
ar
X

iv
:2

01
0.

11
06

4v
1

 [
cs

.D
S]

 2
1

O
ct

 2
02

0

Smoothed Analysis of Pareto Curves

in Multiobjective Optimization

Heiko Röglin∗

Abstract

In a multiobjective optimization problem a solution is called Pareto-optimal if no criterion
can be improved without deteriorating at least one of the other criteria. Computing the set
of all Pareto-optimal solutions is a common task in multiobjective optimization to filter out
unreasonable trade-offs.

For most problems the number of Pareto-optimal solutions increases only moderately with
the input size in applications. However, for virtually every multiobjective optimization problem
there exist worst-case instances with an exponential number of Pareto-optimal solutions. In or-
der to explain this discrepancy, we analyze a large class of multiobjective optimization problems
in the model of smoothed analysis and prove a polynomial bound on the expected number of
Pareto-optimal solutions.

We also present algorithms for computing the set of Pareto-optimal solutions for different
optimization problems and discuss related results on the smoothed complexity of optimization
problems.

1 Algorithms for Computing Pareto Curves

Suppose you would like to book a flight to your favorite conference. Your decision is then probably
guided by different factors, like the price, the number of stops, and the arrival time. Usually you
won’t find a flight that is optimal in every respect and you have to choose the best trade-off. This
is characteristic for many decisions faced every day by people, companies, and other economic
entities.

The notion of “best trade-off” is hard to formalize and often there is no consensus on how
different criteria should be traded off against each other. However, there is little disagreement that
in a reasonable outcome no criterion can be improved without deteriorating at least one of the
other criteria. Outcomes with this property are called Pareto-optimal and they play a crucial role
in multi-criteria decision making as they help to filter out unreasonable solutions. In this section
we discuss algorithms for computing the set of Pareto-optimal solutions for different problems.

1.1 Knapsack Problem

The knapsack problem is a well-known NP-hard optimization problem. An instance of this problem
consists of a set of items, each with a profit and a weight, and a capacity. The goal is to find a
subset of the items that maximizes the total profit among all subsets whose total weight does not
exceed the capacity. Let p = (p1, . . . , pn)

T ∈ R
n
≥0 and w = (w1, . . . , wn)

T ∈ R
n
≥0 denote the profits

∗Department of Computer Science, University of Bonn, Bonn, Germany, roeglin@cs.uni-bonn.de

1

http://arxiv.org/abs/2010.11064v1
roeglin@cs.uni-bonn.de

and weights, respectively, and let W ∈ R≥0 denote the capacity. Formally the knapsack problem
can be stated as follows:

maximize pTx = p1x1 + · · ·+ pnxn

subject to wTx = w1x1 + · · ·+ wnxn ≤ W,

and x = (x1, . . . , xn)
T ∈ {0, 1}n.

The knapsack problem has attracted a great deal of attention, both in theory and in practice.
Theoreticians are interested in the knapsack problem because of its simple structure; it can be
expressed as a binary program with one linear objective function and one linear constraint. On the
other hand, knapsack-like problems often occur in applications, and practitioners have developed
numerous heuristics for solving them. These heuristics work very well on random and real-world
instances and they usually find optimal solutions quickly even for very large instances.

In the following, we assume that an arbitrary instance I of the knapsack problem is given.
We use the term solution to refer to a vector x ∈ {0, 1}n, and we say that a solution is feasible
if wTx ≤ W . We say that a solution x contains item i if xi = 1 and that it does not contain item i
if xi = 0.

One naive approach for solving the knapsack problem is to enumerate all feasible solutions
and to select the one with maximum profit. This approach is not efficient as there are typically
exponentially many feasible solutions. In order to decrease the number of solutions that have to
be considered, we view the knapsack problem as a bicriteria optimization problem and restrict the
enumeration to only the Pareto-optimal solutions.

Definition 1. A solution y dominates a solution x if pTy ≥ pTx and wT y ≤ wTx, with at least
one of these inequalities being strict. A solution x is called Pareto-optimal if it is not dominated
by any other solution. The Pareto set or Pareto curve is the set of all Pareto-optimal solutions.

Once the Pareto set is known, the given instance of the knapsack problem can be solved opti-
mally in time linear in the size of this set due to the following observation.

Lemma 2. There always exists an optimal solution that is also Pareto-optimal.

Proof. Take an arbitrary optimal solution x and assume that it is not Pareto-optimal. There
cannot be a solution y with pT y > pTx and wT y ≤ wTx because then y would be a better solution
than x. Hence, if x is not Pareto-optimal then it is dominated by a solution y with pT y = pTx and
wT y < wTx. Then either y is Pareto-optimal or we repeat the argument to find a solution z with
pT z = pT y and wT z < wT y. This construction terminates after a finite number of iterations with
an optimal solution that is also Pareto-optimal.

We denote the Pareto set by P ⊆ {0, 1}n. It can happen that there are two or more Pareto-
optimal solutions with the same profit and the same weight. Then P is assumed to contain only
one of these solutions, which can be chosen arbitrarily. Due to the previous lemma the solution

x⋆ = argmax
x∈P

{pTx | wTx ≤ W},

is an optimal solution of the given instance of the knapsack problem.
In the following we present an algorithm invented by Nemhauser and Ullmann (1969) to com-

pute the Pareto set of a given instance of the knapsack problem. We will refer to this algo-
rithm, which is based on dynamic programming, as the Nemhauser-Ullmann algorithm. For

2

each i ∈ {0, 1, . . . , n} it computes the Pareto set Pi of the restricted instance Ii that contains
only the first i items of the given instance I. Then Pn = P is the set we are looking for. Let

Si = {x ∈ {0, 1}n | xi+1 = . . . = xn = 0}

denote the set of solutions that do not contain the items i + 1, . . . , n. Formally, solutions of the
instance Ii are binary vectors of length i. We will, however, represent them as binary vectors of
length n from Si. For a solution x ∈ {0, 1}n and an item i ∈ {1, . . . , n} we denote by x+i the
solution that is obtained by adding item i to solution x:

x+i
j =

{

xj if j 6= i,

1 if j = i.

Furthermore, for a set S ⊆ {0, 1}n of solutions let

S+i = {y ∈ {0, 1}n | ∃x ∈ S : y = x+i}.

If for some i ∈ {1, . . . , n}, the set Pi−1 is known then the set Pi can be computed with the help
of the following lemma. For the lemma we assume a consistent tie-breaking between solutions that
have the same profit and the same weight. In particular, if pTx = pT y and wTx = wT y for two
solutions x and y and the tie-breaking favors x over y then it should also favor x+i over y+i for
any i.

Lemma 3. For every i ∈ {1, . . . , n}, the set Pi is a subset of Pi−1 ∪ P+i
i−1.

Proof. Let x ∈ Pi. Based on the value of xi we distinguish two cases.
First we consider the case xi = 0. We claim that in this case x ∈ Pi−1. Assume for contradiction

that x /∈ Pi−1. Then there exists a solution y ∈ Pi−1 ⊆ Si−1 ⊆ Si that dominates x. Since y ∈ Si,
solution x cannot be Pareto-optimal among the solutions in Si. Hence, x /∈ Pi, contradicting the
choice of x.

Now we consider the case xi = 1. We claim that in this case x ∈ P+i
i−1. Since x ∈ Si and xi = 1,

there exists a solution y ∈ Si−1 such that x = y+i. We need to show that y ∈ Pi−1. As-
sume for contradiction that there exists a solution z ∈ Pi−1 that dominates y. Then pT z ≥ pT y
and wT z ≤ wT y and one of these inequalities is strict. By adding item i to the solutions y and z,
we obtain pT z+i ≥ pT y+i and wT z+i ≤ wT y+i, with one of these inequalities being strict. Hence,
the solution z+i dominates the solution x = y+i. Since z+i ∈ Si, this implies x /∈ Pi, contradicting
the choice of x.

