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Borel Combinatorics of Locally Finite Graphs

Oleg Pikhurko1

Abstract

We provide a gentle introduction, aimed at non-experts, to Borel combina-
torics that studies definable graphs on topological spaces. This is an emerging
field on the borderline between combinatorics and descriptive set theory with
deep connections to many other areas.

After giving some background material, we present in careful detail some
basic tools and results on the existence of Borel satisfying assignments: Borel
versions of greedy algorithms and augmenting procedures, local rules, Borel
transversals, etc. Also, we present the construction of Andrew Marks of acyclic
Borel graphs for which the greedy bound ∆+ 1 on the Borel chromatic number
is best possible.

In the remainder of the paper we briefly discuss various topics such as re-
lations to LOCAL algorithms, measurable versions of Hall’s marriage theorem
and of the Lovász Local Lemma, applications to equidecomposability, etc.

1 Introduction

Borel combinatorics, also called measurable combinatorics or descriptive (graph)
combinatorics, is an emerging and actively developing field that studies graphs and
other combinatorial structures on topological spaces that are “definable” from the
point of view of descriptive set theory. It is an interesting blend of descriptive
set theory and combinatorics that also has deep connections to measure theory,
probability, group actions, ergodic theory, etc. We refer the reader to the survey by
Kechris and Marks [36].

Many recent advances in this field came from adopting various proofs and con-
cepts of finite combinatorics to the setting of descriptive set theory. However, this
potentially very fruitful interplay is not yet fully explored. One of the reasons is that
a fairly large amount of background is needed in order to understand the proofs (or
even the statements) of some results of this field. Thus the purpose of this paper is
give a gentle introduction to some basic concepts and tools, aimed at non-experts,
as well as to provide some pointers to further reading for those who would like to
learn more.

In order to give quickly a flavour of what types of objects and questions we will
consider, here is one simple but illustrative example.

Definition 1.1 (Irrational Rotation Graph Rα) Let α ∈ R \Q be irrational.
Let Rα be the graph whose vertex set is the half-open interval [0, 1) of reals, where
x, y ∈ [0, 1) are adjacent if their difference is equal to ±α modulo 1.

Another way to define Rα is to consider the transformation Tα : [0, 1) → [0, 1)
which maps x to x + α (mod 1); then the edge set consists of all unordered pairs
{x, Tα(x)} over x ∈ [0, 1). Thus Rα can be viewed as the graph coming from
an action of the group Z on [0, 1) with the generator 1 ∈ Z acting via Tα. The

1Supported by Leverhulme Research Project Grant RPG-2018-424.

1

http://arxiv.org/abs/2009.09113v3


Borel Combinatorics of Locally Finite Graphs 2

name comes from identifying the interval [0, 1) with the unit circle S1 ⊆ R

2 via
x 7→ (cos(2πx), sin(2πx)) where Tα corresponds to the rotation by angle 2πα. Since
α is irrational, Rα is a 2-regular graph with each component being a line (a doubly-
infinite path).

Under the Axiom of Choice, Rα is combinatorially as trivial as a single line. For
example, if we want to properly 2-colour its vertices then we can take a transversal S
(a set containing exactly one vertex from each component) and colour every x ∈ [0, 1)
depending on the parity of the distance from x to S in Rα. However, this proof is
non-constructive.

So what is the chromatic number of Rα if we want each colour class, as a subset
of the real interval [0, 1), be “definable”? Of course, we have to agree first which sets
are “definable”. We would like the family of such sets to be closed under Boolean
operations and under countable unions/intersections (i.e. to be a σ-algebra) so that
various constructions, including some that involve passing to a limit after countably
many iterations, do not take us outside the family. There are three important σ-
algebras on V = [0, 1).

One, denoted by B, consists of Borel sets and is, by definition, the smallest σ-
algebra that contains all open sets, which for [0, 1) is equivalent to containing all
intervals or just ones with rational endpoints. We can build Borel sets by starting
with open sets and iteratively adding complements and countable unions of already
constructed sets. Then each Borel set appears after β-many iterations for some
countable ordinal β and thus can be “described” with countably many bits of infor-
mation (motivating the name of descriptive set theory).

The other two σ-algebras can be built by taking all Borel sets which can be
additionally modified by adding or removing any “negligible” set of elements. For
example, from the topological point of view any nowhere dense set X (that is, a
set whose closure has empty interior) is “negligible”: every non-empty open set U
contains a “substantial” part (namely, some non-empty open W ⊆ U) that avoids
X completely. We also consider meager sets (that is, countable unions of nowhere
dense sets) as “negligible”. Now, the corresponding σ-algebra T (of all sets X with
the symmetric difference X△E being meager for some Borel E) consists precisely of
the sets that have the property of Baire and thus may be regarded as “topologically
nice”.

The definition of our third σ-algebra Bµ of µ-measurable sets depends on a mea-
sure µ on Borel sets (which we take to be the Lebesgue measure in our Example 1.1).
A set X is called µ-measurable (or just measurable when µ is understood) if there is
a Borel set E such that the symmetric difference X△E is null (that is, is contained
in a Borel set of measure 0). For [0, 1) and the Lebesgue measure, a set is null if and
only if, for every ε > 0, it can be covered by countably many intervals whose sum
of lengths is at most ε. The measure µ extends in the obvious way to a measure
on Bµ ⊇ B.

Clearly, B is a sub-family of T and of Bµ but the last two σ-algebras are not
compatible, with the notions of a “negligible” set being quite strikingly different.
For example, one can partition the interval [0, 1) into two Borel sets one of which is
meager and the other has Lebesgue measure 0, see e.g. [69, Theorem 1.6].

As it turns out, it is impossible to find a proper 2-colouring [0, 1) = X0 ∪ X1

of the graph Rα from Example 1.1 with X0,X1 ∈ Bµ. Indeed, since the colours
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must alternate on each line, we have that the measure-preserving map Tα swaps X0

and X1 so these sets, if measurable, have Lebesgue measure 1/2 each. However, by
Tα(Tα(X0)) = X0 this would contradict the fact that the composition Tα ◦Tα = T2α

is ergodic, meaning that every invariant measurable set has measure 0 or 1. (For two
different proofs of the last property, via Fourier analysis and via Lebesgue’s density
theorem, see e.g. [80, Proposition 4.2.1].) Thus, although there are no edges between
the lines of Rα, we have to be careful with what we do on different lines so that the
combined outcome is measurable.

A similar argument using the generic ergodicity of T2α (namely, that every in-
variant set with the property of Baire is meager or has meager complement) shows
that Rα cannot be 2-coloured with both parts in T , see e.g. [79, Example 21.6] for
a derivation.

On the other hand, it is easy to show that we can properly 3-colour Rα with
Borel colour classes X0, X1 and X2. For example, we can let X2 := [0, c) for any
c > 0 which makes X2 independent (namely, c 6 min{α (mod 1), 1−α (mod 1)} is
enough) and then colour every x ∈ [0, 1) \X2 by the parity of the minimum integer
n > 1 with T n

α (x) ∈ X2. (Such n exists by the irrationality of α.) If Yn denotes
the set of vertices for which the n-th iterate of Tα is the first one to hit X2, then
Y0 = X2 and, for each n > 1, we have that Yn = T−n

α (X2) \ (Y0 ∪ · · · ∪ Yn−1) is
a finite union of half-open intervals by induction on n and thus is Borel. We see
that, for each of the σ-algebras B, Bµ and T , the minimum number of colours in a
“definable” proper colouring of Rα happens to be the same, namely 3.

To keep this paper of reasonable size, we will concentrate on results, where
the assignments that we construct have to be Borel. Furthermore, except a few
places where it is explicitly stated otherwise, we will restrict ourselves to locally
finite graphs, where every vertex has finitely many neighbours (but we usually do
not require that the degrees are uniformly bounded by some constant). This is
already a very rich area. Also, results of this type often form the proof basis for
other settings. For example, if we want to find a proper colouring whose classes are
measurable (resp. have the property of Baire) then one common approach is to build
a Borel colouring and then argue that the set of vertices in connectivity components
with at least one conflict (two adjacent vertices of the same colour) is null (resp.
meager); in such situations, we are allowed to fix such components in an arbitrary
fashion, e.g. by applying the Axiom of Choice. (Everywhere in this paper we assume
that the Axiom of Choice holds.)

The following quotation of Lubotzky [53, Page xi] applies almost verbatim to
this paper: “Generally speaking, I tried to write it in a form of something I wish
had existed when, eight years ago, I made my first steps into these subjects without
specific background in any of them.”

This paper is organised as follows. Some notation that is frequently used in the
paper is collected in Section 2. Then Section 3 lists some basic facts about Borel sets.
We assume that the reader is familiar with the fundamentals of topology. However,
we try to carefully state all required, even rather basic results on Borel sets and
functions, with references to complete proofs. Section 4 defines Borel graphs, our
main object of study.

Section 5 presents some basic results for locally finite Borel graphs as follows.
Section 5.1 contains the proofs of some classical results of Kechris, Solecki and
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Todorcevic [38] on Borel chromatic numbers and maximal independent sets. In
Section 5.2, we prove that each “locally defined” labelling is a Borel function, a
well-known and extremely useful result. Section 5.3 presents one application of
this result, namely that if one can pick exactly one vertex from each connectivity
component in a Borel way then every locally checkable labelling problem (LCL for
short) that is satisfiable admits a global Borel solution. Section 5.4 present another
important application namely that, for every LCL, we can carry all augmentations
supported on vertex sets of size at most r in a Borel way so that none remains.

The above mentioned results from Sections 5.2–5.4 are frequently used and well-
known to experts. However, detailed and accessible proofs of these results are hard
to find in the literature. So, in order to fill this gap, the author carefully states
and proves rather general versions of these results, deviating from the philosophy of
the rest of this paper of presenting just a simple case that conveys main ideas. The
reader may prefer to skip the proofs from Sections 5.2–5.4 and move to Sections 6–13
that discuss more interesting results.

Section 6 presents the surprising result of Marks [58] that the upper bound ∆+1
on the Borel chromatic number from Section 5.1 (that comes from an easy greedy
algorithm) is in fact best possible even for acyclic graphs.

At this point we choose to give brief pointers to some other areas, namely, Borel
equivalence relations (Section 7), assignments with the property of Baire (Section 8),
and µ-measurable assignments (Section 9).

With this background, however brief, we can discuss various results, in particu-
lar those that connect Borel combinatorics to measures and the property of Baire.
Section 10 presents the recent result of Bernshteyn [7] that efficient LOCAL algo-
rithms can be used to find Borel satisfying assignments of the corresponding LCLs.
Section 11 discusses some “purely Borel” existence results where measures come up
in the proofs (but not in the statements). Section 12 discusses the class of graphs
with subexponential growth for which one can prove some very general Borel re-
sults. Finally, Section 13 presents some applications of descriptive combinatorics to
equidecomposability (where we try to split two given sets into congruent pieces).

2 Notation

Here we collect some notation that is used in the paper. In order to help the
reader to get into a logician’s mindset we use some conventions from logic and set
theory.

We identify a non-negative integer k with the set {0, . . . , k − 1}, following the
recursive definition of natural numbers as 0 := ∅ being the empty set and k + 1 :=
k ∪ {k}. Thus i ∈ k is a convenient shorthand for i ∈ {0, . . . , k − 1}. The set of
natural numbers is denoted by ω := {0, 1, . . . } and our integer indices usually start
from 0.

Let πi denote the projection from a product
∏

j∈r Xj of sets to its (i + 1)-st
coordinate Xi. We identify a function f : X → Y with its graph {(x, f(x)) : x ∈
X} ⊆ X × Y . Thus the domain and the image of f can be written respectively
as π0(f) and π1(f). Also, the restriction of a function f : X → Y to Z ⊆ X is
f ↾ Z := f ∩ (Z × Y ), which is a function from Z to Y . For sets X and Y , the set
of all functions X → Y is denoted by Y X . For functions fi : X → Yi, i ∈ 2, let
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(f0, f1) : X → Y0 × Y1 denote the function that maps x ∈ X to (f0(x), f1(x)).
Let X be a set. The diagonal DiagX is the set {(x, x) : x ∈ X} ⊆ X2. We identify

the elements of 2X with the subsets of X, where a function f : X → 2 corresponds
to the preimage f−1(1) ⊆ X. A total order on X is a partial order on X in which
every two elements are compatible, that is, a transitive and antisymmetric subset
4 of X2 such that for every x, y ∈ X it holds that x 4 y or y 4 x. The set X
is countable if it admits an injective map into ω (in particular, every finite set is
countable); then its cardinality |X| is the unique k ∈ ω ∪ {ω} such that there is a
bijection between X and k.

Let G be a graph by which we mean a pair (V,E), where V is a set and E is a
subset of V 2 \ DiagV which is symmetric, i.e. for every x, y ∈ V , (x, y) ∈ E if and
only if (y, x) ∈ E. When it is convenient, we may work with unordered pairs, with
{x, y} ∈ E translating into (x, y), (y, x) ∈ E, etc. Note that we do not allow multiple
edge nor loops. Of course, when we talk about matchings, edge colourings, etc, we
mean subsets of E, functions on E, etc, which are symmetric (in the appropriate
sense). When the graph G is understood, we use V and E by default to mean
its vertex set and its edge set, and often remove the reference to G from notation
(except in the statements of theorems and lemmas, all of which we try to state fully).

The usual definitions of graph theory apply. A walk (of length i ∈ ω) is a
sequence (x0, . . . , xi) ∈ V i+1 such that (xj , xj+1) ∈ E for every j ∈ i. A path is a
walk in which vertices do not repeat. Note that the length of a walk (or a path)
refers to the number of edges. For x, y ∈ V , their distance distG(x, y) is the shortest
length of a path connecting x to y in G (and is ω if no such path exists). A rooted
graph is a pair (G,x) where G is a graph and x is a vertex of G.

The neighbourhood of a set A ⊆ V is

NG(A) := {y ∈ V : ∃x ∈ A (x, y) ∈ E}.

We abbreviate NG({x}) to NG(x). Note that NG(x) does not include x. We denote
the degree of x by degG(x) := |NG(x)|. The graph G is locally finite (resp. locally
countable) if the neighbourhood of every vertex is finite (resp. countable).

For r ∈ ω, the r-th power Gr of G is the graph on the same vertex set V where
two distinct vertices are adjacent if they are at distance at most r in G. Also, the
r-ball around A,

N6r
G (A) := NGr(A) ∪A,

consists of those vertices of G that are at distance at most r from A. A set of vertices
X ⊆ V is called r-sparse if the distance between any two distinct vertices of X is
strictly larger than r (or, equivalently, if X is an independent set in Gr).

The subgraph induced by X ⊆ V in G is G ↾ X := (X,E ∩X2). We call a set
X ⊆ V connected if the induced subgraph G ↾ X is connected, that is, every two
vertices of X are connected by a path with all vertices in X. By a (connectivity)
component of G we mean a maximal connected set X ⊆ V . Let

EG := {(x, y) ∈ V 2 : dist(x, y) < ω}, (2.1)

denote the connectivity relation of G. In other words, EG is the transitive closure
of E∪DiagV . Clearly, it is an equivalence relation whose classes are the components
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of G. The saturation of a set A ⊆ V is

[A]G := {x ∈ V : dist(x,A) < ω},

that is, the union of all components intersecting A. In particular, the component of
a vertex x ∈ V is [x]G := [{x}]G.

Finally, we will need the following generalisation of Hall’s marriage theorem to
(infinite) graphs by Rado [70], whose proof (that relies on the Axiom of Choice) can
also be found in e.g. [78, Theorem C.2].

Theorem 2.1 (Rado [70]) Let G be a bipartite locally finite graph. If |N(X)| >
|X| for every finite set X inside a part then G has a perfect matching. �

3 Some Background and Standard Results

Here we present some basic results from analysis and descriptive set theory that
we will use in this paper. We do not try to give any historic account of these results.
Instead we just refer to their modern proofs (using sources which happen to be most
familiar to the author).

3.1 Algebras and σ-Algebras

An algebra on a set X is a non-empty family A ⊆ 2X of subsets of X which
is closed under Boolean operations inside X (for which it is enough to check that
A ∪ B,X \ A ∈ A for every A,B ∈ A). In particular, the empty set and the whole
set X belong to A.

A σ-algebra on set X is an algebra on X which also is closed under countable
unions. It follows that it is also closed under countable intersections. Also, if we
have a countable sequence of sets A0, A1, . . . in a σ-algebra A, then lim infnAn (resp.
lim supnAn), the set of elements that belong to all but finitely sets An (resp. belong
to infinitely many sets An), is also in A. Indeed, we have, for example, that

lim infnAn = ∪n∈ω ∩∞
m=n Am,

belongs to A as the countable union of ∩∞
m=nAm ∈ A.

For an arbitrary family F ⊆ 2X , let σX(F) denote the σ-algebra on X generated
by F , that is, σX(F) is the intersection of all σ-algebras on X containing F . (Note
that the intersection is taken over a non-empty set since 2X is an example of such a
σ-algebra.)

3.2 Polish Spaces

Although the notion of a Borel set could be defined for general topological spaces,
the theory becomes particularly nice and fruitful when the underlying space is Polish.
Let us discuss this class of spaces first.

By a topological space we mean a pair (X, τ), where τ is a topology on a set X
(specifically, we view τ ⊆ 2X as the collection of all open sets). When the topology
τ on X is understood, we usually just write X. The space X is separable if there
is a countable subset Y ⊆ X which is dense (that is, every non-empty U ∈ τ
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intersects Y ). Also, X is metrizable if there is a metric d which is compatible with τ
(namely, U ∈ τ if and only if for every x ∈ U there is real r > 0 with the r-ball
{y ∈ X : d(x, y) < r} lying inside U). Furthermore, if d can be chosen to be
complete (i.e. every Cauchy sequence converges to some element of X) then we call
X completely metrizable. We call a topological space Polish if it is separable and
completely metrizable. For more details on Polish spaces, we refer to, for example,
Cohn [14, Chapter 8.1], Kechris [34, Chapter 3], or Tserunyan [79, Part 1].

This class of spaces was first extensively studied by Polish mathematicians (Sier-
piński, Kuratowski, Tarski and others), hence the name. It has many nice properties,
in particular being closed under many topological operations (such as passing to
closed or more generally Gδ subsets, or taking various constructions like countable
products or countable disjoint unions, etc). Also, Polish spaces satisfy various results
crucial in descriptive set theory (such as the Baire Category Theorem). So this class
is the primary setting for Borel combinatorics. All topological spaces that we will
consider in this survey are assumed to be Polish. As it is customary in this field, we
do not fix a metric.

