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Abstract 

Fe-B-Si system is a matrix for synthesis of new functional materials with exceptional 

magnetic and mechanical properties. Progress in this area is associated with the search for 

optimal doping conditions. This theoretical and experimental study is aimed to address the 

influence of Ta alloying on the structure of undercooled (Fe0.75B0.15Si0.1)100-xTax (x=0-2) melts, 

their undercoolability and the processes of structure formation during solidification. Small 

concentration of Ta complicates standard ab initio and machine learning investigations. We 

developed a technique for fast and stable training of machine learning interatomic potential 

(MLIP) in this case and uncovered the structure of undercooled (Fe0.75B0.15Si0.1)100-xTax (х=0-2) 

melts. Molecular dynamic simulations with MLIP showed that at Ta concentration of 1 at.% 

there is a sharp change in the chemical short-range ordering in the melt associated with a change 

in the interaction of Ta atoms. This effect leads to a restructuring of the cluster formation in the 

system. At the same time, our experimental investigation shows that melts with a Ta content of 1 

at.% have the greatest tendency to undercoolability. Alloying with Ta promotes the formation of 

primary crystals of Fe2B, and at a concentration of more than 1.5 at.% Ta, also of FeTaB. 

Herewith, near 1 at.% Ta, the crystallization of the melt proceeds nontrivially: with the formation 

of two intermediate metastable phases Fe3B and Fe2Ta Laves phase. Also, the highest tendency 

to amorphization under conditions of quick quenching is exhibited by a melt with a Ta 

concentration of 1 at.%. The results not only provide understanding of optimal alloying of Fe-B-

Si materials but also promote a machine learning method for numerical design of metallic alloys 

with a small dopant concentration. 
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The Fe-B-Si system is the basis of a large number of industrially important amorphous 

and nanocrystalline materials with high mechanical and magnetic properties [1-4]. Increasing the 

amorphizing ability of these alloys, i.e. increasing the thickness of the amorphous phase is an 

urgent task. Alloying of alloys of this system with refractory elements such as Nb, Hf, Zr, Ta 

increases their glass-forming ability (GFA) and the possibility of obtaining bulk amorphous 

materials [5-9]. Recently, studies of the influence of such additions on the amorphizing ability 

and properties of these alloys have been actively conducted [8-11]. For increase of the GFA of 

alloys, it is important both to choose the composition of the alloy and to determine the optimal 

conditions for their production from the liquid phase (quenching temperature, thermal treatment 

of the melt) [12, 13]. To select alloy compositions and optimal quenching conditions that provide 

the best amorphizing ability, one can use an analysis of the temperature and concentration 

dependences of melt viscosity, undercoolability and features of structure formation during 

solidification in a wide range of cooling rates. As we have shown earlier [12, 14], this approach 

makes it possible to effectively predict the optimal quenching conditions for obtaining alloys 

with the highest proportion of the amorphous phase. 

Previously, in [15], we investigated the effect of Ta on the kinematic viscosity of Fe-B-Si 

melts. The conducted studies have shown that alloying with Ta does not have a significant effect 

on the viscosity of Fe-B-Si melts. However, on the concentration dependences of the viscosity of 

the (Fe0.75B0.15Si0.1)100-xTax (x=0-2) melts, a local maximum was found near 1 at.% Ta, which 

indicates a change in the short-range ordering in the liquid phase. A change in the state of the 

liquid phase will affect the processes of structure formation during solidification, including 

amorphization. 

In this regard, here we study the effect of Ta alloying on the structure of Fe-B-Si melts 

and the processes of their solidification in a wide range of cooling rates (1-106 K/s). 

Simulations 

To analyze the structure of undercooled Fe-B-Si-Ta melts near 1 at.% Ta we used 

machine learning with deep neural networks and ab initio methods. 

Ab initio part of our investigations involved Vienna ab initio Simulation Package (VASP) 

[16, 17] with projector augmented wave potential (PAW-PBE) [18] as well as generalized 

gradient approximation (GGA) for the exchange and correlation part of the DFT potential. The 

energy cut off 500 eV was selected with energy convergence at 10−6 eV. Elementary cells 

consisted of 512 atoms with periodic boundary conditions. Brillouin zone was sampled at 

GAMMA point.  

The theoretical study of melts involves the use of molecular dynamics. Low 

concentrations of Ta atoms complicate calculations by the ab initio quantum molecular dynamics 
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(QMD), since the cells for modeling are quite small and, in addition, it is necessary to integrate 

the system dynamics for a rather long time (see Fig. 1). So, to improve sampling of 

configurational space 10 independent QMD trajectories were developed with different initial 

random arrangement of atoms. The time step in our QMD was 1fs and system dynamics was 

sampled typically for 10ps for each independent trajectory. 