Due to the previous lemma, the Pareto set Pi can be computed easily if the Pareto set Pi−1 is
already known. For this one only needs to compute the set Pi−1 ∪P+i

i−1 and remove solutions from
this set that are dominated by other solutions from this set. Using additionally that P0 = S0 = {0n},
we obtain the following algorithm to solve the knapsack problem optimally (see Figure 1 for an
illustration).

Algorithm 1 Nemhauser-Ullmann algorithm

1: P0 := {0n};
2: for i = 1, . . . , n do

3: Qi := Pi−1 ∪ P+i
i−1;

4: Pi := {x ∈ Qi |6 ∃y ∈ Qi : y dominates x};

5: return x⋆ := argmaxx∈Pn
{pTx | wTx ≤ W};

3

profit

weight

Pi−1

wi

pi

P
+i

i−1 profit

weight

Pi

wi

Figure 1: Illustration of one iteration of the for-loop of the Nemhauser-Ullmann algorithm: The
set P+i

i−1 is a copy of the set Pi−1 that is shifted by (wi, pi). The set Pi is obtained by removing
dominated solutions.

In Line 4 a tie-breaking is assumed so that Pi does never contain two solutions with identical
profits and weights.

Observe that all steps of the Nemhauser-Ullmann algorithm except for Line 5 are independent
of the capacity W . In order to speed up the algorithm, one could remove solutions with weights
larger than W already from Qi in Line 3.

We analyze the running time of the Nemhauser-Ullmann algorithm using the model of a unit-
cost RAM. In this model, arithmetic operations like adding and comparing two numbers can be
performed in constant time regardless of their bit-lengths. We use this model for the sake of
simplicity and in order to keep the focus on the important details of the running time analysis.

Theorem 4. The Nemhauser-Ullmann algorithm solves the knapsack problem optimally. There
exists an implementation with running time Θ(

∑n−1
i=0 |Pi|).

Proof. The correctness of the algorithm follows immediately from the previous discussion. In order
to achieve the claimed running time, we do not compute the sets Pi explicitly, but only the values
of the solutions in these sets. That is, instead of Pi only the set val(Pi) := {(pTx,wTx) | x ∈ Pi}
is computed. Analogously to the computation of Pi, one can compute val(Pi) easily if val(Pi−1) is
known. If we store for each element of val(Pi) a pointer to the element of val(Pi−1) from which it
originates, then in Step 5 the solution x⋆ can be efficiently reconstructed from the sets val(Pi) and
these pointers.

The running times of Steps 1 and 5 are O(1) and O(n + |P|), respectively, where the term n
accounts for the running time of reconstructing the solution x⋆ once its value (pTx⋆, wTx⋆) is
determined. In every iteration i of the for-loop, the running time of Step 3 to compute val(Qi)
is Θ(|Pi−1|) because on a unit-cost RAM the set val(P+i

i−1) can be computed in time Θ(|Pi−1|) from
the set val(Pi−1).

In a straightforward implementation, the running time of Step 4 is Θ(|Qi|
2) = Θ(|Pi−1|

2)
because we need to compare every pair of values from val(Qi) and each comparison takes time O(1).
Step 4 can be implemented more efficiently. For this, we store the values in each set val(Pi)
sorted in non-decreasing order of weights. If val(Pi−1) is sorted in this way, then, without any
additional computational effort, the computation of the set val(Qi) in Step 3 can be implemented
such that val(Qi) is also sorted: The sorted set val(P+i

i−1) can be computed in time Θ(|Pi−1|).

Then, in order to compute the set val(Qi), only the two sorted sets val(Pi−1) and val(P+i
i−1) need

4

to be merged in time Θ(|Pi−1|). If the set val(Qi) is sorted, Step 4 can be implemented to run in
time Θ(|Qi|) as a sweep algorithm going once through val(Qi) in non-decreasing order of weights
(see Exercise 1).

The above theorem ensures that the Nemhauser-Ullmann algorithm solves the knapsack problem
efficiently if all Pareto sets Pi have polynomial size.1 As the knapsack problem is NP-hard, it is
not surprising that there are instances with exponentially many Pareto-optimal solutions. If one
sets pi = wi = 2i for each item i ∈ {1, . . . , n} then even every solution from {0, 1}n is Pareto-
optimal.

1.2 Shortest Path Problem

Shortest path problems often come naturally with multiple objectives. Think for example of au-
tomotive navigation systems in which one can usually choose between the shortest, cheapest, and
fastest route. Let us consider the bicriteria single-source shortest path problem. An instance of this
problem is described by a directed graph G = (V,E) with costs c : E → R>0, weights w : E → R>0,
and a source vertex s ∈ V . The goal is to compute for each v ∈ V the set Pv of Pareto-optimal
s-v-paths according to the following definition.

Definition 5. For an s-v-path P we denote by w(P) =
∑

e∈P w(e) its weight and by c(P) =
∑

e∈P c(e) its costs. An s-v-path P1 dominates an s-v-path P2 if w(P1) ≤ w(P2) and c(P1) ≤ c(P2),
with at least one of these inequalities being strict. An s-v-path P is called Pareto-optimal if it is
not dominated by any other s-v-path.

A well-known algorithm for the single-criterion single-source shortest path problem (with only
weights but no costs on the edges) is the Bellman-Ford algorithm. It stores a distance label for
each vertex which is initially set to infinity for each vertex except the source s for which it is set
to zero. Then it performs a sequence of relax operations on the edges as shown in the following
pseudocode.

Algorithm 2 Bellman-Ford algorithm

1: dist(s) = 0;
2: for v ∈ V \ {s} do dist(v) = ∞;

3: for i = 1, . . . , |V | − 1 do

4: for each (u, v) ∈ E do

5: relax(u, v);

6: procedure relax(u, v)
7: if dist(v) > dist(u) + w(u, v) then
8: dist(v) := dist(u) + w(u, v);

It can be shown that after termination the distance label dist(v) of each vertex v equals the
length of the shortest s-v-path in G. By standard methods one can adapt the algorithm so that
for each vertex the actual shortest s-v-path is computed. One can also easily adapt this algorithm
to the bicriteria shortest path problem if one replaces each distance label dist(v) by a list Lv of
s-v-paths. Initially Ls contains only the trivial path of length 0 from s to s and all other lists Lv

1Let us remark that the sizes of the Pareto sets are in general not monotone and there are instances where |Pi+1| <
|Pi| for some i. Hence, it does not suffice if only the Pareto set P = Pn has polynomial size. However, we are not

aware of any class of instances where |Pn| is polynomially bounded while |Pi| is superpolynomial for some i.

5

are empty. In every relax operation for an edge (u, v) a new set L
+(u,v)
u is obtained from Lu by

appending the edge (u, v) to each path from Lu. Then the paths from L
+(u,v)
u are added to Lv.

Finally Lv is cleaned up by removing all paths from Lv that are dominated by other paths from
this list. This is shown in the following pseudocode.

Algorithm 3 Bicriteria Bellman-Ford algorithm

1: Ls = {path of length 0 from s to s};
2: for v ∈ V \ {s} do Lv = ∅;

3: for i = 1, . . . , |V | − 1 do

4: for each (u, v) ∈ E do

5: relax(u, v);

6: procedure relax(u, v)

7: Obtain L
+(u,v)
u from Lu by appending the edge (u, v) to each path from Lu.

8: Lv := Lv ∪ L
+(u,v)
u ;

9: Remove dominated paths from Lv.

Analogously to the Nemhauser-Ullmann algorithm, the running time of the Bicriteria Bellman-
Ford algorithm depends crucially on the sizes of the lists Lv that appear throughout the algorithm.
We have to look at the algorithm in slightly more detail to give an upper bound on its running time.
The algorithm performs M := (|V | − 1) · |E| relax operations, which we denote by R1, . . . , RM .
For a relax operation Rk that relaxes the edge (u, v), we define u(Rk) = u and v(Rk) = v. Let
k ∈ [M] and consider the first k relax operations. These define for every vertex v ∈ V a set Sk

v of
s-v-paths that can be discovered by the first k relax operations. To be more precise, Sk

v contains
exactly those s-v-paths that appear as a subsequence in (u(R1), v(R1)), . . . , (u(Rk), v(Rk)). In the
single-criterion version, after k relax operations the distance label dist(v) contains the length of the
shortest path in Sk

v . In the bicriteria version, the list Lv contains after k relax operations all paths
from Sk

v that are Pareto-optimal within this set (i.e. that are not dominated by other paths from
this set). We will denote the list Lv after k relax operations by Lk

v in the following.

