities accessing binary or ternary preference relations (see Harrenstein van der
Hoek and Wooldrige 200x, van Benthem, van Otterloo and Roy 2005 for fully explicit characterisations of
game-theoretic equilibria in such formalisms.

Imperfect informaition

So far, uncertainty played a role in what players know or believe about the future course of a game which is
fully transparent by itself. But many games involve ‘imperfect information’. For example, in a card game
we typically do not see each player’s hand, and it is this limited observational capacity plus our powers of
reasoning and anticipation that drive the whole process. Games of imperfect information again involve epis-
temic logic, this time also in the form of uncertainties about player’s exact position in the game tree. Thus by
combining knowledge and action modalities we can express typical game-ttheoretic quandaries, such as

K({a) vV (b)p) A =K{a)p N =K (b)p.

| know that | have a movex(or b) allowing me to achieve, but | do not know which one.

Dynaics: update and revision

Finally, with all this descriptive apparatus in place to describe the static structure of a game at successive stages
of its development, there is still the issue of explicit dynamics as the game moves forward. For example, in a
card game, weipdateour information in a systematic manner as cards fall on the table. Saying just how this
happens requires dynamic-epistemic logics of information update. Moreover, as a game proceeds, surprising
things may happen that lead us to question our earlier assumptions about other players — instead of a hard-
nosed egotist we may observe a gentle altruist at work. If that happens we need to revise current beliefs
about the development of the game, and belief revision comes in — which fits in with the earlier-mentioned
conditional logic of strategies.

This the concrete phenomenon of games that we are all familiar with involves just about every strand of
modal logic that we have seen — and these strands need to be put together in delicate ways.

References
[1] Andréka, H., I. Hodkinson and |. &meti, Finite algebras of relations are representable on finite sétairnal of
Symbolic Logic64 (1999), pp. 243-267.

[2] Andréka, H., J. van Benthem and Iekheti,Modal languages and bounded fragments of predicate Jdgiarnal of
Philosophical Logi@7 (1998), pp. 217-274.

[3] Areces, C., P. Blackburn and M. Markybrid logics: Characterization, interpolation and complexifpurnal of
Symbolic Logic66 (2001), pp. 977-1010.

[4] Barwise, J. and S. Feferman, “Model-theoretic logics,” Springer, 1985.
[5] Barwise, J. and J. van Bentheinterpolation, preservation, and pebble gamjs$29 (1999), pp. 881-903.

[6] Benthem, J. v.,Dynamic bits and piecesTechnical Report LP-97-01, Institute for Logic, Language and
Computation, University of Amsterdam (1997).

48

[7] Blackburn, P., M. de Rijke and Y. Venema, “Modal Logic,” Cambridge University Press, 2001.

[8] Burgess, J.Quick completeness proofs for some logics of conditioédgre Dame Journal of Formal LogRk2
(1979), pp. 76-84.

[9] Clarke, E., O. Grumberg and D. Peled, “Model Checking,” MIT Press, 1999.
[10] Counterfactuals, “D. Lewis,” Blackwell, 1973.
[11] de Rijke, M., The modal logic of inequalifydournal of Symbolic Logi&7 (1992), pp. 566-584.
[12] Ebbinghaus, H.-D. and J. Flum, “Finite Model Theory,” Perspectives in Mathematical Logic, Springer, 1995.

[13] Emerson, E. and R. Jutl&ahe complexity of tree automata and logics of progra8i&M Journal on Computing9
(1999), pp. 132-158.

[14] Fine, K.,Propositional quantifiers in modal logid heoria36 (1970), pp. 331-346.

[15] Fischer, M. and R. LadnePropositional modal logic of program#: 9th ACM Sympos. Theory of Compui977,
pp. 286—294.

[16] Fischer, M. and R. LadnePRropositional dynamic logic of regular programdournal of Computer and System
Scienced 8(1979), pp. 194-211.

[17] Friedman, N. and J. Halper@n the complexity of conditional logién: Proceedings of the 4th International
Conference on Principles of Knowledge Representation (KR 1294, pp. 202-213.

[18] Gabbay, D., I. Hodkinson and M. Reynolds, “Temporal Logic: Mathematical Foundations and Computational
Aspects,” Oxford University Press, 1994.

[19] Gabbay, D., A. Pnueli, S. Shelah and J. St&n, the temporal analysis of fairnesa: Proc. 7th ACM Symposium
on Principles of Programming Language980, pp. 163-173.

[20] Gardenfors, P. and H. RoBelief revisionin: D. Gabbay and F. Guenthner, editddsndbook of Logic in Artificial
Intelligence and Logic Programming, Oxford University Press, 1995 pp. 325-408.

[21] Goranko, V. and S. Pasdysing the universal modality: Gains and questipdsurnal of Logic and Computatich
(1992), pp. 5-30.

[22] Gradel, E.,On the restraining power of guarddournal of Symbolic Logi6é4 (1999), pp. 1719-1742.

[23] Gradel, E. and |. WalukiewiczZGuarded Fixed Point Logidn: Proceedings of 14th IEEE Symposium on Logic in
Computer Science LICS ‘99, Trenti®99, pp. 45-54.