Machine learning allows to take a step forward. This method allows effectively 

approximate potential energy manyfold of the system under consideration with ab initio 

accuracy. We built a many-body machine learning interaction potential (MLIP) with the deep 

neural network core using DEEPMD package [19] and DPGEN concurrent learning platform for 

the generation of reliable deep learning based potential energy models [20]. 

Creating MLIP requires “training” and “validation” datasets that contain energies, 

interatomic forces, and virials for a range of Fe-B-Si-Ta configurations [R.E.Ryltsev and 

N.M.Chtchelkatchev, J. Mol. Liq. Volume 349, 118181 (2022)]. Training datasets were 

generated by DPGEN while VASP was used as an ab initio engine for calculation of energy, 

interatomic forces and virials. The validation dataset was prepared on top of QMD simulations.  

Training the final MLIP we have used the “hybrid descriptor” consisting of two sub-

descriptors [19]. They map atomic configuration (energies, interatomic forces, and virials) to a 

set of symmetry invariant features. The sub-descriptors were constructed from all the 

information (both angular and radial) of atomic configurations. However, the first sub-descriptor 

(se_e2_a) took the distance between atoms as the “highest priority” input while the second one 

(se_e3) adopted angles between two neighboring atoms, see Ref. [19] and Supplementary 

Material for details. As the result we got the many body MLIP within the cut-off radius. 

MLIP training was a bit tricky because of small concentration of Ta atoms. The neural 

network contains parameters characterizing the interaction of all atoms, including Ta, with each 

other within the certain cut-off range (we used 7 Å). At a low concentration of Ta, these atoms 

relatively rarely approach each other in the melt. But a part of the neural network is reserved for 

Ta-Ta interaction. So, a training dataset should contain large enough frames with close 

approaching Ta atoms at a distance less than 7 Å. It is rather problematic to create a sufficient 

number of such configurations at a low Ta concentration. An insufficient number of such frames 

leads either to the divergence of the training process of the neural network, or to the effects of 

“amorphization” of the neural network during its training. We have solved these problems in the 

general case for any alloy where some of the elements have a low concentration. Quick 

convergence of the training process was achieved due to the inclusion of the artificial 

compositions with high concentrations of Ta (up to 15%) in the training datasets. In fact, we 

https://doi.org/10.1016/j.cpc.2020.107206
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included a many fold of other alloys in the dataset, continuously decreasing the concentration of 

Fe, B and Si and increasing it for Ta. 

The final MLIP had the following Root Mean Square Error (RMSE) compared to ab 

initio: energy RMSE/atom=3.5e-03 eV, force RMSE=2.5e-01 eV/A and virial 

RMSE/atom=1.2e-02 eV. 

Fig.1 shows results of MLIP accuracy test. We took 512 atoms in the cell and compared 

ab initio and classical MD. As follows MLIP has ab initio accuracy. Fig.1c illustrates that 

classical molecular dynamics with neural networks allows investigating effect of Ta on local 

order of the melt while QMD does not allow that because of natural computational limitations on 

the quantum molecular dynamic trajectory length.  

Most results discussed below for Fe-B-Si-Ta melts were obtained using classical 

molecular dynamics with MLIP as the interaction potential, taking 5000 atoms in a cell and 

100ps long molecular dynamics trajectories. We also always developed (to improve sampling) 

10 independent trajectories with different random starting atom configurations for each 

simulation.  

 

Experimental methods 

The studied samples with different Ta concentration were obtained by melting the 

corresponding proportions of Fe75B15Si10 and (Fe0.75B0.15Si0.10)96Ta4 ligatures in a protective 

atmosphere of purified helium at temperature of 1650°C for 30 minutes. Fe75Si15B10 and 

(Fe0.75Si0.15B0.1)96Ta4 ligatures were synthesized from powders of carbonyl iron (Ultra High 

Purity 13-2), monocrystalline silicon, amorphous boron and metal Ta in Al2O3 crucibles in an 

induction furnace in vacuum at a temperature of 1700°C and a pressure of 5·10-3 Pa with an 

isothermal exposure of 30 minutes. To homogenize the chemical composition of the obtained 

ligatures, additional remelting was carried out in a Tamman furnace in an argon atmosphere at 

1700°C for 10 minutes, followed by rapid cooling into a copper mold. The chemical composition 

of the samples was controlled by atomic emission spectroscopy (ICP) on a Spectroflame 

spectrometer. 