Theorem 6. After termination of the Bicriteria Bellman-Ford algorithm the list Lv equals for
every vertex v ∈ V the set of Pareto-optimal s-v-paths. There exists an implementation with

running time Θ
(

∑M
k=1

(

|Lk−1
u(Rk)

|+ |Lk−1
v(Rk)

|
))

.

Proof. The correctness of the algorithm follows by an inductive argument along the lines of the
analysis of the single-criterion version (see Exercise 4). The analysis of the running time is similar
to the proof of Theorem 4. The dominating factor is the time to remove dominated paths from Lv

in Line 9 of the pseudocode. A naive implementation has running time Θ(|Lk−1
u(Rk)

| · |Lk−1
v(Rk)

|) for

the kth relax operation, while the running time Θ(|Lk−1
u(Rk)

|+ |Lk−1
v(Rk)

|) can be achieved by sweeping
through the lists when they are sorted in non-decreasing order of weight.

While in applications where the bicriteria shortest path problem occurs, it has been observed
that the number of Pareto-optimal solutions is usually not very large, one can easily construct
instances of the bicriteria shortest path problem in which the number of Pareto-optimal paths is
exponential in the size of the graph (see Exercise 3).

The reader might wonder why we adapted the Bellman-Ford algorithm and not Dijkstra’s
algorithm to the bicriteria single-source shortest path problem. Indeed there is a generalization
of Dijkstra’s algorithm to the bicriteria shortest path problem due to Hansen (1979), which also

6

performs a sequence of operations similar to the relax operations of the Bellman-Ford algorithm.
However, in contrast to the Bellman-Ford algorithm the sequence of relax operations is not fixed
beforehand but it depends on the actual costs and weights of the edges. For this reason, it is not
clear how to analyze the expected running time and in particular the analysis that we present in
Section 2 does not apply to the generalization of Dijkstra’s algorithm.

1.3 Multiple Objectives and Other Optimization Problems

For the sake of simplicity, we have discussed only problems with two objectives above. However, one
can easily adapt the definition of Pareto-optimal solutions and both presented algorithms to more
than two objectives. Consider the multidimensional knapsack problem, a version of the knapsack
problem in which every item still has a single profit but instead of a single weight, it has a weight
vector from R

d−1
≥0 for some d ≥ 2, and also the capacity is a vector from R

d−1
≥0 . This problem

gives rise to a multiobjective optimization problem with d objectives: maximize the profit pTx
and minimize for each i ∈ [d − 1] the ith weight (w(i))Tx. Similarly it is often natural to consider
multiobjective shortest path problems with more than two objectives.

In order to compute the Pareto set of an instance of the multidimensional knapsack problem
or the multiobjective shortest path problem, no modification to the pseudocode of the Nemhauser-
Ullmann algorithm (Algorithm 1) and the Bicriteria Bellman-Ford algorithm (Algorithm 3) are
necessary. However, the implementation and the analysis of the running time have to be adapted.
The crucial difference is that the removal of dominated solutions from Qi and Lv cannot be im-
plemented in time linear in the sizes of these sets anymore because the sweeping approach, which
assumes that the solutions are sorted with respect to one of the objectives, fails for more than two
objectives. If one uses the naive implementation, which pairwisely compares the solutions, then the
running times of the algorithms become Θ(

∑n−1
i=0 |Pi|

2) and O(
∑M

i=1 |L
i−1
u(Ri)

| · |Li−1
v(Ri)

|), respectively.
Asymptotically one can do better by using known algorithms for the maximum vector problem

to filter out the dominated solutions. In this problem a set of m vectors in R
k is given and one

wants to compute the set of Pareto-optimal vectors among them. The fastest known algorithm for
this problem is due to Kung et al. (1975). It relies on divide and conquer and its running time is

O(m logk−2m). For d objectives this yields running times of Θ
(

∑n−1
i=0 |Pi| log

d−2(|Pi|)
)

and

O

(

M
∑

i=1

(|Li−1
u(Ri)

|+ |Li−1
v(Ri)

|) · logd−2(|Li−1
u(Ri)

|+ |Li−1
v(Ri)

|)

)

for the Nemhauser-Ullmann algorithm and the Bellman-Ford algorithm, respectively.
The Nemhauser-Ullmann algorithm and the Bicriteria Bellman-Ford algorithm are only two

examples of many algorithms in the literature for computing Pareto sets of various multiobjective
optimization problems. Similar algorithms exist, for example, for the multiobjective network flow
problem. As a rule of thumb, algorithms that solve the single-criterion version of an optimiza-
tion problem by dynamic programming can usually be adapted to compute the Pareto set of the
multiobjective version.

On the other hand, there are also problems for which it is unknown if there exist algorithms
that compute the Pareto set in time polynomial in its size and the sizes of the Pareto sets of
appropriate subproblems. The multiobjective spanning tree problem is one such example, where
the best known way to compute the Pareto set is essentially to first compute the set of all spanning
trees and then to remove the dominated ones. An even stronger requirement is that of an efficient
output-sensitive algorithm, which computes the Pareto set in time polynomial in its size and the
input size. Bökler et al. (2017) show that such an algorithm exists for the multiobjective version

7

of the minimum-cut problem and that no such algorithm exists for the bicriteria shortest path
problem, unless P=NP. For many other multiobjective problems, including the knapsack problem
and the multiobjective spanning tree problem, it is an open question whether efficient output-
sensitive algorithms exist.

1.4 Approximate Pareto Curves

For virtually every multiobjective optimization problem the number of Pareto-optimal solutions can
be exponential in the worst case. One way of coping with this problem is to relax the requirement
of finding the complete Pareto set. A solution x is ε-dominated by a solution y if y is worse than x
by at most a factor of 1 + ε in each objective (i.e., w(y)/w(x) ≤ 1 + ε for each criterion w that is
to be minimized and p(x)/p(y) ≤ 1 + ε for each criterion p that is to be maximized). We say that
Pε is an ε-approximation of a Pareto set P if for any solution in P, there is a solution in Pε that
ε-dominates it.

In his pioneering work, Hansen (1980) presents an approximation scheme for computing ε-
approximate Pareto sets of the bicriteria shortest path problem. Papadimitriou and Yannakakis
(2000) show that for any instance of a multiobjective optimization problem, there is an ε-approximation
of the Pareto set whose size is polynomial in the input size and 1/ε but exponential in the number
of objectives. Furthermore, they define the gap version of a multiobjective optimization problem
with d objectives as follows: given an instance of the problem and a vector b ∈ R

d, either return
a solution whose objective vector dominates b or report (correctly) that there does not exist any
solution whose objective vector is better than b by more than a (1+ε) factor in all objectives. They
show that an FPTAS for approximating the Pareto set of a multiobjective optimization problem
exists if and only if the gap version of the problem can be solved in polynomial time. In particular,
this implies that if the exact single-criterion version of a problem (i.e., the question “Is there a
solution with weight exactly x?”) can be solved in pseudopolynomial time, then its multiobjective
version admits an FPTAS for approximating the Pareto set. This is the case, for example, for the
spanning tree problem, the all-pair shortest path problem, and the perfect matching problem.

Vassilvitskii and Yannakakis (2005) show how to compute ε-approximate Pareto sets whose size
is at most three times as large as the smallest such set for bicriteria problems whose gap versions
can be solved in polynomial time. Diakonikolas and Yannakakis (2007) improve this factor to two
and show that this is the best possible that can be achieved in polynomial time, unless P=NP.