Two basic examples of Polish spaces are the integers Z (with the discrete topology
where every set is open) and the real line R (with the usual topology, where a set is
open if and only if it is a union of open intervals). Many other Polish spaces can be
obtained from these; in fact, every Polish space is homeomorphic to a closed subset
of Rω ([34, Theorem 4.17]).

Also, it can be proved (without assuming the Continuum Hypothesis) that every
uncountable Polish space has the same cardinality as e.g. the set of reals:

Theorem 3.1 Each Polish space is either countable or has continuum many points.

Proof See e.g. [34, Corollary 6.5] or [79, Corollary 4.6]. �

3.3 The Borel σ-Algebra of a Polish Space

Let X = (X, τ) be a Polish space. Its Borel σ-algebra is B(X, τ) := σX(τ), the
σ-algebra on X generated by all open sets. When the meaning is clear, we will
usually just write B(X) or B instead of B(X, τ).

The definition of the Borel σ-algebra behaves well with respect to various op-
erations on Polish spaces. For example, the Borel σ-algebra of the product space
X × Y is equal to the product of σ-algebras B(X) × B(Y ):

B(X × Y ) = B(X) × B(Y ), (3.1)

see e.g. [14, Proposition 8.1.7] (and [14, Section 5.1] for an introduction to products
of σ-algebras).

A function f : X → Y is Borel (measurable) if the preimage of every Borel
subset of Y is a Borel subset of X. It is easy to see ([14, Proposition 2.6.2]) that it
is enough to check this condition for any family A ⊆ B(Y ) that generates B(Y ), e.g.
just for open sets. Since we identify the function f with its graph {(x, f(x)) : x ∈
X} ⊆ X × Y , the following result justifies why it is more common to call a Borel
measurable function just “a Borel function”.
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Lemma 3.2 A function f : X → Y between Polish spaces is Borel measurable if
and only if it is a Borel subset of X × Y .

Proof See e.g. [14, Proposition 8.3.4]. �

Although there are many non-equivalent choices of a Polish topology τ on an
infinite countable set X, each of them has 2X as its Borel σ-algebra. Indeed, every
subset Y of X, as the countable union Y = ∪y∈Y {y} of closed sets, is Borel. A
remarkable generalisation of this trivial observation is the following.

Theorem 3.3 (Borel Isomorphism Theorem) Every two Polish spaces X,Y of
the same cardinality are Borel isomorphic, that is, there is a bijection f : X → Y
such that the functions f and f−1 are Borel. (In fact, by Theorem 3.8, it is enough
to require that just one of the bijections f or f−1 is Borel.)

Proof See e.g. [14, Theorem 8.3.6] or [79, Theorem 13.10]. �

One crucial property of the Borel σ-algebra is that it can be generated by a
countable family of sets.

Lemma 3.4 For every Polish space X, there is a countable family J = {Jn : n ∈ ω}
with B(X) = σX(J ).

Proof Fix a countable dense subset Y ⊆ X and a compatible metric d on X. Let
J consist of all open balls in the metric d around points of Y with rational radii.
Of course, J ⊆ B. Every open set is a union of elements of J and this union is
countable as J is countable. Thus σX(J ) contains all open sets and, therefore, has
to be equal to B. �

Remark 3.5 We can additionally require in Lemma 3.4 that J is an algebra on X.
Indeed, given any generating countable family J ⊆ B, we can enlarge it by adding all
Boolean combinations of its elements. This does not affect the equality σX(J ) = B
(as all added sets are in B) and keeps the family countable.

For example, for X := R, d(x, y) := |x−y|, and Y := Q, our proof of Lemma 3.4
gives the family of open intervals with rational endpoints. If we want to have a
generating algebra for B(R) as in Remark 3.5, it may be more convenient to use
half-open intervals in the first step, namely to take

J := {[a, b) : a, b ∈ Q} ∪ {[a,∞) : a ∈ Q} ∪ {(−∞, b) : b ∈ Q}.

Then the algebra generated by J will precisely consists of finite unions of disjoint
intervals in J .

Note that, for every distinct x, y ∈ X, there is an open (and thus Borel) set U
that separates x from y, that is, U contains x but not y (e.g. an open ball around x
of radius d(x, y)/2 for some compatible metric d). Thus Borel sets separate points.
In fact, we have the following stronger property.
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Lemma 3.6 Let X be a Polish space and let J be an algebra on X that gener-
ates B(X). Then for every pair of disjoint finite sets A,B ⊆ X there is J ∈ J with
A ⊆ J and B ∩ J = ∅.

Proof For distinct a, b ∈ X, there is some Ja,b ∈ J that contains exactly one of
a and b (as otherwise B(X) = σX(J ) cannot separate a from b) and, by passing
to the complement if necessary, we can assume that Ja,b separates a from b. For
a ∈ A, the set Ja := ∩b∈BJa,b belongs to J , contains a and is disjoint from B. Thus
J := ∪a∈AJa satisfies the claim. �

The lexicographic order 6Lex on 2ω is defined so that (xi)i∈ω comes before (yi)i∈ω
if xi < yi where i ∈ ω is the smallest index with xi 6= yi.

Lemma 3.7 For every Polish space X there is a Borel injective map I : X → 2ω.
Furthermore, given any such map I, if we define 4 to consist of those pairs (x, y) ∈
X2 with I(x) 6Lex I(y), then we obtain a total order on X which is Borel (as a
subset of X2).

Proof By Lemma 3.4, fix a countable family J that generates B and define

I(x) := (1J0(x),1J1(x), . . . ), x ∈ X, (3.2)

where the indicator function 1J of J ⊆ X assumes value 1 on J and 0 on X \ J .
In other words, I(x) records which sets Ji contain x. The Borel σ-algebra on the
product space 2ω is generated by the sets of the form Yi,σ := {x ∈ 2ω : xi = σ} for
i ∈ ω and σ ∈ 2 (as these form a pre-base for the product topology on 2ω). Since
I−1(Yi,1) = Ji and I−1(Yi,0) = X \Ji are in B, the map I is Borel. Also, I is injective
by Lemma 3.6.

By the injectivity of I, we have that 4 is a total order on X. Also, the lexico-
graphic order 6Lex is a closed (and thus Borel) subset of (2ω)2. Indeed, if x 66Lex y
then, with i ∈ ω being the maximum index such that (x0, . . . , xi−i) = (y0, . . . , yi−1),
every pair (x′, y′) that coincides with (x, y) on the first i + 1 indices (an open set of
pairs) is not in 6Lex. Thus 4, as the preimage under the Borel map I×I : X×X →
2ω × 2ω that sends (x, y) to (I(x), I(y)), is a Borel subset of X2. (Our claim that
the map I × I is Borel can be easily derived from (3.1).) �

If X is a Borel subset of [0, 1) then another, more natural, choice of I in
Lemma 3.7 is to map x ∈ [0, 1) to the digits of its binary expansion where we
do not allow infinite sequences of trailing 1’s. Then 4 becomes just the standard
order on [0, 1).

While continuous images of Borel sets are not in general Borel, this is true all for
countable-to-one Borel maps for which, moreover, a Borel right inverse exists (with
the latter property called uniformization in descriptive set theory).

Theorem 3.8 (Lusin-Novikov Uniformization Theorem) Let X,Y be Polish
spaces and let f : X → Y be a Borel map. Let A ⊆ X be a Borel set such that
every y ∈ Y has countably many preimages in A under f . Then f(A) is a Borel
subset of Y . Moreover, there are countably many Borel maps gn : f(A) → A, n ∈ ω,
each being a right inverse to f (i.e. the composition f ◦ gn is the identity function
on f(A)), such that for every x ∈ A there is n ∈ ω with gn(f(x)) = x.



Borel Combinatorics of Locally Finite Graphs 10

Proof This theorem, in the case when X = Z × Y for some Polish Z and f = π1
is the projection on Y , can be found in e.g. [34, Theorem 18.10] or [79, Theorem
13.6]. To derive the version stated here, let A′ := (A × Y ) ∩ f . (Recall that we
view the function f : X → Y as a subset f ⊆ X × Y .) Then A′ ⊆ X × Y is
Borel by Lemma 3.2, f(A) = π1(A

′) is Borel by the above product version while the
sequence of Borel right inverses g′n : f(A) → A′ for π1 gives the required functions
gn := π0 ◦ g

′
n. �

One can view the second part of Theorem 3.8 as a “Borel version” of the Axiom
of Choice. If, say, A = X and f is surjective, then finding one right inverse g0 of f
amounts to picking exactly one element from each of the sets Xy := f−1(y) indexed
by y ∈ Y . Thus Theorem 3.8 gives that, if all dependences are “Borel” and each set
Xy is countable, then a Borel choice is possible. This result was generalised to the
case where each Xy is required to be only σ-compact (a countable union of compact
sets), see e.g. [34, Theorem 35.46.ii].

3.4 Standard Borel Spaces

A standard Borel space is a pair (X,A) where X is a set and there is a choice
of a Polish topology τ on X such that A is equal to σX(τ), the Borel σ-algebra
of (X, τ). For a detailed treatment of standard Borel spaces, see e.g. [34, Chapter
12] or [75, Chapter 3].

We will denote the Borel σ-algebra on a standard Borel space X by B(X) or
B, also abbreviating (X,B) to X. It is customary not to fix a Polish topology τ
on X (which, strictly speaking, requires checking that various operations defined on
standard Borel spaces do not depend on the choice of topologies).

By the Borel Isomorphism Theorem (Theorem 3.3) combined with Theorem 3.1,
every standard Borel space either consists of all subsets of a countable set X or
admits a Borel isomorphism into e.g. the interval [0, 1] of reals. Since this survey
concentrates on the Borel structure, we could have, in principle, restricted ourselves
to just these special Polish spaces. However, many constructions and proofs are
much more natural and intuitive when written in terms of general Polish spaces.

A useful property that is often used without special mention is that every Borel
subset induces a standard Borel space. This follows from the following result.

Lemma 3.9 Let (X, τ) be a Polish space. Then for every Y ∈ B(X, τ) there is
a Polish topology τ ′ ⊇ τ on X such that Y is a closed set with respect to τ ′ and
B(X, τ) = B(X, τ ′).

Proof See e.g. [34, Theorem 13.1] or [79, Theorem 11.16]. �

Remark 3.10 In fact, any two nested Polish topologies τ ⊆ τ ′ on a common set
X generate the same Borel σ-algebra (so this conclusion could be omitted from the
statement of Lemma 3.9). Indeed, the identity map (X, τ ′) → (X, τ) is continuous
and thus Borel. By Theorem 3.8, its unique right inverse, which is the identity map
(X, τ) → (X, τ ′), is Borel. Thus B(X, τ ′) = B(X, τ).

Corollary 3.11 If X is a standard Borel space and Y ∈ B(X), then (Y,B(X) ↾ Y )
is a standard Borel space, where for A ⊆ 2X we denote A ↾ Y := {A ∩ Y : A ∈ A}.
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Proof Fix a Polish topology τ on X that generates B(X), that is, σX(τ) = B(X).
By Lemma 3.9, there is a Polish topology τ ′ ⊇ τ for which Y is closed. Let τ ′′ :=
{U ∩ Y : U ∈ τ ′}. As it is easy to see, (Y, τ ′′) is a Polish space and σY (τ ′′) =
σX(τ ′) ↾ Y . By the second conclusion of Lemma 3.9 (or by Remark 3.10), we have
that σX(τ ′) = σX(τ), finishing the proof. �

4 Borel Graphs: Definition and Some Examples

For a short discussion of bounded-degree Borel graphs, see Lovász [52, Section
18.1].

A Borel graph is a triple G = (V,E,B) such that (V,E) is a graph (that is,
E ⊆ V 2 is a symmetric and anti-reflexive relation), (V,B) is a standard Borel space,
and E is a Borel subset of V × V . (As it follows from (3.1), the Borel σ-algebra on
V × V depends only on B(V ) but not on the choice of a compatible Polish topology
τ on V .)

All our graph theoretic notation will also apply to Borel graphs and, when the
underlying Borel graph G is clear, we usually remove any reference to G from notation
(writing N(x) instead of NG(x), etc). Note that we use the calligraphic letter G to
emphasise that it is a Borel graph (whereas G is used for general graphs).

Remark 4.1 If one prefers, then one can work with the edge set as a subset of
(

V
2

)

,
the set of all unordered pairs of distinct elements of V . The standard σ-algebra on
(

V
2

)

(which also makes it a standard Borel space) is obtained by taking all those sets

A ⊆
(

V
2

)

for which π−1(A) is Borel subset of V 2, where π : V 2 →
(

V
2

)

is the natural
projection mapping (x, y) to {x, y}. In terms of Polish topologies, if we fix a topology
τ on V , then we consider the factor topology τ ′ on

(

V
2

)

with respect to π (that is,
the largest topology that makes π continuous) and take the Borel σ-algebra of τ ′.

Here are some examples of Borel graphs.

Example 4.2 For every graph (V,E) whose vertex set is countable, the triple
(V,E, 2V ) is a Borel graph. Indeed, (V, 2V ) is a standard Borel space (take, for
example, the discrete topology on V ). Then B(V × V ) contains all singleton sets
(as closed sets) and, being closed under countable unions, it contains all subsets of
V × V , in particular, the edge set E.

Example 4.3 Let (Γ ;S) be a marked group, that is Γ is a group generated by a
finite set S ⊆ Γ which is symmetric, that is, S = S−1 where S−1 := {γ−1 : γ ∈ S}.
(We do not assume that S is minimal in any sense.) Let a : ΓyX be a (left) action
of Γ on a Polish space X which is Borel, meaning for the countable group Γ that
for every γ ∈ Γ the bijection a(γ, ·) : X → X, which maps x ∈ X to γ.x, is Borel.
Let the Schreier graph S(a;S) have X as the vertex set and

{(x, γ.x) : x ∈ X, γ ∈ S} \ DiagX (4.1)

as the edge set. (Note that, regardless of the choice of a Polish topology on X, the
diagonal DiagX = {(x, x) : x ∈ X} is a closed and thus Borel subset of X2.) Thus
S(a;S) is a Borel graph by Lemma 3.2.
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For example, the irrational rotation graph Rα from Example 1.1 is a Borel graph,
e.g. as the Schreier graph of the Borel action of the marked group (Z, {−1, 1}) on
[0, 1) given by n.x := x + nα (mod 1) for n ∈ Z and x ∈ [0, 1).

By Corollary 3.11, if G is a Borel graph and Y is a Borel subset of V , then
G ↾ Y is again a Borel graph. Here is one case that often arises in the context of
Example 4.3 (and that we will need later in Section 6). The free part of a group
action a : ΓyX is

Free(a) := {x ∈ X : ∀γ ∈ Γ \ {e} γ.x 6= x}. (4.2)

As it is trivial to see, x ∈ X belongs to the free part if and only if the map Γ → X
that sends γ ∈ Γ to γ.x is injective.

Lemma 4.4 The free part of a Borel action a : ΓyX of a countable group Γ is
Borel.

Proof Using the definition in (4.2), we see that

X \ Free(a) =
⋃

γ∈Γ\{e}

{x ∈ X : γ.x = x} =
⋃

γ∈Γ\{e}

π0(DiagX ∩ {(x, γ.x) : x ∈ X})

is a Borel set by Lemma 3.2 and the Lusin-Novikov Uniformization Theorem (The-
orem 3.8). �

5 Basic Properties of Locally Finite Borel Graphs

Recall that, unless stated otherwise, we consider locally finite graphs only, that
is, those graphs in which every vertex has finitely many neighbours. Note that we
do not require that all degrees are uniformly bounded by some constant. This is
already a very rich and important class in descriptive combinatorics, and is a very
natural one from the point of view of finite combinatorics.

Lemma 5.1 Let (V,B) be a standard Borel space and let G = (V,E) be a locally
finite graph. Then the following are equivalent.
(i) The set E ⊆ V 2 is Borel (i.e. (V,E,B) is a Borel graph).
(ii) For every Borel set Y ⊆ V , its neighbourhood NG(Y ) is Borel.
(iii) For every Borel set Y ⊆ V , the 1-ball N61

G (Y ) around Y (i.e. the set of vertices
at distance at most 1 from Y ) is Borel.

Proof Let us show that (i) implies (ii). Take any Borel Y ⊆ V . Note that N(Y )
is the projection of Z := (Y × V )∩E on the second coordinate. The projection is a
continuous map and, as a map from Z to V , has countable (in fact, finite) preimages.
Thus N(Y ) = π1(Z) is Borel by Theorem 3.8.

The implication (ii) ⇒ (iii) trivially follows from N61(Y ) = N(Y ) ∪ Y (and the
σ-algebra B being closed under finite unions).

Let us show that (iii) implies (i). Remark 3.5 gives us a countable algebra J
on V that generates B. For J ∈ J , let AJ be the union of J × (V \ N61(J)) and
its “transpose” (V \ N61(J)) × J . By (3.1), each set AJ is Borel. Recall that the
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diagonal DiagV = {(x, x) : x ∈ V } is a closed and thus Borel subset of V 2. It is
enough to prove that

E = V 2 \ (DiagV ∪ (∪J∈JAJ)) , (5.1)

because this writes E as the complement of a countable union of Borel sets.
By definition, each AJ is disjoint from E and thus the forward inclusion in (5.1)

is obvious. Conversely, take any (x, y) ∈ V 2 \ E. Suppose that x 6= y as otherwise
(x, y) ∈ DiagV and we are done. By Lemma 3.6 there is a set J ∈ J which contains
x but is disjoint from the finite set N61(y). Then y 6∈ N61(J) and the pair (x, y)
belongs to AJ , giving the required. �

Corollary 5.2 Let r ∈ ω. If G = (V,E,B) is a locally finite Borel graph, then so is
its r-th power graph Gr (as a graph on the standard Borel space V ).

Proof Trivially (or by a very special case of the König Infinity Lemma, see e.g.
[19, Lemma 8.1.2]), the graph Gr is locally finite.

In order to check that Gr is a Borel graph, we verify Condition (iii) of Lemma 5.1.
By the definition of Gr, we have for every A ⊆ V that N61

Gr (A) = N6r
G (A). Also, we

can construct N6r
G (A) from A by iteratively applying r times the 1-ball operation

in G. By Lemma 5.1(iii), this operation preserves Borel sets. Thus N61
Gr (A) is Borel

for every Borel A ⊆ V . We conclude that Condition (iii) of Lemma 5.1 is satisfied
for Gr and thus this graph is Borel. �

Here is an important consequence to Corollary 5.2. Recall that the connectiv-
ity relation EG of a graph G consists of all pairs of vertices that lie in the same
connectivity component of G.

