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The human body plays an important role in face-to-face interactions (Knapp & Hall,
2010; McNeill, 1992). We use our bodies to regulate turns, to display attitudes and to
signal attention (Scheflen, 1964). Unconsciously, the body also reflects our affective
and mental states (Ekman & Friesen, 1969). There is a long history of research into the
bodily behaviors that correlate with the social and affective state of a person, in partic-
ular in interaction with others (Argyle, 2010; Dittmann, 1987; Mehrabian, 1968). We
will refer to these behaviors as bodily social signals. These social and affective cues
can be detected and interpreted by observing the human body’s posture and movement
(Harrigan, 2008; Kleinsmith & Bianchi-Berthouze, 2013). Automatic observation and
analysis has applications such as the detection of driver fatigue and deception, the analy-
sis of interest and mood in interactions with robot companions, and in the interpretation
of higher-level phenomena such as mimicry and turn-taking.

In this chapter, we will discuss various bodily social signals, and how to analyze and
recognize them automatically. Human motion can be studied on many levels, from the
physical level involving muscles and joints, to the level of interpreting a person’s full-
body actions and intentions (Poppe, 2007, 2010; Jiang et al., 2013). We will focus on
automatically analyzing movements with a relatively short time scale, such as a gesture
or posture shift. In the first section, we will discuss the different ways of measurement
and coding, both from motion capture data and images and video. The recorded data can
subsequently be interpreted in terms of social signals. In the second section, we address
the automatic recognition of several bodily social signals. We will conclude the chapter
with a discussion of challenges and directions of future work.

Measurement of Body Motion

Body movement can be observed and described quantitatively, for example, in terms
of joint rotations or qualitatively with movement labels. While social signals are typi-
cally detected and identified as belonging to a certain category, body motion is typically
described quantitatively. Therefore, the detection of bodily social signals is often based
on a quantitative representation of the movement. From the perspective of computation,
body motion is most conveniently recorded and measured using motion capture (mocap)
devices. However, their obtrusive nature, cost, and the fact that they typically cannot be
used outside the laboratory has limited their employment. Therefore, many researchers
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156 Machine Analysis of Social Signals

have turned to common, unobtrusive cameras for action recognition. Recently, the avail-
ability of cheap depth cameras provides opportunities as well. Bodily social signals can
be detected directly from videos and depth sequences or, indirectly, from recovered body
poses and movement.

We first discuss the manual and automatic measurement and common ways to rep-
resent human body movement. Next, we summarize the recording of motion capture,
video and depth images, and the processing needed to transform raw outputs into body
movement descriptions.

Manual and Automatic Measurement

The systematic analysis of body movement dates back to the early photography experi-
ments of Marey and Muybridge (see Klette & Tee, 2007 for a historical background). By
analyzing successive photos, they were able to analyze patterns of movement. Later, the
introduction of video recording and play-back equipment allowed researchers to ana-
lyze behavior on a finer time scale (Condon & Ogston, 1966; Eisler, Hersen, & Agras,
1973). Initially, such analyses were used to investigate patients with mental diseases,
but these methods soon found their way to the more general study into (communicative)
nonverbal behavior.

Together with the increasing sophistication of recording and play-back devices, the
opportunities for analysis developed. From videos, researchers coded specific behav-
iors that they were interested in. Evaluative coding relies on researchers that code
their recorded material for the occurrence of particular forms of nonverbal behavior
(Rozensky & Honor, 1982). These specific qualitative schemes have led to models of
turn-taking (Sacks, Schegloff, & Jefferson, 1974) and gesturing (Lausberg & Sloetjes,
2009), amongst others. While it has been found that many bodily behaviors can be
coded reliably (Baesler & Burgoon, 1987), evaluative schemes require interpretation of
the observed behavior. This is especially true for bodily social signals. The variation in
the performance of nonverbal behavior in magnitude, form, and direction requires that
boundaries on the labels are set, which is an arbitrary task (Scherer & Ekman, 2008).