2 Number of Pareto-optimal solutions

Both for the knapsack problem and the bicriteria shortest path problem, the number of Pareto-
optimal solutions increases only moderately with the input size in applications. This is in contrast
to the exponential worst-case behavior (see Exercise 3). To explain this discrepancy, we will analyze
the number of Pareto-optimal solutions in the framework of smoothed analysis. First we will focus
on the knapsack problem but we will see afterwards that the proven bound also holds for a much
larger class of problems including the bicriteria shortest path problem and many other natural
bicriteria optimization problems. We will then also briefly discuss known results for problems with
more than two objectives.

2.1 Knapsack Problem

Let us consider the knapsack problem. In a worst-case analysis the adversary is allowed to choose
the profits p1, . . . , pn and the weights w1, . . . , wn exactly (he can also choose the capacity but the

8

number of Pareto-optimal solutions is independent of this). This makes him very powerful and
makes it possible to choose an instance in which every solution is Pareto-optimal. In order to limit
the power of the adversary to construct such artificial instances that do not resemble typical inputs,
we add some randomness to his decisions.

Let φ ≥ 1 be a parameter. In the following analysis, we assume that the adversary can still
determine the profits exactly while for each weight he can only choose an interval of length 1/φ
from which it is chosen uniformly at random independently of the other weights. This means that
the adversary can specify each weight only with a precision of 1/φ. We normalize the weights
and restrict the adversary to intervals that are subsets of [0, 1]. This normalization is necessary to
ensure that the effect of the noise cannot be ruled out by scaling all weights in the input by some
large number.

Observe that the parameter φ measures the strength of the adversary. If φ = 1 then all weights
are chosen uniformly at random from [0, 1], which resembles an average-case analysis. On the other
hand, in the limit for φ → ∞ the adversary can determine the weights (almost) exactly and the
model approaches a classical worst-case analysis. Hence, it is not surprising that the bound that
we will prove for the expected number of Pareto-optimal solutions grows with φ. However, we will
see that it grows only polynomially with n and φ, which implies that already a small amount of
random noise suffices to rule out the worst case and to obtain a benign instance in expectation.

Theorem 7. Consider an instance I of the knapsack problem with arbitrary profits p1, . . . , pn ∈ R≥0

in which every weight wi is chosen uniformly at random from an arbitrary interval Ai ⊆ [0, 1] of
length 1/φ independently of the other weights. Then the expected number of Pareto-optimal solutions
in I is bounded from above by n2φ+ 1.

The proof of Theorem 7, which we present in detail below, can be summarized as follows. Since
all weights take values between 0 and 1, all solutions have weights between 0 and n. We divide
the interval [0, n] uniformly into a large number k of subintervals of length n/k each. For large
enough k it is unlikely that there exist two Pareto-optimal solutions whose weights lie in the same
subinterval because the weights are continuous random variables. Assuming that this does not
happen, the number of Pareto-optimal solutions equals the number of subintervals that contain
a Pareto-optimal solution. The most important and non-trivial step is then to bound, for each
subinterval, the probability that it contains a Pareto-optimal solution. Once we have proven an
upper bound for this, the theorem follows by summing up this upper bound over all subintervals
due to linearity of expectation.

Before we prove the theorem, we state one simple but crucial property of the random variables
that we consider.

Lemma 8. Let X be a random variable that is chosen uniformly at random from some interval A
of length 1/φ. Furthermore let I be an interval of length ε. Then Pr[X ∈ I] ≤ φε.

Proof. Since X is chosen uniformly at random from A, we obtain

Pr[X ∈ I] =
|A ∩ I|

|A|
≤

|I|

|A|
≤

ε

1/φ
= φε.

Proof of Theorem 7. Every solution x ∈ {0, 1}n has a weight wTx in the interval [0, n] because each
weight wi lies in [0, 1]. We partition the interval (0, n] uniformly into k ∈ N intervals Ik0 , . . . , I

k
k−1

for some large number k to be chosen later. Formally, let Iki = (ni/k, n(i+ 1)/k]. We say that the
interval Iki is non-empty if there exists a Pareto-optimal solution x ∈ P with wTx ∈ Iki .

9

We denote by Xk the number of non-empty intervals Iki plus one. The term +1 accounts for the
solution 0n, which is always Pareto-optimal and does not belong to any interval Iki . Nevertheless,
the variableXk can be much smaller than |P| because many Pareto-optimal solutions could lie in the
same interval Iki . We will ensure that every interval Iki contains at most one Pareto-optimal solution
with high probability by choosing k sufficiently large. Then, with high probability, |P| = Xk.

In the following, we make this argument more formal. For k ∈ N, let Fk denote the event that
there exist two different solutions x, y ∈ {0, 1}n with |wTx−wT y| ≤ n/k. Since each interval Iki has
length n/k, every interval Iki contains at most one Pareto-optimal solution if Fk does not occur.

Lemma 9. For every k ∈ N, Pr [Fk] ≤
22n+1nφ

k .

Proof. There are 2n choices for x and y each. We prove the lemma by a union bound over all these
choices. Let x, y ∈ {0, 1}n with x 6= y be fixed. Then there exists an index i with xi 6= yi. Assume
without loss of generality that xi = 0 and yi = 1. We use the principle of deferred decisions and
assume that all weights wj except for wi are already fixed. Then wTx − wT y = α − wi for some
constant α that depends on x and y and the fixed profits wj . It holds that

Pr
[

|wTx− wT y| ≤
n

k

]

≤ sup
α∈R

Pr
wi

[

|α− wi| ≤
n

k

]

= sup
α∈R

Pr
wi

[

wi ∈

[

α−
n

k
, α+

n

k

]]

≤
2nφ

k
,

where the last inequality follows from Lemma 82. Now a union bound over all choices for x and y
concludes the proof.

The most non-trivial part in the analysis is the following lemma, which states for an arbitrary
interval an upper bound for the probability that it contains a Pareto-optimal solution. We defer
the proof of this lemma to the end of this section.

Lemma 10. For every t ≥ 0 and every ε > 0,

Pr[∃x ∈ P | wTx ∈ (t, t+ ε]] ≤ nφε.

The following lemma is the main building block in the proof of the theorem.

Lemma 11. For every k ∈ N, E
[

Xk
]

≤ n2φ+ 1.

Proof. Let Xk
i denote a random variable that is 1 if the interval Iki is non-empty and 0 otherwise.

Then

Xk = 1 +

k−1
∑

i=0

Xk
i

and by linearity of expectation

E
[

Xk
]

= E

[

1 +

k−1
∑

i=0

Xk
i

]

= 1 +

k−1
∑

i=0

E
[

Xk
i

]

. (1)

2Formally, we condition on the outcome of the wj with j 6= i. This outcome determines the value of α. Then

we apply the law of total probability, but instead of integrating over all possible outcomes of the wj with j 6= i, we

derive an upper bound by looking only at the worst choice for α.

10

Since Xk
i is a 0-1-random variable, its expected value can be written as

E
[

Xk
i

]

= Pr[Xk
i = 1] = Pr[∃x ∈ P | wTx ∈ Iki]. (2)

Using that each interval Iki has length n/k, Lemma 10 and (2) imply

E
[

Xk
i

]

≤
n2φ

k
.

Together with (1) this implies

E
[

Xk
]

= 1 +

k−1
∑

i=0

E
[

Xk
i

]

≤ 1 + k ·
n2φ

k
= n2φ+ 1.

With the help of Lemmas 9 and 11, we can finish the proof of the theorem as follows:

E [|P|] =
2n
∑

i=1

(

i · Pr[|P| = i]
)

=

2n
∑

i=1

(

i · Pr[|P| = i ∧ Fk] + i · Pr[|P| = i ∧ ¬Fk]
)

(1)
=

2n
∑

i=1

(

i · Pr[Fk] · Pr[|P| = i | Fk]
)

+

2n
∑

i=1

(

i · Pr[Xk = i ∧ ¬Fk]
)

≤ Pr[Fk] ·
2n
∑

i=1

(

i · Pr[|P| = i | Fk]
)

+

2n
∑

i=1

(

i · Pr[Xk = i]
)

(2)

≤
22n+1nφ

k
·

2n
∑

i=1

(

2n · Pr[|P| = i | Fk]
)

+E
[

Xk
]

(3)

≤
23n+1nφ

k
+ n2φ+ 1. (3)

Let us comment on some of the steps in the previous calculation.