Corollary 5.3 If G = (V,E,B) is a locally finite Borel graph, then EG is a Borel
subset of V 2.

Proof We have that EG is the union of the diagonal DiagV and the edge sets of Gr

over r > 1. As each Gr is a Borel graph by Corollary 5.2, the set EG ⊆ V 2 is Borel.
�

Remark 5.4 Addressing a question of the author, Chan [12] showed, under the set-
theoretic assumption that the constructable continuum is the same as the continuum,
that Lemma 5.1 fails for general locally countable graphs: namely Property (ii) (and
thus also Property (iii)) does not imply Property (i). An example is given by the
countable equivalence relation studied in [11, Section 9]. (Thus, combinatorially,
the graph is a union of countable cliques.) However, it remains unclear if the above
additional set-theoretic assumption is needed.

5.1 Borel Colourings

Let G = (V,E,B) be a Borel graph (which we assume to be locally finite).
A colouring c : V → X is proper if no two adjacent vertices get the same colour.

Since we will consider only the case of countable colour sets X (when 2X is the
only σ-algebra making it a standard Borel space), we define c : V → X to be
Borel if the preimage under c of every element of X is Borel. When we view c as
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a vertex colouring, this amounts to saying that each of (countably many) colour
classes belongs to B(V ).

Lemma 5.5 Every locally finite Borel graph G = (V,E,B) admits a Borel proper
colouring c : V → ω.

Proof Fix a countable algebra J = {J0, J1, . . . } generating B(V ), which exists by
Remark 3.5. Define

A := {(x, k) ∈ V × ω : x ∈ Jk ∧ N(x) ∩ Jk = ∅}.

Thus (x, k) ∈ A if the (k + 1)-st set Jk of J separates x from all its neighbours.
For every x ∈ V , there is at least one k ∈ ω with (x, k) ∈ A by Lemma 3.6, and we
define c(x) to be the smallest such k ∈ ω.

Clearly, if two distinct vertices x and y get the same colour k then they are both
in Jk and cannot be adjacent as their neighbourhoods are disjoint from Jk. Thus
c : V → ω is a proper vertex colouring.

It remains to argue that the map c : V → ω is Borel. For k ∈ ω, define

Bk := {x ∈ V : c(x) > k}.

Since c−1(k) = Bk \ Bk+1, it is enough so show that each Bk is Borel. The com-
plement of Bk is exactly the image of A ∩ (V × k) under the projection π0. Thus,
by Theorem 3.8, it suffices to show that A ⊆ V × ω is Borel. As it is easy to
see, A = ∪k∈ω((Jk \ N(Jk)) × {k}). Each set in this countable union is Borel by
Lemma 5.1(ii). So A is Borel, finishing the proof. �

The main idea of the proof of the following result is very useful in Borel com-
binatorics: we first show that we can cover V by countably many sets that are
sufficiently “sparse” (namely, independent in this proof) and then apply some par-
allel algorithm (namely, greedy colouring) where we take these sets one by one and
process all vertices of the taken set in one go.

Theorem 5.6 (Kechris et al. [38]) Every locally finite Borel graph G has a max-
imal independent set A which is Borel.

Proof Let c : V → ω be the proper Borel colouring returned by Lemma 5.5. We
apply the greedy algorithm where we process colours i ∈ ω one by one and, for each
i, add to A in parallel all vertices of colour i that have no neighbours in the current
set A.

Formally, let A0 := ∅ and, inductively for i ∈ ω, define

Ai+1 := Ai ∪ (c−1(i) \N(Ai)).

Finally, define A := ∪i∈ωAi.
As c is a proper colouring, each set Ai is independent by induction on i. Thus A,

as the union of nested independent sets, is independent. Also, the set A is maximal
independent. Indeed, if x 6∈ A then, with i := c(x), the reason for not adding x into
Ai+1 ⊆ A was that x has a neighbour in Ai and thus a neighbour in A ⊇ Ai.

An easy induction on i shows by Lemma 5.1(ii) that each Ai is Borel. Thus
A = ∪i∈ωAi is also Borel. �
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Recall that a set A of vertices in a graph G is called r-sparse if the distance in
G between every two distinct elements of A is larger than r.

Corollary 5.7 Every locally finite Borel graph G has a maximal r-sparse set A
which is Borel.

Proof A set A ⊆ V is (maximal) r-sparse in G if and only if it is (maximal)
independent in Gr. Thus the required Borel set A exists by Theorem 5.6 applied to
Gr, which is a locally finite Borel graph by Corollary 5.2. �

The Borel chromatic number χB(G) of an arbitrary Borel graph G is defined
as the smallest cardinality of a standard Borel space Y for which there is a Borel
proper colouring c : V → Y . Trivially, χB(G) is at least the usual chromatic number
χ(G), which is the smallest cardinality of a set Y with G admitting a proper vertex
colouring V → Y (which need not be constructive in any way); for more on χ(G)
for infinite graphs see e.g. the survey by Komjáth [41]. Since we restrict ourselves
to locally finite graphs here, we have by Lemma 5.5 that both χB(G) and χ(G) are
in ω ∪ {ω}.

Theorem 5.8 (Kechris et al. [38]) Every Borel graph G = (V,E,B) with finite
maximum degree d := ∆(G) satisfies χB(G) 6 d + 1.

Proof One way to prove this result with what we already have is to iteratively
keep removing Borel maximal independent sets from G that exist by Theorem 5.6.
(Here we use Corollary 3.11 to show that each new graph is Borel; alternatively, we
could have removed only edges touching the current independent set while keeping
V unchanged.) Then the degree of each remaining vertex strictly decreases during
each removal. Thus, after d removals, every remaining vertex is isolated and, after
d + 1 removals, the vertex set becomes empty.

Alternatively, we can take a countable partition V = ∪i∈ωVi into Borel indepen-
dent sets given by Lemma 5.5 and, iteratively for i ∈ ω, colour all vertices of the
independent set Vi in parallel, using the smallest available colour on each. Clearly,
we use at most d + 1 colours while an easy inductive argument on i combined with
Lemma 5.1(ii) shows that the obtained colouring is Borel on each set Vi. �

Here is a useful consequence of the above results. (Recall that we identify a
non-negative integer k with the set {0, . . . , k − 1}.)

Corollary 5.9 For every Borel graph G = (V,E,B) of finite maximum degree d and
every integer r > 1 there is a Borel colouring c : V → k with k := 1+d

∑r−1
i=0 (d−1)i

such that every colour class is r-sparse.

Proof Apply Theorem 5.8 to the r-th power Gr, which is a Borel graph by Corol-
lary 5.2 and, trivially, has maximum degree at most k − 1. �

The set of edges E ⊆ V 2 is a Borel set, so E is itself a standard Borel space by
Corollary 3.11. In particular, it makes sense to talk about Borel edge k-colourings,
meaning symmetric Borel functions E → k. (Alternatively, one could have defined
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a Borel edge k-colouring as a symmetric Borel function c : V 2 → {−1} ∪ k with
c(x, y) > 0 if and only if (x, y) ∈ E, thus eliminating the need to refer to Corol-
lary 3.11 here.)

The above results on independent sets and vertex colouring extend to matchings
and edge colourings as follows.

Lemma 5.10 The edge set of every locally finite Borel graph G = (V,E,B) can be
partitioned into countably many Borel matchings.

Proof Corollary 5.2 and Lemma 5.5 give a proper Borel vertex colouring c : V → ω
of G2, the square of G. Thus each colour class Vi := c−1(i), i ∈ ω, is 2-sparse in G.
It follows that, for each pair i < j in ω, the set Mij := E ∩ ((Vi × Vj) ∪ (Vj × Vi)) is
a matching. Moreover, since each Vi is independent in G, the Borel matchings Mij

over all i < j in ω partition E, as required. �

Theorem 5.11 Every locally finite Borel graph G = (V,E,B) has a maximal match-
ing M ⊆ E which is a Borel subset of V 2.

Proof Let M ′
i , i ∈ ω, be the matchings returned by Lemma 5.10. We construct M

greedily, by taking for each i ∈ ω all edges in M ′
i that are vertex disjoint from the

current matching.
Formally, let M0 := ∅ and, inductively for i ∈ ω, define

Mi+1 := Mi ∪ (M ′
i \

(

(π0(Mi) × V ) ∪ (V × π0(Mi))
)

.

As in Theorem 5.6, the set M := ∪i∈ωMi is a maximal matching in G. Also,
each Mi+1 (and thus the final matching M) is Borel, which can argued by induction
on i (using Theorem 3.8 to show that π0(Mi) is Borel). �

The Borel chromatic index χ′
B(G) is the smallest k ∈ ω ∪ {ω} such that there

exists a Borel map c : E → k with no two intersecting edges having the same
colour (equivalently, with each colour class being a matching). Similarly to how
Theorem 5.8 was derived from Theorem 5.6, the following result can be derived
from Theorem 5.11 by removing one by one maximal Borel matchings and observing
that for every remaining edge the number of other edges that intersect it strictly
decreases with each removal step.

Theorem 5.12 (Kechris et al. [38]) Every Borel graph G with finite maximum
degree d := ∆(G) satisfies χ′

B(G) 6 2d− 1. �

Remark 5.13 Lemma 5.10 and Theorems 5.11–5.12 can be also deduced by applying
the corresponding results on independent sets to the line graph L(G) whose vertex
set consists of unordered pairs {x, y} with (x, y) ∈ E, where two distinct pairs are
adjacent if they intersect. Let us just outline a proof that L(G) is a Borel graph.
Recall the definition of the Borel σ-algebra on

(

V
2

)

from Remark 4.1. From this
definition, it follows that the vertex set of the line graph L(G) is a Borel subset of
(

V
2

)

and thus is itself a standard Borel space by Corollary 3.11. To show that the
line graph is Borel, we check Property (iii) of Lemma 5.1. By lifting all to V 2, it
is enough to check a version of this property for every symmetric Borel set A ⊆ E.
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Now, Y := π0(A) = π1(A), the set of vertices covered by the edges in A, is Borel by
Theorem 3.8 as the sizes of preimages under π0 : A → Y are finite. The 1-ball of A
in the line graph corresponds to the set of edges of G that intersect Y . The latter set
is equal to E ∩ ((Y × V ) ∪ (V × Y )) and is thus Borel. Finally (assuming we have
verified all steps above), we can conclude by Lemma 5.1 that L(G) is Borel.

Remark 5.14 Observe that there are locally countable Borel graphs that do not
admit a Borel proper vertex colouring with countably many colours (see e.g. [36,
Examples 3.13–16]); such graphs were completely characterised by Kechris et al. [38,
Theorem 6.3] as containing a certain obstacle. On the other hand, Kechris et al. [38,
Proposition 4.10] observed that, by the Feldman–Moore Theorem (Theorem 7.1 here)
the statement of Lemma 5.10 (and thus of Theorem 5.11) remains true also in the
locally countable case.

5.2 Local Rules

We will show in this section that all “locally defined” vertex labellings are Borel
as functions. As a warm up, consider the degree function deg : V → ω, which sends
a vertex x ∈ V to its degree deg(x) = |N(x)|.

Lemma 5.15 For every locally finite Borel graph G = (V,E,B), the degree function
degG : V → ω is Borel.

Proof It is enough to show that for every k ∈ ω the set Dk := {x ∈ V : deg(x) > k}
is Borel, because the set of vertices of degree exactly k is Dk \Dk+1.

The most direct proof is probably to use a countable generating algebra J =
{Ji : i ∈ ω} from Remark 3.5. Note that a vertex x ∈ V has degree at least k
if and only if there are k pairwise disjoint sets in J with x having at least one
neighbour in each of them. Indeed, if y0, . . . , yk−1 ∈ N(x) are pairwise distinct then
by Lemma 3.6 there are A0, . . . , Ak−1 ∈ J with Ai ∩ {y0, . . . , yk−1} = {yi} for each
i ∈ k and if we let B0 := A0, B1 := A1 \ A0, B2 := A2 \ (A0 ∪ A1), and so on,
then B0, . . . , Bk−1 ∈ J have the required properties. Thus, we can write Dk as the
countable union of the intersections ∩m∈kN(Jim) over all k-tuples i0, . . . , ik−1 such
that Ji0 , . . . , Jik−1

are pairwise disjoint. By Lemma 5.1(ii), all neighbourhoods N(J)
for J ∈ J and thus the set Dk are Borel.

Alternatively, fix any Borel proper edge colouring c : E → ω which exists by
Theorem 5.12. Trivially, deg(x) > k if and only if there are at least k distinct
colours under c at the vertex x. The set of vertices that belong to an edge of colour
i is π0(c

−1(i)), which is Borel by Theorem 3.8. Thus

Dk =
⋃

i0,...,ik−1
∈ω

i0<...<ik−1

⋂

m∈k

π0(c
−1(im))

is a Borel set. �

In order to make the forthcoming general statement (Lemma 5.17) stronger and
better suitable for applications, we consider a version where we may have some
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additional structure on graphs. Namely, a labelling of a graph G is any function
ℓ from V to some countable set; then we say that a pair (G, ℓ) is a labelled graph.
Vertex labellings allow us to encode many other types of structures on G such as,
for example, edge colourings (see Remark 5.18 for a reduction).

Let ℓ be a labelling of a graph G = (V,E). For r ∈ ω, let Fr be the function on
V which sends a vertex x ∈ V to the isomorphism type of

(G, c, x) ↾ N6r(x) := (G ↾ N6r(x), c ↾ N6r(x), x),

the labelled graph induced by the r-ball N6r(x) in G rooted at x, where isomor-
phisms have to preserve also the root and the vertex labelling. Since we consider
only locally finite graphs, Fr assumes countably many possible values and thus is
an example of a labelling. By a local rule of radius r (or an r-local rule) on (G, ℓ)
we mean a function R on V whose value at any x ∈ V depends only on Fr(x). In
other words, r-local rules are exactly those functions that factor through Fr, that is,
are representable as a composition f ◦ Fr for some function f . A function on V is a
local rule if it is an r-local rule for some r ∈ ω. Unless stated otherwise, we assume
that local rules and labellings are functions from V to ω, that is, their values are
non-negative integers.

For example, the degree function deg or the number of triangles that contain a
vertex are local rules of radius 1 (that do not depend on the labelling). An example
of a 1-local rule that uses the labelling ℓ is, say, x 7→ |ℓ(N(x))|, the number of
distinct ℓ-labels on the neighbours of x.

Let G be a graph with a labelling ℓ : V → ω such that, for every x ∈ V ,
its neighbours get pairwise distinct colours. Fix some special element not in V ,
denoting it by ⊥. For a non-empty sequence S = (s0, . . . , sj) ∈ ωj+1 of labels, let
us define a function fS : V → V ∪ {⊥} as follows. Take any x ∈ V . If there is
a walk in G of (edge) length j (i.e. a sequence (x0, . . . , xj) with (xi, xi+1) ∈ E for
each i ∈ j) that starts with x (i.e. x0 = x) and is S-labelled (i.e. ℓ(xi) = si for
each i ∈ j + 1) then let fS(x) := xj be the final endpoint of this walk; otherwise
let fS(x) :=⊥. By our assumption on ℓ, there can be at most one such walk, so
fS(x) is well-defined. (Equivalently, we could have worked with partially defined
functions, instead of using the special symbol ⊥.) For convenience, if S = () is the
empty sequence, then we define f() to be the identity function on V .

Lemma 5.16 If G is a locally finite Borel graph with a Borel labelling ℓ : V → ω
that is injective on N(x) for every x ∈ V , then for every j ∈ ω and every sequence
S = (s0, . . . , sj) in ωj+1 the function fS : V → V ∪ {⊥} is Borel.

Proof Regardless of how we extend a Polish topology from V to V ∪{⊥}, a subset
A of V ∪ {⊥} is Borel if and only if A∩ V is Borel. Thus it is enough to check that
the preimage f−1

S (V ) is Borel and the restriction of fS to f−1
S (V ) is a Borel function.

We use induction on j ∈ ω. If j = 0, then f(s0) is the identity function on the
Borel set ℓ−1(s0) and assumes value ⊥ otherwise; so f(s0) is indeed Borel. Suppose
that j > 1. Let f := f(s0,...,sj) and g := f(s0,...,sj−1).

Observe that, for every x ∈ V , there is an (s0, . . . , sj)-labelled walk starting at x
if and only if there is an (s0, . . . , sj−1)-labelled walk starting at x and its endpoint
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g(x) has a neighbour labelled sj. That is,

f−1(V ) = g−1(V ) ∩ g−1(N(ℓ−1(sj))),

and this set is Borel by induction and Lemma 5.1(ii). Let Y := g(g−1(V )) con-
sist of the endpoints of all (s0, . . . , sj−1)-labelled walks in G. This set is Borel by
Theorem 3.8 as the bijective image under the Borel map g of the Borel set g−1(V ).
Let Y ′ consist of those vertices in Y that have a neighbour labelled sj. Again by
Theorem 3.8, Y ′ is Borel as the bijective image of

Y ′′ := {(y, z) ∈ E : y ∈ Y ∧ ℓ(z) = sj} = (Y × ℓ−1(sj)) ∩ E

under the projection π0 on the first coordinate. Moreover, the map h : Y ′ → Y ′′

which is the (unique) right inverse of π0 is Borel by the second part of Theorem 3.8.
The composition π1 ◦ h sends an element of Y ′ to its unique neighbour labelled sj.
Thus the function f is Borel since, on the Borel set f−1(V ), it is the composition
π1 ◦ h ◦ g of three Borel functions. �

Lemma 5.17 Let G = (V,E,B) be a locally finite Borel graph with a Borel labelling
ℓ : V → ω. Then every local rule R : V → ω on (G, ℓ) is a Borel function.

Proof Let the local rule R have radius r. We can additionally assume that ℓ is a
2r-sparse colouring of G. Indeed, take any Borel proper vertex colouring c : V → ω
of G2r (which exists by Corollary 5.2 and Lemma 5.5), replace ℓ by the labelling
(ℓ, c) : V → ω2, which maps a vertex x ∈ V to (ℓ(x), c(x)), and update the local rule
R to ignore the c-component of the labelling.

To prove the lemma, it is enough to show that the function Fr on V is Borel
because each preimage under R is a countable union of some preimages under Fr.
Note that F0 is Borel since the (countable) vertex partition defined by F0 is the same
as the partition defined by the Borel function ℓ. So assume that r > 1.