To address this issue, researchers have been looking at ways to describe human
motion quantitatively. They developed schemes including the Bernese system for time
series notation (Frey & von Cranach, 1973) and the Laban movement analysis (von
Laban, 1975), which evolved into Labanotion (Hutchinson Guest, 2005). These sys-
tems describe body part positions and motion in terms of angles and velocities (Bente,
1989; Hirsbrunner, Frey, & Crawford, 1987) and have been found to be generally appli-
cable and sufficiently detailed to animate computer characters (Bente et al., 2001). The
recently introduced body and action posture (BAP; Dael, Mortillaro, & Scherer, 2012)
coding system includes both quantitative aspects such as orientation and magnitude of
body part movement, and functional descriptions, following Ekman & Friesen (1969).
The system differentiates between posture units and action units, of which the latter are
more subject to interpretation.
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Automatic Analysis of Bodily Social Signals 157

Both the qualitative and quantitative approaches have led to insights into bodily
behavior. However, manually coding data is time consuming, meaning that there is often
an inherent trade-off between the number of coded actions and the amount of coded
material (Poppe et al., 2014). With the increasing availability of technology to record
and analyze human motion, researchers have begun to address the automatic analysis of
recorded data (Poppe, 2007, 2010). We will discuss advances in this direction.

Human Body Representation

Body movement can be described in terms of body mass displacement, muscle activa-
tions, or joint positions, to name a few. Describing the movement at the skeleton level
is convenient, given that motion takes place at the joints (Poppe et al., 2014). The skele-
ton can be considered as a set of body parts (bones) connected by joints. Body poses
can be represented as instantiations of joint positions. All joints and body parts in the
human body together form a kinematic tree, a hierarchical model of interconnectivity.
Typically, joints in the spine, hands, and feet are omitted. The joint at the top of the
tree, usually the pelvis, forms a root to which all other joints are relative. When two
joints are connected to a body part, the one higher in the tree hierarchy is considered the
parent and the other the child. Movement in a parent joint affects the child joints. For
example, movement of the left shoulder affects the position of the left elbow and wrist
joints. Joint positions can be described globally with reference to a global axis system
and origin. Alternatively, they can be described relative to their parent in the tree. Global
and local representations each have their relative advantages. The former are most con-
venient when comparing full-body poses, as distances between pairs of joints can be
calculated in a straightforward manner. When analyzing the movement of a single body
part or joint, local representations enable the analysis of the motion in isolation.

The global or local positions of all joints form an adequate description of the body
pose, especially when normalized for global position, orientation, and differences in
body sizes (Poppe et al., 2014). Poses encode the positions of body parts, but do not
reveal anything about their motion. To this end, the velocity of the joints can be used.
Pose and motion information are often complementary and are both used in the analysis
of bodily social signals.

Motion Capture

Motion capture technology employs either markers or wearable sensors to determine
a subject’s body pose. Marker-based mocap setups record the positions of markers
attached to the body using many cameras. With proper calibration, these sensor posi-
tions can be translated to the positions of the joints. The advantage of such systems
is their high accuracy. However, the space in which the movement can take place is
limited, and marker occlusions, especially in the presence of other subjects, require
additional post-processing. Inertial devices eliminate the need for visible markers as the
sensors are worn on the body, possibly underneath clothing. This allows for their use
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158 Machine Analysis of Social Signals

in larger spaces and they perform more robustly when recording interactions between
multiple subjects. Their acceleration measurements can be converted to 3-D positions
of the joints. See (Poppe et al., 2014) for an overview and discussion of motion cap-
ture approaches. Both global and local joint positions can be obtained from mocap
devices.

Video Recordings

The use of video for the study of nonverbal behavior is appealing as the recording is
unobtrusive, both inside and outside the lab. In contrast to mocap devices, video cam-
eras are cheap and widely available. Moreover, the abundance of available recordings
portraying human behavior motivates the research efforts aimed at automatically ana-
lyzing them.

The analysis of human motion from video is challenging because of several factors.
An image is a projection of a 3-D scene in which the depth information is lost. More-
over, determining which parts of the image represent the human figure is challenging,
especially in the presence of background clutter and partial occlusion of the body. Nui-
sance factors such as variations in lighting, clothing, body sizes, and viewpoint add
further to the challenge (Poppe, 2010).

In general, there are two main approaches to analyzing human movement from video.
First, a body movement representation in terms of joint positions can be extracted, as
described in the section on human body representation. Second, the characteristics of the
image or movement in the image can be used directly for analysis. The results of these
two approaches are pose-based and feature-based representations, respectively. We will
discuss them in the following sections.

Pose-based Representations
There is a large volume of published research on estimating human body poses from
video. A comprehensive discussion appears in Poppe (2007). Here, we will outline the
most common approaches: model-based and discriminative.