• The upper bound 2n on the indices of the sums follows because |P| can never exceed the total
number of solutions, which is 2n.

• The rewriting of the first term in (1) follows from the definition of the conditional probability
and the rewriting of the second term follows because Xk = |P| when the event ¬Fk occurs.

• (2) follows from Lemma 9 and the definition of the expected value.

• (3) follows from the identity
∑2n

i=1 Pr[|P| = i | Fk] = 1 and Lemma 11.

Since (3) holds for every k ∈ N, it must be E [|P|] ≤ n2φ+ 1.

It only remains to prove Lemma 10. An easy way to derive an upper bound for the probability
that there exists a Pareto-optimal solution in the interval (t, t+ ε] is to apply a union bound over
all solutions. Since there is an exponential number of solutions, this does not lead to a useful
bound. The key improvement in the proof of Lemma 10 is to apply the union bound only over the
n dimensions.

11

profit

weight

x
⋆

x̂

t

Λ(t)

Figure 2: Definitions of the winner x⋆, the loser x̂, and the random variable Λ(t).

Proof of Lemma 10. Fix t ≥ 0 and ε > 0. First of all we define a random variable Λ(t). In order
to define Λ(t), we define the winner x⋆ to be the most valuable solution satisfying wTx ≤ t, i.e.,

x⋆ = argmax{pTx | x ∈ {0, 1}n and wTx ≤ t}.

For t ≥ 0, such a solution x⋆ must always exist. We say that a solution x is a loser if it has a
higher profit than x⋆. By the choice of x⋆, losers do not satisfy the constraint wTx ≤ t (hence their
name). We denote by x̂ the loser with the smallest weight (see Figure 2), i.e.,

x̂ = argmin{wTx | x ∈ {0, 1}n and pTx > pTx⋆}.

If there does not exist a solution x with pTx > pTx⋆, then x̂ is undefined, which we denote by x̂ =⊥.
Based on x̂, we define the random variable Λ(t) as

Λ(t) =

{

wT x̂− t if x̂ 6=⊥,

∞ if x̂ =⊥.

The random variable Λ(t) satisfies the following equivalence:

Λ(t) ≤ ε ⇐⇒ ∃x ∈ P : wTx ∈ (t, t+ ε]. (4)

To see this, assume that there exists a Pareto-optimal solution whose weight lies in (t, t + ε], and
let y denote the Pareto-optimal solution with the smallest weight in (t, t + ε]. Then y = x̂ and
hence Λ(t) = wT x̂ − t ∈ (0, ε]. Conversely, if Λ(t) ≤ ε, then x̂ must be a Pareto-optimal solution
whose weight lies in the interval (t, t+ ε]. Together this yields Equivalence (4). Hence,

Pr[∃x ∈ P | wTx ∈ (t, t+ ε]] = Pr[Λ(t) ≤ ε]. (5)

It only remains to bound the probability that Λ(t) does not exceed ε. In order to analyze
this probability, we define a set of auxiliary random variables Λ1(t), . . . ,Λn(t) such that Λ(t) is
guaranteed to always take a value also taken by at least one of the auxiliary random variables.
Then we analyze the auxiliary random variables and use a union bound to conclude the desired
bound for Λ(t).

12

Let i ∈ [n] be fixed. The random variable Λi(t) is defined similarly to Λ(t), but only solutions
that do not contain item i are eligible as winners and only solutions that contain item i are eligible
as losers. We make this more formal in the following. For j ∈ {0, 1}, we define

Sxi=j = {x ∈ {0, 1}n | xi = j},

and we define x⋆,i to be

x⋆,i = argmax{pTx | x ∈ Sxi=0 and wTx ≤ t}.

That is, x⋆,i is the winner among the solutions that do not contain item i. We restrict our attention
to losers that contain item i and define

x̂i = argmin{wTx | x ∈ Sxi=1 and pTx > pTx⋆,i}.

If there does not exist a solution x ∈ Sxi=1 with pTx > pTx⋆,i, then x̂i is undefined, i.e., x̂i =⊥.
Based on x̂i, we define the random variable Λi(t) as

Λi(t) =

{

wT x̂i − t if x̂i 6=⊥,

∞ if x̂i =⊥.

Lemma 12. For every choice of profits and weights, either Λ(t) = ∞ or there exists an index
i ∈ [n] such that Λ(t) = Λi(t).

Proof. Assume that Λ(t) 6= ∞. Then there exist a winner x⋆ and a loser x̂. Since x⋆ 6= x̂, there
must be an index i ∈ [n] with x⋆i 6= x̂i. Since all weights are non-negative and wTx⋆ < wT x̂, there
must even be an index i ∈ [n] with x⋆i = 0 and x̂i = 1. We claim that for this index i, Λ(t) = Λi(t).
In order to see this, we first observe that x⋆ = x⋆,i. This follows because x⋆ is the solution with
the highest profit among all solutions with weight at most t. Since it belongs to Sxi=0, it is in
particular the solution with the highest profit among all solutions that do not contain item i and
have weight at most t. Since x⋆ = x⋆,i, by similar arguments it follows that x̂ = x̂i. This directly
implies that Λ(t) = Λi(t).

Lemma 13. For every i ∈ [n] and every ε ≥ 0,

Pr[Λi(t) ∈ (0, ε]] ≤ φε.

Proof. In order to prove the lemma, it suffices to exploit the randomness of the weight wi. We
apply the principle of deferred decisions and assume that all other weights are fixed arbitrarily.
Then the weights of all solutions from Sxi=0 and hence also the solution x⋆,i are fixed because wi

does not influence the solutions in Sxi=0 and the profits p1, . . . , pn are fixed. If the solution x⋆,i is
fixed, then also the set of losers L = {x ∈ Sxi=1 | pTx > pTx⋆,i} is fixed. Since, by definition, all
solutions from L contain item i the identity of the solution x̂i does not depend on wi. (Of course,
the weight wT x̂i depends on wi. However, which solution will become x̂i is independent of wi.)
This implies that, given the fixed values of the weights wj with j 6= i, we can rewrite the event
Λi(t) ∈ (0, ε] as wT x̂i − t ∈ (0, ε] for a fixed solution x̂i. For a constant α ∈ R depending on the
fixed values of the weights wj with j 6= i, we can rewrite this event as wi ∈ (α,α+ε]. By Lemma 8,
the probability of this event is bounded from above by φε.

13

Combining Lemmas 12 and 13 yields

Pr[Λ(t) ≤ ε] ≤ Pr[∃i ∈ [n] : Λi(t) ∈ (0, ε]] ≤
n
∑

i=1

Pr[Λi(t) ∈ (0, ε]] ≤ nφε.

Together with (5) this proves the lemma.

Theorem 7 implies the following result on the running time of the Nemhauser-Ullmann algo-
rithm.

Corollary 14. Consider an instance I of the knapsack problem with arbitrary profits p1, . . . , pn ∈
R≥0 in which every weight wi is chosen uniformly at random from an arbitrary interval Ai ⊆ [0, 1]
of length 1/φ independently of the other weights. Then the expected running time of the Nemhauser-
Ullmann algorithm is O(n3φ).

Proof. It follows from Theorem 4 that the expected running time of the Nemhauser-Ullmann algo-
rithm is bounded from above by

O

(

E

[

n−1
∑

i=0

|Pi|

])

,

where Pi denotes the Pareto set of the restricted instance that consists only of the first i items.
Using linearity of expectation and Theorem 7, we obtain that this term is bounded from above by

O

(

n−1
∑

i=0

E [|Pi|]

)

= O

(

n−1
∑

i=0

(i2φ+ 1)

)

= O(n3φ).

The decision to add randomness only to the weights is arbitrary. Of course if both the profits
and the weights are chosen independently uniformly at random from intervals of length 1/φ then
the upper bound still applies. With minor modifications, the analysis can also be adapted to the
case that only the profits are random while the weights are adversarial.

