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Generating graphs randomly1

Catherine Greenhill

Abstract

Graphs are used in many disciplines to model the relationships that exist
between objects in a complex discrete system. Researchers may wish to compare
a network of interest to a “typical” graph from a family (or ensemble) of graphs
which are similar in some way. One way to do this is to take a sample of several
random graphs from the family, to gather information about what is “typical”.
Hence there is a need for algorithms which can generate graphs uniformly (or
approximately uniformly) at random from the given family. Since a large sample
may be required, the algorithm should also be computationally efficient.

Rigorous analysis of such algorithms is often challenging, involving both
combinatorial and probabilistic arguments. We will focus mainly on the set
of all simple graphs with a particular degree sequence, and describe several
different algorithms for sampling graphs from this family uniformly, or almost
uniformly.

1 Introduction

The modern world is full of networks, and many researchers use graphs to model
real-world networks of interest. When studying a particular real-world network
it is often convenient to define a family, or ensemble, of graphs which are similar
to the network in some way. Then a random element of the ensemble provides a
null model against which the significance of a particular property of the real-world
model can be tested. For example, a researcher may observe that their network
contains what looks like a large number of copies of a particular small subgraph H,
also called a “motif” in network science. If this number is large compared to the
average number of copies of H in some appropriate ensemble of graphs, then this
provides some evidence that the high frequency of this motif may be related to the
particular function of the real-world network. (For more on network motifs see for
example [94].)

In this setting, the null model is a random graph model, and it may be possible
to analyse the relevant properties using probabilistic combinatorics. Where this is
not possible, it is very convenient to have an algorithm which provides uniformly
random (or “nearly” uniformly random) graphs from the ensemble, so that the aver-
age number of copies of H can be estimated empirically. Such an algorithm should
also be efficient, as a large sample may be needed. (In this survey, “efficient” means
“computationally efficient”.) Another motivation for the usefulness of algorithms
for sampling graphs can be found in the analysis of algorithms which take graphs as
input, especially when the worst-case complexity bound is suspected to be far from
tight in the average case.

The aim of this survey is to describe some of the randomized algorithms which
have been developed to efficiently sample graphs with certain properties, with partic-
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ular focus on the problem of uniformly sampling graphs with a given degree sequence.
We want to understand how close the output distribution is to uniform, and how
the runtime of the algorithm depends on the number of vertices. Hence we restrict
our attention to algorithms which have been rigorously analysed and have certain
performance guarantees. In particular, statistical models such as the exponential
random graph model (see for example [25, 69, 85, 118]), will not be discussed. Al-
though we mainly restrict our attention to simple, undirected graphs, most of the
ideas discussed in this survey can also be applied to bipartite graphs, directed graphs
and hypergraphs, which are all extremely useful in modelling real-world networks.

It is still an open problem to find an efficient algorithm for sampling graphs with
an arbitrary degree sequence. For bipartite graphs, however, the sampling prob-
lem was solved for arbitrary degree sequences by Jerrum, Sinclair and Vigoda [78],
as a corollary of their breakthrough work on approximating the permanent. See
Section 6.2 for more detail.

This is not a survey on random graphs. (Our focus is on how to randomly sample
a graph from some family efficiently, from an algorithmic perspective, rather than on
the properties of the resulting random graph.) However, some techniques are useful
both as tools to analyse random graphs and as procedures for producing random
graphs. There are many texts on random graphs [17, 52, 73], as well as Wormald’s
excellent survey on random regular graphs [120].

Before proceeding, we remark that in network science, the phrase “graph sam-
pling algorithm” can refer to an algorithm for sampling vertices or subgraphs within
a given (huge) graph (see for example [116]). For this reason, we will avoid using
this phrase and will instead refer to “algorithms for sampling graphs”.

2 Preliminaries and Background

2.1 Notation and assumptions

Let [a] = {1, 2, . . . , a} for any positive integer a.
A multigraph G = (V,E) consists of a set of vertices V and a multiset E of edges,

where each edge is an unordered pair of vertices (which are not necessarily distinct).
A loop is an edge of the form {v, v} and an edge is repeated if it has multiplicity
greater than one. A graph is a simple multigraph: that is, a multigraph with no
loops and no repeated edges. All graphs are finite and labelled, so V is a finite
set of distinguishable vertices. A directed multigraph is defined similarly, except
that edges are now ordered pairs. A directed graph is a directed multigraph which
is simple, which means that it has no (directed) loops and no repeated (directed)
edges.

Throughout, n will be the number of vertices of a graph, unless otherwise spec-
ified. We usually assume that the vertex set is [n].

Standard asymptotic notation will be used, and asymptotics are as n→ ∞ unless
otherwise specified. Let f , g be real-valued functions of n.

• Write f(n) = o(g(n)) if limn→∞ f(n)/g(n) = 0.

• Suppose that g(n) is positive when n is sufficiently large. We write f(n) =
O(g(n)) if there exists a constant C such that |f(n)| ≤ C g(n) for all n suffi-
ciently large.
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• Now suppose that f(n) and g(n) are both positive when n is sufficiently large.
If f = O(g) and g = O(f) then we write f(n) = Θ(g(n)).

We sometimes write ≈ to denote an informal notion of “approximately equal”. In
pseudocode, we write “u.a.r.” as an abbreviation for uniformly at random.

When calculating the runtime of algorithms, we use the “Word RAM” model of
computation [51, 66]. In this model, elementary operations on integers with O(log n)
bits can be performed in unit time.

Randomised algorithms require a source of randomness. We assume that we
have a perfect generator for random integers uniformly distributed in {1, 2, . . . , N}
for any positive integer N . Furthermore, we assume that this perfect generator takes
unit time whenever N has O(log n) bits.

2.2 Which graph families?

It is very easy to sample from some graph families:

• Let S(n) denote the set of all 2(n
2
) graphs on the vertex set [n]. We can sample

from G(n) very easily: flip a fair coin independently for each unordered pair
of distinct vertices {j, k}, and add {j, k} to the edge set if and only if the
corresponding coin flip comes up heads. Every graph on n vertices is equally
likely, so this gives an exactly uniform sampling algorithm with runtime O(n2).

• Next we might consider S(n,m), the set of all
((n

2
)

m

)
graphs on the vertex

set [n] with precisely m edges. A uniformly random graph from this set can
be generated edge-by-edge, starting with the vertex set n and no edges. At
each step, choose a random unordered pair of distinct vertices {j, k}, without
replacement, and add this edge to the graph. When the graph has m edges,
it is a uniformly random element of S(n,m). This algorithm has runtime
O(n2). Letting Gi denote the graph obtained after i edges have been added,
the sequence G0, G1, . . . , Gm is known as the random graph process, with Gi a
uniformly-random element of S(n, i) for all i ∈ [m].

A uniform element from S(n,m) corresponds to the Erdős–Rényi random graph
G(n,m), while the binomial random graph model G(n, p) is obtained by adapting the
process for sampling from S(n) described above, replacing the fair coin by a biased
coin which comes up heads with probability p. These two random graph models
have been the subject of intense study for more than 60 years, see for example [17,
46, 52, 61, 73]. However, since polynomial-time sampling is easy for both of these
families (as described above), we will say no more about them.

Instead, our focus will be on algorithms for sampling graphs with a given degree
sequence. More generally, we might be interested in bipartite graphs, directed graphs
or hypergraphs with a given degree sequence. Alternatively, we may want to sample
graphs with a given degree sequence and some other property, such as connectedness
or triangle-freeness. There are many variations, but our main focus will be on
sampling from the set G(k) defined below.
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Definition 2.1 A graph G on vertex set [n] has degree sequence k = (k1, . . . , kn) if
degG(j) = kj for all j ∈ [n], where degG(j) denotes the degree of j in G. Let G(k)
denote the set of all graphs with degree sequence k. A sequence k = (k1, . . . , kn) of
nonnegative integers with even sum is graphical if G(k) is nonempty. A graph with
degree sequence k is a realization of k.

We do not assume here that the elements of k are in non-ascending order, though
we will usually assume that all entries of k are positive. Unlike the binomial ran-
dom graph model G(n, p), the edges of a randomly-chosen element of G(k) are not
independent. This lack of independence makes sampling from G(k) a non-trivial
task.

If k = (k, k, . . . , k) has every entry equal to k, then we say that k is regular. The
set of all k-regular graphs on the vertex set [n] will be denoted by G(n, k) instead
of G(k).

We close this subsection with some more comments on graphical degree se-
quences. The characterisations of Erdős and Gallai [38] and Havel and Hakimi [68,
67] both give algorithms which can be used to decide, in polynomial time, whether
a given sequence is graphical. The Erdős–Gallai Theorem says that if k1 ≥ · · · ≥ kn
then k is graphical if and only if

∑n
j=1 kj is even and

p∑

j=1

kj ≤ p(p− 1) +
n∑

j=p+1

min{kj , p}

for all p ∈ [n]. To avoid trivialities, we will always assume that the sequence k is
graphical. The Havel–Hakimi characterisation also assumes that entries of k are in
non-decreasing order, and states that k is graphical if and only if

(k2 − 1, . . . , kk1+1 − 1, kk1+2, . . . , kn)

has no negative entries and is graphical. This leads to a greedy algorithm to con-
struct a realisation of k in runtime O(n2): join vertex 1 to each of vertices 2,. . . ,
k1+1, delete vertex 1, reduce the target degree of vertices 2, . . . , k1 +1 by 1, sort the
new degree sequence into nonincreasing order if necessary, and recurse. The runtime
of this greedy algorithm is O(n2).

2.3 What kind of sampling algorithm?

To be more precise about our goals, we need some definitions. Let (Ωn)n∈I be
a sequence of finite sets indexed by a parameter n from some infinite index set I,
such as I = Z+ or I = 2Z+. Asymptotics are as n tends to infinity along elements
of I. We assume that |Ωn| → ∞ as n→ ∞.

The reason that we consider a sequence of sets, rather than just one set, is that it
makes no sense to say that the runtime of an algorithm is polynomial for a particular
set Ω. If the runtime of an algorithm for sampling from Ω is T , then we could say
that this is a constant-time algorithm with constant T , but then we learn nothing
about how long the algorithm might take when given a different set as input. Having
said that, in our notation we often drop the sequence notation and simply refer to
Ωn.
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As a general rule, we say that a (uniform) sampling algorithm for Ωn is efficient
if its runtime is bounded above by a polynomial in log(|Ωn|), as it takes log(|Ωn|)
bits to describe an element of Ωn. However, the runtime of the algorithm may have a
deterministic upper bound, or it may be a random variable, leading to the following
paradigms:

• A Monte Carlo algorithm is a randomised algorithm which is guaranteed to
terminate after some given number of steps, but has some probability of incor-
rect output. (The probability of incorrect output should be small.) A Monte
Carlo sampling algorithm for Ωn is efficient if its runtime is bounded above by
a polynomial in log(|Ωn|).

• A Las Vegas algorithm is a randomised algorithm which is guaranteed to pro-
vide correct output with probability 1, but may have no deterministic upper
bound on its running time. A Las Vegas sampling algorithm for Ωn is efficient
if its expected runtime is bounded above by a polynomial in log(|Ωn|).

Next, we focus on the output of the algorithm, and give three different definitions
of “close to uniform”. First we need a notion of distance for probability distributions.

Definition 2.2 Let σ and π be two probability distributions on the finite set Ω.
The total variation distance between σ and π, denoted dTV (σ, π), is given by

dTV (σ, π) = 1
2

∑

x∈Ω
|σ(x) − π(x)| = max

S⊆Ω
|σ(S) − π(S)|.

Here σ(S) =
∑

x∈S σ(x) for any event S ⊆ Ω, and similarly for π(S).

Suppose that some sampling algorithm over Ωn has output distribution σn, and
let πn denote the uniform distribution over Ωn, for any n ∈ I.

• If σn = πn for all n ∈ I then we say that the algorithm is a uniform sampling
algorithm or uniform sampler.

• If limn→∞ dTV (σ, π) = 0 then we say that the algorithm is an asymptotically
uniform sampler. In this situation it is usually not possible to increase the
accuracy by running the algorithm for longer, as the total variation distance
depends only on n.

• If dTV (σn, πn) < ε for some positive constant ε then we say that the algorithm
is an almost uniform sampler, and that the output is ε-close to uniform. Often,
ε is provided by the user, and higher accuracy (smaller ε) can obtained at the
cost of a longer runtime.

The Markov chain approach to sampling, when successful, provides an algorithm
called an FPAUS. See for example [74, Chapter 3].

Definition 2.3 Let (Ωn)n∈I be a sequence of finite sets indexed by a parameter n
from some infinite index set I, such that |Ωn| → ∞ as n → ∞. A fully-polynomial
almost uniform sampler (FPAUS) for sampling from Ωn is an algorithm that, with
probability at least 3

4 , outputs an element of Ωn in time polynomial in log |Ωn| and
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log(1/ε), such that the output distribution is ε-close to the uniform distribution on
Ωn in total variation distance. (That is, dTV (σn, πn) < ε where σn is the output
distribution and πn is the uniform distribution on Ωn.)

If Ωn = G(k) for some graphical sequence k = (k1, . . . , kn) then log |Ωn| =
O(M logM), where M is the sum of the entries of k. This can be proved using
the configuration model: see (6.4). So an FPAUS for G(k) must have running time
bounded above by a polynomial in n and log(1/ε), since M ≤ n2.

Sampling and counting are closely related, and an algorithm for one problem can
often be transformed into an algorithm for the other. While our focus is firmly on
sampling, we will also need the following definition which describes a good approx-
imate counting algorithm.

Definition 2.4 Let (Ωn)n∈I be a sequence of finite sets indexed by a parameter n
from some infinite index set I, such that |Ωn| → ∞ as n → ∞. A fully-polynomial
randomised approximation scheme (FPRAS) for Ωn is an algorithm which accepts
as input a parameter ε > 0 and outputs an estimate X for |Ωn| such that

Pr
(

(1 − ε)|Ωn| ≤ X ≤ (1 + ε)|Ωn|
)
≥ 3

4
,

with runtime polynomial in log |Ωn| and ε−1.

The probability in this definition can be easily increased from 3
4 to 1 − δ, for

any fixed δ ∈ (34 , 1), by obtaining O(log δ−1) estimates and taking the median [105,
Lemma 2.1].