The study of the crystallization processes of (Fe0.75B0.15Si0.1)100-xTax (x=0-2) melts was 

carried out by the method of differential thermal analysis (DTA) on a high-temperature analyzer 

(ВТА 983), the measurement procedure for which is described in detail in [21], X-ray diffraction 

analysis and metallography. DTA thermograms were obtained in the heating mode at a rate of 

20°C/min from 100°C to 1650°C and subsequent cooling at a rate of 100°C/min. From the 

obtained heating and cooling thermograms, the temperatures of all stages of melting (in the 

heating mode) and crystallization (in the cooling mode) for each alloy were determined, as well 
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as undercoolability values were calculated as the difference between the liquidus temperature 

determined from the heating thermogram and the crystallization onset temperature determined 

from the cooling thermogram. The samples after DTA were subjected to metallographic studies 

and X-ray diffraction analysis. 

Metallographic analysis was carried out using a Neophot 21 optical microscope with 

digital image processing. The samples were pressed into bakelite and ground on diamond wheels 

(with particle sizes from 75 μm to 15 μm), polishing was carried out on cloth with an aqueous 

solution of aluminum oxide (3 and 1 μm). Metallografic sections were etched with a 2% alcohol 

solution of picric acid. 

X-ray diffraction analysis of the obtained alloys was carried out on a diffractometer on a 

θ-θ diffractometer D8 Advance (Bruker AXS) in a parallel beam geometry with Cu-Kα radiation, 

a Goebel parabolic mirror (60 mm) on the primary beam, and a Sol-XE semiconductor Si(Li) 

detector. 

Simulation results 

We studied the structure of undercooled (Fe0.75B0.15Si0.1)-Ta melts near 1 at.% Ta by 

machine learning with deep neural networks and ab initio methods. (In this range of Ta 

concentrations, a maximum is observed on the concentration dependences of viscosity.) Total 

and partial pair radial distribution functions (RDFs) were constructed and the main 

characteristics of the melt local structure were determined: the distances between the nearest 

neighbors as well as the coordination numbers, which are given in Table 1. Based on these data, 

we found the Warren-Cowley parameters, which allow us to analyze the chemical short-range 

order [22, 23]. The total RDFs of the three investigated alloys are practically the same, so Fig. 2a 

shows the total RDF only for the undercooled (Fe0.75B0.15Si0.1)99.5Ta0.5 melt. Despite such a low 

concentration of Ta, the shape of RDF reflects the main features of the total RDFs for the studied 

melts. Fig. 2a shows that the first peak has two arms near the radius of the first coordination 

sphere: more pronounced for r smaller than the radius of the first coordination sphere (R1) and 

less pronounced for r>R1. The formation of the arm at r<R1 is associated with the position of the 

first maxima of the partial RDFs: Fe-B, B-B and Si-B (Fig. 2 a, b, c, d) and at r>R1– the 

interaction with the atoms of the alloying element Ta (Fe-Ta, Si-Ta, Ta-Fe, Ta-Si) (Fig. 2 a, b, d, 

e). For partial RDFs with B and Si, a splitting of the second maximum is observed (Fig. 2c, d). 

This type of RDF indicates the complex nature of the short-range order in the studied 

melts. The introduction of Ta into the Fe-B-Si melt leads to an increase in the range of 

interaction radii of the components, and pair interactions of identical radii are formed. An 

increase in the concentration of Ta in the melt manifests itself in pair partial radial distribution 

functions with Ta (Fig. 2 f, g), the Ta-Ta interaction changes most significantly. 
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The distribution histogram the Warren - Cowley parameters for the (Fe0.75B0.15Si0.1)99Ta1 

melt is shown in Fig. 2 h, i. The Warren-Cowley parameters calculated for the three studied 

compositions with Ta concentrations of 0.5, 1, and 1.5 at.% and the most pronounced 

concentration changes in the pair interactions of atoms are shown in Fig. 3. According to the 

results obtained, a pronounced chemical short-range order is observed in the studied melts. The 

strongest chemical interactions are observed around B and Si atoms. The effective repulsion of B 

and Si atoms, both from each other and from their own kind, leads to the fact that Fe and Ta 

metal atoms predominate in the environment of these atoms. The environment of Fe atoms is 

determined by the well-known effective attraction of Fe and Si, as well as by the strong effective 

attraction between iron and Ta atoms. The environment around Ta atoms is determined by the 

composition of the alloy, the largest differences are associated with the interaction of Ta atoms 

with each other. It can be seen that with an increase in the Ta concentration to more than 1 at.% 

in the melt, the number of Ta atoms near the Ta atoms becomes less than the statistical average; 

effective attraction between Ta atoms transforms into effective repulsion. In addition, from the 

presented data (Fig. 3) it can be seen that the values of the Warren-Cowley parameter for most 

interactions in the melt with 0.5 at.% Ta differ significantly compared to two neighboring 

compositions, and for 1 at.% Ta their maximum or minimum values are observed. The observed 

feature also manifests itself in other characteristics of the short-range order in the studied melts, 

for example, in the radius of the first coordination sphere (Table 1). 