2.2 General Model

Theorem 7 can be extended in several ways. First of all, the noise model can be generalized to a
much wider class of distributions. In fact the only property that we used about the random weights
is Lemma 8, which says that the probability to fall into any interval of length ε is at most φε. This
is true for every random variable that is described by a probability density function that is bounded
from above by φ. Hence instead of allowing the adversary to choose an interval of length 1/φ for
each weight wi, we could also allow him to choose a density function fi : [0, 1] → [0, φ] according to
which wi is chosen independently of the other weights. This includes as a special case the uniform
distribution in an interval of length 1/φ but it also allows different types of random noise. Observe
that we have restricted the density functions to [0, 1] to normalize the weights.

In the following we will use the term φ-perturbed random variable to refer to a random variable
described by a density f : R → [0, φ]. If we replace all occurrences of Lemma 8 in the proof of
Theorem 7 by the following lemma then Theorem 7 follows also for general φ-perturbed weights
from [0, 1].

Lemma 15. Let X be a φ-perturbed random variable that is described by a density function f :
[0, 1] → [0, φ]. For any interval I of length ε, Pr[X ∈ I] ≤ φε.

14

Proof. The lemma follows by the following simple calculation:

Pr[X ∈ I] =

∫

I
f(x) dx ≤

∫

I
φdx = φε.

Next we state an even more general version of Theorem 7. The first generalization compared
to Theorem 7 is that an arbitrary set S ⊆ {0, 1}n of solutions is given. In the case of the knapsack
problem, every vector from {0, 1}n is a solution, i.e., S = {0, 1}n. The second generalization is
that the adversarial objective function p does not have to be linear. In fact, it can be an arbitrary
function that maps every solution to some real value. The third generalization is that we extend
the range of the φ-perturbed weights from [0, 1] to [−1, 1].

Theorem 16. Let S ⊆ {0, 1}n and p : S → R be arbitrary. Let w1, . . . , wn be arbitrary φ-perturbed
numbers from the interval [−1, 1]. Then the expected number of solutions x ∈ S that are Pareto-
optimal with respect to the objective functions p(x) and wTx is O(n2φ). This upper bound holds
regardless of whether the objective functions are to be maximized or minimized.

We will not prove Theorem 16, but let us remark that its proof is very similar to the proof of
Theorem 7. In fact we never used in the proof that S = {0, 1}n and that p is linear. The fact
that all weights wi are positive was only used to argue that there must be an index i with x⋆i = 0
and x̂i = 1. For general wi, it could also be the other way round. Handling this issue is the only
modification of the proof that is not completely straightforward.

To illustrate the power of Theorem 16, let us discuss its implications on graph problems. For
a given graph with m edges e1, . . . , em, one can identify every vector x ∈ {0, 1}m with a subset
of edges E′ = {ei | xi = 1}. Then x is the so-called incidence vector of the edge set E′. If, for
example, there is a source vertex s and a target vertex v given, one could choose the set S of
feasible solutions as the set of all incidence vectors of paths from s to v in the given graph. This
way, Theorem 16 implies that the expected number of Pareto-optimal s-v-paths in the bicriteria
shortest-path problem is O(m2φ). Similarly, one could choose S as the set of incidence vectors of all
spanning trees of a given graph. Then the result implies that in expectation there are only O(m2φ)
Pareto-optimal spanning trees in the bicriteria spanning tree problem. In the traveling salesman
problem (TSP) we are given an undirected graph with edge weights and the goal is to find a shortest
tour (i.e., Hamiltonian cycle) that visits every vertex exactly once. As for the bicritera shortest
path problem, Theorem 16 implies that in expectation there are only O(m2φ) Pareto-optimal tours
in the bicriteria version of the TSP.

For the Bicriteria Bellman-Ford algorithm we obtain the following corollary.

Corollary 17. Consider an instance of the bicriteria shortest-path problem with arbitrary costs
and non-negative φ-perturbed weights from the interval [0, 1]. Let n and m denote the number of
vertices and edges, respectively. Then the expected running time of the Bicriteria Bellman-Ford
algorithm is O

(

nm3φ
)

.

Proof. We can use Theorem 16 to bound the expected size of each list Li
v that occurs throughout

the algorithm by O(m2φ), where m denotes the number of edges in the graph. Using linearity of
expectation and Theorem 6 yields that the expected running time is

Θ

(

M
∑

i=1

(

E
[

|Li−1
u(Ri)

|
]

+E
[

|Li−1
v(Ri)

|
])

)

.

Using that the expected length of each list is O(m2φ) and M = (n − 1) · m implies the claimed
bound.

15

Let us finally remark that Theorem 16 can also be adapted to the setting where the set S of
feasible solutions is an arbitrary subset of {0, . . . , k}n for some k ∈ N. Then the expected number of
Pareto-optimal solutions is O(n2k2φ). This is useful to model, for example, the bounded knapsack
problem, in which a number of identical copies of every item is given.

2.3 Multiobjective Optimization Problems

Even though Theorem 16 is quite general, it still has one severe restriction: it only applies to
optimization problems with two objective functions. The extension to optimization problems with
more than two objectives is rather challenging and requires different methods. In this section, we
summarize the main results.

In Theorem 16 one of the objective functions is assumed to be arbitrary while the other is linear
with φ-perturbed coefficients. We consider now optimization problems with one arbitrary objective
function and d linear objective functions with φ-perturbed coefficients. Röglin and Teng (2009)
were the first to study this model. They proved an upper bound of O((n2φ)f(d)) for the expected
number of Pareto-optimal solutions where f is a rapidly growing function (roughly 2dd!). This has
been improved by Moitra and O’Donnell (2012) to O(n2dφd(d+1)/2). Brunsch and Röglin (2015)
improved the upper bound further to O(n2dφd) under the assumption that all density functions are
unimodal, where a function f : R → R is called unimodal if there exists some x ∈ R such that f is
monotonically increasing on (−∞, x] and monotonically decreasing on [x,∞).

The cth moment of a random variableX is the expected value E [Xc] if it exists. Brunsch and Röglin
(2015) also prove upper bounds on the moments of the number of Pareto-optimal solutions. In par-
ticular they show that for any constant c the cth moment is bounded from above byO((n2dφd(d+1)/2)c)
and O((n2dφd)c) for general and unimodal densities, respectively. Upper bounds for the moments
give rise to non-trivial tail bounds. Consider the case d = 1. Then the cth moment is bounded
from above by bc(n

2φ)c for some constant bc depending on c. Applying Markov’s inequality to the
cth moment yields for every α ≥ 1

Pr[|P| ≥ α · (n2φ)] = Pr[|P|c ≥ αc(n2φ)c] = Pr

[

|P|c ≥
αc

bc
· bc(n

2φ)c
]

≤
bc
αc

,

while applying Markov’s inequality directly to |P| yields only a bound of (roughly) 1/α. Upper
bounds for the moments are also important for another reason: If the running time of an algorithm
depends polynomially but not linearly on the number of Pareto-optimal solutions (like the running
time of the Nemhauser-Ullmann algorithm for more than two objective functions), then Theorem 16
cannot be used to derive any bound on its expected running time. This is because a bound on E [|P|]
does not imply any bound on, for example, E

[

|P|2
]

. Only with the result of Brunsch and Röglin
about the moments of |P| a polynomial bound follows for the expected running time of these
algorithms.

Improving earlier work of Brunsch et al. (2014), Brunsch (2014) shows lower bounds for the
expected number of Pareto-optimal solutions of Ω(n2φ) for d = 1 and Ω(nd−1.5φd) for d ≥ 2. Hence
the upper bound in Theorem 16 for the bicriteria case is asymptotically tight.

A φ-perturbed number is non-zero with probability 1. This implies that each of the d objective
functions depends on all the variables. This limits the expressibility of the model because there
are many examples of problems in which some objective function depends only on a certain subset
of the variables. Brunsch and Röglin (2015) discuss this subtle issue in more detail and they also
give concrete examples. To circumvent this problem, they introduce zero-preserving perturbations.
In their model, the adversary can decide for each coefficient whether it should be a φ-perturbed
number or is deterministically set to zero. For this model they prove upper bounds of O(nO(d3)φd)

16

and O((nφ)O(d3)) for unimodal and general φ-perturbed coefficients, respectively, for the expected
number of Pareto-optimal solutions.