Before moving on, we say a little more about the connection between sam-
pling and counting. Jerrum, Valiant and Vazirani [79] proved that for self-reducible
problems, polynomial-time approximate counting is equivalent to polynomial-time
almost-uniform sampling. Without going into too much detail, a problem is self-
reducible if the solutions for a given instance can be generated recursively using
a small number of smaller instances of the same problem. For example, consider
the set M(G) of all matchings (of any size) in a graph G. Remove the edges of G
one-by-one (in lexicographical order, say) to form the sequence

G = Gm > Gm−1 > · · · > G1 > G0 = (V, ∅).

Then |M(G0)| = 1 and hence |M(G)| =
∏m
j=1 |M(Gj)|/|M(Gj−1)|. The j’th ratio

is the inverse of the probability that ej 6∈M , whereM is a matching chosen uniformly
at random from M(Gj) and ej is the unique edge in E(Gj) \ E(Gj−1). If we can
sample almost-uniformly from the sets M(Gj) to sufficient accuracy then estimates
for these probabilities can be multiplied together to provide a good estimate for
1/|M(G)|. In this way, approximate counting can be reduced to almost-uniform
sampling. See [74, Chapter 3] for full details.

For sampling graphs, the situation is a little more complicated. Erdős et al [41]
showed that the problem of sampling graphs, or directed graphs, with given degrees
can be made self-reducible by supplying as input a small set of forbidden edges,
and sampling from the set of graphs (or bipartite graphs, or directed graphs) with
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specified degrees which avoid the forbidden edges. Using the fact that directed
graphs can be modelled as bipartite graphs which avoid a given perfect matching,
the set of forbidden edges can be taken to be a star (for undirected graphs) or the the
union of a star and a perfect matching. We remark that the exact counting problem
(given a graphical sequence k, calculate |G(k)|) is not known to be #P-complete,
and similarly for bipartite or directed variants.

2.4 Sampling graphs with given degrees: an overview

We assume that for all n in some infinite index set I, we have a graphical degree
sequence k(n) = (k1(n), . . . , kn(n)). The length of k(n) is n, and the elements of
k(n) might themselves be functions of n. Our sequence (Ωn)n∈I of sets (as discussed
in the previous subsection) is given by taking Ωn = G

(
k(n)

)
. From now on, we

simply write k = (k1, . . . , kn) for the degree sequence, but we should remember that
in fact we have a sequence of degree sequences, indexed by n.

The maximum entry in a degree sequence k is denoted kmax. Let M =
∑

j∈[n] kj
be the sum of the degrees. Then m = M/2 the number of edges of any graph in
G(k).

There are a few different methods for sampling graphs with given degrees (re-
stricted to algorithms which can be rigorously analysed). We outline the main
approaches here, and go into more detail in the subsequent sections.

• The configuration model was introduced by Bollobás [16] in 1980, as a con-
venient way to calculate the probability of events in random regular graphs.
The model can be used as an algorithm for sampling uniformly at random
from G(k). However, the expected runtime is high unless the degrees are very
small: specifically, k = O(

√
log n) in the regular case.

• McKay and Wormald’s switchings-based algorithm [91] from 1990 performs
(exactly) uniform sampling from G(k) in expected polynomial time, for a
much wider range of degrees than the algorithm arising from the configuration
model, namely kmax = O(M1/4). Gao and Wormald [59] and Arman, Gao and
Wormald [5] have extended and improved the McKay–Wormald algorithm,
allowing it to apply to a wider range of degrees and making it more efficient.
These algorithms are fast, but a little complicated and difficult to implement.
See the end of Section 5.1.

• Another approach is to use a Markov chain with uniform stationary probability
over a state space G′(k) which contains G(k). If the Markov chain converges
rapidly to its stationary distribution, and each step of the Markov chain can be
implemented efficiently, then this gives an FPAUS for G′(k). In 1990, Jerrum
and Sinclair [76] described and analysed a Markov chain which samples from a
set G′(k) of graphs with degree sequence close to k. The Jerrum–Sinclair chain
is efficient only when G(k) forms a sufficiently large fraction of G′(k). When
this condition on G(k) holds, rejection sampling can be used to restrict the
output of the chain to G(k). The requirement that |G(k)|/|G′(k)| is sufficiently
large gives rise to a notion of stability of degree sequences. Another well-
studied Markov chain, the switch chain, has state space G(k) and thus avoids
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rejection sampling. Most proofs in this area use Sinclair’s multicommodity
flow method [104], and the resulting bounds, when polynomial, tend to be
rather high-degree and are not believed to be tight.

• In 1999, Steger and Wormald [106] presented an algorithm for performing
asymptotically uniform sampling for k-regular graphs. Their aim was to pro-
vide an algorithm which is both genuinely fast (runtime O(k2n) when k is a
small power of n) and easy to implement. While the idea for the algorithm
is motivated by the bounded-degree graph process [101], the algorithm is pre-
sented as a modification of the configuration model. We also describe exten-
sions and enhancements by Kim and Vu [82] and Bayati, Kim and Saberi [7]:
in particular, Bayati et al. [7] used sequential importance sampling to pro-

vide an algorithm which is almost an FPAUS, when kmax = O(M
1

4
−τ ) for any

constant τ > 0.

The configuration model is described in Section 3, followed in Section 4 by the
sequential algorithms beginning with the work of Steger and Wormald. Switchings-
based algorithms are discussed in Section 5, and Markov chain (MCMC) algorithms
are presented in Section 6.

3 The configuration model

The configuration model, introduced by Bollobás [16], is very useful in the anal-
ysis of random graphs with given degrees. It also arose in asymptotic enumeration
work of Bender and Canfield [9], and was first explicitly used as an algorithm by
Wormald [119].

Given a degree sequence k, and recalling that M =
∑

j∈[n] kj , we take M objects,
called points, grouped into n cells, where the j’th cell contains kj points. Each point
is labelled, and hence distinguishable. (You can think of the points corresponding
to vertex j as being labelled by (j, 1), . . . , (j, kj), say. But we will not refer to these
labels explicitly.)

In the network theory literature (for example [50]), points are sometimes called
stubs, or half-edges, without the concept of a cell (so that kj half-edges emanate
from vertex j).

A configuration, also called a pairing, is a partition of the M points into M/2
pairs. This is often described as a perfect matching of the M points. Given a
configuration P , shrinking each cell to a vertex and replacing each pair by an edge
gives a multigraph G(P ) with degree sequence k. The multigraph is simple if it has
no loops and no repeated edges, and in this case we also say that P is simple.

Figure 1 shows two configurations with the same degree sequence, namely k =
(3, 3, 1, 2, 2, 3, 2, 2) if cells are labelled clockwise from the top-left. The small black
circles represent points, which are shown inside cells, and the lines between points
represent pairs. The configuration on the left is not simple, as it will produce a loop
on the vertex corresponding to the cell marked with “∗”, and a repeated edge between
the vertices corresponding to the two cells marked with “∗∗”. The configuration on
the right is simple.

Let P(k) be the set of all configurations corresponding to the degree sequence k.
The term configuration model typically refers to the uniform probability model over
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∗ ∗∗

∗∗

Figure 1: Two configurations with the same degree sequence

the set P(k). A uniformly random configuration from P(k) can be chosen in O(M)
time, as follows. Starting with all points unmatched, at each step take an arbitrary
point p and pair it with a point chosen uniformly at random from the remaining
unmatched points (excluding p). Once all points have been paired up, we have a
configuration P and each configuration is equally likely.

The configuration model can be used as an algorithm for sampling uniformly
from G(k), by repeatedly sampling P ∈ P(k) uniformly at random until G(P ) is
simple. This algorithm is displayed in Figure 2.

Configuration model sampling algorithm

Input: graphical sequence k

Output: element of G(k)

repeat
choose P ∈ P(k) u.a.r.

until G(P ) is simple
output G(P )

Figure 2: The configuration model as a sampling algorithm

Observe that if G is a simple graph with degree sequence k then G corresponds
to exactly

∏
j∈[n] kj ! configurations, as there are kj ! ways to assign points to the

edges incident with vertex j, and these assignments can be made independently for
each vertex j ∈ [n]. Hence every element of G(k) is equally likely to be produced as
output of the above process.

This gives a Las Vegas sampling algorithm, with expected runtime which de-
pends linearly on the probability that a random configuration is simple. Hence, the
configuration model can be used for efficient sampling when the probability that a
randomly chosen configuration is simple is bounded below by 1/p(n), for some poly-
nomial p(n). In this case, the expected number of trials before a simple configuration
is found is at most p(n), and the expected runtime is O(M p(n)).

A multigraph is simple if and only if it contains no 1-cycles (loops) and no 2-cycles
(arising from repeated edges). If the maximum degree is not too large compared
to the number of edges, then in a uniformly random element of P(k), the number
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of 1-cycles and the number of 2-cycles are asymptotically independent Poisson ran-
dom variables. In the k-regular case, Bender and Canfield [9] proved in 1978 that
a uniformly random configuration is simple with probability (1 + o(1)) e−(k2−1)/4.
Hence the configuration model for k-regular graphs gives an expected polynomial
time algorithm as long as k = O(

√
log n). A very precise estimate of Pr(simple),

with many significant terms, was given by McKay and Wormald [92] in 1991 un-
der the assumption that k3max = o(M). To prove the following result, we use the
estimate (3.1) obtained by Janson [71] in 1999, which is valid for a wider range of
degrees.

Theorem 3.1 [71] Let R = R(k) be defined by R =
∑

j∈[n] k
2
j . The configuration

model gives a uniform sampling algorithm for G(k). If k2max = o(M) then the
expected runtime of this algorithm is

Θ
(
M exp

(
R2/(4M2)

))

when k2max = o(M). So the expected runtime is polynomial if and only if R =
Θ(M

√
log n). In particular, if kmax = O(

√
log n) then the expected runtime is poly-

nomial.

Proof (Sketch.) The output is distributed uniformly as each element of G(k)
is simple, and hence corresponds to the same number of configurations in P(k).
The expected number of trials required before a simple configuration is found is
1/Pr(simple), where Pr(simple) denotes the probability that a uniformly chosen
configuration from P(k) is simple. Janson [71] proved that if k2max = o(M) then the
probability that a random configuration is simple is

Pr(simple) = exp

(
− R2

4M2
+ 1

4

)
+ o(1). (3.1)

Hence the expected runtime of the algorithm is Θ
(
M/Pr(simple)

)
, which is bounded

above by a polynomial if and only if R = Θ(M
√

log n). The last statement of the
theorem follows since R ≤ kmaxM . �

There are versions of the configuration model which can be used to sample bi-
partite graphs, directed graphs or hypergraphs with a given degree sequence. In all
cases, the expected runtime is polynomial only for constant or very slowly-growing
degrees.

4 Sequential algorithms and graph processes

The study of graph processes dates back to the very beginnings of the study of
random graphs, in the work of Erdős and Rényi [47]. In a random graph process,
edges are added to an empty graph one by one, chosen randomly from the set
of all non-edges, sometimes with additional constraints. In 1979, Tinhofer [110]
described such an algorithm for sampling from G(k) non-uniformly. The a posteriori
output probability could be calculated and, in theory, this could be combined with
a rejection step in order to achieve uniformly distributed output. However, the
runtime of the resulting algorithm (with the rejection step) is not known.



Generating graphs randomly 11

Recall that G(n, k) denotes the set of all k-regular graphs on [n]. The bounded-
degree graph process starts with the empty graph on n vertices (with no edges),
and repeatedly chooses two distinct non-adjacent vertices with degree at most k−1,
uniformly at random, and joins these two vertices by an edge. When no such pair of
vertices remain, either we have a k-regular graph or the process has become stuck.
(The name “bounded-degree graph process” does not mean that all the degrees are
O(1). Rather, it means that we add edges sequentially but do not allow the degree
of any vertex to exceed k, so we maintain this upper bound on all degrees.)

Ruciński and Wormald [101] proved that for any constant k, the process pro-
duces a k-regular graph with probability 1 − o(1). The output distribution is not
uniform, and is not well understood. However, it is conjectured that the output of
the bounded-degree graph process is contiguous with the uniform distribution over
G(n, k): see Wormald [120, Conjecture 6.1]. (Two sequences of probability spaces
are contiguous if any event with probability which tends to 1 in one sequence must
also tend to 1 in the other.)

We now turn to sequential algorithms which produce asymptotically uniform
output.

4.1 The regular case

Steger and Wormald [106] described an algorithm for sampling from G(n, k)
using the following modification of the configuration model algorithm. Instead of
choosing a configuration P uniformly at random, and then rejecting the resulting
graph G(P ) if it is not simple, we choose one pair at a time and only keep those
pairs which do not lead to a loop or a repeated edge. Specifically, we start with kn
points in n cells, each with k points. Let U be the set of unpaired points, which
initially contains all kn points. A set of two points {p, p′} ⊆ U is suitable if p and
p′ belong to different cells, and no pair chosen so far contains points from the same
two cells as p, p′. After repeatedly choosing pairs of suitable points, the algorithm
may get stuck, or else reaches a full configuration P (with kn/2 pairs) and outputs
the simple k-regular graph G(P ). The algorithm is given in pseudocode in Figure 3.

Though the explanation above involves the configuration model, Steger and
Wormald state that their algorithm arose from adapting the bounded-degree pro-
cesses. In this setting, the Steger–Wormald algorithm corresponds to choosing the
vertices u, v to add at the next step with a non-uniform probability. To be specific,
if k′(x) denotes the current degree of vertex x in the graph formed by the edges
chosen so far, then the Steger–Wormald algorithm chooses {u, v} as the next edge
with probability proportional to (k − k′(u))(k − k′(v)).

The following theorem is a combination of Steger and Wormald’s results [106,
Theorems 2.1, 2.2 and 2.3].

Theorem 4.1 [106] Let Pr(G) denote the probability that a given graph G ∈ G(n, k)
is produced as output of the Steger–Wormald algorithm.

(i) If k = O(n1/28) then there exists a function f(n, k) = o(1) such that for every
G ∈ G(n, k),

∣∣Pr(G) − |G(n, k)|−1
∣∣ <

f(n, k)

|G(n, k)| .
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Steger–Wormald algorithm

Input: n and k, with kn even
Output: element of G(n, k)

repeat
let U be the set of all kn points
let P := ∅
repeat

choose a set of two distinct points {p, p′} ⊆ U u.a.r.
if {p, p′} is suitable then add {p, p′} to P and delete {p, p′} from U

until U contains no suitable pairs of points
until G(P ) is k-regular
output G(P )

Figure 3: The Steger–Wormald algorithm

(ii) If k = o
(
(n/ log3 n)1/11

)
then there exists a function f(n, k) = o(1) and a

subset X (n, k) ⊆ G(n, k) such that

Pr(G) = (1 +O
(
f(n, k)

))
|G(n, k)|−1

for all G ∈ X (n, k), and |X (n, k)| = (1 − f(n, k)) |G(n, k)|.