[24] Hemaspaandra, EThe price of universalityNotre Dame Journal of Formal Log87 (1996), pp. 174-203.

[25] Hodkinson, I.Loosely guarded fragment of first-order logic has the finite model propSttydia Logicar0 (2002),
pp. 205-240.

[26] Hodkinson, I. and M. OttoFinite conformal hypergraph covers and Gaifman cliques in finite struciuBes.
Symbolic Logic9 (2003), pp. 387—-405.

[27] Hoogland, E. and M. MarAnterpolation and definability in guarded fragmen&udia Logicar0 (2002), pp. 373—
409.

[28] Hoogland, E., M. Marx and M. OttdBeth definability for the guarded fragmeim: H. Ganzinger, D. McAllester
and A. Voronkov, editord,ogic for Programming and Automated Reasoning, 6th International Conference LPAR99,
Thilisi, Georgia LNAI 1705(1999), pp. 273—-285.

[29] Janin, D. and I. WalukiewicZ)n the expressive completeness of the propositonal mu-calculus with resepct to second
order logig, in: Proceedings CONCUR "9@.ecture Notes in Computer Scient£19(1996), pp. 263-277.

[30] Kamp, H., “Tense Logic and the Theory of Linear Order,” Ph.D. thesis, University of California, Los Angeles
(1968).

[31] Kozen, D.,Results on the propostional mu-calculi$ieoretical Computer Scien@& (1983), pp. 333-354.
49

[32] Kozen, D. and R. ParikhA decision procedure for the propositional mu-calcuylus Proceedings of the 2nd
Workshop on Logic of ProgramENCS 164(1983), pp. 313-325.

[33] Kurtonina, N. and M. de RijkeBisimulations for temporal logicJournal of Logic, Language and Informatién
(1997), pp. 403-425.

[34] Lindstrom, P.,On extensions of elementary logicheoria35 (1969), pp. 1-11.
[35] Marx, M., Tolerance logi¢Journal of Logic, Language and Informati6t§2001), pp. 353-373.

[36] Passy, S. and T. Tinche&n essay in combinatory dynamic loginformation and Computatic®3(1991), pp. 263—
332.

[37] Pratt, V.,Semantical considerations on Floyd-Hoare lagit Proc. 17th IEEE Symposium on Computer Scignce
1976, pp. 109-121.

[38] Pratt, V.,Models of program logicsn: Proc. 20th IEEE Symp. Foundations of Computer Scieh8&9, pp. 115—
222.

[39] Prior, A., “Past, Present and Future,” Clarendon Press, Oxford, 1967.

[40] Prior, A., “Papers on Time and Tense,” Oxford University Press, 2003, New edition, edited by Hasle, @hrstrom,
Braliner, and Copeland.

[41] Restall, G., “An Introduction to Substructural Logics,” Routledge, 2000.
[42] Rijke, M., “Extending Modal Logic,” Ph.D. thesis, ILLC, University of Amsterdam (1993).

[43] Ryan, M. and P. SchobbenSpunterfactuals and updates as inverse modalitiesirnal of Logic, Language and
Information6 (1997), pp. 123-146.

[44] Spaan, E., “Complexity of Modal Logics,” Ph.D. thesis, ILLC, University of Amsterdam (1993).

[45] Street, R. and E. Emersofn automata theoretic decision procedure for the propostional mu-calcuifssmation
and Computatio1(1989), pp. 249-2644.

[46] ten Cate, B., “Model theory for extended modal languages,” Ph.D. thesis, Institute for Logic, Language and
Computation, University of Amsterdam (2004).

[47] van Benthem, J.Correspondence theoryn: D. Gabbay and F. Guenthner, editorandbook of Philosophical
Logic, 2nd Edition 3, Kluwer Academic Publishers, 2001 pp. 325-408.

[48] Vardi, M., Why is modal logic so robustly decidabléf?: DIMACS Series in Discrete Mathematics and Theoretical
Computer Science 3AMS, 1997 pp. 149-184.

[49] Veltman, F., “Logics for Conditionals,” Ph.D. thesis, University of Amsterdam (1985).
[50] Wright, G. v., “An Essay in Modal Logic,” North-Holland Publishing Company, 1951.

50

	Introduction
	Basic modal logic
	First steps in relational semantics
	The standard translation

	Simulation and definability
	Drawing distinctions
	Structural invariances: bisimulation
	Invariance and definability in first-order logic
	Invariance and definability in modal logic
	Modal logic and first-order logic compared
	Bisimulation as a game

	Computation and complexity
	Model checking
	Decidability
	Complexity
	Other reasoning tasks

	Richer logics
	Axioms and relational frame properties
	Frame correspondence and second-order logic
	First-order definable modal axioms
	Correspondence in richer languages: fixed-point extensions
	Modally definable frame classes
	First-order logic as modal logic

	Richer languages
	The universal modality
	Hybrid logic
	Temporal logic with Until and Since operators
	Conditional logic
	The guarded fragment
	Propositional Dynamic Logic
	Modal -calculus
	General perspectives

	New descriptive challenges
	An example where it all comes together: games

	References