The method of rotational invariants was used for the geometric analysis of the structure 

of the studied melts [24-26]. Presented in Fig. 4 distributions were compared with the values of 

rotational invariants for the main types of close-packed structures, which have the following 

values: for fcc: W6 = -0.01316, q6 = 0.5745; for hcp: W6 = -0.01244, q6 = 0.4847; for the 

icosahedral phase (ico): W6 = -0.1697, q6 = 0.6633 [24-26]. The analysis performed showed that 

the formation of two types of clusters, fcc and ico, is typical for the studied melts in a 

undercooled state. At the minimum Ta concentrations, all types of atoms participate in the 

formation of ico clusters. An increase in Ta concentration leads to the fact that ico-clusters cease 

to form around Ta atoms. 

Thus, an analysis of the structure of undercooled (Fe0.75B0.15Si0.1)-Ta melts showed that at a 

Ta concentration of 0.5 - 1 at.%, there is a sharp change in the chemical short-range ordering in 

the melt, which is associated with a change in the interaction of Ta atoms, which leads to change 

in the nature of cluster formation in the system and should be reflected in the processes of 

structure formation during the melt solidification. 

Experimental results 
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 Characteristic cooling thermograms of the studied (Fe0.75B0.15Si0.1)100-xTax (x=0-2) alloys 

are shown in Fig. 5. It can be seen that the crystallization of the studied melts has a multistage 

character. At the same time, with an increase in the concentration of the alloying element in the 

alloy, a change in the nature of crystallization is observed, and a more significant change in the 

type of thermograms is observed for melts with a Ta concentration of more than 1 at.%. In this 

case, a clearly distinguished first stage of crystallization appears on the cooling thermograms 

(Fig. 5). 

The concentration dependence of the undercoolability value under which the 

crystallization of the melts began is shown in Fig. 6a and has a nonmonotonic character. When 

Ta is alloyed up to 2 at.%, with an increase in the concentration of the alloying element, the 

magnitude of undercoolability decreases slightly. In this case, a local maximum is observed near 

1 at.% Ta. It should be noted that the nature of the concentration dependences of the 

undercoolability value of the studied melts repeats the form of the concentration dependences of 

the kinematic viscosity of these melts [15]: nonmonotonic changes are observed in the region of 

1 at.% Ta (Fig. 6b). At that the liquidus line in the studied concentration range, plotted from 

heating thermograms, practically does not change with an increase in the concentration of the 

alloying element (Fig. 6c). 

The observed features of cooling thermograms and the concentration dependence of 

undercoolability indicate a change in the nature of structure formation. In this regard, to study 

the features of the processes of structure formation, metallographic studies of these alloys 

obtained by cooling from 1650°C at a rate of 100°C/min were carried out. 

The metallographic analysis of the ingots also indicates a complex multiphase 

crystallization of the studied melts. The microstructure of the base alloy, Fe75B15Si10, is quite 

homogeneous and is represented by a large amount of the structure of the eutectoid 

decomposition of the Fe3B boride, which crystallizes first from the melt, and a small fraction of 

the equilibrium eutectic (Fe+Fe2B) (Fig. 7a). An increase in the Ta concentration promotes the 

nucleation of Fe2B crystals. In the structure of the alloy ingot with 1 at.% Ta, large Fe2B 

dendrites are clearly visible (Fig. 7b). In this case, along with the formation of the metastable 

Fe3B boride, which is characteristic of the Fe-B-Si ternary system in the selected concentration 

range, crystallization of the (Fe0.75B0.15Si0.1)99Ta1 melt proceeds with the formation of another 

metastable phase, the Fe2Tа Laves phase. We observe traces of the decomposition of these 

phases in the microstructure of the ingots (Fig. 7 c, d). A further increase in the Ta concentration 

is accompanied by the appearance of FeTaB crystals. A small amount of them is present in an 

ingot with 1.5% tantalum (Fig. 8). In this case, the structure of the two-phase component 

occupying the space between the Fe2B and FeTaB crystals changes (Fig. 8). And in an ingot with 
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2 at.% Ta, the number of FeTaB crystals noticeably increases (Fig. 8). The morphology of these 

crystals indicates that they nucleate directly from the melt. 

The metallographic analysis of ingots of Fe-B-Si alloys alloyed with Ta up to 2 at.% 

showed that an increase in the concentration of Ta in the alloy is accompanied by a change in the 

conditions for the nucleation and growth of the Fe3B boride. In this case, for an alloy with 1 at.% 

Ta the crystallization ability of the Fe3B boride decreases, and another metastable Fe2Ta phase is 

formed. This conclusion is in good agreement with the results obtained in ab-initio molecular 

dynamics in the study of rotational invariants. 