(iii) Under the same condition as (ii), the expected number of times that the outer
loop of the algorithm is performed (that is, until G(P ) is regular) is 1 + o(1),
and hence the runtime of the algorithm is O(k2n).

In particular, when k = o
(
(n/ log3 n)1/11

)
, the output distribution of the Steger–

Wormald algorithm is within o(1) of uniform in total variation distance.

Kim and Vu [82] gave a new analysis of the Steger–Wormald algorithm using
a concentration result of Vu [115], increasing the upper bound on the degree and
confirming a conjecture of Wormald [120].

Theorem 4.2 [82] Let 0 < ε < 1
3
be a constant. Then for any k ≤ n1/3−ε and

G ∈ G(n, k), the probability Pr(G) that G is output by the Steger–Wormald algorithm
satisfies Pr(G) = (1 + o(1)) |G(n, k)|−1.

4.2 The irregular case, and an almost-FPAUS

The Steger–Wormald algorithm was generalised to irregular degree sequences in
2010 by Bayati, Kim and Saberi [7]. They stated their algorithm in terms of graphs,
not configurations, and report failure (rather than restarting) if the procedure gets
stuck. The pseudocode for this algorithm, which is called Procedure A in [7], is
given in Figure 4. Recall that m = M/2 = 1

2

∑
j∈[n] kj . We write

([n]
2

)
for the set of

all unordered pairs of distinct vertices in [n].
This procedure is equivalent to the Steger–Wormald algorithm when k is regular,

since then the factor 1−kikj/(4m) does not introduce any bias. For irregular degrees,
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Bayati, Kim and Saberi: procedure A

Input: graphical sequence k

Output: element of G(k), or fail

repeat
let E := ∅ (set of edges, initially empty)

let k̂ := k (current degree deficit)
let a := 1
repeat

choose an unordered pair of distinct vertices {i, j} ∈
([n]
2

)
\ E

with probability proportional to pij := k̂ik̂j

(
1 − kikj

4m

)

let a := a× pij
add {i, j} to E and reduce each of k̂i, k̂j by 1

until no more edges can be added to E
if |E| = m then

output G(P ) and N = (m! a)−1

else
report fail and output N = 0

Figure 4: Bayati, Kim and Saberi’s asymptotically-uniform sampling algorithm

this factor is chosen for the following reason. If two vertices of high degree are joined
by an edge, then this choice makes it more difficult for the process to complete
successfully. In [7], the authors show that the bias from edge {i, j} is roughly
exp(kikj/(4m)), and hence the probability 1 − kikj/(4m) ≈ exp(−kikj/(4m)) is
designed to cancel out this bias.

Bayati, Kim and Saberi [7, Theorem 1 and Theorem 2] proved the following
properties of Procedure A.

Theorem 4.3 [7] Let k be a graphical degree sequence and τ > 0 an arbitrary
constant.

(i) Suppose that kmax = O(m1/4−τ ). Then Procedure A terminates successfully
with probability 1 − o(1) in expected runtime O(kmaxm), and the probability
Pr(G) that any given G ∈ G(k) is output satisfies Pr(G) = (1+o(1)) |G(k)|−1.

(ii) Now suppose that k = (k, . . . , k), where k = O(n1/2−τ ). Then Procedure

A has output distribution which is within distance o(1) from uniform in total
variation distance.

Part (i) of this theorem extends the Kim–Vu result (Theorem 4.2) to the irregular
case with essentially the same condition, sincem = kn when k is k-regular. Similarly,
part (ii) of Theorem 4.3 generalises Theorem 4.1(ii) to irregular degree sequences
with much higher maximum degree.

When successful, Procedure A outputs a graph and a nonnegative number N .
The value of N is not needed for asymptotically-uniform sampling, but is used to give
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a fully-polynomial randomised approximation scheme (FPRAS) for approximating
|G(k)|, using a technique known as sequential importance sampling (SIS) which we
outline below. Recall the definition of FPRAS from Definition 2.4.

Let N (k) be the set obtained by taking all possible edge-labellings of graphs
G(k), labelling the edges e1, . . . , em. Then |N (k)| = m! |G(k)|. We can slightly
modify Procedure A so that it labels the edges in the order that they were chosen.
This modified Procedure A produces H ∈ N (k) with probability PA(H), denoted
by a in Figure 4. The expected value of 1/PA(·) for an element of N (k) chosen
according to the distribution PA, is

∑

H∈N (k)

1

PA(H)
PA(H) = |N (k)| = m! |G(k)|.

Therefore we can estimate |G(k)| by performing r trials of Procedure A and

taking the average of the resulting r values of
(
m!PA(Hi)

)−1
. (Note that m!PA(H)

is precisely the value denoted N in Figure 4 when the edge-labelled graph H is
output.)

Bayati et al. prove [7, Theorem 3] that taking r = O(ε−2) gives an FPRAS for
estimating |G(k)|.

Finally, Bayati et al. [7] showed how to adapt the SIS approach to estimate PA(G)
for (non-edge-labelled) G ∈ G(k). This leads to an algorithm which is almost an
FPAUS for G(k), when kmax = O(m1/4−τ ) for some τ > 0. The algorithm satisfies
every condition from the definition of FPAUS except for the runtime: in an FPAUS
the runtime must be polynomial in n and log(1/ε), but the algorithm given in [7,
Section 3] has runtime which is polynomial in n and 1/ε. In a little more detail, the
Bayati–Kim–Saberi algorithm proceeds as follows:

• Given a graphical degree sequence k and parameters ε, δ ∈ (0, 1), the FPRAS is
used to obtain a sufficiently good estimate X for |G(k)| (with high probability),
and a random graph G ∈ G(k) is obtained using Procedure A.

• Next, we need an estimate PG for the probability PA(G) that Procedure

A outputs G. This probability is estimated as follows: repeatedly choose a
random ordering of the edges of G, calculate the probability that these edges
were chosen in this order during the execution of Procedure A, and take
the average of these probabilities (averaged over the different orders chosen).

• Finally, G is returned as output of the almost-FPAUS with probability given
by min{ 1

cXPG
, 1}, where c is a universal constant independent of k, ε, δ.

Bayati, Kim and Saberi [7, Remark 1] state their main results can be adapted
to give analogous results for sampling bipartite graphs with given degrees, under
the same assumptions on the maximum degree. Independently, Blanchet [13] used
sequential importance sampling to give an FPRAS for counting bipartite graphs
with given degrees, when the maximum degree in one part of the vertex biparti-
tion is constant, while in the other part the maximum degree is o(M1/2) and the
sum of the squares of the degrees is O(M). The arguments provided by Bayati et
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al. [7] and Blanchet [13] utilise concentration inequalities and Lyapunov inequalities,
respectively.

Sequential importance sampling was used by Chen, Diaconis, Holmes and Liu [21]
and Blitzstein and Diaconis [14] to sample graphs and bipartite graphs with given
degrees, but without fully rigorous analysis. Sequential importance sampling al-
gorithms also appear in the physics literature, for example [29, 81], again without
rigorous analysis.

While sequential importance sampling algorithms may perform well in practice
in many cases, Bezáková et al. [12] showed that these algorithms are provably slow
in some cases.

4.3 Other graph processes

The property of having maximum degree at most k can be rephrased as the
property of having no copy of the star K1,k. More generally, for a fixed graph H, the
H-free process proceeds from an empty graph by repeatedly choosing a random edge
and adding it to the graph if it does not form a copy of H. See for example [18, 97,
117]. In particular, the triangle-free process is very well studied and has connections
with Ramsey Theory [15, 48, 99] (we do not attempt to be comprehensive here as
there is a large literature on this topic). The main focus in this area is extremal,
as analysis of these processes provides a lower bound on the maximum number of
edges possible in an H-free graph. This often involves application of the differential
equations method, see [121]. Some pseudorandom properties of the output have
been proved for these processes, see for example [15, 99]. However, it is not clear
how far the output distribution varies from uniform, and so these processes may not
be suitable for almost-uniform sampling.

An exception is the work of Bayati, Montanari and Saberi [8], who adapted the
methods of [7] to analyse a sequential algorithm for generating graphs with a given
number of edges and girth greater than ℓ (that is, no cycles of length at most ℓ),
where ℓ is a fixed positive integer. As in [7, 106], the next edge is chosen non-
uniformly, such that the probability that an edge e is selected is (approximately)
proportional to the number of successful completions of the subgraph G′ ∪ {e},
where G′ denotes the current graph. Bayati et al. [8] prove that the output of their
algorithm is asymptotically uniform after m = O

(
n1+1/(2ℓ(ℓ+3))

)
edges have been

added. The expected runtime of the algorithm is O(n2m).

5 Switchings-based algorithms

In the sampling algorithm based on the configuration model (Figure 2), a con-
figuration P is chosen from P(k) uniformly at random, repeatedly, until the corre-
sponding graph G(P ) is simple. That is, if G(P ) contains any “defect” (in this case,
a loop or a repeated edge) then this choice is rejected and we choose again. In 1990,
McKay and Wormald [91] introduced a uniform sampling algorithm for G(k) which
begins by choosing a random element of P(k) and rejecting it only if there are “too
many” defects. Once a configuration has been found with “not too many” defects,
operations called switchings are applied, one by one, to reduce the number of defects
until a simple configuration is obtained. To maintain a uniform distribution, McKay
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and Wormald introduce a carefully-chosen rejection probability at each step of the
process.

We describe the McKay–Wormald algorithm in some detail, as this will set the
scene for the significant improvements introduced by Gao and Wormald [59], to be
discussed in Section 5.1. The structure of the McKay–Wormald algorithm is based
on the switching method, introduced by McKay [89]. The switching method is used
in asymptotic enumeration to obtain good approximations for the cardinality of
large combinatorial sets, such as the set of all graphs with given degrees [92], when
the maximum degree is not too large.

To make the phrase “not too many defects” precise, recall that a loop in a
configuration is a pair between two points from the same cell. A triple pair in a
configuration is a set of three distinct non-loop pairs between the same two cells,
and a double pair is a set of two distinct non-loop pairs between the same two cells.

Definition 5.1 Let M2 = M2(k) =
∑

j∈[n] kj(kj − 1). (Note that M2 counts the
number of ways to choose an ordered pair of points from the same cell.) Define
B1 = M2/M and B2 = (M2/M)2. Say that a configuration P ∈ P(k) is good if
every cell contains at most one loop, there are no triple pairs, P contains at most B1

loops and at most B2 double pairs. Write P∗(k) for the set of all good configurations
in P∗.

Combining McKay and Wormald [91, Lemma 2 and Lemma 3′] with [5, Lemma 8],
we can prove that if k4max = O(M) then there exists a constant c ∈ (0, 1) such that
a uniformly-random element of P(k) is good with probability at least c.

Next, let Cℓ,d be the set of all good configurations with exactly ℓ loops and
d double pairs. These sets form a partition of P∗(k). McKay and Wormald de-
fined two switching operations, which we will refer to as loop-switchings and double-
switchings. A loop-switching is used to reduce the number of loops by one, and a
double-switching is used to reduce the number of double pairs by one. These switch-
ings are illustrated in Figure 5. For example, in the loop-switching, a loop is selected
together with two other pairs, such that there are 5 distinct cells involved, and per-
forming the switching does not result in any repeated pairs. The loop-switching
transforms an element of Cℓ,d to an element of Cℓ−1,d. To describe a loop-switching
we specify an ordered 6-tuple of points, and similarly a double-switching is specified
using an ordered 8-tuple of points.

Figure 5: A loop-switching (left) and a double-switching (right)

It is possible to remove loops and double pairs using simpler switchings. In
fact, McKay used simpler switching operations (as illustrated in Figure 10 below) in
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a very early application [90] of the switching method for asymptotic enumeration.
Subsequently, McKay and Wormald found that by using the slightly more compli-
cated switchings shown in Figure 5, they could obtain an asymptotic formula with
vanishing error for a wider range of degree sequences (with a weaker bound on the
maximum degree, to be precise), compared with the result of [90]. The benefits
obtained by using the slightly more complicated switchings also hold here in the
algorithmic setting.

The first step of McKay and Wormald’s algorithm is to repeatedly choose a
uniformly random element of P(k) until it is good. At this point, the configuration
P is a uniformly random element of P∗(k). Next, if P contains a loop then a loop-
switching is chosen uniformly at random from the set of all available options (that
is, from all possible loop-switchings which could be applied to P ). This switching is
rejected with some probability, otherwise it is accepted and performed. The rejection
probability is carefully chosen to ensure that if P has a uniform distribution over Cℓ,d
then the resulting configuration has a uniform distribution over Cℓ−1,d. If rejection
occurs at any step then the entire algorithm restarts from the beginning.

When a configuration is reached with no loops, any double pairs are removed
one by one using double-switchings, again with a rejection probability chosen to
maintain uniformity. Finally, when the current configuration P belongs to C0,0 it is
simple, and the algorithm outputs G(P ) and terminates. The algorithm is given in
pseudocode in Figure 6.

McKay–Wormald algorithm

Input: graphical sequence k

Output: element of G(k)

repeat
choose P ∈ P(k) u.a.r.

until P is good

# remove loops
while P has at least one loop

obtain P ′ from P by performing a loop-switching chosen u.a.r.
calculate the rejection probability qloop(P,P ′)
restart with probability qloop(P,P ′); otherwise P := P ′

# remove double pairs
while P has at least one double pair

obtain P ′ from P by performing a double-switching chosen u.a.r.
calculate the rejection probability qdouble(P,P

′)
restart with probability qdouble(P,P

′); otherwise P := P ′

output G(P )

Figure 6: High-level description of the McKay–Wormald algorithm

To complete the specification of the McKay–Wormald algorithm, we must define
the rejection probabilities qloop and qdouble. For P ∈ P∗(k), let f(P,X) denote the
number of possible X-switchings P 7→ P ′ which may be applied to P , for X ∈
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{loop,double}. Similarly, let b(P ′,X) be the number of ways to produce P ′ using
an X-switching P 7→ P ′, for all P ′ ∈ P∗(k) and X ∈ {loop,double}. McKay and
Wormald [91, Lemma 4] gave expressions m(ℓ, d, loop) and m(d,double), omitted
here, such that for all P ∈ Cℓ,d,

f(P, loop) ≤ m(ℓ, loop) = 2ℓM2, b(P, loop) ≥ m(ℓ, d, loop) (5.1)

and for all P ∈ C0,d,

f(P,double) ≤ m(d,double) = 4dM2, b(P,double) ≥ m(d,double). (5.2)

Regarding the lower bounds m(·), we will only need the fact that they are positive
when k4max = O(M), for all ℓ ≤ B1 and all d ≤ B2.