In the first approach, model-based human pose estimation algorithms match an articu-
lated model of a human to an image frame in a video. The model consists of a kinematic
structure (see the section on human body representation) and a function that projects the
model to the image. The image projection function determines how a pose of the model
appears in an image, for example, in terms of image edges, silhouette, or color. Given
that a body pose is a particular joint parameter instantiation, pose estimation becomes
the process of finding the parameters that result in the best match between the image
and the model projection. This match is evaluated in terms of image feature distance,
usually in an iterative manner. This process is computationally expensive, but allows for
the evaluation of a large number of parameters of the pose as well as the shape of the
person (Guan et al., 2009).

This estimation process can be top-down, starting with the torso and working down
the kinematic chain until the pose of the limbs is found. Deutscher, & Reid (2005)
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Automatic Analysis of Bodily Social Signals 159

match the edges and silhouette information of a model with cylindrical body parts to
those extracted from an image. They gradually reduce the amount of change in the pose
to arrive at the final body pose estimate. Usually, the refinement of the pose is guided
by a priori information on how humans move, including typical poses (Vondrak, Sigal,
& Jenkins, 2013).

Alternatively, the process of estimating body poses can be bottom-up by first detect-
ing potential body part locations in the image. Detectors are templates of a body part,
often encoded as edge representations with additional cues such as color and motion
(Eichner et al., 2012). In recent years, deformable part models have become popular
due to their ability to simultaneously detect different parts of the body and reason which
body poses are physically feasible and plausible (Felzenszwalb et al., 2010). Their out-
put is a set of 2-D joint positions, which can be lifted to 3-D when sufficient assumptions
about the observed motion have been made.

The second approach is the discriminative approach. Rather than iteratively fitting
a human model to the data, one can learn a mapping from image to body poses from
training data. Such a mapping can be implemented by regression models (Bo & Smin-
chisescu, 2010). Typically, training data consists of image features and an associated
description of pose and viewpoint. Body poses can be recovered from test videos
by first extracting image features and then applying the mapping. These discrimina-
tive, or learning-based, approaches are computationally much faster than model-based
algorithms but can only reliably recover body poses if there is training data avail-
able with similar poses and viewpoints. This requires a lot of training data to suf-
ficiently cover the range of poses. Given the large number of possible body poses,
this has typically led researchers to concentrate their training data on common activ-
ities, although more recent approaches have targeted less constrained motion domains
(Shotton et al., 2011).

Feature-based Representations
In contrast to pose-based representations, feature-based representation are less seman-
tically meaningful but can be extracted efficiently from video images. Comparing an
image of a scene with people to an image of the same scene without people will reveal
one or a number of regions of differences that correspond to the locations of the people.
The locations, sizes and movements of these regions are informative of their positions
in the scene and can be used to investigate proximity and interaction patterns of small
groups, such as from top-down views (Veenstra & Hung, 2011).

By analyzing differences between subsequent frames, one can analyze motion at a
finer scale. While such differences can be the basis for the estimation of the locations
of body parts (Fragkiadaki, Hu, & Shi, 2013), they can also be used directly. For exam-
ple, the amount of movement, the direction of the movement, or the relative location of
the movement (upper-body or lower-body) can be informative of the social signals that
a person produces. Moreover, when looking at the movement of several people simul-
taneously, one can analyze the degree of mimicry in their interaction (Paxton & Dale,
2013).
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160 Machine Analysis of Social Signals

When analyzing bodily social signals, often there is a specific interest in the locations
of the hands and face. This is especially true for the analysis of gestures. Estimating the
2-D or 3-D positions of the hands and head is often less complex than estimating a full-
body pose, especially when relying on skin color detection. By detecting skin-colored
pixels and grouping them into connected regions, one can recover the location of the
hands and face.

Depth Images

Time-of-flight (Ganapathi et al., 2010) and structured light cameras such as Microsoft’s
Kinect (Shotton et al., 2011), can estimate the distance between the camera and points
in the scene. The availability of cheap devices has sparked the interest to use them to
observe and analyze human movement. Nuisance factors that occur when using videos,
including cluttered backgrounds and variation in lighting, are significantly reduced and
the additional availability of depth information aids in labeling body parts and their
orientation.

Recognition of Bodily Social Signals

In this section, we will discuss the recognition of various bodily social signals from the
representations described in the first section. Recognizing, or classifying, social signals
is the process of assigning a (semantic) label to an observed sequence of bodily move-
ment. In general, the detection (in time) and recognition of bodily social signals are
challenging due to the variations in the temporal and spatial performance, both between
and within subjects. Social signals can have different bodily manifestations. Reversely,
one distinct bodily behavior can have different meanings. For example, raising a hand
can be a greeting or a sign to take the floor. The context in which the behavior is per-
formed is important to disambiguate between the different meanings. We will discuss
this in the next section.