3 Smoothed Complexity of Binary Optimization Problems

The results on the expected number of Pareto-optimal solutions imply that the knapsack problem
can be solved in expected polynomial time on instances with φ-perturbed weights or φ-perturbed
profits (Corollary 14). A natural question is whether or not similar results also hold for other
NP-hard optimizations problems. Does, for example, the TSP admit an algorithm with expected
polynomial running time if all distances are φ-perturbed? Instead of studying each problem sep-
arately, we will now present a general characterization due to Beier and Vöcking (2006) which
combinatorial optimization problems can be solved efficiently on instances with φ-perturbed num-
bers.

While most smoothed analyses in the literature focus on the analysis of specific algorithms,
this section instead considers problems in the sense of complexity theory. We will study linear
binary optimization problems. In an instance of such a problem Π, a linear objective function
cTx = c1x1 + · · · + cnxn is to be minimized or maximized over an arbitrary set S ⊆ {0, 1}n of
feasible solutions. The problem Π could, for example, be the TSP and the coefficients ci could be
the edge lengths. (See also the discussion in Section 2.2 on how graph problems can be encoded
as binary optimization problems.) One could also encode the knapsack problem as a linear binary
optimization problem. Then S contains all subsets of items whose total weight does not exceed the
capacity.

We will study the smoothed complexity of linear binary optimization problems, by which we
mean the complexity of instances in which the coefficients c1, . . . , cn are φ-perturbed numbers from
the interval [−1, 1]. We will assume without loss of generality that the objective function cTx is to
be minimized. Since φ-perturbed numbers have infinite encoding length with probability 1, we have
to discuss the machine model that we will use in the following. One could change the input model
and assume that the φ-perturbed coefficients are discretized by rounding them after a polynomial
number, say n2, of bits. The effect of this rounding is so small that it does not influence our
results. We will, however, not make this assumption explicit and use, for the sake of simplicity,
the continuous random variables in our probabilistic analysis. When defining the input size we
will not take the encoding length of the coefficients ci into account. Instead we assume that the
coefficients c1, . . . , cn contribute in total only n to the input length.

To state the main result, let us recall two definitions from computational complexity. We call
a linear binary optimization problem strongly NP-hard if it is already NP-hard when restricted to
instances with integer coefficients ci in which the largest absolute value C := maxi |ci| of any of
the coefficients is bounded by a polynomial in the input length. The TSP is, for example, strongly
NP-hard because it is already NP-hard when all edges have length either 1 or 2. The knapsack
problem, on the other hand, is not strongly NP-hard because instances in which all profits are
integers and polynomially bounded in the input size can be solved by dynamic programming in
polynomial time.

A language L belongs to the complexity class ZPP (zero-error probabilistic polynomial time) if
there exists a randomized algorithm A that decides for each input x in expected polynomial time
whether or not x belongs to L. That is, A always produces the correct answer but its running
time is a random variable whose expected value is bounded polynomially for every input x. Let us
point out that the expectation is only with respect to the random decisions of the algorithm and
not with respect to a randomly chosen input. It is yet unclear whether or not P=ZPP. In any case,

17

languages that belong to ZPP are generally considered to be easy to decide and NP-hard problems
are believed to not lie in ZPP.

Theorem 18. Let Π be a linear binary optimization problem that is strongly NP-hard. Then
there does not exist an algorithm for Π whose expected running time is polynomially bounded in N
and φ for instances with φ-perturbed coefficients from [−1, 1], where N denotes the input length,
unless NP ⊆ ZPP.

The main idea of the proof of this theorem can be summarized as follows: An algorithm A for Π
with expected running time polynomial in N and φ can be used to solve worst-case instances of Π
with polynomially bounded numbers optimally in expected polynomial time. Given such a worst-
case instance, one could add a small amount of random noise to all the numbers and then solve the
resulting instance with A in expected time polynomial in N and φ. If this random noise is small
enough (φ = Θ(C)) then it does not change the optimal solution. This way, we obtain an algorithm
that solves worst-case instances with polynomially bounded numbers in expected polynomial time,
implying that NP ⊆ ZPP.

The previous theorem shows that φ-perturbed instances of strongly NP-hard optimization prob-
lems are not easier to solve than worst-case instances. Hence, these problems stay hard also in the
model of smoothed analysis. One consequence of this result is that there is no hope that the TSP
can be solved efficiently when the edge lengths are randomly perturbed. This is in clear contrast
to the knapsack problem, which is easy to solve on randomly perturbed inputs. We will now state
a more general positive result. We say that a linear binary optimization problem Π can be solved
in pseudo-linear time if there exists an algorithm whose running time on instances with integer
coefficients is bounded from above by p(N) ·C, where p denotes a polynomial, N denotes the input
length, and C denotes the largest absolute value of any of the coefficients.

Theorem 19. A linear binary optimization problem Π that can be solved in pseudo-linear time in
the worst case can be solved in expected polynomial time (with respect to the input length and φ) on
instances with φ-perturbed numbers from [−1, 1].

Let Ap be an algorithm that solves integral instances of Π in pseudo-linear time. In the proof
of Theorem 19, the algorithm Ap is used to construct an algorithm A that solves instances with
φ-perturbed numbers in expected polynomial time. Algorithm A first rounds all φ-perturbed coef-
ficients after some number b of bits after the binary point. Then it uses the algorithm Ap to solve
the rounded instance. One can prove that for b = Θ(log n) rounding all coefficients does not change
the optimal solution with high probability. This is based on the observation that in instances with
φ-perturbed numbers usually the best solution is significantly better than the second best solution
and hence it stays optimal even after rounding all coefficients (see Exercise 8). For b = Θ(log n) the
running time of Ap to solve the rounded instance optimally is polynomial. This yields an algorithm
that always runs in polynomial time and solves φ-perturbed instances of Π with high probability
correctly. It is possible to adapt this approach to obtain an algorithm that always computes the
optimal solution and whose expected running time is polynomial.

4 Conclusions

We have proven bounds on the expected number of Pareto-optimal solutions and we have studied
the complexity of linear binary optimization problems in the framework of smoothed analysis. Our
results are in many cases consistent with empirical observations. The knapsack problem is, for

18

example, easy to solve in applications and has few Pareto-optimal solutions while solving large-
scale TSP instances optimally is computationally still expensive despite a lot of progress that has
been made in the last decades and great speedups in the common solvers.

The models that we considered in this chapter are very general, in particular because the set
S of feasible solutions can be arbitrarily chosen, both in Section 2 and in Section 3. However,
this generality is also a drawback of our results because the adversary is still rather powerful
and can exactly determine the combinatorial structure of the problem. Often problems are easier
in applications than in the worst case because the instances obey certain structural properties.
Depending on the problem and application, input graphs might be planar or have small degree,
distances might satisfy the triangle inequality etc. Such structural properties are not considered in
our general model. Hence, often it is advisable to look in more detail into the instances that are
really relevant in applications instead of only assuming that some coefficients are random.

An illustrative experimental study of the multiobjective shortest path problem is due to Müller-Hannemann and Weihe
(2006). They consider a graph that is obtained from the daily train schedule of the German railway
network and observe that the number of Pareto-optimal train connections in view of travel time,
fare, and number of train changes is very small (for no pair of nodes there were more than 8 Pareto-
optimal connections in the experiments). This is much smaller than suggested by Theorem 16. One
possible explanation is that in this and many other applications, the objective functions are not
independent but to some degree correlated, which might reduce the number of Pareto-optimal solu-
tions. It would be interesting to find a formal model for correlated objective functions that explains
the extremely small number of Pareto-optimal solutions observed in this setting.