The upper bounds in (5.1) and (5.2) arise by counting the number of ways to
choose a tuple of points (6 points for a loop-switching and 8 points for a double-
switching) which satisfy some constraints of the switching and not others: typically
the required pairs must be present, but we do not check that all cells involved in
the switching are distinct, or that the switching does not introduce any new loops
or repeated pairs. For the lower bounds, we require an upper bound on the number
of bad choices of tuples, so that this may be subtracted. When the degrees get too
high, the number of bad choices increases and there will be a lot of variation in this
number, making the estimates less precise.

The rejection probabilities are defined by

qloop(P,P ′) = 1 − f(P, loop)m(ℓ− 1, d, loop)

m(ℓ, loop) b(P ′, loop)
,

qdouble(P,P
′) = 1 − f(P,double)m(d− 1,double)

m(d,double) b(P ′,double)





(5.3)

for all (P,P ′) ∈ Cℓ,d × Cℓ−1,d which differ by a loop-switching, and all (P,P ′) ∈
C0,d×C0,d−1 which differ by a double-switching, respectively. These probabilities are
well-defined if the lower bounds m(·) are positive.

Lemma 5.2 [91, Theorem 2] If k4max = O(M) then the output of the McKay–
Wormald algorithm has uniform distribution over G(k).

Proof As mentioned earlier, the condition k4max = O(M) implies that the lower
bounds m(·) are positive, and hence the rejection probabilities are well-defined.
The initial good configuration P is distributed uniformly over P∗(k). Hence, if
the initial configuration belongs to Cℓ,d then it has the uniform distribution over
Cℓ,d. We prove by induction that if a switching P 7→ P ′ is accepted and P has the
uniform distribution over some set Cℓ,d, then P ′ has the uniform distribution over
the codomain of that switching. (The codomain is Cℓ−1,d if the switching is a loop-
switching, while for a double-switching ℓ = 0 and the codomain is C0,d−1.) For ease
of notation we prove this for double-switchings, and note that the same argument
holds for loops-switchings. For all P ′ ∈ C0,d−1, the probability that the proposed
switching is not rejected and results in P ′ is given by

Pr(P ′) =
∑

P∈C0,d
P 7→P ′

Pr(P )

f(P,double)

(
1 − qdouble(P,P

′)
)
.
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The sum is over all configurations P ∈ C0,d such that P ′ can be obtained from P
using a double-switching, and the factor 1/f(P,double) is the probability that this
particular double-switching is chosen to be applied to P . Substituting the value of
the rejection probability from (5.3), and using the assumption that P is uniformly
distributed over C0,d, we find that

Pr(P ′) =
m(d− 1,double)

|C0,d|m(d,double)

∑

P∈C0,d
P 7→P ′

1

b(P ′,double)
.

But the number of summands is precisely b(P ′,double), so the sum evaluates to 1
and we conclude that

Pr(P ′) =
m(d− 1,double)

|C0,d|m(d,double)
.

This depends only on d, and not on the particular configuration P ′ ∈ C0,d−1. Hence
every element of C0,d−1 is equally likely to be produced after the double-switching,
proving that the uniform distribution is maintained after each accepted switching
step. Thus, by induction, at the end of the algorithm P is a uniformly random
element of C0,0. It follows that G(P ) is a uniformly random element of G(k), as
claimed. �

The previous result shows that the output of the McKay–Wormald algorithm is
always correct. But what conditions on k are needed for the algorithm to be efficient?
If the degrees become too large then it becomes unlikely that the randomly-chosen
initial configuration is good, and there will be too much variation in the parameters
f(P,X), b(P ′,X), leading to large rejection probabilities.

Theorem 5.3 [91, Theorem 3] Suppose that k is a graphical degree sequence with
kmax = O(M1/4). The McKay–Wormald algorithm for sampling from G(k) can
be implemented so that it has expected runtime O(k2maxM

2) = O(k4maxn
2). If k =

(k, k . . . , k) is regular then there is an implementation with expected runtime O(k3n),
under the assumption that k = O(n1/3).

Proof (Sketch.) Recall that a randomly chosen element of P(k) is good with prob-
ability at c when k4max = O(M), for some constant c ∈ (0, 1). Hence it takes expected
time O(M) to produce a uniformly-random element of P∗(k). McKay and Wormald
prove that the probability that there is no restart during the loop-switchings and
doubles-switchings is 1 − o(1) when k4max = o(M), and is bounded below by a con-
stant when k4max = Θ(M).

It remains to consider the cost of performing the switching operations. Suppose
that at some point in the execution of the algorithm, the current configuration
is P . To choose a potential switching of the appropriate type, we can select the
points of a randomly chosen loop or double pair, in a random order, and then
choose the points of two other pairs, in a random order. The number of ways to
make this selection is exactly given by the relevant upper bound from (5.1) or (5.2),
and the probability that the result P ′ of this switching is a valid configuration in
the codomain (that is, only the chosen loop/double pair has been removed, and no
additional defects have been introduced) is exactly f(P,X)/m(x,X), where (x,X) ∈
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{(ℓ, loop), (d,double)}. This means that the value of f(P,X) does not need to be
calculated.

However, we do need to calculate the value b(P ′,X) precisely for the proposed
switching P 7→ P ′, in order to restart with the correct probability. This can be done
by maintaining some information about numbers of small structures in the configu-
ration, which is initialised before any switchings have been performed, and updated
after each switching operation. The initialisation takes runtime O(k2maxM

2
2 ), which

dominates the expected time required for the updates from each switching. See [91,
Theorem 3] for more details.

In the k-regular case a further efficiency is possible, but with a much more
complicated implementation, as explained in the proof of [91, Theorem 4]. �

McKay and Wormald also explained how to modify their algorithm to sample
bipartite graphs with given degrees, uniformly at random, see [91, Section 6]. The
expected runtime of the uniform sampler for bipartite graphs with given degrees
is O(k4maxn

2) when kmax = O(M1/4), where (as usual) kmax denotes the maximum
degree.

5.1 Improvements and extensions

Starting from the McKay–Wormald algorithm, Gao and Wormald [59] introduced
several new ideas which culminated in an algorithm for uniformly sampling k-regular
graphs, which they called REG. The expected runtime of the Gao–Wormald algo-
rithm is O(k3n) when k = o(

√
n). This is a significant increase in the allowable

range of k compared with the McKay–Wormald algorithm.
In order to handle degrees beyond O(n1/3), Gao and Wormald must deal with

triple pairs, as well as loops and double pairs. So the set of good configurations
is redefined to allow “not too many” triple pairs (but still ruling out any pairs of
multiplicity four or higher) and a new switching phase is performed to remove triple
pairs one by one. However, it turns out that triple pairs are easily handled. In
fact, the first two phases of the algorithms (removing loops and removing triples,
respectively) proceed as in the McKay–Wormald algorithm. As the double pairs are
the most numerous “defect”, new ideas are required in phase 3, where double pairs
must be removed.

The innovations introduced by Gao and Wormald in [59] are designed to reduce
the probability of a rejection during a double-switching step. These ideas are de-
scribed in a very general setting in [59], for ease of applications to other problems.
Here, we given an overview of these ideas in the context of the double-switching,
performed on configurations which have no loops, no triple pairs and at most B2

double pairs, where B2 = ⌊(1 + γ)(k − 1)2/4⌋ for some sufficiently small constant
γ > 0.

Since we now discuss only double-switchings, we drop “double” from our nota-
tion. Write Cd for the set of good configurations with no loops, no triple pairs and
exactly d double pairs. Observe from (5.3) that the probability that a proposed
switching P 7→ P ′ is not rejected is a product of a factor f(P )/m(d) which depends
only on P ∈ Cd, and a factor m(d− 1)/b(P ′) which depends only on P ′ ∈ Cd−1. Gao
and Wormald aim to reduce both the probability of forward rejection, or f-rejection
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(which depends only on P ), and the probability of backwards rejection, or b-rejection,
which depends only on P ′.

To reduce the likelihood of an f-rejection, Gao and Wormald allow some double-
switchings which would be rejected in the McKay–Wormald algorithm. The aim is
to bring the values of f(P ) closer to the upper bound m(d). Specifically, a double-
switching which introduces exactly one new double pair is allowed, as illustrated in
Figure 7. The original double-switching, shown on the right of Figure 5, is known as
a type I, class A switching, while switching in Figure 7 is a type I, class B switching.

Figure 7: A type I, class B double-switching Cd → Cd

Next, Gao and Wormald observed that some configurations in Cd−1 are less likely
to be produced by a (type I) double-switching than others. These configurations
bring down the lower bound m(d− 1) and hence increase the b-rejection probability
for every element of Cd−1. For this reason, Gao and Wormald introduced another
new switching, called a type II switching, which actually increases the number of
double pairs by one, as shown in Figure 8. All type II switchings have class B.

Figure 8: A type II, class B double-switching Cd → Cd+1

To perform a switching step, from current configuration P ∈ Cd, first the type
τ ∈ {I, II} of switching is chosen, according to a probability distribution ρ (with
a small restart probability if no type is chosen). Next, a type τ switching P 7→ P ′

is proposed, chosen randomly from all fτ (P ) type τ switchings available in P . The
f-rejection probability is 1− fτ (P )/mτ (d), where mτ (d) is an upper bound on fτ (P )
over all P ∈ Cd. Let d′ ∈ {0, . . . , B2} be the unique index such that P ′ ∈ Cd′ . The
class α ∈ {A,B} of the proposed switching P 7→ P ′ can now be observed, and the
b-rejection probability is 1−bα(P ′)/mα(d′), where mα(d′) is a lower bound on bα(P ′)
over all P ′ ∈ Cd′ . If there is no f-rejection or b-rejection then the proposed switching
is accepted and P ′ becomes the current configuration. As soon as an element P ∈ C0
is reached, the algorithm stops with output G(P ). Here we see that the f-rejection
probability depends on P and the chosen type, while the b-rejection probability
depends on the outcome P ′ and the class α of the proposed switching from P .

Rather than maintaining a uniform distribution after each switching, as in the
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McKay–Wormald algorithm, the goal in the Gao–Wormald algorithm is to ensure
that the expected number of visits to each configuration P ∈ Cd, over the course of
(the doubles-reducing phase of) the algorithm, depends only on d and is independent
of P . In particular, this guarantees that each element of C0 is equally likely, and
hence the output of the algorithm is a uniformly random element of G(n, k).

In [59, Lemma 6 and Lemma 8], Gao and Wormald gave expressions for mτ (d),
mα(d) and showed how to choose values for ρτ (d) satisfying a certain system of
linear equations. By [59, Lemma 5], when the parameters ρτ (d) satisfy this system
of equations then the last element visited by the algorithm is distributed uniformly
at random from C0, assuming that no rejection occurs. Furthermore, the solution
can be chosen to satisfy ρI(d) = 1 − ε > 0 for all 1 ≤ d ≤ B2, where ε = O(k2/n2).
Since k = o(n1/2) this means that almost every step is a “standard” double-switching
(type I, class A) switching.

Having set these parameter values, the algorithm is completely specified. It
remains to show that the probability of rejection during the course of the algorithm
is o(1), which requires careful analysis. The runtime analysis is very similar to
Theorem 5.3, resulting in the following.

Theorem 5.4 If 1 ≤ k = o(
√
n) then the Gao–Wormald algorithm REG is a uni-

form sampler from G(n, k), and can be implemented with expected runtime O(k3n).

Recent work of Armand, Gao and Wormald [5] which gives an even more efficient
uniform sampler for the same range of k is discussed in Section 5.1.3.

A k-factor is a k-regular spanning subgraph of a given graph. Gao and Green-
hill [55] used the Gao–Wormald framework to give algorithms for sampling k-factors
of a given graph Hn with n vertices, under various conditions on k and the maximum
degree ∆ of the complement Hn of Hn. The edges of the complement of Hn can be
thought of as “forbidden edges”, and we want to sample k-regular graphs with no
forbidden edges.

Theorem 5.5 [55, Theorem 1.1 and 1.2] Let Hn be a graph on n vertices such that
Hn has maximum degree ∆.

• There is an algorithm which produces a uniformly random k-factor of Hn, and
has expected runtime O((k + ∆)3n) if (k + ∆)k∆ = o(n).

• Now suppose that Hn is (n − ∆ − 1)-regular. There is an algorithm which
generates a uniformly random k-factor of Hn and has expected runtime

O
(
(k + ∆)4(n+ ∆)3 + (k + ∆)8 k2∆2/n+ (k + ∆)10 k2∆3/n2

)

if k2 + ∆2 = o(n).

In [55], the algorithms described in Theorem 5.5 are called FactorEasy and
FactorUniform, respectively. Previously the only algorithm for this problem was
a rejection algorithm of Gao [54] which has expected linear runtime when k = O(1)
and Hn has at most a linear number of edges (but the maximum degree of Hn can
be linear).
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5.1.1 Asymptotically-uniform algorithms based on switchings In [59, Theorem
3], Gao and Wormald described an algorithm REG∗ which performs asymptotically-
uniform sampling from G(n, k) in expected runtime O(kn). This algorithm is ob-
tained from REG by never performing any rejection steps and never performing
any class B switchings. (So only loop-switchings, triple-switchings and type I, class
A double-switchings will be used.) This is more efficient as computation of the b-
rejection probabilities is the most costly part of the algorithm. The output of REG∗

is within total variation distance o(1) of uniform when k = o(
√
n). Indeed, Gao and

Wormald remark that the McKay–Wormald algorithm can be modified in the same
way, giving an asymptotically-uniform sampling algorithm with expected runtime
O(M) whenever kmax = O(M1/4).

A similar performance was obtained by Zhao [122] using a slightly different ap-
proach, involving the use of a Markov chain to make local modifications starting
from G(P ), where P is a uniformly random element of P(k).

Recently, Janson [72] introduced and analysed the following switching-based al-
gorithm for asymptotically-uniform sampling from G(k). Say that a pair in a config-
uration is bad if it is a loop or part of a double pair. (Recall that, as we have defined
it here, “double pair” does not mean that the multiplicity of the corresponding edge
is exactly two: only that the multiplicity is at least two.)