Thus, the studies performed have shown that during the crystallization of a melt with 1 

at.% Ta competition at nucleation of two phases is observed. Such a change in the process of 

structure formation with a change in the Ta concentration in the alloy, together with the data on 

viscosity, undercoolability and the results of a structural analysis of undercooled melts, indicates 

that in the system under study, the alloy near 1 at% Ta will exhibit the best tendency to bulk 

amorphization. 

To study the tendency of these melts to amorphization rapidly quenched ribbons were 

obtained by the method of melt spinning on a rapidly rotating copper disk from various 

quenching temperatures. The cooling rate varied from 105 to 106 K/s, while the thickness of the 

ribbons varied from 40 to 120 μm. An analysis of the rapidly quenched ribbons obtained showed 

that completely X-ray amorphous ribbons were obtained for the (Fe0.75B0.15Si0.1)99Ta1 alloy 

during its quenching from 1600°C; the thickness of the resulting ribbons was ~40 μm. 

Discussion 

The conducted studies of rapidly quenched rods and ribbons showed that the introduction 

of Ta increases the tendency of Fe-B-Si alloys to amorphization, but does not lead to their 

complete bulk amorphization. The (Fe0.75B0.15Si0.1)100-xTax (x=0-2) alloys begin to amorphize at 

cooling rates of 104 K/s. Complete amorphization is observed only for the (Fe0.75B0.15Si0.1)99Ta1 

alloy upon ultrafast quenching (105K/s) from 1600°C. Higher amorphization ability of the alloy 

alloying with 1 at. % Ta, in comparison with the other investigated alloys (0.5; 0.75; 1.25; 1.5 

and 2 at.%) is associated with the features of the structural state of this melt before solidification. 

Using innovative approaches in modeling the structure of undercooled Fe-B-Si melts alloying 

with small additions of Ta (up to 2 at.%) by machine learning with deep neural networks and ab 

initio methods, we were able to show that tantalum does not change the main features of the 

structure and interatomic interaction in the Fe-B-Si melt, which ensure its high amorphization. 

These include the small radius of Fe-B interatomic interaction and the effective attraction 

between Fe and Si atoms. However, the introduction of Ta, the ionic radius of which exceeds the 

radii of Fe and Si, in small concentrations leads to an increase in the range of interaction radii of 
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the components, which contributes to an increase in the amorphization of these melts compared 

to Fe-B-Si. 

In the system under study, the concentration change of most pair interactions is observed 

at 1 at.% Ta. So near 1 at.% Ta, there is a significant difference in the Warren-Cowley 

parameters, compared with alloys alloying 0.5 at.% Ta, for the following interactions Fe-Si, Fe-

Ta, B-Ta, Si-Fe, Si-B, Si -Si, Si-Ta, Ta-B, Ta-Si. Moreover, at 1 at.% Ta the maximum effective 

repulsion between the Ta atoms is observed. 

When analyzing the geometric arrangement of atoms using rotational invariants, it was 

revealed that at 1 at.% Ta, the cluster formation processes change, in which Ta atoms cease to be 

the centers for the formation of icosahedral clusters, but continue to contribute to the formation 

of crystal structures. The results obtained showed a good agreement between the change in the 

tendency to cluster formation in the system under study during modeling and the processes of 

nonequilibrium crystallization, which is observed when (Fe0.75B0.15Si0.1)100-xTax (x=0-2) melts are 

cooled at low rates. At low Ta concentrations, atoms of all kinds are involved in the processes of 

cluster formation, which leads to the formation of a solid solution based on Fe and Fe3B, Fe2B 

borides. For a melt with 1 at.% Ta, the probability of formation of fcc and ico clusters is the 

same, which corresponds to the features of structure formation. For the melts with 1 at.%Ta, 

there is a change in the conditions for the nucleation and growth of the Fe3B boride and the 

formation of the metastable Fe2Ta Laves phase. And in the alloy with 1.5 at.% Ta, in which the 

formation of fcc clusters around Ta dominates in the undercooled state, a stable (equilibrium) 

FeTaB boride begins to form during crystallization. 

This conclusion is well confirmed by the results of the study of rapidly quenched ribbons 

of (Fe0.75B0.15Si0.1)100-xTax (x=0-2) alloys. 