Fix any particular feasible Fr-value F (a rooted labelled graph with each vertex
at distance at most r from the root). By relabelling vertices, assume that the vertex
set of F is k with 0 being the root. Let ℓ′ : k → ω be the vertex labelling of F . We
assume that the function ℓ′ : k → ω is injective as otherwise F−1

r (F) is empty and
thus trivially Borel.

For each i ∈ k, let (s0, . . . , sj) be the sequence of labels on some fixed shortest
path Pi from the root 0 to i in F and let fi := f(s0,...,sj), be the function defined
before Lemma 5.16 with respect to the labelled graph (G, ℓ).

Observe that, for x ∈ V , the r-ball Fr(x) is isomorphic to F if and only if all the
following statements hold:

(a) For every i ∈ k, we have fi(x) 6=⊥ (that is, G has a walk starting from x
labelled the same way as Pi is).

(b) For every distinct i, j ∈ k, the pair (i, j) is an edge in F if and only if
(fi(x), fj(x)) is an edge of G.

(c) For every i ∈ k with distance at most r − 1 from the root in F and every
y ∈ NG(fi(x)) there is j ∈ k with y = fj(x) and j ∈ NF (i).
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Indeed, the map h : k → V that sends i to fi(x) preserves the labels by
Property (a) since we considered labelled walks when defining each fi. Further-
more, h is injective; in fact, even the composition ℓ ◦ h is injective since the end-
points of the paths Pi have distinct ℓ′-labels as distinct vertices of F . Now, Prop-
erty (b) states that h is a graph isomorphism from F to the subgraph induced by
{f0(x), . . . , fk−1(x)} in G. Finally, Property (c) states that the breadth-first search
of depth r from x in G does not return any vertices not accounted by F .

Let X consist of those x ∈ V that satisfy Property (a). By Lemma 5.16, the set
X = ∩i∈kf

−1
i (V ) is Borel.

Note that, for any distinct i, j ∈ k, the set

Yi,j := {x ∈ X : (fi(x), fj(x)) ∈ E}

= π0
(

{(x, xi, xj) ∈ X3 : xi = fi(x)}

∩ {(x, xi, xj) ∈ X3 : xj = fj(x)} ∩ (X × E)
)

is Borel by Lemma 3.2 (applied to the functions fi and fj) and Theorem 3.8 (applied
to the projection π0, whose preimages are finite here as the graph G is locally finite).
Thus the set Y of the elements in X that satisfy Property (b) is Borel since it is
the intersection of the sets Yi,j over all edges {i, j} of F and the sets X \ Yi,j over
non-edges {i, j} of F .

Finally, the set F−1
r (F) that we are interested in is Borel by Lemma 5.16 as the

countable intersection with Y of f−1
S (⊥) over all sequences S of labels of length at

most r that do not occur on walks in F that start with the root. �

Remark 5.18 Note that many other types of structures on G, such as a Borel edge
labelling ℓ′ : E → ω, can be encoded via some vertex labelling ℓ to be used as the
input to the local rule R in Lemma 5.17. Namely, fix a Borel 2-sparse colouring
c : V → ω of G and let the label ℓ(x) of a vertex x be defined as the finite list
(c(x), ℓ′(x, y0), . . . , ℓ′(x, yd−1)) where y0, . . . , yd−1 are all neighbours of x listed in-
creasingly with respect to their c-colours. In fact, the same reduction also works for
labellings ℓ′ : E → ω that need not be symmetric (meaning that ℓ′(x, y) = ℓ′(y, x) for
all (x, y) ∈ E). More generally, any countably valued function defined on subsets of
uniformly bounded diameter in G can be locally encoded by a vertex labelling.

In some cases, a single local rule does not work but a good assignment can be
found by designing a sequence of local rules of growing radii that eventually stabilise
at every vertex. The author is not aware of any commonly used name for functions
arising this way so, for the purposes of this paper, we make up the following name
(inspired by the term finitary factor from probability). For a labelled graph (G, ℓ),
let us call a function R : V → ω finitary (with respect to (G, ℓ)) if there are local
rules Ri, i ∈ ω, on (G, ℓ) such that the sequence of functions Ri : V → ω eventually
stabilises to R everywhere, that is, for every x ∈ V there is n ∈ ω such that for every
i > n we have R(x) = Ri(x). Note that we do not require that Ri “knows” if its
value at a vertex x is the eventual value or not.

Example 5.19 Let c : V → ω be a 2-sparse colouring of a graph G. For x ∈ V let
R(x) ∈ ω be 0 if the component of x has no perfect matching and be the largest i ∈
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{1, . . . ,deg(x)} such that the component of x has a perfect matching that matches x
with the i-th element of N(x) (where we order each neighbourhood by looking at the
values of c, which are pairwise distinct by the 2-sparseness of c). Then R : V → ω is
finitary on (G, c) as the following local rules Rr, r ∈ ω, demonstrate. Namely, Rr(x)
is the largest i ∈ {1, . . . ,deg(x)} such that there is a matching M in G ↾ N6r(x)
that covers every vertex in N6r−1(x) and matches x to the i-th element of N(x); if
no such M exists then we let Rr(x) := 0. Trivially, for every x ∈ V , if we increase
r then Rr(x) cannot increase. Thus the values Rr(x), r ∈ ω, eventually stabilise
and, moreover, this final value can be easily shown to be exactly R(x). On the other
hand, the function R is not r-local for any r ∈ ω: e.g. a vertex at distance at least
r from both endpoints of a finite path cannot decide by looking at distance at most
r if a perfect matching exists or not.

Corollary 5.20 For every locally finite Borel graph G = (V,E,B) with a Borel
labelling ℓ : V → ω, every function R : V → ω which is finitary with respect to (G, ℓ)
is Borel.

Proof Fix local rules Ri : V → ω, i ∈ ω, that witness that R is finitary. By
Lemma 5.17, each Ri is a Borel function. The function R : V → ω is Borel since a
pointwise limit of Borel functions is Borel ([14, Proposition 2.1.5]). Alternatively,
the last step follows from observing that, for every possible value j ∈ ω, its preim-
age R−1(j) = ∪i∈ω ∩m>i R

−1
m (j) is the lim inf (and also, in fact, lim sup) of the

preimages R
−1
i (j), i ∈ ω. �

5.3 Graphs with a Borel Transversal

In this section we present one application of Lemma 5.17 (namely, Theorem 5.23
below) which, informally speaking, says that if we can pick exactly one vertex inside
each graph component in a Borel way then any satisfiable locally checkable labelling
problem has a Borel satisfying assignment.

We define a locally checkable labelling problem (or an LCL for short) on la-
belled graphs to be a {0, 1}-valued local rule C that takes as input graphs with
ω2-valued labellings. A labelling a : V → ω satisfies (or solves) the LCL C on a
labelled graph (G, ℓ) if C returns value 1 on every vertex when applied to the labelled
graph (G, (ℓ, a)). (Recall that the labelling (ℓ, a) : V → ω2 labels a vertex x with
(ℓ(x), a(x)).) We will identify the function C(G, (ℓ, a)) : V → {0, 1} with the set of
x ∈ V for which it assumes value 1 and, if the ambient labelled graph is understood,
abbreviate this set to C(a). Thus a satisfies C if and only if C(a) = V . We call the
requirement that a vertex x belongs to C(·) the constraint at x. Labellings a : V → ω
on which we check the validity of an LCL will usually be called assignments.

Let us give a few examples of LCLs. First, checking that a : V → ω is a proper
colouring can be done by the 1-local rule which returns 1 if and only if the colour
of the root is different from the colour of any of its neighbours (and that the colour
of the root is in the set n = {0, . . . , n− 1} if we additionally want to require that a
uses at most n colours). Note that the LCL ignores the labelling ℓ in this example.
Second, suppose that a labelling a encodes some edge colouring c : E → ω as in
Remark 5.18. Then a 2-local rule can check if c is proper: each vertex x checks that
all colours on ordered pairs (x, y) ∈ E are pairwise distinct and that c(x, y) = c(y, x)
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for every y ∈ N(x); for this the knowledge of N62(x) is enough. Another example
is checking that a : V → {0, 1} is the indicator function of a maximal independent
set: this can be done by the obvious 1-local rule.

Let G be a Borel graph. A transversal for G is a subset X ⊆ V such that X has
exactly one vertex from every connectivity component of G (i.e. |X ∩ [x]| = 1 for
every x ∈ V ). In the language of Borel equivalence relations, the existence of a Borel
transversal can be shown (see e.g. [37, Proposition 6.4] or [79, Proposition 20.5]) to
be equivalent to the statement that the connectivity relation E of G (which is Borel
by Corollary 5.3) is smooth, meaning that there is a countable family of Borel sets
Yn ⊆ V , n ∈ ω, such that, for all x, y ∈ V , we have (x, y) ∈ E if and only if every Yn

contains either both or none of x and y.
Here is an example of a large class of Borel graphs that have a Borel transversal.

Lemma 5.21 Every (locally finite) Borel graph G with all components finite admits
a Borel transversal.

Proof Fix any Borel total order 4 on the vertex set V which exists by Lemma 3.7
and define a transversal X by picking the 4-smallest element in each component.
Note that X is the countable union of the sets Xr, r ∈ ω, where Xr consists of the
4-smallest vertices inside connectivity components of diameter at most r. Each Xr

is Borel by Lemma 5.17 as its indicator function can be computed by an (r+1)-local
rule. Thus the constructed transversal X is also Borel. �

Having a Borel transversal is a very strong property from the point of view
of Borel combinatorics as the forthcoming results state. The first one is a useful
auxiliary lemma stating, informally speaking, that if we can pick exactly one vertex
in each component in a Borel way then we can enumerate each component in a Borel
way.

Lemma 5.22 Let G = (V,E,B) be a locally finite Borel graph, admitting a Borel
transversal X ⊆ V . Then there are Borel functions gi : X → V , i ∈ ω, such that
g0 is the identity function on X and, for every x ∈ X, the sequence (gi(x))i∈m
bijectively enumerates [x]G and satisfies distG(x, gi(x)) 6 distG(x, gj(x)) for all i < j
in m := |[x]G |.

Proof Fix a 2-sparse Borel colouring c : V → ω which exists by Corollary 5.9.
The main idea of the proof is very simple: for each selected vertex x ∈ X we

order the vertices in the connectivity component of x first by the distance to x and
then by the c-labellings of the shortest paths from x to them, and let gi(x) be the
(i + 1)-st vertex in this order on [x].

Formally, let 4 be the total ordering of ω<ω, the set of all finite sequences of
non-negative integers, first by the length and then lexicographically. Note that 4

is a well-order on ω<ω (that is, every non-empty subset of ω<ω has the 4-smallest
element). For S ∈ ω<ω, let fS : V → V ∪ {⊥} be the function defined before
Lemma 5.16 (which sends x ∈ V to the other endpoint of the S-coloured walk
starting at x, if it exists). By Lemma 5.16, each function fS is Borel.

We define functions gi inductively, with g0 := f() ↾ X being the identity function
on X. Suppose that i > 1. For x ∈ V , let gi(x) be equal to fS(x) where S ∈ ω<ω is
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the 4-smallest sequence with fS(x) ∈ [x] \ {g0(x), . . . , gi−1(x)} and let gi(x) := x if
no such S exists (i.e. if we have already exhausted the whole component of x).

Let us argue by induction on i ∈ ω that the function gi is Borel. As g0 is clearly
Borel, take any i > 1. For S ∈ ω<ω, let XS := f−1

S (V \ ∪j∈igj(X)) ∩ X. For
any given S ∈ ω<ω, the set of x ∈ X for which we use fS when defining gi(x)
is exactly XS \ (∪R≺SXR), since we have to exclude the already labelled vertices
g0(x), . . . , gi−1(x) and then any R ≺ S as it takes precedence over S. Each set XS

for S ∈ ω<ω is Borel by Theorem 3.8 and Lemma 5.16. It follows that the function
gi is Borel. The other claimed properties of the constructed functions gi are obvious
from the definition. �

Theorem 5.23 Let G = (V,E,B) be a locally finite Borel graph, admitting a Borel
transversal X ⊆ V . Let ℓ : V → ω be a Borel labelling, n ∈ ω and C be an LCL.
If there is an assignment V → n that solves C on (G, ℓ), then there is a Borel
assignment V → n that solves C on (G, ℓ).

Proof As in the proof of Lemma 5.17, by replacing ℓ with (ℓ, d) for some 2-sparse
Borel colouring d (and letting the updated LCL C ignore the d-component), we can
additionally assume that ℓ is a 2-sparse colouring of G. Let gi : X → V for i ∈ ω be
the Borel functions returned by Lemma 5.22.

Since we need to use these functions gi as inputs to in our local rules, we encode
them by a vertex labelling I as follows. Namely, we define I : V → ω to map
y ∈ V to the smallest i ∈ ω with y ∈ gi(X). Thus I bijectively enumerates each
component of G by an initial interval of ω. This function is Borel by Theorem 3.8
since I−1(0) = X and

I−1(i) = gi(X) \ {x ∈ X : |[x]| 6 i}, for each i > 1.

(Note that, for every i ∈ ω, the set of x ∈ X whose connectivity component has at
most i vertices is Borel by Lemma 5.17 since its indicator function can be computed
by an i-local rule on (G,1X ).)

Let t be the radius of the local rule C.
For every r ∈ ω, we define an r-local rule Ar : V → {−1}∪n which on (G, (ℓ, I))

works as follows. Given y ∈ V , explore N6r(y), the r-ball around y. If it contains
no vertex of X, then let Ar(y) := −1 (which could be interpreted that the vertex
y does not yet make any guess of its value in the set n). Otherwise, let x be the
(unique) vertex from X that we have encountered. Let

k = k(r, y) := r − dist(x, y) and Y = Y (r, y) := N6k(x).

If y 6∈ Y , then we define Ar(y) := −1. Suppose that y ∈ Y . Note that Y =
{y0, . . . , ym−1}, where m := |Y | and yi for i ∈ m is defined as the unique vertex
of Y labelled i by I (which is, of course, gi(x)). Since Y ⊆ N6r(y), the local rule
Ar(y) can identify all these vertices. Among all assignments A : Y → n, pick one,
denoting it A = A(r, y), that satisfies C on every vertex of

Y ′ = Y ′(r, y) := N6k−t(x)

and, if there is more than one choice then choose the one for which the sequence
(A(y0), . . . , A(ym−1)) is lexicographically smallest. (Note that there is always at
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least one choice of A by our assumption that a global solution exists.) Finally,
let Ar(y) := A(y), be the value of A on the vertex y ∈ Y . Note that in order
to compute A (given yi’s), we need to know only the labelled graph induced by
N6t(Y ′) ⊆ Y ⊆ N6r(y). Thus Ar is indeed a local rule of radius r.

Informally speaking, these rules Ar are constructed so that each vertex x from
the transversal X takes growing balls around itself and properly labels each with the
lexicographically smallest assignment that looks satisfiable, given the current local
information. Every other vertex y in the component of x has to follow these choices
once y discovers enough information to compute x’s choice for the value at y.

Let us show that the values of Ar, r ∈ ω, eventually stabilise to some element
of n on each vertex y ∈ V , by using induction on I(y). Take any x ∈ X. Define
yi := gi(x) for i ∈ ω. Note that y0 is the special vertex x ∈ X. Take any i ∈ ω.
First, observe that, trivially, Ar(yi) 6= −1 for all r > 2 dist(y0, yi) + t. By induction
pick r0 ∈ ω such that Ar stabilises from r0 on each of y0, . . . , yi−1, that is, for all
r > r0 the restrictions of Ar to {y0, . . . , yi−1} are equal to each other. Consider the
values Ar(yi) for r > r′0 where

r′0 := r0 + d and d := max{dist(yi, yj) : j ∈ i}.

Using the notation from the definition of Ar, it holds that k(r, yi) = r − dist(y0, yi)
is at least as large as k(r0, yj) = r0 − dist(y0, yj) for each j ∈ i. Thus, for every
j ∈ i, we have that Y ′(r, yi) ⊇ Y ′(r0, yj), as these sets are just balls around the
special vertex x = y0 of radii k(r, yi) − t and k(r0, yj) − t respectively. Thus, when
we compute A = A(r, yi), the constraints that this assignment has to satisfy include
all constraints for A(r0, yj). In the other direction, it holds for all j ∈ i again by
our choice of d that Y ′(r + d, yj) ⊇ Y ′(r, yi), that is, A(r + d, yj) has to satisfy all
constraints that are imposed on A(r, yi). Since we always go for the lexicographically
minimal assignment, we conclude that A(r, yi) coincides with Ar0 on {y0, . . . , yi−1}.
Thus, for all r > r′0, when we compute A(r, yi), we can equivalently view its values
on {y0, . . . , yi−1} as fixed and, given this, we minimise the value at yi. This value
cannot decrease when we increase r (because any increase of the radius r just adds
some extra constraints on A(r, yi)). So the values at each y ∈ V eventually stabilise
as they come from the finite set n, as desired.

We define the final assignment a as the one to which the local rules Ar, r ∈ ω,
stabilise. It is finitary and thus Borel by Corollary 5.20.

It remains to check that the constructed assignment a : V → n solves the LCL C.
Take any y ∈ V . Its t-ball Z := N6t(y) is finite and thus there is r0 ∈ ω such that
a ↾ Z = Ar ↾ Z for each r > r0. Let x be the unique element of [y] ∩X. Take any

r > max(r0, 2 dist(x, y)) + t.

When we compute Ar(y), we have that k(r, y) = r−dist(x, y) is at least dist(x, y)+t,
so y ∈ Y ′(r, y), that is, the constraint at y is one of the constraints that the partial
assignment A(r, y) has to satisfy. For each element z ∈ N6t(y), we have k(r, y) >

k(r0, z) and thus Y (r, y) ⊇ Y (r0, z). Recall that the final assignment a coincides
with A(r, y) on N6t(y) = Z by the choice of r0. Since the LCL C of radius t is
satisfied by A(r, y) at y ∈ Y ′(r, y), the assignment a also satisfies the constraint
at y. As y ∈ V was arbitrary, the constructed assignment a solves the problem C.
�
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Remark 5.24 Bernshteyn [8] gave an example showing that Theorem 5.23 is false
when n = ω, that is, when we consider assignments V → ω that can assume can
assume infinitely many values. (Also, Bernshteyn [8] presents an alternative proof
of Theorem 5.23, via the Uniformization Theorem for compact preimages.)