Janson algorithm

Input: graphical sequence k

Output: element of G(k), denoted Ĝ

choose P ∈ P(k) u.a.r.
repeat

choose and orient a bad pair pp′ in P u.a.r.
choose and orient a distinct pair qq′, u.a.r.
delete pairs pp′, qq′ from P , and replace with pairs pq, p′q′

until G(P ) is simple

output Ĝ = G(P )

Figure 9: Janson algorithm, corresponding to the switched configuration model

Starting from a uniformly random configuration P ∈ P(k), if G(P ) is simple
then we output G(P ). Otherwise, choose a pair uniformly at random from the set of
all bad pairs in P . Next, choose a pair uniformly at random from the set of all other
pairs in P . Update P by removing these two pairs and replacing them by two other
pairs using the same four points, chosen uniformly at random. (In the pseudocode,
this is done by randomly ordering the points in each chosen pair.) This gives a new
configuration in P(k). At each step, the switching removes the chosen bad pair, and
may cause other pairs to stop being bad or to become bad. Repeatedly apply the
switching step until G(P ) is simple, and let Ĝ = G(P ) denote the output graph.
This algorithm is shown in Figure 9. Janson calls the resulting probability space the
switched configuration model. This is a non-uniform probability space over G(k).

The switchings used in this process are illustrated in Figure 10. They were used
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by McKay [90] in a very early application of the switching method, and are simpler
than the switchings in Figure 5. Note however that Janson does not insist that the
cells involved in the switching are all distinct, or that the new pairs pq, p′q′ do not
increase the multiplicity of an edge. So Figure 10 should be interpreted differently
to Figure 5: in Figure 5, it is implied that all illustrated cells are distinct and that
all new pairs lead to edges with multiplicity 1.

p p′

q q′

p p′

q q′ q q′

p p′

q q′

p p′

Figure 10: Possible switchings in Janson’s algorithm, with chosen points labelled

Janson proved the following result [72, Theorem 2.1]. Recall the definition of
R = R(k) from Theorem 3.1.

Theorem 5.6 [72] Suppose that k is a graphical degree sequence which satisfies

kmax = o(n1/2), M = Θ(n), R = O(n) (5.4)

and let Ĝ denote the output of the switched configuration model for the degree se-
quence k. Then the distribution of Ĝ is within total variation distance o(1) of uni-
form. With high probability, the runtime is O(M) as only O(1) switching steps are
required.

Janson remarks that the bad pair may also be chosen deterministically accord-
ing to some rule, such as lexicographically. This would lead to a slightly different
distribution on the output graph, but the conclusion of Theorem 5.6 would still hold.

Furthermore, Janson [72, Corollary 2.2 and Corollary 2.3] proved that under the
same conditions (5.4), statements about convergence in probability and convergence
in distribution which are true for Ĝ are also true for uniformly-random elements of
G(k).

5.1.2 Graphs with power-law degree distributions Heavy-tailed distributions
are often observed in real-world networks [24, 96], but are difficult to sample as
they are far from regular and their maximum degree is too high for the sampling
algorithms we have seen so far. In [60], Gao and Wormald showed how to adapt
their approach to degree sequences which satisfy the following definition.

Definition 5.7 [60, Definition 1] The degree sequence k is power-law distribution-
bounded with parameter γ > 1 if the minimum entry in k is at least 1, and there is
a constant C > 0 independent of n such that the number of entries of K which are
at least i is at most Cni1−γ for all i ≥ 1.

Other definitions of power-law degree sequences can be found in the literature,
but some only allow maximum degree O(n1/γ), which is o(n1/2) when γ ∈ (2, 3).
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Definition 5.7 is more realistic as it allows higher degrees, as observed in real-
world networks. Gao and Wormald [60, equation (4)] noted that if k is power-law
distribution-bounded with parameter γ then

kmax = O(n1/(γ−1)), M = Θ(n), M2 = O(n2/(γ−1)), (5.5)

where M2 = M2(k) is given in Definition 5.1.

The most relevant range of γ for real-world networks is γ ∈ (2, 3). As observed
by Gao and Wormald [60], when γ > 3 it is easy to sample uniformly from G(k).
We provide a brief proof here.

Lemma 5.8 [60] Suppose that k is a power-law distribution-bounded degree sequence
with γ > 3. Then the configuration model (Figure 2) gives a polynomial-time uniform
sampler for G(k) with expected runtime O(M).

Proof It follows from (5.5) that k2max = o(M) and R =
∑

j∈[n] k
2
j = M2 + M =

Θ(M). The proof is completed by applying Theorem 3.1. �

While uniform sampling is easy when γ > 3, it is a very challenging problem
when γ ∈ (2, 3). To cope with the very high maximum degree when γ < 3, Gao and
Wormald utilised 6 different types of switching (all of the same class). First, they
focussed on removing “heavy” edges or loops, where an edge is heavy if both its
endvertices have high degree. They also introduced a new kind of rejection, called
pre-b-rejection, which is used to equalise the number of ways to choose some addi-
tional pairs which are needed to perform some of the switchings. They described
a uniform sampler PLD, and an asymptotically-uniform sampling algorithm called
PLD∗, obtaining the following result [60, Theorem 2, Theorem 3] when the parame-
ter γ is a little less than 3. These are the first rigorously-analysed algorithms which
can efficiently sample graphs with a realistic power-law degree distribution for some
values of γ below 3.

Theorem 5.9 [60] Suppose that k is a power-law distribution-bounded degree se-
quence with parameter γ such that

γ > 21+
√
61

10
≈ 2.881.

The algorithm PLD is a uniform sampler for G(k) with expected runtime O(n4.081).
The algorithm PLD∗ performs asymptotically-uniform sampling from G(k) with ex-
pected runtime O(n).

In their analysis, Gao and Wormald used a new parameter, J(k), which they
introduced in the context of asymptotic enumeration in [58]. We have seen that
a switching argument breaks down when the number of bad choices for a given
switching operation becomes too large. This often involves counting paths of length
two from a given vertex. In previous work, the bound k2max was often used for this
quantity. (Of course kmax(kmax−1) is more precise but gives the same asymptotics.)
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Instead, Gao and Wormald use the upper bound J(k), defined as follows. First, let
σ be a permutation of [n] such that kσ(1) ≥ kσ(2) ≥ · · · ≥ kσ(n). Then, define

J(k) =

kmax∑

j=1

kσ(j), (5.6)

noting that kmax = kσ(1). So J(k) is the sum of the kmax largest entries of k, and
hence forms an upper bound on the number of 2-paths from an arbitrary vertex.

If k is regular then J(k) = k2max, but when k is far from regular, J(k) can
be significantly smaller than k2max. In particular, if k is a power-law distribution-
bounded degree sequence with parameter γ then k2max = n2/(γ−1), while

J(k) = O
(
n(2γ−3)/(γ−1)2

)
= o(n2/(γ−1)).

This bound on J(k) is proved in [57, Lemma 5], and more briefly in [60, equa-
tion (54)].

The parameter J(k) has proved very powerful when working with heavy-tailed
degree distributions. As well as its use in asymptotic enumeration [58] and uniform
sampling [60], it has also been used in the analysis [57] of the number of triangles and
the clustering coefficient in a uniformly random element of G(k), for heavy-tailed
degree sequences k. We will encounter J(k) again in Section 6.5.

5.1.3 Incremental relaxation Very recently, Arman, Gao and Wormald [5] intro-
duced a new approach, called incremental relaxation, which allows a more efficient
implementation of the b-rejection step. In incremental relaxation, the b-rejection is
performed iteratively over several steps, each with its own sub-rejection probability,
such that the sub-rejection probabilities are much easier to calculate than the over-
all probability of b-rejection. Using this idea, Arman et al. obtain improvements on
the runtime of the algorithms in [59, 60, 91], and give an algorithm for uniformly
sampling bipartite graphs with given degrees when the maximum degree is O(M1/4).
We collect their results together below.

Theorem 5.10 [5, Theorems 1–4] Let k be a graphical degree sequence. There are
algorithms, called INC-GEN, INC-REG, and INC-POWERLAW, respectively,
which perform uniform sampling from G(k) under the following assumptions on k,
with the stated expected runtime:

• If k4max = O(M) then the expected runtime of the algorithm INC-GEN is
O(M).

• If kmax = (k, k, . . . , k) is regular and k = o(n1/2) then the expected runtime of
the algorithm INC-REG is O(kn + k4).

• If k is a power-law distribution-bounded degree sequence with parameter γ >
21+

√
61

10 ≈ 2.881 then the algorithm INC-POWERLAW has expected runtime
O(n).

Now let k = (s, t) be a bipartite degree sequence with kmax = max{max sj, max ti}. If
kmax satisfies k4max = O(M), then there is an algorithm, called INC-BIPARTITE,
which has expected runtime O(M) and produces a uniformly-random bipartite graph
with degree sequence s on one side of the bipartition and t on the other.
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Observe that incremental relaxation leads to greatly improved runtimes, for ex-
ample from O(k2maxM

2) to O(M) for uniform sampling from G(k) when kmax =
O(M1/4), and from O(n4.081) to O(n) for power-law distribution-bounded degree
sequences with γ > 2.882.

At the time of writing, C code for INC-GEN and INC-REG is available from
Wormald’s website2.

6 Markov chain algorithms

In this section we review sampling algorithms which use the Markov chain Monte
Carlo (MCMC) approach. Here an ergodic Markov chain is defined with the desired
stationary distribution: in our setting, the stationary distribution should be uniform
over G(k), or perhaps over a superset of G(k). We refer to such algorithms as
“Markov chain algorithms”.

Rather than work steadily towards a particular goal, such as the sequential
algorithms described in Section 4 or the McKay–Wormald algorithm discussed in
Section 5, the Markov chains we consider in this section perform a random walk on
G(k), usually by making small random perturbations at each step. For example, the
switch chain chooses two random edges, deletes them and replaces them with two
other edges, while maintaining the degree sequence. See Figure 11. We will return
to the switch chain in Section 6.4.

Figure 11: Transitions of the switch chain

A Markov chain needs a starting state: that is, we must be able to initially con-
struct a single instance of G(k). For graphs, bipartite graphs and directed graphs, if
the degree sequence is graphical then a realization of that degree sequence can easily
be constructed. This is done using the Havel–Hakimi algorithm [67, 68] for graphs,
Ryser’s algorithm [102] for bipartite graphs and an adaptation of the Havel–Hakimi
algorithm for directed graphs [43]. We remark that the situation for hypergraphs is
more complicated, as the existence problem (“Does a given degree sequence have a
realization?”) is NP-complete for 3-uniform hypergraphs [30].

In theoretical computer science, any polynomial runtime is seen as efficient. In
practice, of course, an algorithm with a high-degree polynomial runtime may be too
slow to use. All algorithms discussed in previous sections run until some natural
stopping time is reached: that is, by looking at the current state we can tell whether
or not the algorithm may successfully halt. In MCMC sampling, however, the user
must specify the number of transitions T that the Markov chain will perform before
producing any output. Typically T is defined to be the best-known upper bound on

2https://users.monash.edu.au/∼nwormald
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the mixing time τ(ε), for a suitable tolerance ε (see Definition 6.1). For this reason,
loose upper bounds on the mixing time have a significant impact on the runtime.

Most Markov chain approaches to sampling from G(k) have been analysed using
the multicommodity flow method of Sinclair [104], which we describe in Section 6.3.
Unfortunately, it is often very difficult to obtain tight bounds on the rate of mixing
time of a Markov chain using the multicommodity flow method. In any case, it is an
interesting theoretical challenge to try to characterise families of degree sequences
k for which natural Markov chains on G(k) have polynomial mixing time.

We now introduce some necessary Markov chain background. For more informa-
tion see for example [74, 84].

6.1 Markov chain background

A time-homogenous Markov chain M on a finite state space Ω is a stochastic
process X0,X1, . . . such that Xt ∈ Ω for all t ∈ N, and

Pr(Xt+1 = y | X0 = x0, . . . ,Xt = xt) = Pr(Xt+1 = y | Xt = xt)

for all t ∈ N and x0, . . . , xt, y ∈ Ω. These probabilities are stored in an |Ω| × |Ω|
matrix P , called the transition matrix P of M. (This notation clashes with our
earlier use of P for configurations, but we will not mention configurations in this
section so this should not cause confusion.) So the (x, y) entry of P , denoted P (x, y),
is defined by

P (x, y) = Pr(Xt+1 = y | Xt = x)

for all x, y ∈ Ω and all t ≥ 0.
A Markov chain is irreducible if there is a sequence of transitions which trans-

forms x to y, for any x, y ∈ Ω, and it is aperiodic if gcd{t | P t(x, x) > 0} = 1 for
all x ∈ Ω. If a Markov chain is irreducible and aperiodic then we say it is ergodic.
The classical theory of Markov chains says that if M is ergodic then it has a unique
stationary distribution which is the limiting distribution of the chain.

We say that the Markov chain M is time-reversible (often just called reversible)
with respect to the distribution π on Ω if the detailed balance equations hold:

π(x)P (x, y) = π(y)P (y, x)

for all x, y ∈ Ω. If a Markov chain M is ergodic and is time-reversible with respect
to a distribution π, then π is the (unique) stationary distribution of M. (See for
example [84, Proposition 1.19].) In particular, if P is symmetric then the stationary
distribution is uniform. The detailed balance equations are often used to guide
the design of the transition matrix of a Markov chain, so that it has the desired
stationary distribution.

Now assume that M is ergodic with stationary distribution π. For x ∈ Ω let P tx
denote the distribution of Xt, conditioned on the event X0 = x. Recall the definition
of total variation distance (Definition 2.2). For any initial state x ∈ Ω, the distance
dTV (P tx, π) is a geometrically-decreasing function of t (see for example [84, Theorem
4.9]). This leads to the following definition.
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Definition 6.1 Let ε > 0 be a constant. The mixing time of the Markov chain is
the function

τ(ε) = max
x∈Ω

min{t ∈ N | dTV (P tx, π) < ε}.

Here ε is a user-defined tolerance, which specifies how much variation from the
stationary distribution is acceptable. The mixing time captures the earliest time
t at which P tx is guaranteed to be ε-close to the stationary distribution, regardless
of the starting state. Then P tx remains ε-close to the stationary distribution for all
times t ≥ τ(ε) and for every initial state x ∈ Ω.

As usual, we are really interested in sampling from a set Ωn, parameterised by
n, where |Ωn| → ∞, and we want to know how the runtime of the algorithm behaves
as n → ∞. The tolerance ε = εn may also depend on n. We say that the Markov
chain is rapidly mixing if the mixing time is bounded above by a polynomial in
log |Ωn| and log(ε−1). Normally it is prohibitively difficult to find τ(ε) exactly, so
we aim to find an upper bound T which is polynomial in log |Ωn| and log(ε−1). Then
the Markov chain can be used as an FPAUS for sampling from Ωn, in the sense of
Definition 2.3, as follows: starting from a convenient initial state, run the Markov
chain for T steps and output the state XT . See for example Figure 13.