The observed changes in the chemical interaction in the Fe-B-Si system upon alloying 

with small Ta concentrations, as well as the tendency to cluster formation and structure 

formation processes are in good agreement with the concentration behavior of the 

undercoolability value. Despite the fact that the crystallization of melts proceeds in a container 

according to a heterogeneous nucleation mechanism, we observe a maximum at 1 at.% Ta on the 

concentration dependence of undercoolability. Thus, the results obtained in this work make it 

possible to use an approach based on the study of the concentration dependences of 

undercoolability and structure formation processes to select the composition of alloys with the 

highest tendency to amorphization. 

Conclusions 

We were looking experimentally and theoretically for the optimal Ta-doping of 

intermetallic compounds based on Fe-B-Si matrix. So, we studied the structure of undercooled 
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(Fe0.75B0.15Si0.1)100-xTax (x=0-2) melts, undercoolability and solidification processes in a wide 

range of cooling rates. For (Fe0.75B0.15Si0.1)100-xTax (x=0-2) it was shown that at a Ta 

concentration of 1 at.%, a sharp change in the chemical short-range order occurs in the melt 

associated with a modification in the interaction of Ta atoms which leads to a change in the 

nature of cluster formation in the system. The melts with a Ta concentration of 1 at.% show the 

greatest tendency to undercoolability. Alloying with Ta promotes the formation of primary 

crystals of Fe2B, and at a concentration of more than 1.5 at.% Ta, also of FeTaB. In this case, 

near 1 at.% Ta, the crystallization of the melt proceeds with the formation of two intermediate 

metastable intermetallic phases Fe3B and Fe2Ta Laves phase. It has been established that the 

melt with a Ta concentration of 1 at.% exhibits the greatest tendency to amorphization under 

conditions of rapid quenching. 

To analyze theoretically the structure of undercooled Fe-B-Si-Ta melts at very small 

concentrations of Ta we developed a machine learning interaction potential (MLIP) on top of a 

database prepared with the help of ab initio calculations. MLIP training with conventional 

methods tends to diverge due to the low concentration of Ta and natural lack of training 

configurations with short range interacting Ta atoms. We have developed a general way to 

ensure the convergence of the MLIP neural network training process for alloys with a low 

concentration of one or more components. For Fe-B-Si-Ta system in hand it was achieved by the 

inclusion of the high entropy compositions with large concentrations of Ta in the training 

datasets. 
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Figure 1. MLIP accuracy test. Radial distribution functions (rdf) of (Fe0.75B0.15Si0.10)98.5Ta1.5 melt 

at temperature 1400K and pressure 1 Bar obtained using ab initio quantum molecular dynamics 

(QMD) and classical molecular dynamics with many body machine learning potential (MLIP) 

based on deep neural networks. Panel (a) shows total rdf, (b) – partial rdf describing Fe-B, i.e., 

distribution of Fe around B and (c) partial Ta-Ta rdf where “short traj” means 10ps long QMD 

trajectories and “long traj” corresponds to 100 ps with MLIP. 



 15 

 

 (Fe0,75B0,15Si0,1)99,5Ta0.5 (Fe0,75B0,15Si0,1)99Ta1 (Fe0,75B0,15Si0,1)98,5Ta1.5 
i-j rij, Å Zij rij, Å Zij rij, Å Zij 

tot-tot 2.41 12.98 2.41 12.87 2.41 12.98 
Fe-tot 2.43 13.56 2.43 13.57 2.43 13.54 
Fe-Fe 2.45 10.11 2.45 10.19 2.45 10.11 
Fe-B 2.07 1.65 2.07 1.67 2.07 1.66 
Fe-Si 2.37 1.45 2.37 1.51 2.37 1.46 
Fe-Ta 2.67 0.28 2.67 0.17 2.67 0.28 
B-tot 2.07 9.10 2.07 9.01 2.07 9.08 
B-Fe 2.07 8.22 2.07 8.35 2.07 8.26 
B-B 1.81 0.38 1.81 0.34 1.79 0.36 
B-Si 2.25 0.29 2.25 0.27 2.23 0.27 
B-Ta 2.45 0.22 2.45 0.17 2.45 0.22 
Si-tot 2.37 12.40 2.37 12.29 2.37 12.42 
Si-Fe 2.37 10.99 2.37 11.22 2.37 11.03 
Si-B 2.25 0.44 2.25 0.41 2.23 0.41 
Si-Si 2.71 0.64 2.71 0.58 2.71 0.62 
Si-Ta 2.77 0.24 2.77 0.15 2.77 0.24 
Ta-tot 2.65 17.13 2.67 17.21 2.67 17.20 
Ta-Fe 2.67 13.31 2.67 13.27 2.67 13.37 
Ta-B 2.45 2.07 2.45 2.39 2.45 2.06 
Ta-Si 2.77 1.52 2.77 1.50 2.77 1.52 
Ta-Ta 3.13 0.13 3.07 0.04 3.15 0.16 