Notes

The Bicriteria Bellman-Ford algorithm was described by Corley and Moon (1985). The analysis of
its running time presented in this chapter can also be found in Beier (2004). Beier and Vöcking
(2004) initiated the study of the number of Pareto-optimal solutions in the framework of smoothed
analysis. The proof of Theorem 7 in this chapter follows an improved and simplified analysis
due to Beier et al. (2007). This analysis also generalizes the original work of Beier and Vöcking
to integer optimization problems. The bound stated in Beier et al. (2007) is O(n2k2 log(k)φ) if
S ⊆ {0, . . . , k}n. It has been improved to O(n2k2φ) by Röglin and Rösner (2017).

The results in Section 3 can be found in Beier and Vöcking (2006). Theorems 18 and 19 do not
give a complete characterization of the smoothed complexity of linear binary optimization prob-
lems because Theorem 19 does only apply to pseudo-linear and not to general pseudo-polynomial
algorithms. Beier and Vöcking circumvent this problem by introducing a notion of polynomial
smoothed complexity that is not based on expected running times (similar to polynomial average-
case complexity). Later Röglin and Teng (2009) showed that all problems that can be solved in
pseudo-polynomial time in the worst case can be solved in expected polynomial time on φ-perturbed
instances, which completes the characterization.

Exercises

1. Implement the Nemhauser-Ullmann algorithm so that your implementation achieves a running
time of Θ(

∑n−1
i=0 |Pi|).

2. Find an instance of the knapsack problem with |Pi+1| < |Pi| for some i.

19

3. Construct instances for the bicriteria shortest path problem with an exponential number of
Pareto-optimal s-v-paths for some vertices s and v.

4. Prove that the Bicriteria Bellman-Ford algorithm is correct, i.e., that after termination the
list Lv equals for every vertex v ∈ V the set of Pareto-optimal s-v-paths

5. A famous algorithm for the single criterion all-pairs shortest path problem is the Floyd-
Warshall algorithm. Adapt this algorithm to the bicriteria all-pairs shortest path problem
(given a graph G with costs and weights, compute for each pair (u, v) of vertices the set of
Pareto-optimal u-v-paths in G). State a bound on its running time in the same fashion as
Theorem 6. What is the expected running time if the weights are φ-perturbed?

6. The concept of zero-preserving perturbations could also be applied to the bicriteria case with
one adversarial objective function and one linear objective function with φ-perturbed coeffi-
cients. Show that, in contrast to the multiobjective case, for bicriteria optimization problems
it does not increase the expressibility. For this, show that zero-preserving perturbations for
the bicriteria case can be simulated by φ-perturbed coefficients if the set S of feasible solu-
tions is adapted appropriately. Why does this simulation not work for problems with three
or more objectives?

7. Prove that the expected number of Pareto-optimal points among n points drawn indepen-
dently and uniformly at random from the unit square is O(log n).

8. Given an instance I of some linear binary optimization problem Π with a set S ⊆ {0, 1}n of
feasible solutions, the winner gap is defined as

∆ = cTx⋆⋆ − cTx⋆,

where
x⋆ = argmin{cTx | x ∈ S} and x⋆⋆ = argmin{cTx | x ∈ S \ {x⋆}}

denote the best and second best solution of I, respectively. Let I be an instance of Π with
φ-perturbed coefficients c1, . . . , cn. Prove that, for every ε > 0,

Pr[∆ ≤ ε] ≤ 2nφε.

Hint: This statement follows by similar arguments as Lemma 10.

References

Beier, René. 2004. Probabilistic Analysis of Discrete Optimization Problems. Ph.D. thesis, Univer-
sität des Saarlandes.

Beier, René, and Vöcking, Berthold. 2004. Random Knapsack in Expected Polynomial Time.
Journal of Computer and System Sciences, 69(3), 306–329.

Beier, René, and Vöcking, Berthold. 2006. Typical Properties of Winners and Losers in Discrete
Optimization. SIAM Journal on Computing, 35(4), 855–881.

Beier, René, Röglin, Heiko, and Vöcking, Berthold. 2007. The Smoothed Number of Pareto Optimal
Solutions in Bicriteria Integer Optimization. Pages 53–67 of: Proceedings of the 12th International
Conference on Integer Programming and Combinatorial Optimization (IPCO).

20

Bökler, Fritz, Ehrgott, Matthias, Morris, Christopher, and Mutzel, Petra. 2017. Output-sensitive
complexity of multiobjective combinatorial optimization. Journal of Multi-Criteria Decision
Analysis, 24(1-2), 25–36.

Brunsch, Tobias. 2014. Smoothed Analysis of Selected Optimization Problems and Algorithms.
Ph.D. thesis, Universität Bonn.

Brunsch, Tobias, and Röglin, Heiko. 2015. Improved Smoothed Analysis of Multiobjective Opti-
mization. Journal of the ACM, 62(1), 4:1–4:58.

Brunsch, Tobias, Goyal, Navin, Rademacher, Luis, and Röglin, Heiko. 2014. Lower Bounds for the
Average and Smoothed Number of Pareto-Optima. Theory of Computing, 10, 237–256.

Corley, H. William, and Moon, I. Douglas. 1985. Shortest paths in networks with vector weights.
Journal of Optimization Theory and Application, 46(1), 79–86.

Diakonikolas, Ilias, and Yannakakis, Mihalis. 2007. Small Approximate Pareto Sets for Bi-objective
Shortest Paths and Other Problems. Pages 74–88 of: Proceedings of the 10th International
Workshop on Approximation Algorithms for Combinatorial Optimization Problems (APPROX).

Hansen, Pierre. 1979. Bicriterion Path Problems. Pages 109–127 of: Multiple Criteria Decision
Making: Theory and Applications. Lecture Notes in Economics and Mathematical Systems, vol.
177.

Hansen, Pierre. 1980. Bicriterion Path Problems. Pages 109–127 of: Multiple Criteria Decision
Making: Theory and Applications. Lecture Notes in Economics and Mathematical Systems, vol.
177.

Kung, H. T., Luccio, Fabrizio, and Preparata, Franco P. 1975. On Finding the Maxima of a Set of
Vectors. Journal of the ACM, 22(4), 469–476.

Moitra, Ankur, and O’Donnell, Ryan. 2012. Pareto Optimal Solutions for Smoothed Analysts.
SIAM Journal on Computing, 41(5), 1266–1284.

Müller-Hannemann, Matthias, and Weihe, Karsten. 2006. On the cardinality of the Pareto set in
bicriteria shortest path problems. Annals of Operations Research, 147(1), 269–286.

Nemhauser, George L., and Ullmann, Zev. 1969. Discrete dynamic programming and capital allo-
cation. Management Science, 15(9), 494–505.

Papadimitriou, Christos H., and Yannakakis, Mihalis. 2000. On the approximability of trade-
offs and optimal access of Web sources. Pages 86–92 of: Proceedings of the 41st Annual IEEE
Symposium on Foundations of Computer Science (FOCS).

Röglin, Heiko, and Rösner, Clemens. 2017. The Smoothed Number of Pareto-Optimal Solutions in
Non-integer Bicriteria Optimization. Pages 543–555 of: Proceedings of the 14th Annual Confer-
ence on Theory and Applications of Models of Computation (TAMC).

Röglin, Heiko, and Teng, Shang-Hua. 2009. Smoothed Analysis of Multiobjective Optimization.
Pages 681–690 of: Proceedings of the 50th Annual IEEE Symposium on Foundations of Computer
Science (FOCS).

Vassilvitskii, Sergei, and Yannakakis, Mihalis. 2005. Efficiently computing succinct trade-off curves.
Theoretical Computer Science, 348(2–3), 334–356.

21

	1 Algorithms for Computing Pareto Curves
	1.1 Knapsack Problem
	1.2 Shortest Path Problem
	1.3 Multiple Objectives and Other Optimization Problems
	1.4 Approximate Pareto Curves

	2 Number of Pareto-optimal solutions
	2.1 Knapsack Problem
	2.2 General Model
	2.3 Multiobjective Optimization Problems

	3 Smoothed Complexity of Binary Optimization Problems
	4 Conclusions