Both the detection and recognition of social signals from body movement repre-
sentations are often implemented with machine learning techniques (Vinciarelli, Pan-
tic, & Bourlard, 2009). Given training data, which is a collection of body movement
instances with associated social signal labels, a mapping from the former to the latter
is learned. This mapping can take many forms, including state-space models such as
hidden Markov models (HMM), or discriminative classifiers, such as the support vector
machine (SVM). To deal with challenges, such as the diversity of the observed behav-
ior, the inherent ambiguity of the observed behavior, and the typically limited amount
of available training data, many different variants of machine learning algorithms have
been introduced. Other chapters address these techniques for the understanding of social
signals. In this section, we will focus on the potential and challenges in recognizing cer-
tain social signals from body movement. We will subsequently discuss the interpretation
of a person’s position relative to others (see Proxemics) and the analysis of social signals
from the body (see Kinesics).
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Automatic Analysis of Bodily Social Signals 161

Proxemics

The way people use the space around them in relation to others is referred to as prox-
emics. Hall (1966) defines four zones of interpersonal distance with different character-
istics in how people interact in terms of the way of gesturing and positioning the body.
Moreover, these zones correspond to the relation between the people, such as friend or
stranger. For small groups, people have been found to arrange themselves in so-termed
F-formations in which each person has equal, direct, and exclusive access to the others
(Kendon, 1990). When analyzing groups of people, the notion of relative orientation
and proximity have been found good cues to determine who is part of a subgroup (Groh
et al., 2010) and to predict mutual interest (Veenstra & Hung, 2011). Most of the work
on automatic analysis of proxemics has been carried out in social surveillance setting in
which body movement representations typically are feature-based. The automatic analy-
sis of proxemics has also been studied at a closer distance by Mead, Atrash, and Matarić
(2013). They considered a range of body movement features, including (relative) body
position and elements of the pose. We will discuss the analysis of full-body movement
in social interaction in the next section.

Kinesics

Kinesics refers to the study of body poses and movements as a mode of communi-
cation (Birdwhistell, 1952). The research on the automatic analysis of kinesics has
focused mainly on conversational settings, such as meetings, interviews, and other small
group interactions. The body has been found to communicate attitudes toward others in
the interaction (Ekman, 1965). Okwechime et al. (2011) have addressed the automatic
recognition of interest in interaction partners by analyzing gross body motion. Body
shifts can be easily detected from pose-based and feature-based body movement rep-
resentations, have been found to be indicative of disagreement (Bousmalis, Mehu, &
Pantic, 2013), and play a role in the turn-taking process (Scheflen, 1964), to name a few.
Moreover, mimicry in gross body motion can be a sign of rapport. It can be analyzed
from pose-based representations, from simple frame-differencing techniques (Paxton &
Dale, 2013) or from the detected position of the face in the image (Park et al., 2013).
Closer analysis of the body also allows for the analysis of respiration, which can be a
sign of anxiety. Burba et al. (2012) estimate the rate using a depth camera. Laughing
can be considered a more discrete bodily signal, and different types of laughter can be
recognized from mocap data (Griffin et al., 2013).

The hands are particularly informative of a subject’s social and affective state, given
that hand movements are closely tied to a person’s speech (McNeill, 1985). Gestures
and their co-occurrence with speech have been studied in great detail (Ekman & Friesen,
1969). The amount of gesturing has been found indicative of a user’s attitude and mental
state (Bull, 1987). For example, fidgeting behaviors have been shown to correlate with
an increased experience of distress (Scherer et al., 2013) and can be extracted robustly
from mocap representations (Burba et al., 2012). Similarly, self-touching has been found
to be a sign of self-confidence as well as anxiety (McNeill, 1992). Marcos-Ramiro et al.
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162 Machine Analysis of Social Signals

(2013) analyze self-touching in conversations from body pose representations obtained
from a depth camera.

Especially in conversational settings, the pose and movement of the head is indicative
of the subject’s attention and serves several functions in the turn-taking process (Heylen,
2006). The analysis of head pose over time from pose-representations is straightforward.
When the camera view covers a larger area and the subjects in the view are smaller,
head orientation estimation based on both the subject’s pose and head detection can be
used (Bazzani et al., 2013). This allows investigating the role of head movement in the
process of group formation and the evolvement of small group interactions.