 

Table 1. Distances between nearest neighbors (ri−j) and coordination numbers (Zi−j) in 

(Fe0.75B0.15Si0.10)-Ta melts at 1400 K. 
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Figure 2. Total and partial RDFs extracted from MLIP simulations for (Fe0.75B0.15Si0.10)99.5Ta0.5 

(a - e), (Fe0.75B0.15Si0.10)99Ta1 (f) and (Fe0.75B0.15Si0.10)98.5Ta1.5 (g) melts at 1400 K and Warren-

Cowley SRO parameters for (Fe0.75B0.15Si0.10)99Ta1 (h, i). 
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Figure 3. The Warren-Cowley SRO parameters in (Fe0.75B0.15Si0.10)-Ta melts. 
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Figure 4. Correlators (joint probability density function) of the bond-orientational order 

parameters BOOP, W6 and q6, for each atom type in the (Fe0.75B0.15Si0.10)-Ta melts. 
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Figure 5. Cooling thermograms of the Fe0.75B0.15Si0.1)100-xTax (x=0-2) melts. 
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Figure 6. The concentration dependences of undercoolability under cooling from 1650°C at 
100°C/min (a), kinematic viscosity (b) at different temperatures: ♦ - 1400°C, ￭- 1500°C, ● - 
1600°C [15] and melting points (liquidus temperatures) determined by heating DTA plot at 20 
°C/min (c) for (Fe0.75B0.15Si0.10)100-xTax(x = 0-2) melts. 
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Figure 7. Microstructure of ingots of Fe75B15Si10 (a) and (Fe0.75B0.15Si0.10)99Ta1 (b-d) obtained by 
cooling from 1650°C at 100°C/min. 
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Figure 8. Microstructure of ingots of (Fe0.75B0.15Si0.10)98.5Ta1.5 (a, b) and (Fe0.75B0.15Si0.10)98Ta2 (c, 
d) obtained by cooling from 1650°C at 100°C/min. 
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SUPPLEMENTARY MATERIAL 
Machine learning of neural network interaction potentials 

for doped alloys 
 

When studying alloyed alloys, where not all, but only small concentrations of alloying 
components are important, the traditional MLIP machine learning procedure usually does not 
converge (or requires the creation of an inadequately overloaded training database). The fact is 
that deep learning neural networks contain parameters that characterize the interaction of all 
types of atoms, including alloying ones. These atoms at low concentrations rarely approach each 
other in an alloy, but part of the neural network is reserved for describing their interaction and 
must be trained. 

There is a general approach to solving this problem. It is necessary in a certain way to 
add to the training database a small number of "high-entropy" configurations with a high 
concentration of alloying elements, where these atoms approach each other with a fairly high 
probability. This procedure must be implemented carefully, modifying the database “uniformly” 
along a “continuous path” in the concentration space, starting in the doping region and ending in 
the high-entropy region, see Fig. 1s. 

 

Figure 1s. Trinity chart. To determine the position of the alloy for a given composition, one need 
to find the content point of the component on the side and draw a line parallel to the other side, opposite 
the vertex of the triangle for this component. Point O is given as an example. The area of alloyed alloy A-
B-C is schematically highlighted in red, where C is the doping component. The arrows towards the high-
entropy alloys (HEA) area schematically show the directions in which the database needs to be expanded 
for MLIP training. 

 

Training the MLIP for FeBSiTa we have used the “hybrid descriptor” consisting of two 
descriptors: se_e2_a and se_e3_e [1]. They map atomic configuration to a set of symmetry 
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invariant features. The descriptors were constructed from all information (both angular and 
radial) of atomic configurations. The first descriptor took the distance between atoms as input 
while the second one adopted angles between two neighboring atoms as input. For se_e2_a 
descriptor we took rcut_smth=2.0 (A) and rcut=7.0 (A), while for se_e3_e we chose 
rcut_smth=1.5 (A) and rcut=4.0 (A). The upper cut-off for “angular” descriptor was taken 
relatively small because interaction between atoms becomes isotropic over long distances. The 
deep neural network for se_e2_a descriptor consisted of hidden layers with [25,50,100] neurons 
and with 16 angular neurons. Deep layers of se_e3_e included [10,20,40] neurons at the hidden 
layers. The fitting neural network producing the force-field had [240, 240, 240] neurons on the 
hidden layers. The main part of the input-file for MLIP training is given below: 