5.4 Borel Assignments without Small Augmenting Sets

Suppose that we look for Borel assignments a : V → ω on a labelled graph (G, ℓ)
that solve an LCL C where we want many vertices to satisfy another LCL P. As
before, we denote the set of vertices where a satisfies P by P(G, (ℓ, a)) (or by P(a)
if the context is clear), calling it the progress set. For an assignment a that solves
the LCL C, an r-augmenting set is a set R ⊆ V such that R is connected (meaning
that G ↾ R is connected), |R| 6 r, and there is an assignment b : R → ω such that
a ❀ b solves C and satisfies P(G, (ℓ, a)) ( P(G, (ℓ, a ❀ b)). Here,

a ❀ b := b ∪ (a ↾ (π0(a) \ π0(b)) (5.2)

denotes the function obtained from putting the functions a and b together, with b
taking preference on their common domain π0(a)∩π0(b). We call the new assignment
a ❀ b an r-augmentation of a. Thus, an r-augmentation strictly increases the
progress set by changing the current assignment on a connected set of at most r
vertices without violating any constraint of C.

As an example, suppose that C states that a encodes a set M of edges which
is a matching (that is, ∆(M) 6 1) and P(x) = 1 means that a vertex x ∈ M is
matched by M . Similarly to Remark 5.18, one can encode a matching M by letting
a(x) := deg(x) if x is unmatched and otherwise letting a(x) ∈ deg(x) specify the
unique M -match of x by its position in N(x) with respect to the ordering of N(x)
coming from a fixed 2-sparse Borel colouring. Then the LCL C can be realised
by a 2-local rule (checking that the value at x is consistent with the value at each
y ∈ N(x)) while P is the 1-local rule that outputs 0 at x if and only if a(x) = deg(x).
Note that if we change the encoding so that a(x) = 0 means that x is unmatched
while a(x) ∈ {1, . . . ,deg(x)} encodes the M -match of x otherwise, then the progress
function P, which verifies that a(x) = 1, becomes 0-local. One special example of
an augmentation here is to replace M ⊆ E by the symmetric difference M △ P ,
where P ⊆ E is a (usual) augmenting path (that is, a path in G whose endpoints
are unmatched and whose edges alternate between E \M and M). Under either of
the above encodings, the set V (P ) is augmenting here.

The following standard result states that, informally speaking, we can eliminate
all r-augmentations in a Borel way, additionally including a Borel “certificate” that
we changed at most r assignment values per every vertex added to the progress set.
Elek and Lippner [21] presented a version of it for matchings (when C checks that
the current assignment encodes a matching M and augmenting sets are limited to
augmenting paths). Their proof extends with obvious modifications to the general
case and is presented here.

Theorem 5.25 Let C and P be LCLs for labelled graphs. Let G be a locally finite
Borel graph with a Borel labelling ℓ : V → ω and a Borel assignment a0 : V → ω
that solves C on (G, ℓ). Then for every r > 1 there is a Borel assignment a : V → ω
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such that a solves C on (G, ℓ) and admits no r-augmentation with respect to P.
Additionally, there are r Borel maps

fj : P(G, (ℓ, a)) \ P(G, (ℓ, a0)) → V, j ∈ r,

such that fj ⊆ EG for each j ∈ r and every vertex x ∈ V with a(x) 6= a0(x) is in the
image of at least one fj.

Proof Let t ∈ ω be such that both C and P can be computed by a t-local rule.
As in the proof of Lemma 5.17, we can assume that ℓ : V → ω is an (r + 2t)-

sparse colouring. Fix a sequence (Xi)i∈ω where each Xi is a non-empty subset of ω
of size at most r such that each such set appears as Xi for infinitely many values of
the index i. Given a0, we inductively define Borel assignments a1, a2, . . . : V → ω,
each solving the LCL C. (Also, we will define some auxiliary functions fi,j that will
be used to construct the final functions fj, j < r.)

Informally speaking, each new ai+1 is obtained from ai by doing simultaneously
all r-augmentations that can be supported on a connected set whose ℓ-labels are
exactly Xi. Every two such sets are far away from each other by the sparseness
of ℓ, so all these augmentations can be done in parallel without conflicting with each
other.

Suppose that i > 0 and we have already defined ai, a Borel assignment V → ω
that solves C. Let Xi be the family of subsets S ⊆ V such that G ↾ S is connected,
|S| 6 r, and Xi = ℓ(S), that is, the set of ℓ-values seen on S is precisely Xi.
Note that, since ℓ is (r + 2t)-sparse, ℓ is injective on each S ∈ Xi and the distance
in G between any two sets from Xi is larger than 2t; in particular, these sets are
pairwise disjoint. Let Yi consist of those S in Xi which are augmenting for ai. Do
the following for every S ∈ Yi. First, take the lexicographically smallest function
bS : S → ω such that the assignment ai ❀ bS (which is obtained from ai by letting
the values of bS supersede it on π0(bS) = S) satisfies C at every vertex and has a
strictly larger progress set than ai has, that is,

C(ai ❀ bS) = V and P(ai ❀ bS) ) P(ai). (5.3)

Let PS := P(ai ❀ bS) \P(ai) 6= ∅. This set measures the progress made by the aug-
mentation on S. Note that PS is finite as a subset of N6t(S). Let (fS,0, . . . , fS,r−1) ∈
(SPS )r be the lexicographically smallest sequence with each fS,i being a function
from PS to S such that their combined images cover S, that is, ∪i∈rπ1(fS,i) = S.
(When defining the lexicographical order on (SPS )r, we can use, for definiteness, the
total ordering of S∪PS ⊆ N6t(S) given by the values of the (r+2t)-sparse colouring
ℓ which is injective on this set.) Note that r functions are enough as |S| 6 r while
the “worst” case is when PS 6= ∅ is a singleton. Having processed each S ∈ Yi as
above, we define

ai+1 := ai ❀ ∪S∈Yi
bS .

In other words, ai+1 is obtained from ai by replacing it by bS on each S ∈ Yi. (Recall
that these sets are pairwise disjoint.) Likewise, let

fi,j := ∪S∈Yi
fS,j, j ∈ r. (5.4)
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Let us check, via induction on i ∈ ω, the claimed properties of each constructed
assignment ai+1, namely, that ai+1 is Borel and solves C. Note that ai+1 is defined
by a local rule on (G, (ℓ, ai)) of radius r + 2t: by looking at N6r(x) we can check
if x ∈ S for some S ∈ Xi and, if such a set S exists, then N62t(S) ⊆ N6r+2t(x)
determines whether S ∈ Yi and the value of ai+1 on x. (Note that we may need
to look at distance as large as 2t from S because the new values of ai+1 on S can
affect the values of C and P on N6t(S) which in turn can depend on the values of
ai on N62t(S).) Thus by induction and Lemma 5.17, the assignment ai+1 : V → ω
is Borel. Let us show that ai+1 satisfies C. Take any x ∈ V . If ai+1 ↾ N6t(x) =
ai ↾ N

6t(x), that is, ai+1 and ai coincide on every vertex at distance at most t from
x, then C returns the same value on x for ai+1 as for ai, which is 1 by induction.
Otherwise there is y ∈ N6t(x) which changes its value when we pass from ai to
ai+1. Let S be the unique element of Yi that contains y. One of the requirements
when we defined bS : S → ω was that a′ := ai ❀ bS satisfies C. In particular, a′

satisfies C at the vertex x. Now ai+1 and a′ are the same at N6t(x) because every
element of Yi \ {S} is at distance more than 2t from S and, by S ∩N6t(x) 6= ∅, at
distance more than t from x. Thus ai+1 satisfies C at x since a′ does. As x ∈ V was
arbitrary, ai+1 solves C.

Note that, since t is an upper bound also on the radius of P, the same argument
as above when applied to every element of N6t(S) shows by P(ai ❀ bS) ) P(ai)
that

P(ai+1) ∩N6t(S) = P(ai ❀ bS) ∩N6t(S) ) P(ai) ∩N6t(S), for every S ∈ Yi.
(5.5)

Let us show that, for every x ∈ V , the values ai(x), i ∈ ω, stabilise eventually.
Suppose that ai+1(x) 6= ai(x) for some i ∈ ω. Then x ∈ S for some augmenting set
S ∈ Yi. When we change ai to bS on S, the progress set strictly increases, so take any
y ∈ P(ai ❀ bS)\P(ai). Of course, y ∈ N6t(S). By (5.5), we have y ∈ P(ai+1)\P(ai).
This means that, every time the assignment at x changes, some extra vertex from
N6r+t(x) is added to the progress set. This can happen only finitely many times by
the local finiteness of G (and since no vertex is ever removed from the progress set
by (5.5)). Thus the constructed assignments ai stabilise at every vertex, as claimed.

Define a : V → ω by letting a(x) be the eventual value of ai(x) as i → ∞.
This assignment a : V → ω is finitary and thus Borel by Corollary 5.20. Also, it

solves the LCL C (because, for every x ∈ V , all values of a on N6t(x) are the same
as the values of the C-satisfying assignment ai for sufficiently large i).

Let us show that no connected set S ⊆ V of size at most r can be augmenting
for a. This property depends on the values of a on the finite set N62t(S). Again,
there is i0 ∈ ω such that a and ai coincide on this set for all i > i0. Since the
set ℓ(S) appears in the sequence (Xi)i∈ω infinitely often, there is j > i0 with Xj =
ℓ(S). Thus S is in Xj but not in Yj (otherwise at least one value on S changes
when we define aj+1). Thus S is not augmenting for aj and, consequently, is not
augmenting for a. We conclude that the constructed Borel assignment a admits no
R-augmentation.

Finally, let us define fj := ∪i∈ωfi,j for j ∈ r, where each fi,j was defined in (5.4).
Note that when we define fi,j on some PS then, by (5.5), every vertex of PS moves
to the progress set at Stage i and stays there at all later stages. Thus each fj, as a
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subset of V × V , is a function.
Note that each function fi,j moves any vertex in its domain by bounded distance

in G (namely, at most r+t). So it can be encoded by a vertex labelling ℓi,j on V where
for every x ∈ V we specify if fi,j is defined on x and, if yes, the sequence of the ℓ-
labels on the shortest (and then ℓ-lexicographically smallest) path from x to fi,j(x).
Each ℓi,j can clearly be computed by a local rule so it is Borel by Lemma 5.17.
Lemma 5.16 implies that each function fi,j is Borel. Thus each function fj for j ∈ r
is Borel. Also, every vertex x ∈ V where a differs from a0 belongs to some S ∈ Yi

for some i ∈ ω and, by construction, x is covered by the image of fi,j for some j ∈ r.
Thus the images of f0, . . . , fr−1 cover all vertices where a differs from a0, while the
domain of each fj is P(a) \ P(a0) by construction.

This finishes the proof of Theorem 5.25. �

6 Negative Results via Borel Determinacy

The greedy bound χ(G) 6 d + 1, where d := ∆(G) is the maximal degree of
G, is not in general best possible and can be improved for many finite graphs.
For example, Brooks’ theorem [10] states that, for a connected graph G, we have
χ(G) 6 d unless G is a clique or an odd cycle. (See also Molloy and Reed [65] for a
far-reaching generalisation of this result.)

In contrast to these results, Marks [58] showed rather surprisingly that, for every
d > 3, the greedy upper bound d+1 on the Borel chromatic number is best possible,
even if we consider acyclic graphs only. This was previously known for d = 2: the
irrational rotation graph Rα of Example 1.1, is a 2-regular acyclic Borel graph whose
Borel chromatic number is 3.

We present a slightly stronger version which follows directly from Marks’ proof.

Theorem 6.1 (Marks [58]) For every d > 3 there is a Borel acyclic d-regular
graph G = (V,E,B) with a Borel proper edge colouring ℓ : E → d such that for every
Borel map c : V → d there is an edge (x, y) ∈ E with c(x) = c(y) = ℓ(x, y). (In
particular, χB(G) > d + 1.)

Proof We follow the presentation from Marks [57], generally adding more details.
While the proof can be concisely written (the whole note [57] is only 1-page long),
it is quite intricate.

Let
Γ := 〈γ0, . . . , γd−1 | γ

2
0 = · · · = γ2d−1 = e〉

be the group freely generated by d involutions γ0, . . . , γd−1, that is, Γ = Z2 ∗ · · · ∗Z2

is the free product of d copies of Z2, the cyclic group of order 2.
Let (G,λ) be the (right) edge coloured Cayley graph of (Γ ; γ0, . . . , γd−1) whose

vertex set is Γ and whose edges are given by right multiplication by the involutions
γ0, . . . , γd−1, that is, for each β ∈ Γ and i ∈ d we connect β and βγi by an edge,
which gets colour i under λ. (Note that the colour of the edge {β, βγi} does not
depend on the choice of an endpoint since γ2i = e.) The graph (G,λ) is isomorphic
to the infinite edge d-coloured d-regular tree.

The group Γ naturally acts on itself. We consider the left action a : ΓyΓ
where the action a(γ, ·) of γ ∈ Γ is just the left multiplication by γ which maps
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β ∈ Γ to γβ ∈ Γ . Note that we take the left multiplication for the action but
the right multiplication when defining the Cayley graph G. This ensures that the
automorphisms of the graph G that preserve the edge colouring λ are precisely the
left multiplications by the elements of Γ :

Aut(G,λ) = {a(γ, ·) : γ ∈ Γ}. (6.1)

We view the elements of ωΓ as functions Γ → ω and call them labellings. (The
proof, as it is written, also works if we replace ωΓ by AΓ for some finite set A of size
(d− 1)2 + 1.) The standard Borel structure on ωΓ comes from the product topology
where we view ωΓ as the product of countably many copies of the discrete space ω.

The group Γ naturally acts on this space via the (left) shift action s : ΓyωΓ

defined as follows. For γ ∈ Γ and x ∈ ωΓ , the (left) shift γ.x ∈ ωΓ of x is defined
by

(γ.x)(β) := x(γ−1β), β ∈ Γ.

In other words, we just pre-compose the labelling x : Γ → ω with the map a(γ−1, ·),
the left multiplication by γ−1. (We take the inverse of γ to get a left action, namely
so that the identity (γβ).x = γ.(β.x) always holds.) For each γ ∈ Γ , the γ-shift map
s(γ, ·) : ωΓ → ωΓ is Borel; in fact, it is a homeomorphism of the product space ωΓ

as it just permutes the factors. Thus the action is Borel.
Let S be the shift graph on ωΓ where a vertex x ∈ ωΓ is adjacent to ev-

ery element in {γ0.x, . . . , γd−1.x} \ {x}. In other words, S is the Schreier graph
S(s; {γ0, . . . , γd−1}) as defined in Example 4.3. The Borel graph S comes with the
Borel edge colouring E(S) → 2d where the colour of an edge (x, y) ∈ E(S) is the
(non-empty) set of i ∈ d such that γi.x = y.

The graph S has cycles and is not d-regular. (For example, the constant-0
labelling of Γ is an isolated vertex of S.) Let X consist of those labellings x ∈ ωΓ

that give a proper vertex colouring of the Cayley graph G, that is,

X := {x ∈ ωΓ : ∀β ∈ Γ ∀i ∈ d x(β) 6= x(βγi)}

=
⋂

β∈Γ

⋂

i∈d

⋃

k,m∈ω

k 6=m

{x ∈ ωΓ : x(β) = k ∧ x(βγi) = m}.

The second formula for X makes it clear that this set is a Borel subset of ωΓ . Also,
X is an invariant set under the shift action s; this follows from (6.1) since a proper
colouring remains proper when pre-composed with an automorphism of the graph.

The graph S ↾ X is neither acyclic nor d-regular. For example, there are exactly
two proper 2-colourings Γ → {0, 1} of the bipartite graph G and they form an
isolated edge in S ↾ X. So we need to do another (final) trimming.

Let Y := X ∩ Free(s) be the intersection of X with the free part of the shift
action s. In other words, Y consists of those proper vertex colourings of G that have
no symmetries under the automorphisms of the edge-coloured graph (G,λ). The set
Y is invariant under the action s, since X and the free part Free(s) are. In particular,
there are no edges connecting X \ Y to Y and the induced subgraph G := S ↾ Y is
d-regular and acyclic. The graph G comes with the Borel edge d-colouring ℓ, where,
for each x ∈ Y and i ∈ d, we colour the edge {x, γi.x} by i. As we argued before, the
set X is Borel. Also, the free part of the Borel action s is Borel by Lemma 4.4. Thus



Borel Combinatorics of Locally Finite Graphs 30

Y and the graph G are Borel. The following two claims clearly imply that the edge
coloured graph (G, ℓ) satisfies the theorem. (Note that, for all x ∈ X and i ∈ d, we
have γi.x 6= x because (γi.x)(e) = x(γ−1

i ) is different from x(e) as x ∈ X is a proper
colouring of G and assigns distinct colours to the adjacent vertices e and γ−1

i = γi.)

Claim 6.2 If c : X → d is a Borel map then there is x ∈ X and i ∈ d with
c(x) = c(γi.x) = i.

Claim 6.3 There is a proper Borel d-colouring c of the graph S ↾ (X \ Y ).

Proof of Claim 6.2. Given c : X → d, we define for every i ∈ d and j ∈ ω the
game Gi,j where two players, I and II, take turns to construct x : Γ → ω which is a
proper vertex colouring of G. Initially, we start with the partial colouring x which
assigns value j to the identity (that is x(e) = j) and is undefined on Γ \ {e}. There
are countably many rounds as follows. For convenience, let us identify each element
β ∈ Γ with the unique reduced word in γ0, . . . , γd−1 representing β. In Round r for
r = 1, 2, . . . , first Player I chooses the values of x at all reduced words of length r
that begin with γi, and then Player II chooses the values of x at all other reduced
words of length r (that is, those that begin with γm for some m ∈ d \ {i}). The
restriction that applies to both players is that the current partial vertex colouring x
of G is proper at every stage. Since there are infinitely many available colours, there
is always a non-empty set of responses for a player. So the game continues for ω
rounds. Since a value of x, once assigned, is never changed later, a run of the game
gives a fully defined map x : Γ → ω which, by the imposed restriction, is in fact an
element of X. Player I wins the game if and only if c(x) 6= i, where c : X → d is the
given Borel map.

In general, by using the Axiom of Choice one can design games of the above type
(when two players construct an infinite sequence in countably many rounds) where
none of the players has a winning strategy, that is, for every strategy of one player,
there is a strategy of the other player that beats it. The groundbreaking result of
Martin [61] (with a simplified proof presented in [62]) states that, for games with
countably many choices in each round, if the set of winning sequences is Borel then
the game is determined, i.e. one of the players has a winning strategy. Here, for the
game Gi,j, the set of winning labellings for Player I is exactly c−1(i). Thus each
game Gi,j is determined.