We defer introduction of the multicommodity flow method until Section 6.3.

6.2 The Jerrum–Sinclair chain

The first Markov chain algorithm for sampling from G(k) was given by Jerrum
and Sinclair [76] in 1990. They used Tutte’s construction [111] to reduce the problem
to that of sampling perfect and near-perfect matchings from an auxiliary graph Γ(k),
then applied their Markov chain from [75] to solve this problem. This resulted in
a Markov chain which has uniform stationary distribution over the expanded state
space G′(k) = ∪k

′ G(k′), where the union is taken over the set of all graphical
sequences k

′ = (k′1, . . . , k
′
n) such that k′j ≤ kj for all j ∈ [n] and

∑
j∈[n] |kj − k′j| ≤ 2.

The chain performs three types of transitions, which when mapped back to G′(k)
are as follows: deletion of a random edge, if the current state belongs to G(k);
insertion of an edge between the two distinct vertices with degree deficit one; or
insertion of a random edge {i, j} together with the deletion of a randomly-chosen
neighbouring edge {j, ℓ}. (We will not specify the transition probabilities precisely
here.) See Figure 12, where dashed lines represent non-edges. The third type of
transition is called a hinge-flip by Amanatidis and Kleer [3], following [25].

j

i

j

i

j

i ℓ

j

i ℓ

Figure 12: Transitions of the Jerrum–Sinclair chain: insertion/deletion (left) and
hinge-flip (right)

We can use the Jerrum–Sinclair chain to repeatedly sample from G′(k) until
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an element of G(k) is obtained. For this to be efficient, the expected number of
iterations required must be bounded above by a polynomial.

Definition 6.2 A class of degree sequences is called P-stable if there exists a polyno-
mial q(n) such that |G′(k)|/|G(k)| ≤ q(n) for every degree sequence k = (k1, . . . , kn)
in the class.

Jerrum and Sinclair proved the following result [76, Theorem 2.4], but did not
give an explicit (polynomial) bound on the mixing time of their chain.

Theorem 6.3 [76] There is an FPAUS for G(k) for any degree sequence k which
belongs to some P-stable class.

Various classes of degree sequences are known to be P-stable, including the class
of all regular sequences, and all sequences with kmax sufficiently small. We discuss
P-stability further in Section 6.5.

6.2.1 A complete solution for the bipartite case The Jerrum–Sinclair chain for
sampling perfect matchings from a given graph [75] is slow when the ratio of the
number of perfect matchings to the number of near-perfect matchings is exponen-
tially small. In 2004, Jerrum, Sinclair and Vigoda [78] described and analysed an
ingenious algorithm, based on simulated annealing, which overcame this problem
for bipartite graphs. Their algorithm gives an FPAUS (and hence an FPRAS) for
approximately-uniformly sampling (or approximately counting) perfect matchings
from a given bipartite graph. An important idea in [78] is to use a non-uniform sta-
tionary distribution over the set of all perfect and near-perfect matchings, so that
the stationary probability of the set of perfect matchings is at least 1/(4n2 +1); that
is, at most polynomially small. This is achieved by assigning weights to each “hole
pattern” (for a near-perfect matching, this is the pair of vertices with deficit one,
and for a perfect matching this is the empty set), as well as edge weights. Estimating
good values for the weights is achieved iteratively, using simulated annealing.

As a corollary, using Tutte’s construction [111], Jerrum, Sinclair and Vigoda
obtained an FPAUS for sampling bipartite graphs with given degrees [78, Corol-
lary 8.1]. In fact their result is more general: given an arbitrary bipartite subgraph
H, they obtain an FPAUS for sampling subgraphs of H with a given degree sequence.

Theorem 6.4 [78, Corollary 8.1] Given an arbitrary bipartite graph H, there is an
FPAUS for the set of labelled subgraphs of H with a specified degree sequence, and
there is an FPRAS for computing the number of these subgraphs.

Bezáková, Bhatnagar and Vigoda [11] gave a more direct implementation of
the algorithm from [78], which avoids Tutte’s construction. This allows them to
obtain faster runtime bounds compared with [78]. It follows from the proof of [11,
Theorem 1] that their FPAUS is valid for any bipartite degree sequence, and has
running time

O
(
(n1n2)

2M3kmax log4(n1n2/ε)
)
,

where n1 and n2 are the number of nodes in each part of the bipartition, and, as
usual, kmax is the maximum degree and M is the sum of the degrees.
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6.3 The multicommodity flow method

There are a few methods for bounding the mixing times of Markov chains. Before
proceeding further we describe the multicommodity flow method, which has been
used to analyse most MCMC algorithms for sampling graphs. For information on
other methods for bounding the mixing times of Markov chains, see for example [36,
74, 84, 95].

Let M be a time-reversible ergodic Markov chain and let N = |Ω| be the cardi-
nality of the state space. Then the eigenvalues of the transition matrix are real and
satisfy

1 = λ0 > λ1 ≥ · · · ≥ λN−1 > −1.

The mixing time of the Markov chain is controlled by λmax = max{λ1, |λN−1|}.
Denote the smallest stationary probability by π∗ = min{π(x) | x ∈ Ω}. Then

τ(ε) ≤ (1 − λmax)−1 log

(
1

ε π∗

)
, (6.1)

see for example [104, Proposition 1]).
If λmax = |λN−1| then in particular, λN−1 must be negative, in which case

1 − |λN−1| = 1 + λN−1. For many chains we can apply a result of Diaconis and
Saloff-Coste [32, p.702] (see also [64]) to establish an upper bound on (1 +λN−1)

−1.
In particular, if there is a positive probability of a null transition at any state then
the following special case of that result may be useful:

(1 + λN−1)−1 ≤ 1
2 max
x∈Ω

P (x, x)−1. (6.2)

Another option is to work with the lazy version of the Markov chain M, by replacing
the transition matrix P by (I +P )/2. This ensures that all eigenvalues are nonneg-
ative and hence λmax = λ1. We say that a Markov chain M is lazy if P (x, x) ≥ 1

2
for all x ∈ Ω.

Sinclair’s multicommodity flow method [104] provides an upper bound on (1 −
λ1)−1. It is a generalisation of the canonical path method that Jerrum and Sinclair
introduced in [75].

Given a Markov chain M with uniform stationary distribution on a state space
Ω, let G(M) be the underlying graph, where there is an edge from x to y if and
only if P (x, y) > 0. We assume that M is ergodic and time-reversible with respect
to the distribution π. Let Pxy be the set of all simple directed paths from x to y in
G(M), and define P = ∪x,yPxy. A flow is a function f : P → [0,∞) such that for
all x, y ∈ Ω with x 6= y, ∑

p∈Pxy

f(p) = π(x)π(y).

(In the canonical path method, there is only one flow-carrying path from between
any two pairs of states.)

If the flow can be defined so that no transition of the chain is overloaded, then
the state space does not contain any “bottlenecks” and the Markov chain will be
rapidly mixing. To make this precise, the total flow through a transition e = xy
is f(e) =

∑
p∋e f(p), and the load of e is defined by ρ(e) = f(e)/Q(e), where
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Q(e) = π(x)P (x, y) is the capacity of the transition e = xy. (By time-reversibility,
Q is well-defined.) Finally, the maximum load of the flow is ρ(f) = maxe ρ(e), while
ℓ(f) denotes the length of the longest path p with f(p) > 0. Sinclair [104, Corollary
6’] proved that for any time-reversible Marvov chain any any flow f ,

(1 − λ1)−1 ≤ ρ(f) ℓ(f). (6.3)

The next result specialises the multicommodity flow method to ergodic, time-
reversible Markov chains with the uniform stationary distribution over a set Ω. It
is obtained from (6.1) and (6.3), and allows two options for managing the smallest
eigenvalue λN−1.

Theorem 6.5 Let M be an ergodic time-reversible Markov chain with uniform sta-
tionary distribution over Ω. Define B to be 0, if it is known that λmax = λ1 (for
example if M is lazy). Otherwise, let B be an upper bound on (1 + λN−1)

−1. Then
the mixing time of the Markov chain M satisfies

τ(ε) ≤ max{ρ(f)ℓ(f), B}
(

log |Ω| + log(ε−1)
)
.

When the multicommodity flow method is applied to the problem of sampling
graphs from G(k), the start and end states are graphs G,G′ with degree sequence k.
Usually the definition of the flow is guided by the symmetric difference H = G△G′

of G and G′, and each step of a flow-bearing path is designed to make the symmetric
difference smaller.

6.4 The switch chain

The switch chain (also called swap chain [93] and Diaconis chain [11]) is the sim-
plest Markov chain with uniform distribution over G(k). A transition of the switch
chain deletes two edges and inserts two edges, while maintaining the degree sequence
and without introducing any repeated edges. This is illustrated in Figure 11, at the
start of Section 6. This chain was introduced by Diaconis and Gangolli [31] in 1995
in order to sample contingency tables (matrices of nonnegative integers) with given
row and column sums. The transitions can be easily adapted to bipartite graphs or
directed graphs. The switch chain is ergodic for graphs, and for bipartite graphs,
with given degrees.

In 1999, Kannan, Tetali and Vempala [80] considered the switch chain for sam-
pling bipartite graphs with given degrees. They used the auxiliary graph Γ(k)
obtained from Tutte’s construction (modified to bipartite graphs) in order to de-
fine a multicommodity flow, and gave details only for the case of regular degrees.
Unfortunately, there is a bug in their argument (specifically, in the proof of [80,
Theorem 4.1]) which seems to be fatal.3

3The symmetric difference of two perfect matchings in Γ(k) consists of the union of disjoint cycles.
However, when mapped back to the symmetric difference of the two corresponding bipartite graphs,
an alternating cycle in Γ(k) may correspond to an alternating walk, which could have linearly many
repeated vertices (vertices which are visited more than once on the walk). The argument of [80]
does not take this into account.
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The switch chain

Input: graphical sequence k and positive integer T = T (k)
Output: element of G(k)

let G be an arbitrary initial state
for t = 0, . . . , T − 1 do

choose two non-adjacent distinct edges {a, b}, {c, d} u.a.r.
choose a perfect matching M of {a, b, c, d} u.a.r.
if M ∩ E(G) = ∅ then

delete the edges {a, b}, {c, d} and add the edges of M
output GT

Figure 13: The switch chain for sampling from G(k)

One implementation of the switch chain for G(k) is given in Figure 13. Cooper,
Dyer and Greenhill [26] analysed the mixing time of the lazy version of this chain,
restricted to regular degree sequences. (That is, they replaced the transition matrix
P arising from the above procedure by (I + P )/2, which is equivalent to inserting
the instruction “With probability 1

2 , do nothing” just inside the for-loop.) However,
this is unnecessary, as the transition procedure given in Figure 13 guarantees that
(1 + λmax)−1 ≤ 3

2 , by (6.2). Hence we can take B = 3
2 in Theorem 6.5. Using a

multicommodity flow argument, Cooper et al. established a polynomial bound on
the mixing time for any regular degree sequence [26, 27].

Theorem 6.6 [26, 27] For any k = k(n) ≥ 3, the switch chain on G(n, k) has
mixing time

τ(ε) ≤ k23 n8
(
kn log(kn) + log(ε−1)

)
.

Proof (Sketch.) Cooper et al. defined a multicommodity flow for the switch chain
on G(n, k) and proved that maximum load ρ(f) is bounded above by a polynomial
in n and k. (A brief outline of the argument is given below.) The length of any
flow-carrying path is at most kn/2. Next,

|G(k)| ≤ M !

2M/2 (M/2)!
∏
j∈[n] kj !

≤ exp(12M logM
)
, (6.4)

where the first inequality follows from the configuration model. Applying Theo-
rem 6.5 completes the proof. �

Greenhill [63] used a similar argument to show that the switch chain for k-in,
k-out (regular) directed graphs is rapidly mixing for any k with 1 ≤ k = k(n) ≤ n−1
and all n ≥ 4.

We now give some more details on the design and analysis of the multicommodity
flow for the switch chain. The flow between two graphs G,G′ is defined with respect
to the symmetric difference H = G△G′. Note that the symmetric difference H need
not be regular, even if G,G′ are both regular. Greenhill and Sfragara [65] observed
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that the multicommodity flow defined in [26] for regular degrees can also be used
for irregular degrees. In fact, almost all parts of the analysis of the multicommodity
flow also extends immediately to irregular degree sequences. For this reason, the
description below is presented in the general setting of G(k).

Starting from the symmetric difference H = G△G′, Cooper et al. described how
to decompose this symmetric difference into a sequence of smaller, edge-disjoint
structures they called 1-circuits and 2-circuits. They identified several different
ways to do this, parameterised by a set Ψ(G,G′). For each ψ ∈ Ψ(G,G′) , the
(canonical) path from G to G′ indexed by ψ is denoted γψ(G,G′). This path is
created by “processing” each of the 1-circuits and 2-circuits, in a specified order.
Processing a circuit changes the status of its edges from agreeing with G to agreeing
with G′, and adds some transitions to the path γψ(G,G′). Finally, the flow from G
to G′ divided equally among these |Ψ(G,G′)| paths.

Once the multicommodity flow is defined, it remains to prove that no transition
is too heavily loaded. Suppose that e = (Z,Z ′) is a transition of the chain which
is used on the path γψ(G,G′). A common approach is to define an encoding L of
a state Z, which records information about the symmetric difference H = G△G′

to help us recover G and G′ from the transition (Z,Z ′) and the encoding L. This
approach will work if the set of possible encodings for Z is at most polynomially
larger than |G(k)|, and there are at most polynomially-many options for (G,G′)
once Z,Z ′, L are all specified. In [26], encodings are defined by

L+ Z = G+G′

where G,G′ and Z are identified with their n× n adjacency matrices. Then L is an
n×n symmetric matrix with row sums given by k, and with almost all entries equal
to 0 or 1. In fact, due to the careful way that 1-circuits and 2-circuits are processed,
L has at most 4 entries equal to −1 or 2, and all other entries are 0 or 1. Hence
L may also be thought of as a graph with most edges labelled 1, and at most four
defect edges which may be labelled −1 or 2. The sum of all edge labels at vertex
j must equal the degree kj of j, for all j ∈ [n]. (There are some other constraints
about the structure of the defect edges, stated in [26, Lemma 2].)

Given an encoding L, by removing the defect edges we obtain a graph with
degree sequence which is very close to k. This gives a connection between the ratio
|L(Z)|/|G(k)| and the ratio |G′(k)|/|G(k)| from the definition of P-stability (6.2).
This connection is explored further in Section 6.5. In the regular case, we have the
following bound.