"model": { 
 "type_map": ["Fe", "B", "Si", "Ta"], 
        "descriptor" :{    
"type": "hybrid", 
            "list" : [ { 
      "type":         "se_e2_a", 
          "sel":  [150, 50, 50, 40], 
      "rcut_smth": 2.0, 
      "rcut":  7.0, 
      "neuron": [25, 50, 100], 
      "resnet_dt": false, 
      "axis_neuron": 16, 
      "seed":  16258,    
}, 
                { 
      "type" : "se_e3", 
      "sel":  [35, 20, 15, 15], 
      "rcut_smth": 1.5, 
      "rcut":  4.0, 
      "neuron":         [10,20,40], 
      "resnet_dt": false, 
      "seed":  23096, 
      "_comment": " that's all"  
                } 
            ] 
        }, 
 "fitting_net" : { 
     "neuron":  [240, 240, 240], 
     "resnet_dt": true, 
     "seed":  29621, 
     "_comment":  " that's all" 
 }, 
    }, 
 
Developing a proper MLIP for a new system takes a lot of effort, especially for a multi-

component system. For the training dataset, there should be many considerations.  
We had about 30000 QMD (quantum molecular dynamics) frames used for investigation 

of the radial distribution functions in the melt. These frames we took as the initial training 
dataset (75% for training and 25% for validation) for MLIP. For example, 
Fe382B76Si51Ta3, nfr=1833 
Fe379Ta3Nb3B76Si51, nfr=4348 
Fe380Ta5B76Si51, nfr=2510 
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Fe378B76Si50Ta8, nfr=22738 
Fe380Ta5B76Si51, nfr4062 
Fe388B74Si50, nfr=849 
Fe385B76Si51, nfr=1026 
… 
Where “nfr” is the number of frames. 

The rest part of the training dataset was obtained using the different procedure with 
the help of DPGEN [2]. 

Description of all the details of the DPGEN algorithm is a long and may be unnecessary 
story because the procedure we have used to build the training dataset mostly follows the 
DPGEN-paper [2] with the provided reference also in the body of the paper. So below we sketch 
only some particularly important points.  

DPGEN is a software that allows automatic and highly optimised training of DEEPMD 
based MLIP if provided some initial training-validation dataset (in our case we take QMD data 
as this initial dataset). Usually, 4 replicas of DEEPMD MLIP are trained at the same time with 
independent random initialization of the neural networks before the start of the training. DPGEN 
typically runs 4 independent classical MD trajectories on LAMMPS (for each MLIP) and selects 
on fly “bad frames” for DFT calculations and final extension of the training dataset. Well trained 
MLIP should not strongly depend on the random initialization at the start of the training. So bad 
frames typically have large dispersion of forces evaluated by an ensemble average over 4 
independent MLIP. “Large dispersion” criteria are flexible input parameters of DPGEN that 
users usually manually tune during different stages of DPGEN run [2]. Usually it implies, “much 
larger than the expected accuracy of MLIP compared to DFT”.  

DPGEN also contains the flexible engine to start automatically DEEPMD MLIP training, 
LAMMPS MD and a DFT (VASP in our case) on a supercomputer and process the results (e.g., 
extract energies, forces and virials and rebuild the training dataset).  

We produced for the training dataset by DPGEN about 30000 frames with 512 atoms 
each. Classical LAMMPS MD simulations in DPGEN were performed using NPT Nosé–Hoover 
thermostat at pressure range 1 Pa – 10 GPa and temperature range 1000-2000 (K). The trajectory 
length of each LAMMPS MD run was 20000 steps with timestep=2 fs. For example, we 
investigated the following compositions 
Fe378B76Si50Ta8, nfr=119, 
Fe360B76Si51Ta25, nfr=242, 
Fe309B76Si51Ta76, nfr=3798, 
… 

 
To validate the performance of MLIP, except for RDF and RMSE which were 

provided in the manuscript, we below include a graph showing the energies and forces along x, y 
and z directions from DFT based AIMD simulations and MLIP based classical MD simulations, 
see Fig. 2s. 
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Figure 2s. Accuracy of MLIP compared to DFT. The test is performed over all the training data. 

 

About Cooling procedure 

For MD simulation, normally the melt-quenching method should be adopted to obtain the 
amorphous structures. In addition, more details below are included for MD simulation, such as 
the ensemble used, the cooling rate, the system size, ect.. 

Typical experimental rates of cooling 106 – 107 K/s, which are 5 orders of magnitude 
lower than the effective cooling rate at the computer modeling. In classical MD with MLIP we 
had 500 particles and the cooling rate 7.5*1011 K/s. In QMD we had 512 atoms and the cooling 
rate 5*1013 K/s. In both cases the cooling was started from temperature T=2000 (K) and was 
performed using the Nosé–Hoover NPT thermostat. After the end of cooling, we switched on 
NVT Nosé–Hoover thermostat to collect observables. 
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