Let us show that for every j ∈ ω there is i ∈ d such that Player II has winning
strategy in Gi,j . Suppose on the contrary that this is false. This implies by the
Borel determinacy that, for every i ∈ d, Player I has a winning strategy for Gi,j ;
let us call this strategy Si. Now, we let these d strategies play each against the
others as follows. We start with x(e) := j. In Stage r, for r = 1, 2, . . . , we use the
round-r responses of the strategies S0, . . . , Sd−1 in parallel to define x on all reduced
words of length r. Induction on r shows that, before this stage, we have a proper
partial vertex colouring x defined on N6r−1

G (e) with x(e) = j. For every i ∈ d, this
is a legal position of Gi,j when Player I is about to define x on length-r reduced
words beginning with γi. So we use the values specified by Si on these words. Also,
the new values assigned by two different strategies are never adjacent; in fact, they
are 2r apart as the unique shortest path between them in the tree G has to go via
the identity e. Thus, after Stage r, the new partial labelling x is a proper vertex
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colouring of N6r
G (e) and we can proceed to Stage r+1. The final labelling x : Γ → ω

is clearly a proper colouring of G. Since each Si is a winning strategy, we have that
c(x) 6= i. But this is impossible as c has to assign some colour to x ∈ X.

By the previous paragraph and the Pigeonhole Principle, there are i ∈ d and
distinct j0, j1 ∈ ω such that Player II has a winning strategy in Gi,j0 and Gi,j1 . Let
these strategies be T0 and T1 respectively. Now, we let T0 play against γi.T1, the
“γi-shifted” version of T1, to construct a labelling x : Γ → ω as follows. Initially, we
let x(e) := j0 and x(γi) := j1, viewing it as Stage 0. Iteratively for each r = 1, 2, . . . ,
Stage r uses the round-r responses of T0 and γi.T in parallel to colour all reduced
words of length r that do not start with γi and, respectively, all β ∈ Γ such that
the reduced word of γiβ has length r and does not start with γi. The last set is
represented precisely by reduced words of length r + 1 that start with γi. Thus, an
induction on r > 1 shows that the set Dr of vertices on which the partial colouring
x is defined just before Stage r is represented by all reduced words of length r − 1
and those of length r that being with γi. (This is true in the base case r = 1 since
the initial colouring is defined on D1 = {e, γi}.) This is exactly the information that
the strategy T0 needs to know in Round r. Note that γi.Dr := {γi.β : β ∈ Dr} is the
same set Dr so the round-r response of γi.T1 can also be computed. Thus we can
play T0 and γi.T1 in every stage, without any conflicts between the assigned values.
After ω stages, γi.T1 colours all reduced words beginning with γi and T0 colours
the rest of Γ and we get an everywhere defined function x : Γ → ω which is also
a proper colouring of the Cayley graph G. (Note that the only possibly conflicting
edge {e, γi} of G gets distinct colours j0 and j1 before Stage 1.)

Since x can be represented as a run of the game Gi,j0 where Player II applies
the winning strategy T0, it holds that c(x) = i. Also, γi.x is a run of the game
Gi,j1 , where the winning strategy T1 is applied. Thus c(γi.x) = i. We see that this
labelling x satisfies Claim 6.2.

Next, we prove the remaining Claim 6.3 with its proof being fairly routine to
experts.

Proof of Claim 6.3. Let a generalised cycle be a finite sequence

(x0, . . . , xm−1; γi0 , . . . , γim−1
) ∈ (ωΓ )m × Γm

such that m > 1, x0, . . . , xm−1 are pairwise distinct, xj+1 = γij .xj for every j ∈ m
where we denote xm := x0, and if m = 2 then i0 6= i1. If m > 3 then this gives
a usual cycle of length m in the graph S (with a direction and a starting vertex
specified). The cases m = 1 and m = 2 correspond to “imaginary cycles”: if we
re-define the Schreier graph S as the natural d-regular multigraph with loops, then
these would correspond to loops and pairs of multiple edges respectively.

Note that generalised cycles are minimal witnesses to non-freeness of the shift
action s : ΓyωΓ in the following sense. Suppose that y ∈ ωΓ is not in the free
part. Then there are x0 ∈ [y] and non-identity γ ∈ Γ with γ.x0 = x0. Writing
γ = γim−1

. . . γi0 as the reduced word in {γ0, . . . , γd−1} and inductively on j ∈ m−1,
letting xj+1 := γij .xj , we get all properties of a generalised cycle except vertices can
repeat here. Now, if there are repetitions among x0, . . . , xm then take two repeating
vertices whose indices are closest and restrict to the subsequence between them.
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Let us briefly argue that we can choose a Borel set C of vertex-disjoint generalised
cycles in

S ′ := S ↾ (X \ Y )

such that every component of S ′ contains at least one. (This claim also directly
follows from [37, Lemma 7.3].) First, notice that the function S which corresponds
to each x ∈ X \ Y the shortest length of a generalised cycle in [x]S′ = [x]S is Borel
by Corollary 5.20 as a finitary function. Namely, it is the pointwise limit of r-local
rules Sr : X \ Y → ω ∪ {ω}, where for x ∈ ωΓ we define Sr(x) to be the minimum
length of a generalised cycle inside N6r(x) (which is not required to pass through
x) and to be ω if none exists. Note that the function S is invariant (that is, assumes
the same value for all vertices in a graph component) even though Sr need not be.
Now, for each m > 1, define the graph Gm whose vertices are all generalised cycles
of length m in the components where the function S assumes value m, where two
vertices of Gm are adjacent if the corresponding cycles have at least one common
vertex. This graph, whose vertex set is a subset of the Polish space (ωΓ )m × Γm,
can be routinely shown to be Borel with the tools that we have already presented.
Also, the maximum degree of Gm can be bounded by mdm. Thus, by Theorem 5.6,
we can choose a Borel maximal independent set Im in Gm. The union C := ∪m>1Im
satisfies the claim by the maximality of Im. (In fact, more strongly, we picked a
maximal subset of vertex-disjoint shortest generalised cycles inside each component
of S ′.)

For every chosen generalised cycle (x0, . . . , xm−1; γi0 , . . . , γim−1
) ∈ C and for each

j ∈ m, define c(xj) := ij . This partially defined vertex colouring of S ′ has the
property that, for every edge {x, γi.x} of S ′, if c(x) = i then c(γi.x) 6= i. (Note that
S ′ does not have any loops by definition, although we used “imaginary loops” when
defining generalised cycles of length 1.)

Now, for every uncoloured vertex x of S ′ take a shortest path P from x to
a generalised cycle in C and, if there is more than one choice of P then choose
one where the sequence of edge colours on P is lexicographically smallest. Define
c(x) := i, where i is the smallest element of {0, . . . , d − 1} such that (x, γi.x) is the
first edge of P . Note that c(γi.x) is the colour of either the second edge on P (if P
has at least two edges) or the edge coming out of γi.x in the (unique) generalised
cycle in C containing γi.x. In either case, c(γi.x) cannot be i as otherwise P is not
a shortest path.

This colouring c is finitary on the labelled graph (S ′, ℓ′), where ℓ′ is a (Borel)
vertex labelling encoding both the edge labelling of S ′ as well as the initial partial
colouring of all vertices on the generalised cycles from C. Indeed, c can be built as
the nested union of partial local colourings Cr, r ∈ ω, where each vertex x computes
its (final) colour if N6r(x) contains at least one vertex covered by C and declares
Cr(x) undefined otherwise. By Corollary 5.20, c is Borel. Thus c is the required
colouring of S ′. Claim 6.3 is proved.

This finishes the proof of Theorem 6.1. �

Among many further results, Marks [58, Theorem 1.4] proved that the greedy
upper bound for edge colouring of Theorem 5.12 is best possible even for acyclic
Borel graphs that additionally admit a Borel bipartition.



Borel Combinatorics of Locally Finite Graphs 33

Theorem 6.4 (Marks [58]) For every d > 3, there is a Borel acyclic d-regular
graph G such that χB(G) = 2 and χ′

B(G) = 2d− 1. �

Remark 6.5 In fact, the bipartite graph in Theorem 6.4 constructed by Marks also
does not admit a Borel perfect matching. Previously, such a graph for d = 2 was
constructed by Laczkovich [43]. Of course, it does not admit a Borel edge 2-colouring
and satisfies Theorem 6.4 for d = 2.

Thus the Borel chromatic number of a Borel graph cannot be bounded by some
function of its chromatic number. However, some bounds can be shown under certain
additional assumptions. For example, Weilacher [81] showed by building upon some
earlier results of Miller [64] that if each component of a Borel graph G is 2-ended
then χB(G) 6 2χ(G) − 1 (and that, under these assumptions, this bound is in fact
best possible). The same bound χB(G) 6 2χ(G) − 1 was established by Conley,
Jackson, Marks, Seward and Tucker-Drob [15] under the assumption that the Borel
asymptotic dimension of G is finite. The proofs from both papers can be presented
so that we first find a Borel partition V = A∪B with the induced graphs G ↾ N61(A)
and G ↾ B having finite components only. Then, by Lemma 5.21 and Theorem 5.23,
there are proper Borel colourings a : N61(A) → k and b : B → {k, . . . , 2k − 1} of
these graphs, where k := χ(G). We use a on A and b on B, except we can save one
colour by recolouring the independent set b−1(2k − 1) where we use the colouring a
on its vertices with at least one neighbour in A and assign colour 0 to the rest.

7 Borel Equivalence Relations

An equivalence relation E on a standard Borel space X is called Borel if it is
Borel as a subset of X2. When we have some notion of isomorphism on a set of
structures, it often leads to a Borel equivalence relation. For example, if X = Rn×n

encodes n × n matrices then the similarity relation can be shown to be Borel (by
combining Proposition 20.3 and Example 20.6.(b) from [79]).

If we view Borel maps as “computable” then many “computational” questions
translate to descriptive set theory problems. For example, the existence of a Borel
selector for E (a map s : X → X such that s ⊆ E and s(X) is a transversal of E)
can be interpreted as being able to “compute” one canonical representative from
each equivalence class. (To connect this to Section 5.3, observe that, by e.g. [79,
Proposition 20.3], a Borel equivalence relation admits a Borel selector if and only if
it admits a Borel transversal.) The Jordan canonical form is an example of a Borel
selector for the above matrix similarity relation (see [79, Example 20.6.(b)]). Also, if
we have a Borel reduction from (X, E) to another Borel equivalence relation (X ′, E ′),
that is, a Borel map r : X → X ′ such that, for x, y ∈ X, we have (x, y) ∈ E if and
only if (r(x), r(y)) ∈ E ′, then we could say that the relation E as not “harder to
compute modulo r” than E ′. A lot of effort in this area went into understanding the
hierarchy of possible Borel equivalence relations under the Borel (and some other
kinds of) reducibility, see e.g. the survey by Hjorth [33] that concentrates on this
aspect.

A promising field for applying combinatorial methods is the theory of countable
Borel equivalence relations (CBERs for short), where each equivalence class is count-
able. A more general result of Miller [64, Theorem C] implies that every CBER is
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the connectivity relation of some locally finite Borel graph. So, various questions of
descriptive set theory can be approached from the graph theory point of view.

One example of an important and actively studied property is as follows. A
CBER (X, E) is called hyperfinite if there are Borel equivalence relations Fm ⊆
X × X, m ∈ ω, such that F0 ⊆ F1 ⊆ F2 ⊆ . . . , ∪m∈ωFm = E and each Fm has
finite equivalence classes (or, equivalently, all of size at most m, see [37, Remark
6.10]). Slaman and Steel [74] and Weiss [82] showed that the hyperfiniteness of E is
equivalent to being generated by some Borel action of Z. The latter means that there
is a Borel bijection φ : X → X such that for every x ∈ X the equivalence class [x]E of
x is exactly {φn(x) : n ∈ Z}. Such a function φ is easy to find for finite equivalence
classes (which generate a smooth equivalence relation by Lemma 5.21). Thus the
main point here is that every infinite class can be bijectively exhausted from any of its
elements by applying Borel functions “next” (namely, φ) and “previous” (namely, the
inverse φ−1). Although this reformulation of hyperfiniteness looks somewhat similar
to smoothness, these two properties behave quite differently. For example, Conley,
Jackson, Marks, Seward and Tucker-Drob [16] showed that there is Borel graph G
satisfying Theorem 6.1 (resp. Theorem 6.4) such that its connectivity relation EG
is hyperfinite. See e.g. [37, Section 6] for a detailed discussion of hyperfiniteness
including the proof of the Slaman–Steel–Weiss Theorem.

Although each CBER as a graph is just a union of countable cliques, the following
theorem of Feldman and Moore [23] (see e.g. [37, Theorem 1.3]) gives a very useful
symmetry breaking tool (in particularly, allowing us to identify vertices from the
local point of view of any vertex x by the edge colourings of shortest paths from x
and then apply results like an edge coloured version of Lemma 5.16).

Theorem 7.1 (Feldman and Moore [23]) For every countable Borel equivalence
relation E ⊆ X2 on a standard Borel space X there is a Borel map c : E → ω such
that every colour class is a matching. �

Given the edge colouring c : E → ω returned by the Feldman–Moore Theorem,
we can encode each matching c−1(i) by an involution φi : X → X that swaps every
pair x, y ∈ X with c(x, y) = i and fixes every remaining element of X. Thus if Γ is
the group generated by the bijections φi : X → X for i ∈ ω, then the equivalence
classes of E are exactly the orbits of the action of Γ on X. Thus every CBER comes
from a Borel action of a countable group, giving another very fruitful connection.

The books by Gao [27] and Kechris and Miller [37] provide an introduction to
Borel equivalence relations (from the point of view of group actions). See also the
recent survey of results on CBERs by Kechris [35].

8 Baire Measurable Combinatorics

Recall that a subset A of a Polish space X has the property of Baire if it is the
symmetric difference of a Borel set and a set which is meager (that is, a countable
union of nowhere dense sets). Such a set A is also often called Baire measurable.
An equivalent (and, from some points of view, more natural) definition is that A is
the symmetric difference of an open set and a meager set. Note that this property
is not determined by the Borel σ-algebra B(X) alone (that is, it depends in general
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on the topology on X). For an introduction to these concepts from the descriptive
set theory point of view, we refer to [34] or [79].

Meager (resp. Baire measurable) sets can be considered as topologically “negli-
gible” (resp. “nice”). One can show by using the Axiom of Choice that there are
subsets R without the property of Baire, see e.g. [34, Example 8.24] or [69, Chap-
ter 5]. So various questions to find satisfying assignments a : V → ω in a Borel
graph G with each preimage in T are meaningful and interesting. A typical strategy
is to construct a Borel assignment apart of a meager set Y of vertices. Ideally, the
remaining set Y is invariant (i.e. Y = [Y ]); then a ↾ Y can be defined independently
of the rest of the vertex set, e.g. by using the Axiom of Choice. The reader should be
aware that, in general locally finite Borel graphs, the neighbourhood of a meager set
(resp. a set with the property of Baire) need not be meager (resp. have the property
of Baire); however, these properties do hold in many natural situations (e.g. when
G is the Schreier graph of a marked group acting by homeomorphisms). So, usually,
one works with (partially defined) Borel assignments.

One method of how to deal with this technical issue is the following useful lemma
of Marks and Unger [59, Lemma 3.1]: for every locally finite Borel graph G and any
function f : ω → ω there are Borel sets An, n ∈ ω, such that each An is f(n)-sparse
and the complement of their union, V \ ∪n∈ωAn, is a meager and invariant set. It
is used by Marks and Unger [59, Theorem 1.3] to prove the following “topological”
version of Hall’s marriage theorem. Let us say that a bipartite graph G with a
bipartition V = B0 ∪ B1 satisfies Hallε,n if for every finite set X in a one part we
have |N(X)| > |X| (which is the usual Hall’s marriage condition) and, additionally,
if |X| > n and X is connected in G2 then |N(X)| > (1 + ε)|X|.

Theorem 8.1 (Marks and Unger [59]) If ε > 0, n ∈ ω, V is a Polish space, and
G = (V,E,B) is a locally finite Borel graph with a Borel bipartition V = B0 ∪ B1

satisfying Hallε,n then G has a Borel matching such that the set of unmatched vertices
is meager and invariant.

In brief, the proof of Theorem 8.1 proceeds as follows. Given ε and n, choose
a fast growing sequence f(0) ≪ f(1) ≪ f(2) ≪ . . . and let Ai, i ∈ ω, be the sets
returned by [59, Lemma 3.1] for this function f . Starting with the empty matching
M0 := ∅ and G0 := G, we have countably many stages indexed by i ∈ ω. At Stage i,
every vertex x of Gi in the f(i)-sparse set Ai picks a neighbour yx ∈ N(x) such that
Gi has a perfect matching containing the edge {x, yx}, say we take the largest such
yx with respect to some fixed Borel total order on V . Define Mi+1 := { {x, yx} :
x ∈ Ai ∩ V (Gi)} and let Gi+1 be obtained from Gi by removing all vertices matched
by Mi+1. A combinatorial argument shows by induction on i ∈ ω that Gi satisfies
Hallεi,f(i), where εi := ε−

∑

j∈i 8/f(j) > 0. In particular, each graph Gi satisfies the
usual Hall’s marriage condition. Thus, by Rado’s theorem (Theorem 2.1), yx exists
for every x (and, by induction, we can carry out each stage). Moreover, the function
x 7→ yx of Stage i is Borel by induction on i as it can be computed by a finitary
rule on (Gi,Mi), as it was demonstrated in Example 5.19. (In fact, we do not need
to refer to Rado’s theorem at all: when defining yx, we can instead require that the
graph obtained from Gi by removing the adjacent vertices x and yx satisfies Hall’s
marriage condition.) Finally, M := ∪i∈ωMi has all the required properties.
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Note that the matching M returned by Theorem 8.1 can be extended to cover
all vertices, using Rado’s theorem (Theorem 2.1); this application of the Axiom of
Choice is restricted to a meager set. Thus if we encode the final perfect matching
via a vertex labelling ℓ : V → ω as in Remark 5.18 then each preimage of ℓ has the
property of Baire.