Lemma 6.7 [26, Lemma 4] For any Z ∈ G(n, k), let L(Z) denote the set of en-
codings L such that every entry of L + Z belongs to {0, 1, 2}. Then |L(Z)| ≤
2k6n6 |G(n, k)|.

Proof (Sketch.) This was proved by extending the switch operation to encodings,
and showing that at most three switches suffice to transform an encoding into an
element of G(n, k). The factor 2k6n6 is an upper bound on the number of encodings
which can be transformed into an arbitrary element of G(n, k). �

In fact, Greenhill and Sfragara observed that [26, Lemma 4] (restated as Lemma 6.7
above) was the only part of the argument from [26] which relied on the regularity
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assumption for its proof. For this reason, they called it the “critical lemma”. The
proof of the lemma is essentially a switching argument, used to find the relative sizes
of two sets. For irregular degrees, it was no longer possible to prove that a suitable
switch could always be found in any encoding.

Greenhill and Sfragara bypassed this problem by using a more powerful switching
operation to prove the critical lemma. Rather than use a switch, which swaps edges
for non-edges around an alternating 4-cycle, they used a operation involving an
alternating 6-cycle (deleting 3 edges and inserting 3 edges at a time), illustrated in
Figure 14. This operation gave them sufficient flexibility to prove the critical lemma
when kmax is not too large.

Figure 14: Switching edges around a 6-cycle

Theorem 6.8 [65, Theorem 1.1] Let k be a graphical degree sequence. If all entries
of k are positive and 3 ≤ kmax ≤ 1

3

√
M then the mixing time of the switch chain on

G(k) satisfies
τ(ε) ≤ k14maxM

9
(
1
2M logM + log(ε)

)
.

In Section 6.5 we will discuss connections between the stability of degree se-
quences and rapid mixing of the switch chain. First we discuss some results re-
garding the switch chain for bipartite graphs, directed graphs and hypergraphs, and
some related topics.

6.4.1 Bipartite graphs and directed graphs We have seen in Theorem 6.4 that
the algorithm of Jerrum, Sinclair and Vigoda [78] gives an FPAUS for sampling
bipartite graphs with any given bipartite degree sequence. However, there is still
interest in studying the switch chain for bipartite graphs, as it is a very natural and
simple process.

A 1-regular bipartite graph is a permutation. Diaconis and Shahshahani [34]
studied the Markov chain with state space Sn, the set of all permutations of [n], and
transitions defined as follows: with probability 1/n do nothing, and otherwise choose
a transposition (i j) uniformly at random (where i, j ∈ [n] are distinct), and multiply
the current permutation by (i j) on the left, say. This random transposition chain
is very closely related to the switch chain for a 1-regular bipartite degree sequence
(the set of allowed transitions is identical, though the probability of each transition
differs between the two chains). Diaconis and Shahshahani gave a very complete
analysis of the random transposition chain in [34], calculating the eigenvalues and
proving that the chain exhibits the “cutoff phenomenon”, see [84, Chapter 18]. That
is, the total variation distance to stationarity drops very quickly from 1 − o(1) to
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o(1) when the chain has taken 1
2n log n+ Θ(n) steps (this is cutoff at 1

2n log n with
window of order n).

Other than [34], the first analysis of the switch chain for sampling bipartite
graphs with given degrees was the work of Kannan et al. [80], discussed earlier.

The multicommodity flow arguments from [26, 65] can be simplified when re-
stricted to bipartite graphs, as the symmetric difference of two bipartite graphs
with the same degree sequence can be decomposed into edge-disjoint alternating
cycles, and these are relatively easy to handle. The resulting bounds on the mixing
time of the switch chain for bipartite graphs with given degrees were recently pre-
sented in [37, Appendix A]. These show that the switch chain is rapidly mixing for
any regular bipartite degree sequence, and for arbitrary bipartite degree sequences
when the maximum degree is not too large compared to the number of edges. As
usual, the mixing time bounds are very high-degree polynomials.

A bipartite degree sequence is half-regular if all degrees on one side of the bipar-
tition are regular. Miklos, Erdős and Soukup [93] proved that the switch Markov
chain is rapidly mixing for half-regular bipartite degree sequences. Their proof also
used the multicommodity flow method, but the flow is defined differently to the
Cooper–Dyer–Greenhill flow described above.

For some directed degree sequences, the switch chain fails to connect the state
space, as it cannot reverse the orientation of a directed 3-cycle. Rao et al. [100]
observed that by the Markov chain which performs switch moves and (occasionally)
reverse directed 3-cycles, is ergodic for any directed degree sequence. They noted
that for many degree sequences, this additional move did not seem to be needed
in order to connect the state space. This was confirmed by the work of Berger
and Müller-Hannemann [10] and LaMar [83], who characterised degree sequences
for which the switch chain is irreducible.

Greenhill and Sfragara [65, Theorem 1.2] adapted their argument to directed
graphs, proving a similar result to Theorem 6.8. As well as an upper bound on the
maximum degree, [65, Theorem 1.2] also assumes that the switch chain connects the
state space. Their argument built on Greenhill’s analysis [63] of the switch chain for
directed graphs, replacing the proof of the “critical lemma” from [63] by one which
did not require regularity.

6.4.2 The augmented switch chain and the Curveball chain Erdős et al. [41]
considered the switch chain augmented by an additional transition, namely switching
the edges around an alternating 6-cycle as shown in Figure 14. They called this
transition a triple swap. We will refer to this chain as the augmented switch chain.
Building on the analysis from [93], Erdős et al. [41, Theorem 10] proved that the
augmented switch chain for half-regular bipartite degree sequences remains rapidly
mixing in the presence of set of forbidden edges given by the union of a perfect
matching and a star. They also described an algorithm (similar to the Havel–
Hakimi algorithm) for constructing a single realization [41, Theorem 9], to be used
as the initial state. Since directed graphs can be modelled as bipartite graphs with
a forbidden perfect matching, their algorithm also gives an FPAUS for directed
graphs with specified in-degrees and out-degrees, where (say) the sequence of in-
degrees is regular. This explains the addition of the triple swap transitions, without
which the chain might not be irreducible for some directed degree sequences. By
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avoiding a star, the problem becomes self-reducible [79], which leads to an FPRAS
for approximating the number of bipartite graphs with given half-regular degree
sequence and some forbidden edges. As mentioned earlier, the algorithm of Jerrum,
Sinclair and Vigoda [78, Corollary 8.1] can also be applied to this problem.

Erdős et al. [42] gave new conditions on bipartite and directed degree sequences
which guarantee rapid mixing of the augmented switch chain. In particular, suppose
that a bipartite degree sequence has degrees s = (s1, . . . , sa) in one part and degrees
t = (t1, . . . , tb) in the other, where a + b = n. Let smax, smin, tmax, tmin be the
maximum and minimum degrees on each side. If all degrees are positive and

(smax − smin − 1)(tmax − tmin − 1) ≤ max{smin (a− tmax), tmin (b− smax)}

then the augmented switch chain on the set of bipartite graphs with bipartite degree
sequence (s, t) is rapidly mixing [42, Theorem 3]. They applied this result to the
analysis of the bipartite Erdős–Rényi model G(a, b, p), with a vertices in one side of
the bipartition, b vertices on the other and each possible edge between the two parts
is included with probability p. Erdős et al. [42, Corollary 13] proved that if p is not
too close to 0 or 1 then the augmented switch chain is rapidly mixing for the degree
sequence arising from G(a, b, p), with high probability as n → ∞, where n = a + b.
They also proved analogous results for directed degree sequences [42, Theorem 4,
Corollary 14]. To prove their results, they adjusted the multicommodity argument
from [41, 93] and gave new proofs of the “critical lemma” for that argument.

The Curveball chain, introduced by Verhelst [114], is another Markov chain for
sampling bipartite graphs with given degrees, which chooses two vertices on one
side of the bipartition and randomises their neighbourhoods, without disturbing the
degrees or set of common neighbours of the chosen vertices. Carstens and Kleer [20]
showed that the Curveball chain is rapidly mixing whenever the switch chain is
rapidly mixing.

6.4.3 New classes from old Erdős, Miklós and Toroczkai [45] described a novel
way to expand the class of degree sequences (and bipartite degree sequences, and
directed degree sequences) for which the switch chain is known to be rapidly mix-
ing. Their approach utilised canonical degree sequence decompositions, introduced
by Tyshkevich [112], and extended this concept to bipartite and directed degree
sequences. Using the decomposition theorem from [44], if the switch chain (or aug-
mented switch chain) is rapidly mixing on each component of this decomposition,
then it is rapidly mixing on the original degree sequence.

6.4.4 Improved bounds using functional inequalities Functional inequalities can
be used to give tight bounds on the convergence of of Markov chains. Suppose
that M is a Markov chain with state space Ω, transition matrix P and stationary
distribution π. The Dirichlet form associated to M is defined by

EP,π(f, f) = 1
2

∑

x,y∈Ω

(
f(x) − f(y)

)2
π(x)P (x, y)

for any f : Ω → R. This is a weighted measure of how much f varies over pairs
of states which differ by a single transition. The variance of f with respect to π,
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defined by

Varπ(f) = 1
2

∑

x,y∈Ω

(
f(x) − f(y)

)2
π(x)π(y),

captures the global variation of f over Ω. These functions can be used to bound the
second-largest eigenvalue λ1 of M as follows:

1 − λ1 = min
f

EP,π(f, f)

Varπ(f)
,

where the minimum is taken over all non-constant functions f : Ω → R. See
for example [84, Lemma 13.12 and Remark 13.13]. The Markov chain satisfies a
Poincaré inequality with constant α if Varπ(f) ≤ α EP,π(f, f) for any f : Ω → R.
The log-Sobolev inequality has a similar (but more complicated) definition and can
also be used to bound the mixing time [33].

Very recently, Tikhomirov and Youssef [109] proved4 a sharp Poincaré inequality,
and established a log-Sobolev inequality, for the switch chain for regular bipartite
graphs. Using their Poincaré inequality, Tikhomirov and Youssef proved [109, Corol-
lary 1.2] that when 3 ≤ k ≤ nc for some universal constant c, the mixing time of the
switch chain on k-regular bipartite graphs satisfies

τ(ε) ≤ Ckn
(
kn log kn+ log(2ε−1)

)

for some universal constant C > 0 (constants c, C not explicitly stated). This is a
huge improvement on any previously-known bound. Tikhomirov and Youssef also
state the following mixing time bound, obtained using their log-Sobolev inequality
when k ≥ 3 is a fixed constant:

τ(ε) ≤ Ck n log n

(
log n+ log

( 1

2ε2

))
.

Here Ck > 0 is an expression which depends only on k.
The proof in [109] is long and technical, and will likely be difficult to generalise.

But it is exciting to see such a low-degree polynomial bound on the mixing time of
the switch chain for this non-trivial class of bipartite degree sequences.

6.4.5 Hypergraphs A hypergraph is uniform if every edge contains the same
number of vertices. The incidence matrix of a hypergraph can be viewed as the
adjacency matrix of a bipartite graph, with one part of the bipartition representing
the vertices of the hypergraph and the other part representing the edges. Conversely,
a bipartite graph gives rise to a simple hypergraph, by reversing this construction, if
all vertices on the “edge” side of the bipartition have distinct neighbourhoods. This
is needed to avoid creating a repeated edge. In the case of uniform hypergraphs, if
the resulting hypergraph is simple then it arises from precisely m! distinct bipartite
graphs, where m is the number of edges of the hypergraph.

Hence, any algorithm for sampling bipartite graphs with a given half-regular
degree sequence can be transformed into an algorithm for sampling uniform hyper-
graphs with given degrees, using rejection sampling. This is explored by Dyer et al.

4Subject to refereeing.
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in [37]. Note that a configuration model may be defined for hypergraphs, though
it is equivalent to the corresponding bipartite configuration model. The configura-
tion model only gives polynomial-time uniform sampling when the maximum degree
multiplied by the edge size is O(log n), see [37, Lemma 2.3].

Chodrow [22] introduced a Markov chain which works directly on uniform hy-
pergraphs. A transition involves choosing two edges e, f and deleting them, then
inserting two edges e′, f ′ chosen randomly so that the degree sequence is unchanged
and e′ ∩ f ′ = e ∩ f . This transitions of this chain are analogous to the transitions
of the Curveball chain [20] for sampling bipartite graphs. Chodrow proved that this
chain is ergodic, but did not analyse the mixing time. It is an open problem to
determine classes of degree sequences and edge sizes for which this chain is rapidly
mixing.

6.5 Stability of degree sequences

Informally, a class of degree sequences is stable if |G(k)| varies smoothly as k

ranges over the class [77]. Work on the connection between the stability of de-
gree sequences and mixing rates of Markov chains for sampling from G(k) began
with Jerrum and Sinclair’s definition of P-stability [76], stated in Definition 6.2
above. A slightly different version of P-stability was studied by Jerrum, Sinclair
and McKay [77]. Let ‖x‖1 =

∑
j∈[n] |xj| denote the 1-norm of the vector x =

(x1, . . . , xn), and define the set U(k) of all degree sequences k̃ such that

‖k̃‖1 = ‖k‖1 and ‖k̃ − k‖1 = 2.

Jerrum, Sinclair and McKay said that a class of degree sequences is P-stable if there
exists a polynomial q(n) such that

∣∣∣∣∣∣

⋃

k̃∈U(k)

G(k̃)

∣∣∣∣∣∣
≤ q(n) |G(k)|

for all k in the class. If this holds then k is also P-stable in the original sense (Defi-
nition 6.2). Let kmin denote the smallest entry of k. Jerrum et al. [77, Theorem 8.1,
Theorem 8.3] gave two sufficient conditions for a degree sequence to belong to a
P-stable class.

Theorem 6.9 [77] Recall that M = M(k) is the sum of entries in the degree se-
quence k.

(i) The class of graphical degree sequences k = (k1, . . . , kn) which satisfy

(kmax − kmin + 1)2 ≤ 4kmin (n− kmax − 1)

is P-stable.

(ii) The class of graphical degree sequences k = (k1, . . . , kn) which satisfy

(M − kmin n)(kmax n−M)

≤ (kmax − kmin)
(
(M − kmin n)(n− kmax − 1) + kmin(kmax n−M)

)

is P-stable.
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Jerrum et al. [77] listed several examples of classes of degree sequences which
satisfy one of these sufficient conditions and hence are P-stable, including

• all regular sequences;

• all graphical sequences with kmin ≥ 1 and kmax ≤ 2
√
n− 2;

• all graphical sequences with kmin ≥ n/9 and kmax ≤ 5n/9 − 1.