One line of research has focused on estimating a subject’s affective state from full-
body poses and movements. The relation between specific body part positions and
movements has been analyzed, for example, by Wallbott (1998). Recently, the auto-
matic analysis has been attempted from pose-based, mainly recorded with mocap equip-
ment, and feature-based representations. The reader is referred to Kleinsmith, Bianchi-
Berthouze, and Steed (2011) for an overview of research in this area.

Challenges and Opportunities

The research into automatic recognition of bodily social signals and the study of social,
nonverbal behavior are not isolated but rather benefit from each other. A better under-
standing of how humans behave informs the design and implementation of better recog-
nition algorithms and, in turn, these advances in the automatic recognition help to better
understand human behavior.

Apart from their use in understanding the principles of human behavior, automatic
analysis of human body motion will continue to provide opportunities for online appli-
cations. The analysis of body movement can be used to analyze the outcome of nego-
tiations and debates, to help practice public speaking and as a quick way to automate
border control surveillance, to name a few. While initial work along these lines has
already begun, there are some challenges that need to be addressed.

Measurement
Mocap equipment allows for the accurate measurement of body motion, but not unob-
trusively. As such, it is not suitable for many applications outside the lab. Advances in
computer vision algorithms and the recent introduction of depth cameras allow for the
measurement outside the lab without the need of markers or wearable sensors, but their
accuracy and robustness is still limited.

Given that many of the systematics of human nonverbal behavior are expressed in
qualitative terms, a challenge is faced in converting the quantitative body movement
measurements to these human-understandable, qualitative terms. This would allow for
the adoption of the large body of literature of bodily behavior. Velloso, Bulling, and
Gellersen (2013), among others, address this challenge by automatically estimating
BAP labels from mocap data. They demonstrate that this is not a straightforward task
and future work should be aimed at investigating how such a mapping can be made.

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316676202.012
Downloaded from https://www.cambridge.org/core. Universiteitsbibliotheek Utrecht, on 28 Sep 2017 at 10:24:09, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316676202.012
https://www.cambridge.org/core
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Recognition
Researchers have begun to adopt machine learning techniques that take into account
individual differences in the display of bodily signals and the inherent ambiguity of
body movement. Learning such models typically requires large amounts of training data
for which obtaining ground truth labels is time-consuming. Researchers should look for
alternative ways to label their data, for example, using crowdsourcing, implicit tagging,
semi-supervised approaches, or by considering correlations between modalities. More-
over, when evaluating recognition algorithms, the optionality and ambiguity of social
signals should be taken into account. The detection in time is often not addressed, which
effectively avoids issues with the rare occurrence of social signals, and the associated
problem of the detection of false positives. Future work should address the simultaneous
detection and recognition of social signals from body movement data.

Context
Current work targets the recognition of specific bodily social signals in relative isolation.
While the work in this direction progresses, there is an increasing need to understand
the behavior more thoroughly. To this end, researchers should look beyond just the body
and include other available knowledge, sometimes referred to as context. We distinguish
here between the notion of other subjects, the specific task and setting, and cues from
other modalities than the body movement.

Other subjects often provide a strong cue of the type of interaction that takes place.
People respond to each other in more or less known patterns. Observing certain behav-
ior in one person might aid in automatically understanding that of another person. For
example, recognizing that one person sneezes helps in understanding why others turn
their heads.

Many social signals are being studied in a restricted domain, such as a negotiation or
tutoring setting. Knowledge of this setting helps in reducing the ambiguity in explain-
ing the occurrence of a bodily behavior. When moving to less constrained application
domains, it will be necessary to explicitly model the task and setting in order to perform
such disambiguation.

We have discussed the analysis of social signals from the body, but there are often
correlations between behavior of the body, the face, and voice. By taking a multimodal
approach, the ambiguity in a single modality can be reduced and the recognition can
accordingly be made more robust. Moreover, taking into account multiple modalities
will help in addressing individual differences in the display of social signals across
modalities (Romera-Paredes et al., 2013).

Conclusion

In this chapter, we have discussed the measurement and representation of human body
motion. We have presented the current state of recognizing several bodily social signals.
Finally, we have presented challenges in the automatic detection and recognition of bod-
ily social signals and ways to address these. Given the advances, both in measurement
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164 Machine Analysis of Social Signals

technology and recognition algorithms, we foresee many interesting novel applications
that consider social signals from the body. Moreover, the increasing robustness of cur-
rent algorithms will allow for a wider embedding of such algorithms in multimedia
analysis, social surveillance, and in human–machine interfaces, including social robots.
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