A notable general result that is very useful in Baire measurable combinatorics is
that every CBER E on a Polish space X can be made hyperfinite by removing an
E-invariant meager Borel subset of X; for more details see e.g. [37, Theorem 12.1]

9 µ-Measurable Combinatorics

Suppose that we have a Borel locally finite graph G = (V,E,B) and a measure
µ on (V,B). Let Bµ be the µ-completion of B which is the smallest σ-algebra on V
containing Borel sets and all µ-null sets (i.e. arbitrary subsets of Borel sets of µ-
measure 0). Recall from the Introduction that the sets in Bµ are called µ-measurable
or just measurable.

Of course, the presence of a measure µ makes the set of questions that can be
asked and the tools that can be applied much richer. For example, the problems
that we considered in this paper also make sense in the measurable setting, where we
look for assignments a that are measurable as functions from (V,Bµ) to ω, meaning
here that a−1(i) ∈ Bµ for each i ∈ ω.

Another studied possibility is to consider the so-called approximate versions: for
example, the approximate µ-measurable chromatic number is the smallest k such
that for every ε > 0 there is a Borel set of vertices A ⊆ V of measure at most ε
such that the graph induced by V \ A can be coloured with at most k colours in
a Borel way. For example, the approximate measurable chromatic number of the
irrational rotation graph Rα from Example 1.1 is 2 because the Lebesgue measure
of one colour class, namely X2 = [0, c), in the constructed Borel 3-colouring of Rα

can be chosen to be arbitrarily small. The survey by Kechris and Marks [36] gives
an overview of such results as well.

For the reader who, inspired by this paper, would like to read more on the topic,
let us point some technical subtleties that are sometimes not mentioned explicitly
in the literature. The measure µ is (almost) always assumed to be σ-finite, meaning
that V can be covered by countably many sets of finite µ-measure. This implies many
important properties such as the regularity of µ ([14, Proposition 8.1.2]), being able
to talk about the product of µ with other measures without the complications of
going through the so-called complete locally determined products (see [24, Chapter
25]), etc. Also, there is a simple trick (see e.g. [31, Proposition 3.2]) that allows us to
construct another measure ν on (V,B) with Bν ⊆ Bµ such that ν is quasi-invariant
(meaning that the saturation [N ] of any ν-null set N ⊆ V is a ν-null set). Thus
it is enough to find a measurable satisfying assignment when the measure is quasi-
invariant. The advantage of the quasi-invariance of ν is that the neighbourhood
and the saturation of any ν-null (resp. ν-measurable) set is also ν-null (resp. ν-
measurable). The reader should also be aware that the measurability of an edge
labelling c : E → ω is understood as the measurability of the vertex labelling ℓ : V →
ω that encodes c under some fixed local rule as in Remark 5.18. This is equivalent
to requiring that, there is a Borel µ-null set N ⊆ V such that c ↾ E ∩ (V \ N)2 is
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Borel. Note that it is not a good idea to define the measurability of c : E → ω with
respect the product measure µ×µ on V 2 ⊇ E: if µ is atomless then (µ×µ)(E) = 0
by Tonelli’s theorem and every subset of E is (µ× µ)-measurable.

A particularly important case is when µ is a probability measure (that is, µ(V ) =
1) which is moreover invariant, meaning that every Borel map f : V → V with
f ⊆ EG preserves the measure µ. (The reader should be able to show that it is
enough to check the above property only for involutions f with f ⊆ E, that is,
functions that come from matchings in G.) In this case, the quadruple (V,E,B, µ) is
now often called a graphing. (The reader should also be aware of another different
usage of this term, where a graphing of an equivalence relation E means a Borel
graph G whose connectivity relation EG coincides with E .)

The invariance of µ is a measure analogue of the obvious fact from finite combi-
natorics that any bijection preserves the sizes of finite sets. It has many equivalent
reformulations such as, for example, the Mass Transport Principle (see e.g. [52,
Section 18.4.1]).

For an invariant probability measure µ on the vertex set V , one can define a new
measure η on edges where the η-measure of a Borel subset A ⊆ E is defined to be
∫

V
|{y ∈ V : (x, y) ∈ A}| dµ(x), the average A-degree. Then, in fact, the invariance

of µ is equivalent to η being symmetric (meaning that η(A) is always the same as the
η-measure of the “transpose” {(x, y) : (y, x) ∈ A} of A), see e.g. [52, Section 18.2].
Interestingly, the η-measurability of an edge labelling c : E → ω now coincides with
the µ-measurability of the vertex labelling ℓ : V → ω that encodes c under the Borel
reduction of Remark 5.18.

Graphings can serve as the local limits of bounded degree graphs, roughly speak-
ing as follows. An r-sample from a graphing is obtained by sampling a random vertex
x ∈ V under the probability measure µ and outputting Fr(x), the isomorphism type
of the rooted graph induced by the r-ball around x. Also, each finite graph (V,E)
can be viewed as a graphing (V,E, 2V , ν) where ν is the uniform measure on the
finite set V . Then the local convergence can be described by a metric where two
graphings are “close” if the distributions of their samples are “close” to each other,
see [52, Section 18] for an introduction to graphings as limit objects.

Also, the Schreier graph of any Borel probability measure-preserving action of
a marked group is a graphing. It contains a lot of information about the action
and thus is an important object of study in measured group theory. Even for such a
simple group as the integers Z, its measure-preserving actions (which are specified
by giving just one measure-preserving transformation) form a very beautiful and
deep subject that is the main focus of the classical ergodic theory. It is hard to
pick a good starting introductory point for this vast area. The reader is welcome to
consult various surveys and textbooks, e.g. [1, 25, 26, 39, 51, 71], and pick one (or
its part) that looks most interesting.

A special but important case of a graphing is the Schreier graph S of the shift
action of a marked group (Γ ;S) on the product measure space XΓ where X is a
standard probability space, e.g. {0, 1} or [0, 1] with the uniform measure. Measurable
labellings of S are exactly the so-called factors of IID labellings with vertex seeds
from X of the Cayley graph of (Γ, S). This connection gives a way of applying
methods of descriptive combinatorics for constructing various invariant processes on
vertex-transitive countable graphs. This is a very active area of discrete probability
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(see e.g. the book by Lyons and Peres [56]) where even the case of trees has many
tantalising unsolved questions (see e.g. Lyons [54]).

As a showcase of how the results that we have proved can be used in the measur-
able setting, let us present a very brief outline of the following “measurable” version
of Hall’s marriage theorem by Lyons and Nazarov [55, Remark 2.6] (whose detailed
proof can be found in [29, Theorem 3.3]).

Theorem 9.1 (Lyons and Nazarov [55]) Let ε > 0 and let G = (V,E,B, µ) be a
bipartite graphing with a Borel bipartition V = B0 ∪B1 such that µ(B0) = µ(B1) =
1/2 and for every measurable X inside a part it holds that

µ(N(X)) > min((1 + ε)µ(X), 1/4 + ε).

Then G has a Borel matching that covers all vertices except a null set.

In order to prove Theorem 9.1, we start with the empty matching M0 and,
iteratively for each i ∈ ω, augment Mi to Mi+1 in a Borel way using augmenting
paths of (edge) length at most 2i + 1, until none remains. This can done by the
result of Elek and Lippner [21]. (Alternatively, we can use Theorem 5.25 here,
applying all possible (2i + 2)-augmentations to Mi, with the rest of the proof being
the same.) It is a nice combinatorial exercise to show that for every ε > 0 there
is c > 0 such that if a finite bipartite graph G with both parts of the same size n
is an ε-expander (i.e. the neighbourhood of any set X in a part has size at least
min((1+ε)|X|, (1/2+ε)n)), then any matching without augmenting paths of length
at most 2i + 1 covers all except at most (1 − c)in vertices of G. The proof of this
statement from [55] extends from finite graphs to the measurable setting since all
inequalities used by it come from double counting and, by the invariance of µ, also
apply when the relative sizes of sets are formally replaced by their measures. Thus
the measure of the set Xi of vertices unmatched by the Borel matching Mi in G is at
most (1− c)i. When we do augmentations to construct Mi+1, we change the current
matching on at most 2i+ 2 vertices per one new matched vertex by the second part
of Theorem 5.25. Again, by the invariance of µ, the measure of vertices where Mi

and Mi+1 differ is at most (2i + 2)(1 − c)i. Define the final Borel matching

M := lim inf i Mi = ∪i∈ω ∩j>i Mj

to be the pointwise limit of the matchings Mi where they stabilise. Let X be the
(Borel) set of vertices unmatched by M . For every i ∈ ω the following clearly holds:
if a vertex is not matched by M then it is not matched by Mi or it witnesses at
least one change (in fact, infinitely many changes) after Stage i. Thus the Union
Bound gives that µ(X) 6 (1 − c)i +

∑

j>i(2j + 2)(1 − c)j . Since this inequality
is true for every i and its right-hand side can be made arbitrarily small by taking
i sufficiently large, we conclude that X has measure 0, as desired. (The reader
may have recognised the last two steps as a veiled application of the Borel–Cantelli
Lemma.)

10 Borel Colourings from LOCAL Algorithms

Under rather general settings, local rules are equivalent to the so-called deter-
ministic LOCAL algorithms that were introduced by Linial [49, 50]. Their various
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variants have been actively studied in theoretical computer science; for an introduc-
tion, we refer the reader to the book by Barenboim and Elkin [5]. Here we briefly
discuss this connection and present a result of Bernshteyn [7] that efficient LOCAL

algorithms can be used to find satisfying assignments that are Borel.
Suppose that we search for an assignment a : V → ω that solves a given LCL

C on a graph G (for example, we would like a to be a proper vertex colouring with
k colours) where, just for the clarity of presentation, we assume that C is defined
on unlabelled graphs. A deterministic LOCAL algorithm with r rounds is defined
as follows. Each vertex x of G is a processor with unlimited computational power.
There are r synchronous rounds. In each round, every vertex can exchange any
amount of information with each of its neighbours. After r rounds, every vertex x
has to output its own value a(x), with all vertices using the same algorithm for the
communications during the rounds and the local computations.

Clearly, the final value a(x) is some function of the r-ball of x so the produced
assignment is given by some r-local rule. Conversely, for every r-local rule A, a
possible strategy is that each vertex x collects all current information from all its
neighbours in each round and computes A(x) at the end of r rounds, by knowing
everything about its whole r-ball N6r(x). Given this equivalence, we will use mostly
the language of local rules.

Such a rule need not exist if there are symmetries. For example, if the input
graph is vertex-transitive then all vertices produce the same answer so there is no
chance to find, for example, a proper vertex colouring. Let us assume here that each
vertex x is given the order n of the graph and its unique identifier ℓ(x) ∈ n. Thus
we evaluate the rule A, that may depend on n, on the labelled graph (G, ℓ).

The corresponding algorithmic question is, for a given family of graphs H (which
we assume to be closed under adding isolated vertices) and an LCL C, to estimate
DetC,H(n), the smallest r for which there is an r-local rule A such that, for every
graph G ∈ H with n vertices and every bijection ℓ : V → n, the assignment A(G, ℓ)
solves C on G. If there is some input (G, ℓ) as above which admits no C-satisfying
assignment, then we define DetC,H(n) := ω. Note that the value of DetC,H(n) will
not change if we modify the above definition by allowing to take any graph G ∈ H
with at most n vertices and any injection ℓ : V → n (because we can always add
isolated vertices to G and extend ℓ to a bijection).

Note that if DetC,H(n) is finite then it is at most n − 1. Indeed, by being able
to see at distance up to n − 1 (and knowing n), each vertex x knows its injectively
labelled component (G, ℓ) ↾ [x]; thus a possible (n − 1)-local rule A is that x ∈ V
computes the lexicographically smallest (under the ordering of [x] given by the values
of ℓ) C-satisfying assignment a : [x] → ω and outputs a(x) as its value.

The following result is a special case of [7, Theorem 2.10] whose proof, nonethe-
less, contains the main idea.

Theorem 10.1 (Bernshteyn [7]) Let H be a family of graphs with degrees bounded
by d which is closed under adding isolated vertices. Let C be an LCL on unla-
belled graphs such that DetC,H(n) = o(log n) as n → ∞. Then every Borel graph
G = (V,E,B) such that G ↾ N6r(x) ∈ H for every x ∈ V and r ∈ ω, admits a Borel
assignment a : V → ω that solves C on G.

Proof Let t be the radius of C. Fix some sufficiently large n, namely we require
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that 1 + d
∑s−1

i=0 (d − 1)i 6 n, where s := 2(DetC,H(n) + t). This is possible since
s = o(log n) by our assumptions. Take any local rule A of radius r := DetC,H(n)
that works for all graphs from H on at most n vertices. Fix a Borel 2(r + t)-sparse
colouring c : V → n of G which exists by Corollary 5.9 (and our choice of n).

Apply the rule A to (G, c), viewing c : V → n as the identifier function, to obtain
a labelling a : V → ω. (Thus, informally speaking, we run the algorithm pretending
that the graph G has n vertices.) Note that a is well-defined for every vertex x ∈ V
since, by our assumption on G, the subgraph induced by the r-ball N6r(x) belongs
to H and is injectively labelled by the 2r-sparse n-colouring c. By Lemma 5.17, the
function a is Borel, so it is remains to check that it solves the LCL C. Take any
x ∈ V . Consider H := (G, c) ↾ N6r+t

G (x), the labelled subgraph induced in G by
the (r + t)-ball around x. If we apply the rule A to H then we obtain the same
assignment a on N6t

H (x) = N6t
G (x), because for every vertex in this set its c-labelled

r-balls in H and G are the same. The graph H of diameter at most 2(r + t) is
injectively labelled by the 2(r + t)-sparse colouring c and, in particular, has at most
n vertices. By the correctness of A, the assignment a satisfies the C-constraint at x
on H (and also on G). Thus a : V → ω is the required Borel assignment. �

Let us point some algorithmic results when H consists of graphs with maximum
degree bounded by a fixed integer d while n tends to ∞. The deterministic LOCAL

complexities of a proper vertex (d + 1)-colouring, a proper edge (2d − 1)-colouring,
a maximal independent set and a maximal matching are all O(log∗ n), where log∗ n
is the iterated logarithm of n, the number of times needed to apply the logarithm
function to n to get a value at most 1. (For references and the best known bounds
as functions of (n, d), we refer the reader to [13, Table 1.1].) These are exactly the
problems for which we showed the existence of a Borel solution in Theorems 5.6–
5.12. In fact, Theorems 5.6–5.12 for bounded degree graphs are, by Theorem 10.1,
direct consequences of the above mentioned results on the existence of efficient local
algorithms. While there seems to be a large margin (between the running time of
O(log∗ n) for known algorithms and the o(log n)-assumption of Theorem 10.1), in
fact, Chang, Kopelowitz and Pettie [13] showed that, for LCLs on bounded-degree
graphs, if there is a LOCAL algorithm with o(log n) rounds that solves the problem
then there is one with O(log∗ n) rounds. (In fact, the proof of the last result is
similar to the proof of Theorem 10.1: fix a large constant r, generate a proper
colouring a of the r-th power of the input order-n graph using O(log∗ n) rounds and
then “simulate” the o(log n) algorithm using the values of a in lieu of the vertex
identifiers.)

On the other hand, deterministic algorithms using only o(log n) rounds seem
to be rather weak, e.g. for colouring problems when the number of colours is even
slightly below the trivial greedy bound. One (out of many) results demonstrating
this is by Chang et al. [13, Theorem 4.5] who showed that vertex d-colouring of trees
(of maximum degree at most d) requires Ω(log n) rounds. The last result should be
compared with Theorem 6.1 here.

Let us also briefly discuss another general (and much more difficult) transference
result of Bernshteyn [7] that randomised LOCAL algorithms that require o(log n)
rounds on n-vertex graphs give measurable assignments. In an r-round randomised
LOCAL algorithm A, each vertex x generates at the beginning its own random seed
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s(x), a uniform element of m, independently of all other choices. Vertices can share
any currently known seeds during each of the r communication rounds. Thus each
obtained value A(x) can also depend on the generated seeds inside N6r(x). Equiva-
lently, once the function s : V → m has been generated, the resulting assignment A

is computed by some local rule on (G, s). Given an LCL C, we say that the algorithm
solves C on an n-vertex graph G = (V,E) if, for every vertex x of G the probability
that C(x) fails is at most 1/n. Let RandC,H(n) be the smallest r such that some
r-round randomised LOCAL algorithm (for some m = m(C,H, n)) solves C for every
n-vertex graph in H. Note that we do not need any identifier function here, since
s(x) uniquely identifies a vertex x with probability (1−1/m)n−1 which can be made
arbitrarily close to 1 by choosing m sufficiently large. Under these conventions, Bern-
shteyn [7, Theorem 2.14] proved, roughly speaking, that if RandC,H(n) = o(log n),
then the corresponding LCL on bounded-degree Borel graphs admits a satisfying
assignment which is µ-measurable for any probability measure µ on (V,B) (resp.
Baire measurable for any given Polish topology τ on V with σV (τ) = B(V )). This
result has already found a large number of applications, see [7, Section 3].

11 Borel Results that Use Measures or Baire Category

Of course, every result that an LCL admits no µ-measurable (resp. no Baire
measurable) solution on some Borel graph G automatically implies that no Borel
solution exists for G either. There is a whole spectrum of techniques for proving
results of this type (such as ergodicity that was briefly discussed in Section 1 in
the context of Example 1.1). We refer the reader to the survey by Kechris and
Marks [36] that contains many further examples of this kind.

Rather surprisingly, measures have turned to be useful in proving also the exis-
tence of full Borel colourings for some problems. Let us briefly discuss a few such
(very recent) results.

One is a result of Bernshteyn and Conley [9] who proved a very strong Borel
version of the theorem of Hajnal and Szemerédi [32]. Recall that the original Hajnal-
Szemerédi Theorem states that if G is a finite graph of maximum degree d and
k > d + 1 then G has an equitable colouring (that is, a proper colouring c : V → k
such that every two colour classes of c differ in size at most by 1). For a Borel graph
G, let us call a Borel k-colouring, given by a partition V = V0 ∪ · · · ∪ Vk−1, equitable
if for every i, j ∈ k there is a Borel bijection g : Vi → Vj with g ⊆ E . Of course, an
obvious obstacle here is the existence of a finite component whose size is not divisible
by k. The main result of Bernshteyn and Conley [9, Theorem 1.5] is that this is the
only obstacle. Very briefly, the proof in [9] runs a Borel version of the algorithm of
Kierstead, Kostochka, Mydlarz and Szemerédi [40] that finds equitable colourings
in finite graphs, where a current proper k-colouring gets “improved” from the point
of view of equitability via certain recolouring moves. This iterative procedure gives
only a partial colouring as it is unclear how to colour the set X of components that
contain vertices that change their colour infinitely often. However, Bernshteyn and
Conley [9] proved via the Borel–Cantelli Lemma that if µ is an arbitrary probability
measure on (V,B) which is invariant, then µ(X) = 0. Note that the conclusion
holds even though the definition of X does not depend on µ. This means that
G ↾ X does not admit any invariant probability measure. This is, by a result of
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Nadkarni [68], equivalent to X being compressible, meaning that there is a Borel set
A ⊆ V intersecting every component of G ↾ X and a Borel bijection f : X → X \ A
with f ⊆ EG . (Note that the converse direction in Nadkarni’s result is easy: if such a
function f exists and µ is an invariant probability measure on (X,B), then the Borel
sets A, f(A), f(f(A)), . . . are disjoint and have the same µ-measure, which is thus 0;
however, then the saturation X of the µ-null set A cannot have positive µ-measure,
a contradiction.) Then a separate argument shows that the remaining compressible
graph G ↾ X admits a full Borel equitable colouring.