Using (5.5) and recalling Definition 5.7, we see that the sufficient condition from
Theorem 6.9(i) does not cover heavy-tailed distributions such as the power-law
distribution-bounded degree sequences with γ ∈ (2, 3). The condition from The-
orem 6.9(ii) may hold in some cases but fails whenever M > 2kmin n. The first and
third examples show that a P-stable class does not have to be sparse.

It is possible to define classes of degree sequences which are not P-stable but
for which the switch chain is rapidly mixing. Jerrum, Sinclair and McKay [77]
illustrated this using the degree sequence

k = k(n) = (2n− 1, 2n − 2, . . . , n + 1, n, n, n− 1, . . . , 2, 1)

on 2n vertices. There is a unique realisation of this degree sequence, so |G(k)| =
1 and the switch chain is trivially rapidly mixing on G(k). However, |G(k′)| is
exponential in n, where

k
′ = k

′(n) = (2n − 2, 2n − 2, . . . , n+ 1, n, n, n− 1, . . . , 2, 2)

is obtained from k by decreasing the largest degree by 1 and increasing the smallest
degree by 1. Hence the class {k(n) | n ≥ 2} is not P-stable. Erdős et al. [40]
described more general classes of degree sequences with these properties. So P-
stability is not a necessary condition for the switch chain to be efficient. Rather, the
standard proof techniques tend to break down when the class of degree sequences is
not P-stable.

6.5.1 Strong stability Amanatidis and Kleer [3, 4] defined a new notion of sta-
bility, called strong stability, which is possibly stronger than P-stability. Recall that
G′(k) denotes the state space of the Jerrum–Sinclair chain. Say that graphs G,H
are at JS-distance r if H can be obtained from G using at most r transitions of the
Jerrum–Sinclair chain. Next, let dJS(k) denote the maximum, over all G ∈ G′(k),
of the minimum distance from G to an element of G(k). Then every element of the
augmented state space G′(k) can be transformed into an element of G(k) in at most
dJS(k) transitions of the Jerrum–Sinclair chain.

Definition 6.10 A class of graphical degree sequences is strongly stable if there is
a constant ℓ such that dJS(k) ≤ ℓ for all degree sequences k in the class.

Amanatidis and Kleer proved [3, Proposition 3] that every strongly stable family
is P-stable. It is not known whether the converse is also true. The main result of [3]
is the following.

Theorem 6.11 [4, Proposition 2.3 and Theorem 2.4] The switch chain is rapidly
mixing for all degree sequences from a strongly stable family.
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The proof of Theorem 6.11 rests on the observation that it is much easier to define
a good multicommodity flow for the Jerrum–Sinclair chain than for the switch chain.
Next, Amanatidis and Kleer prove that when k is strongly stable, a good flow for
the Jerrum–Sinclair chain can be transformed into a good flow for the switch chain.

Amanatidis and Kleer gave analogous results for bipartite degree sequences [3,
Theorem 17]. Their framework provided a unified proof of many rapid mixing results
for the switch chain for graphs, and bipartite graphs, with given degrees. The
authors of [3] remark that their “unification of the existing results [...] is qualitative
rather than quantitative, in the sense that our simpler, indirect approach provides
weaker polynomial bounds for the mixing time.”

6.5.2 Rapid mixing for P-stable degree classes Erdős et al. [39] defined a new
multicommodity flow for the switch chain. The symmetric difference is decomposed
into primitive alternating circuits, such that no vertices is visited more than twice
on a primitive circuit, and if a vertex is visited twice then the two occurrences are at
an odd distance from each other around the circuit. Then the primitive alternating
circuits are processed in a carefully-chosen order. An encoding is defined (and is
called an “auxiliary matrix”) such that it is at most three switches away from (the
adjacency matrix of) an element of the set G′(k). By definition, P-stability guaran-
tees that |G′(k)| ≤ q(n) |G(k)| for some polynomial q(n). Furthermore, there are a
polynomial number of ways to choose each of the (at most 3) switches. Hence, when
k is P-stable, we conclude that the number of encodings is at most polynomially
larger than |G(k)|. This proves the “critical lemma” for this flow, and establishes
the following.

Theorem 6.12 [39, Theorem 1.3] The switch Markov chain is rapidly mixing on
all degree sequences contained in a P-stable class.

Erdős et al. adapted their analysis to bipartite degree sequences and directed
degree sequences [39], proving the analogue of Theorem 6.12 in those settings. Hence
their result extends Theorem 6.11 from strongly stable to P-stable degree classes,
and includes directed degree sequences. bipartite degree sequences and directed
degree sequences.

Applying Theorem 6.9(ii) and Theorem 6.12 to the degree sequence of G(n, p)
leads to the following result.

Corollary 6.13 [39, Corollary 8.6] When n ≥ 100, the degree sequence of the bino-
mial random graph G(n, p) satisfies the condition of Theorem 6.9(ii) with probability
at least 1−3/n, so long as p, 1−p ≥ 5 logn

n−1 . Hence the switch chain is rapidly mixing
on G(n, p) with probability at least 1 − 3/n.

Indeed, applying Theorem 6.3 we can also conclude that if the conditions of
Corollary 6.13 hold then with probability at least 1−3/n, the Jerrum–Sinclair chain
gives an FPAUS for sampling from G(n, p).

6.5.3 A new notion of stability Recently, Gao and Greenhill [56] introduced a
new notion5 of stability for classes of degree sequences.

5Called “k-stability” in [56], but here we reserve k for degrees.
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Definition 6.14 Given a positive integer b and nonnegative real number α, a graph-
ical degree sequence k is said to be (b, α)-stable if |G(k′)| ≤M(k)α |G(k)| for every
graphical degree sequence k

′ with ‖k′ − k‖1 ≤ b. Let Db,α be the set of all degree
sequences that are (b, α)-stable. A family D of degree sequences is b-stable if there
exists a constant α > 0 such that D ⊆ Db,α.

Gao and Greenhill proved [56, Proposition 6.2] that 2-stability is equivalent to
P-stability. The relationship between strong stability and 2-stability is not known.

Recall that by removing all defect edges, an encoding gives rise to a graph with
degree sequence not too far from k. Gao and Greenhill observe that all degree
sequences k

′ which correspond to encodings arising from the multicommodity flow
of [26, 65] satisfy ‖k′−k‖1 ≤ 8. Next, assuming (8, α)-stability they found an upper
bound on the number of encodings compatible with a given graph Z ∈ G(k): this
proves the “critical lemma” and leads to the following result.

Theorem 6.15 [56, Theorem 2.1] If the graphical degree sequence k is (8, α)-stable
for some α > 0 then the switch chain on G(k) is rapidly mixing, and

τ(ε) ≤ 12 k14max n
6M3+α

(
1
2M logM + log ε−1)

)
.

Gao and Greenhill provided a sufficient condition for a degree sequence to be
8-stable, and a slightly weaker condition which guarantees P-stability and strong
stability. These conditions involve the parameter J(k) defined in (5.6), and have
been designed to work well for heavy-tailed degree sequences.

Theorem 6.16 [56, Theorem 2.2]

(i) Let k be a graphical degree sequence. If M > 2J(k) + 18kmax + 56 then k is
(8,8)-stable.

(ii) Suppose that D is a family of degree sequences wuch thatM > 2J(k)+6kmax+2
for all k ∈ D. Then D is both P-stable and strongly stable.

The proof of Theorem 6.16(i) uses the switching method. Then Theorem 6.16(ii)
follows using the fact, proved in [56, Lemma 4.1], that if every graphical degree
sequence k

′ with ‖k′ − k‖1 ≤ 6 is (2, α)-stable then k is (8, 4α)-stable.
Finally, Gao and Greenhill prove that various families of heavy-tailed degree se-

quences satisfy the condition of Theorem 6.16(i), and hence are 8-stable, strongly
stable and P-stable. In particular [56, Theorem 5.3], the family of power-law
distribution-bounded sequences with parameter γ > 2 is P-stable.

Gao and Greenhill gave analogous definitions and results for directed degree
sequences [56, Section 7].

6.6 Restricted graph classes

We briefly describe some related work on using rapidly mixing Markov chains to
sample from restricted classes of graphs with given degrees.
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6.6.1 Joint degree matrices In some applications, it is desirable to be able to
specify not just the degrees of a graph, but also the number of edges between vertices
with given degrees. This can help to capture network properties such as assortativity,
which is the tendency for vertices with similar degrees to be adjacent. A joint degree
matrix [2, 98] stores the number of edges Jij with one endvertex of degree i and the
other of degree j, for all relevant i, j. A sequential importance sampling approach
for sampling graphs with a specified joint degree matrix was given in the physics
literature by Bassler et al. [6], without full analysis.

The switch chain can be adapted to sample from the set of all graphs with a
given degree sequence and given joint degree matrix, by rejecting any transition
which would change any entry in the joint degree matrix. Stanton and Pinar [107]
gave empirical evidence that suggests that the switch chain mixes rapidly on graphs
with a prescribed joint degree matrix, but there are few rigorous results. Erdős,
Miklós and Toroczkai [44] proved that the switch chain is rapidly mixing on the
set of all balanced realizations of a given joint degree matrix. Here a realization is
balanced if for all vertices v with degree i, the number of neighbours w of v with
degree j is within 1 of the value Jij/ni, where ni is the number of vertices with degree
i. Their proof involved a new Markov chain decomposition theorem [44, Theorem
4.3], similar to that of Martin and Randall [87].

Amanatidis and Kleer [3] showed that the switch chain is rapidly mixing on the
set of all realizations of any joint degree matrix with just two degree classes. Their
analysis is quite technical, and moving beyond two degree classes seems to be a
challenging problem.

6.6.2 Connected graphs The switch chain may disconnect a connected graph,
which can be undesirable in some applications such as communications networks.
One possibility is to simply reject any proposed switch which would disconnect the
graph. Gkantsidis et al. [62] investigated the performance of this restricted switch
chain empirically, but without rigorous analysis. Note that the set of connected
graphs with given degree sequence was shown to be connected under switches by
Taylor [108] in 1981.

Mahlmann and Schindelhauer [86] proposed an alternative operation, called the
k-Flipper. Here a switch is performed if the edges of the switch are at distance at
most k apart in the graph. In the 1-Flipper, or flip chain, the switch operation takes
a path of length 3 and exchanges its endvertices, as shown in Figure 15. Clearly this
operation, known as a flip, cannot disconnect a connected graph.

Figure 15: Transitions of the flip chain

The flip chain is rapidly mixing on the set of all connected k-regular graphs, for
any k. This was investigated by Feder et al. [49], with full analysis and improved
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mixing time bound given by Cooper et al. [28]. These proofs involve a comparison
argument, where a sequence of flips is used to simulate a single switch. If a switch
disconnects or connects components, then a clever “chaining” argument from [49] is
used to stay within the space of connected graphs.

The flip operation can be used to re-randomise a given connected network (such
as a communications network) without any risk of disconnecting the network. Ex-
pander graphs are fixed graphs which enjoy some pseudorandom properties, such as
logarithmic diameter and high connectivity [70]. Allen-Zhu et al. [1, Theorem 4.2]
proved that when k ≥ c log n for some positive constant c, performing O(k2n2 log n)
randomly-chosen flips produces an expander with high probability, starting from any
k-regular graph. They also applied their methods to the switch chain, showing that
O(kn) randomly-chosen switches suffice to produce an expander, with high proba-
bility. Hence in situations where the output does not need to be close to uniform,
but where pseudorandomness is enough, the runtime of the algorithm can be much
shorter.

7 Conclusion

We have discussed rigorously-analysed algorithms for sampling graphs with a
given degree sequence, uniformly or approximately uniformly. Some algorithms are
inefficient when the maximum degree becomes too high. For other approaches, the
boundary between tractable and intractable degree sequences is not clear. Map-
ping out this frontier is an interesting open problem. Are there families of degree
sequences for which the switch chain is provably slow? Connections with stability
of degree sequences have also been discussed. As well as their theoretical interest,
there are connections between the stability of degree sequences and network privacy,
as investigated by Salas and Torra [103].

A challenging open problem is to find an FPRAS for counting graphs with given
(arbitrary) degree sequences. The corresponding problem for bipartite graphs with
solved by Jerrum, Sinclair and Vigoda [78].

There are many related sampling algorithms which are just outside the scope
of this survey. One example is the use of Boltzmann samplers [35] to sample from
other restricted graph classes, including planar graphs [53]. As well as providing
algorithms, this approach can be used to investigate typical properties of random
graphs generated in this way, see for example [88].

To close, we mention some algorithms where the degree sequence itself is a ran-
dom variable. Some fuzziness in the degree sequence can be useful in some applica-
tions, perhaps to account for inaccuracies in the data, or to avoid overfitting. The
excellent book by Van der Hofstad [113] is a very good reference for further reading
on these topics.

• In the network theory literature, often k1, . . . , kn are i.i.d. random variables
drawn from some fixed distribution. If the resulting sum is odd then kn is
increased by 1. More generally, a degree sequence k can be drawn at random
from a given distribution, and then a graph from G(k) can be sampled uni-
formly, or approximately uniformly, using one of the methods discussed in this
survey.
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• Inhomogeneous random graphs are similar to the binomial random graph G(n, p)
except that different edges have different probabilities. For a sequence w ∈ Rn

of positive vertex weights and a function f : R2 → [0, 1], the edge {i, j}
is included in the graph with probability f(wi, wj), independently for each
edge. An example is the generalised random graph model [19] with f(wi, wj) =

wiwj

M(w)+wiwj
, whereM(w) =

∑
ℓ∈[n]wℓ is the sum of the weights. The Chung-Lu

algorithm [23] uses f(wi, wj) = wiwj/M(w), under the assumption that the
maximum entry of w is o(M(w)1/2). The output of the Chung-Lu algorithm
is a random graph with expected degree sequence w.

• Another algorithm which produces a graph with degree sequence close to some
target sequence is the erased configuration model [19]. First sample a uniformly
random configuration, and in the corresponding graph, delete any loops and
delete all but one copy of each multiple edge. Call the resulting graph Ĝ. If
kmax = o(M1/2) and R = O(M) then, arguing as in the proof of Theorem 3.1,
with high probability only a very small number of edges were deleted, and
hence the degree sequence of Ĝ is likely to be very close to k. Other variations
of the configuration model are described in [113, Section 7.8], including models
which are tailored to encourage other network properties, such as clustering.
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The Indian Journal of Statistics 58 (1996), 225–242.
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