Another result that we would like to discuss comes from a recent paper of Conley
and Tamuz [17]. Call a colouring c : V → 2 unfriendly if every x ∈ V has at least
as many neighbours of the other colour as of its own, that is,

| {y ∈ N(x) : c(y) 6= c(x)} | > | {y ∈ N(x) : c(y) = c(x)} |.

Such a colouring trivially exists for every finite graph: take, for example, one that
maximises the number of non-monochromatic edges (i.e. a max-cut colouring). Also,
the Axiom of Choice (or the Compactness Principle) shows that every locally fi-
nite graph admits an unfriendly colouring. Interestingly, Shelah and Milner [73]
showed that there are graphs with uncountable vertex degrees that have no un-
friendly colouring; the case of locally countable graphs is open.

Conley and Tamuz [17] showed that every Borel bounded-degree graph admits
a Borel unfriendly colouring provided the graph has subexponential growth meaning
that

∀ε > 0 ∃n0 ∈ ω ∀n > n0 ∀x ∈ V |N6n(x)| 6 (1 + ε)n, (11.1)

or, informally, that n-balls have size at most (1 + o(1))n uniformly in n. Like
in [9], they use a family of augmenting moves so that, for every invariant probability
measure µ on (V,B), the set X where the constructed colourings do not stabilise
has µ-measure 0. Here, each move is very simple: if more than half of neighbours
of a vertex x have the same colour as x, then we change the colour of x. We do
these moves in stages so that the moves made in one stage do not interfere with each
other (similarly as in the proof of Theorem 5.25). Since the graph has subexponential
growth, for every x ∈ V there is a probability measure µx which is very close to
being invariant and satisfies µx({x}) > 0. (For example, take the discrete measure
that is supported on [x] and puts weight (1 − ε)iµx({x}) on each vertex at distance
i from x for all i ∈ ω.) Since there happens to be some leeway when applying the
Borel–Cantelli Lemma in the invariant case, it can also be applied to µx provided
ε > 0 is sufficiently small. As {x} has positive measure in µx, it cannot belong to X.
Thus X = ∅, as desired.

This idea was used also by Thornton [77] to prove that every Borel graph of
maximum degree d and of subexponential growth admits a Borel orientation of
edges so that each out-degree is at most d/2 + 1.

It is not clear if compressibility helps for the last two problems. In particular,
it remains an open problem if, for example, every 3-regular Borel graph admits an
unfriendly Borel 2-colouring.



Borel Combinatorics of Locally Finite Graphs 43

12 Graphs of Subexponential Growth

Recall that the notion of subexponential growth was defined in (11.1). Unfriendly
2-colouring is one example of a problem which admits a Borel solution for every graph
of subexponential growth but this becomes an open problem or a false statement
when the growth assumption is removed. Let us just point to some general results
which show that Borel graphs of subexponential growth are indeed more tractable.

Csóka, Grabowski, Máthé, Pikhurko and Tyros [18] showed that such graphs
admit a Borel satisfying assignment for every LCL where the existence of global
solution can be established by the symmetric Lovász Local Lemma. The Local
Lemma, introduced in a paper of Erdős and Lovász [22], is a very powerful tool for
proving the existence of a satisfying assignment. A special case of it is as follows.
Suppose that we have a collection of bad events {B : B ∈ V }, each having probability
at most p and being a function of some finite set supp(B) of binary random variables.
Define the dependency graph D on V , where two events are connected if they share
at least one variable. The Local Lemma gives that if

p <
(∆ − 1)∆−1

∆∆
, (12.1)

where ∆ is the maximum degree of D, then there is an assignment of variables such
that no bad event occurs. (Remarkably, Shearer [72] showed that the bound in (12.1)
is, in fact, best possible.)

The Borel version of this result from [18] is quite technical to state; informally
speaking it states that if bad events and variables are indexed by elements of some
standard Borel space V so that the corresponding dependency graph D on V is Borel
and has subexponential growth, and (12.1) holds, then there is a Borel assignment
of variables such that no bad event occurs. For other “definable” versions of the
Local Lemma, see Bernshteyn [6, 7] and Kun [42].

An efficient randomised algorithm that finds an assignment in finite graphs whose
existence is guaranteed by the Local Lemma was found in a breakthrough work of
Moser and Tardos [66, 67]. Actually, one example of a good algorithm is very simple:
start with any initial assignment and, as long as there is an occurrence of some bad
event B, pick one such B arbitrarily and re-sample all variables in supp(B). This
can be adopted to the Borel setting using the ideas of the proof of Theorem 5.25
as follows. Fix some sufficiently large r0. Take an r0-sparse Borel colouring c of
the dependency graph D. For each colour i, generate a uniform random sequence
of binary bits bi := (bi,j)j∈ω. (Note that we have to generate only countably many
bits.) Let the initial assignment of variables be x 7→ bc(x),0. At each iteration, find via
Theorem 5.6 a Borel set I of currently occurring bad events in which every two have
disjoint sets of variables and, moreover, I is a maximal set with this property. (Note
that the subexponential growth assumption implies that D has finite maximum
degree.) Reassign the value of every x in the (disjoint) union ∪B∈Isupp(B) to the
next bit of the sequence bc(x) that has not been used by the variable x yet. The
problem with this naive adaptation is that variables which are far away in D can
depend on each other and the estimates of Moser and Tardos do not apply because
long chains of interdependent bad events may have now very different probabilities.

The key idea of [18] is that, because of the subexponential growth assumption, if
some variable y ∈ V is resampled many times at some finite stage of this procedure
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then there are another variable x and an integer r 6 r0/2 such that, among all re-
sampled bad events B, the number of internal ones (those with supp(B) ⊆ N6r(x))
is very small compared with the number of boundary ones (those with supp(B)
intersecting both N6r(x) and its complement). The internal resamples obey the
Moser–Tardos estimates because, by r 6 r0/2, they never use the same random bit
twice. On the other hand, the number k of boundary resamples is so small that
we can afford to take the Union Bound over all possible ways of how at most k un-
controllable boundary events can pop up around x during the run of the algorithm.
This means that, there is an assignment of binary bits bi,j and some n ∈ ω such that
every variable is resampled at most n times. It follows by the finiteness of ∆(D)
that this procedure stabilises for every variable. The final colouring, as a finitary
function, is Borel by Corollary 5.20.

The following general application of the Borel Local Lemma from [18] was ob-
served by Bernshteyn [7, Theorem 2.15]: if RandH,C(n) = O(log n) and G is a Borel
graph of subexponential growth with every ball belonging to the graph family H
then there is a Borel assignment a : V → ω solving the LCL C. (Recall that
RandH,C(n), as defined in Section 10, is the smallest number of rounds in a ran-
domised LOCAL algorithm that fails any one C-constraint with probability at most
1/n for every n-vertex graph in G.) The proof idea is as follows. Fix large n and a
suitable randomised algorithm that uses r := RandH,C(n) rounds for some m. This
gives an r-local rule A that can be evaluated on V once we have some seed function
s : V → m. We view the values of s as variables. For every x ∈ V , let the “bad”
event Bx state that the assignment returned by A fails the C-constraint at x. If the
radius of the local rule C is t, then Bx depends only on the values of s in N6r+t(x).
In particular, Bx and By can share a variable only if the distance between x and y is
at most 2(r+ t). Thus the maximum degree of the corresponding dependency graph
D is at most the maximum size of a ball in G of radius 2(r + t). This is at most
o(n) since r = O(log n), t is a constant and G has subexponential growth. Also,
the probability of each Bx (for a random uniform function s : N6r+t(x) → m) is at
most 1/n. Thus the Borel Local Lemma from [18] (which also works if the bits bi,j
are m-ary instead of binary) gives that there is a Borel assignment s : V → m with
no bad event Bx occurring. Then the evaluation of A on (G, s) satisfies the LCL C

and is a Borel function by Lemma 5.17.
Thus any LCL that can be solved by a randomised LOCAL algorithm of radius

O(log n) on graphs of order n → ∞ admit Borel solutions on any Borel graph of
subexponential growth. For some examples of such problems that are interesting
from the point of view of Borel combinatorics, see Section 3 in [7]. One is the result
of Molloy and Reed [65] who proved that, for d > d0 with kd being the maximum
integer with (k+1)(k+2) 6 d, if each 1-ball in a graph G of maximum degree d can
be properly coloured with c > d− kd colours, then in fact the whole graph G can be
properly coloured with c colours. For large d, this is a far-reaching generalisation
of Brooks’ theorem [10] which, for d > 3, corresponds to the case c = d of the
above implication. Bamas and Esperet [2, 3] proved that, for a fixed large d, a c-
colouring of an n-vertex graph G whose existence is guaranteed by the above result
of Molloy and Reed, can in fact be found by a randomised LOCAL algorithm using
o(log n) rounds. Putting all together, we conclude that every Borel graph G of
maximum degree d > d0 and subexponential growth has Borel chromatic number at
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most max(d− kd, χ(G)). Note that the last statement fails if we remove the growth
assumption, even when we look at d-colourings only: indeed, the graph G given by
Theorem 6.1 has Borel chromatic number d + 1 while the whole graph G, as thus
each of its 1-balls, is bipartite (as G has no cycles at all).

13 Applications to Equidecomposability

In order to demonstrate how some of the above results are applied, let us very
briefly discuss the question of equidecomposability, where the methods of descriptive
combinatorics have been recently applied with great success.

Two subsets A and B of Rn are called equidecomposable if it is possible to
find a partition A = A0 ∪ · · · ∪ Am−1 and isometries γ0, . . . , γm−1 of Rn so that
γ0.A0, . . . , γm−1.Am−1 partition the other set B (or, in other words, we can split A
into finitely many pieces and rearrange them using isometries to form a partition
of B). The most famous result about equidecomposable sets is probably the Banach-
Tarski Paradox [4]: in R3, the unit ball and two disjoint copies of the unit ball are
equidecomposable.

Equidecompositions are often constructed to show that certain kinds of isometry-
invariant means do not exist. For example, the Banach-Tarski Paradox implies that
every finitely additive isometry-invariant mean defined on all bounded subsets of R3

must be identically 0. We refer the reader to the monograph by Tomkowicz and
Wagon [78] on the subject.

The connection to descriptive combinatorics comes from a well-known observa-
tion that if one fixes the set of isometries S = {γ0, . . . , γm−1} to be used, then
an equidecomposition between A and B is equivalent to a perfect matching in the
bipartite graph

G :=
(

A ⊔B,
{

(a, b) ∈ A×B : ∃γ ∈ S γ.a = b }
} )

. (13.1)

A fairly direct application of Theorem 8.1 of Marks and Unger [59] gives a new
proof of the important result of Dougherty and Foreman [20], whose original proof
was very complicated, that doubling a ball in the Banach-Tarski Paradox can be
done with pieces that have the property of Baire.

Of course, doubling a ball is impossible with Lebesgue measurable pieces because
equidecompositions have to preserve the Lebesgue measure (as it is invariant under
isometries). Interestingly, the obvious necessary condition for A ⊆ Rn, n > 3, to be
equidecomposable with Lebesgue measurable pieces to, say, the cube [0, 1]n (namely,
A is Lebesgue measurable of measure 1, and finitely many congruents of each of A
and [0, 1]n are enough to cover the other set) was shown by Grabowski, Máthé and
Pikhurko [29] to be sufficient. The proof carefully chooses isometries γ0, . . . , γm−1,
applies Theorem 9.1 of Lyons and Nazarov [55] to the graph G defined in (13.1)
(after removing a null set from A and B to make these sets and the graph G Borel)
and fixes the remaining null sets of unmatched vertices using the Axiom of Choice.
The hardest part here was to show the existence of suitable isometries such that
the bipartite graph G is a “measure expander”, although the current version of [29,
Section 6.5] points out a few different proofs of this step, all relying on some version
of the spectral gap property.
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The Borel version of the above result, say, if every two bounded Borel subsets
of Rn, n > 3, with non-empty interior and the same Lebesgue measure are equide-
composable with Borel pieces, remains open. (The examples by Laczkovich [47, 48]
show that this statement is false for n 6 2.) However, if the sets have “small”
boundary then the following very strong results can be proved in every dimension;
in particular, they all apply to the famous Circle Squaring Problem of Tarski [76].
(We refer the reader to corresponding papers for all missing definitions.)

Theorem 13.1 Let n > 1 and A,B ⊆ R

n be bounded sets with non-empty inte-
rior such that µ(A) = µ(B) (where µ denotes the Lebesgue measure on Rn) and
dimM(∂A),dimM(∂B) < n (i.e. their topological boundaries have upper Minkowski
dimension less than n).

1. (Laczkovich [46, 45]): The sets A and B are equidecomposable using transla-
tions.

2. (Grabowski, Máthé and Pikhurko [30]): The sets A and B are equidecompos-
able using translations with pieces that are both Lebesgue and Baire measurable.

3. (Marks and Unger [60]): If, additionally, the sets A and B are Borel then they
are equidecomposable using translations with Borel pieces.

Very briefly, some of the key steps in the above results are as follows. All papers
assume A,B ⊆ [0, 1)n and work modulo 1 (i.e. inside the torusTn := R

n/Zn). Given
A and B, we first choose a large integer d and then some vectors x0, . . . ,xd−1 ∈ T

n

(a random choice will work almost surely). In particular, we assume that xi’s are
linearly independent over the rationals. Let G be the Schreier graph of the natural
action of the additive marked group Γ ∼= Z

d generated by S := {
∑

i∈d εixi : εi ∈
{−1, 0, 1}} on the torus Tn. In other words, G has [0, 1)n for the vertex set with
distinct x,y ∈ [0, 1)n being adjacent if their difference modulo 1 belongs to S. Thus
each component of G is a copy of the (3d−1)-regular graph on Zd. We fix large N and
look for a bijection φ : A → B such that for every a ∈ A the distance in the graph
G between a and φ(a) is at most N . If we succeed, then we have equidecomposed
the sets A and B using at most (2N + 1)d parts.

The deep papers of Laczkovich [44, 46, 45] show that the assumption dimM(∂A) <
n translates into the set A being really well distributed inside each component of
G and this property in turn shows that if N is large then the required bijection φ
exists by Rado’s theorem (Theorem 2.1). This crucially uses the Axiom of Choice
(since Rado’s theorem does).

The equidecompositions built in [30] come from some careful augmenting local
algorithms of growing radii (tailored specifically to Zd-actions) and showing that the
set where they do not stabilise is null (by the Borel–Cantelli Lemma) and meager
(by adopting the proof of Theorem 8.1).

Marks and Unger [60] approached this problem in a novel way via real-valued
flows in the graph G. The advantage of working with flows (versus matchings) is
that, for example, any convex combination of feasible flows is again a feasible flow.
First, Marks and Unger showed that there is a real-valued uniformly bounded Borel
flow f from A to B (which can be viewed as a fractional version of the required
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bijection φ). Secondly, they proved that one can round f to a flow h (which has
the same properties as f and, additionally, assumes only integer values). Finally,
they showed that the flow h can be converted into the desired Borel bijection φ :
A → B via a local rule. In this approach the second step is the most difficult one.
This step relies on the unpublished result of Gao, Jackson, Krohne, and Seward
announced in [28] (for a proof see [60, Theorem 5.5]) that G (or, more generally, the
Schreier graph coming from any free Borel action of Zd) admits a Borel family C of
finite connected vertex sets that cover all vertices and whose boundaries in G are
sufficiently far from each other. (In other words, the family C provides a certificate
of hyperfiniteness of EG that has an extra boundary separation property.) One can
arrange C to arrive in ω-many stages so that, for any newly arrived set C ∈ C, every
previous set is either deep inside C or far away from C. The rounding algorithm
from the point of view of any vertex x is to wait until some C ∈ C containing x
arrives and then round all f -values inside C in agreement with the other vertices
of C, making sure not to override any rounding made inside any earlier C ′ ∈ C
with C ′ ⊆ C. Thus the final integer-valued flow h can be computed by a finitary
rule on G (depending of the real-valued Borel flow f) and is Borel by a version of
Corollary 5.20.

More recently, Máthé, Noel and Pikhurko [63] strengthened the results from [60]
by proving that, additionally, we can require that the pieces themselves have bound-
ary of upper Minkowski dimension less than n (and, in particular, are Jordan mea-
surable). Also, it is shown in [63] that if the sets A and B in Theorem 13.1 are,
say, open then each piece can additionally be a Boolean combination of Fσ-sets (i.e.
countable unions of closed sets). These improvements started with the new result
that, in order to find an integer-valued flow h inside some C ∈ C that will be com-
patible with all future rounding steps, we need to know only some local information,
namely, the ball around C of sufficiently large but finite radius. Thus the new round-
ing algorithm does not need to know the flow f (which may depend on the whole
component of G).

14 Concluding Remarks

Due to the limitation on space, we have just very briefly touched on some very
exciting topics, with each of Sections 7–9 deserving a separate introductory paper
(perhaps even a few, as is the case of µ-measurable combinatorics). Also, there are
some other topics that we have not even mentioned (the Borel hierarchy, analytic
graphs and equivalence relations; treeability; the cost of a measure-preserving group
action; combinatorial cost; classical/sofic entropy and other invariants; the local-
global convergence of bounded degree graphs; “continuous combinatorics” on zero-
dimensional Polish spaces, etc). Also, we have presented hardly any open questions;
we refer the reader to e.g. the survey by Kechris and Marks [36] that contains quite
a few of them.

Nonetheless, the author hopes that this paper will be helpful in introducing more
researchers to this dynamic (in both meanings of the word) and exciting area.
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