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1.1 Introduction

In this chapter we focus on systematization, analysis, and discussion of recent

trends in machine learning methods for Social signal processing (SSP)(Pentland

2007). Because social signaling is often of central importance to subconscious de-

cision making that affects everyday tasks (e.g., decisions about risks and rewards,

resource utilization, or interpersonal relationships) the need for automated un-

derstanding of social signals by computers is a task of paramount importance.

Machine learning has played a prominent role in the advancement of SSP over

the past decade. This is, in part, due to the exponential increase of data avail-

ability that served as a catalyst for the adoption of a new data-driven direction in

affective computing. With the difficulty of exact modeling of latent and complex

physical processes that underpin social signals, the data has long emerged as the

means to circumvent or supplement expert- or physics-based models, such as the

deformable musculo-sceletal models of the human body, face or hands and its

movement, neuro-dynamical models of cognitive perception, or the models of the

human vocal production. This trend parallels the role and success of machine

learning in related areas, such as computer vision, c.f., (Poppe 2010, Wright

et al. 2010, Grauman & Leibe 2011), or audio, speech and language processing,

c.f., (Deng & Li 2013), that serve as the core tools for analytic SSP tasks. Rather

than emphasize the exhaustive coverage of the many approaches to data-driven

SSP, which can be found in excellent surveys (Vinciarelli et al. 2009, Vinciarelli

et al. 2012), we seek to present the methods in the context of current modeling

challenges. In particular, we identify and discuss two major modeling directions:

• Simultaneous modeling of social signals and context, and

• Modeling of annotators and the data annotation process.

Context plays a crucial role in understanding the human behavioral signals that

can otherwise be easily misinterpreted. For instance, a smile can be a display

of politeness, contentedness, joy, irony, empathy or a greeting, depending on the

context. Yet, most SSP methods to date focus on the simpler problem of detecting

a smile as a prototypical and self-contained signal. To identify the smile as a social

signal one must simultaneously know the location of where the subject is (outside,

at a reception, etc.), what his or her current task is, when the signal was displayed
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(timing), and who the expresser is (expresser’s identity, age and expressiveness).

(Vinciarelli et al. 2009) identify this as the W4 quadruplet (where, what, when,

who) but quickly point out that comprehensive human behavior understanding

requires the W5+ sextuplet (where, what, when, who, why, how), where the why

and how factors identify both the stimulus that caused the social signal (e.g.,

funny video) as well as how the information is passed on (e.g, by means of facial

expression intensity). However, most current SSP methods, including the data-

driven ones, are not able to provide a satisfactory answer to W4, let alone W5+.

Simultaneously answering the W5+ is a key challenge of data driven SSP.

Another key factor in machine learning-based SSP is the curse of annota-

tions. Unlike in many traditional machine learning settings, social signals are

frequently marked by multiple annotators, be those experts or novices, with an

unknown ground truth. Because of the often subjective interpretation of social

signals, annotations reflect both the annotators bias and the potential temporal

lag in marking the time-course of the signal. Hence, modeling of the annotators

themselves and deriving the gold standard, in addition to modeling the expresser

and its signal, is another crucial factor for full and robust automated social sig-

nal understanding. We therefore analyze recent approaches to the annotation

modeling process in this context.

The two modeling challenges are universal across different signal modalities

(e.g., visual or auditory). In the rest of this chapter we focus on one signal

domain, that of facial signals, that most ubiquitously illustrates the new data-

driven modeling directions. Specifically, we consider the problems of Facial Ex-

pression Measurements and describe the state-of-the-art in machine learning

methods as they relate to modeling of the signal-and-context and the anno-

tators/annotations.

1.2 Facial Expression Analysis

There are two main streams in the current research on automatic analysis of

facial expressions. The first considers holistic facial expressions such as facial

expressions of six basic emotions (fear, sadness, happiness, anger, disgust, sur-

prise) proposed by Ekman (Ekman et al. 2002), and facial expressions of pain,

for instance. The second considers local facial expressions, described with a set

of facial muscle actions named Action Units (AUs), as defined in the Facial Ac-

tion Coding System (FACS) (Ekman et al. 2002). In what follows, we review

the existing machine learning approaches for automated classification, tempo-

ral segmentation and intensity estimation of facial expressions, and relate these

approaches to the W5+ context design.

1.2.1 Classification of Facial Expressions

Different methods have been proposed for classification of facial expressions from

image sequences. Depending on how these methods perform classification of facial
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expressions they can be divided into frame-based and sequence-based methods.

The frame-based methods for classification of facial expressions of six-basic emo-

tion categories (Ekman et al. 2002) typically employ static classifiers such as

rule-based classifiers (Pantic & Rothkrantz 2004, Black & Yacoob 1997), Neural

Networks (NN) (Padgett & Cottrell 1996, Tian 2004), Support Vector Machine

(SVM) (Bartlett et al. 2005, Shan et al. 2009), and Bayesian Networks (BN)

(Cohen et al. 2003). SVMs and its probabilistic counterpart, Relevance Vector

Machine (RVM), have been used for classification of facial expressions of pain

(Lucey et al. 2011, Gholami et al. 2009). For instance, (Lucey et al. 2011) ad-

dressed the problem of pain detection by applying SVMs either directly to the

image features or by applying a two-step approach, where AUs were first detected

using SVMs, the outputs of which were then fused using the Logistic Regression

model. Similarly, for the static classification of AUs, where the goal is to as-

sign to each AU a binary label indicating the presence of an AU, the classifiers

based on NN (Bazzo & Lamar 2004, Fasel & Luettin 2000), Ensemble Learn-

ing techniques (such as AdaBoost (Yang et al. 2009a) and GentleBoost (Hamm

et al. 2011)), and SVM (Chew et al. 2012, Bartlett et al. 2006, Kapoor et al. n.d.),

are commonly employed. These static approaches are deemed context-insensitive

as they focus on answering only one context question, i.e., how. Recently, (Chu

et al. 2013) proposed a transductive learning method, named Selective Trans-

fer Machine (STM), where a SVM classifier for AU detection is personalized by

attenuating person-specific biases, thus, simultaneously answering the context

questions who and how. This is accomplished by learning the classifier and re-

weighting the training samples that are most relevant to the test subject during

inference.

The common weakness of the frame-based classification methods is that they

ignore dynamics of target facial expressions or AUs. Although some of the frame-

based methods use the features extracted from several frames in order to en-

code dynamics of facial expressions, models for dynamic classification provide a

more principled way of doing so. With a few exceptions, most of the dynamic

approaches to classification of facial expressions are based on the variants of

Dynamic Bayesian Networks (DBN) (e.g., Hidden Markov Models (HMM) and

Conditional Random Fields (CRF)). For example, (Otsuka & Ohya 1997, Shang

& Chan 2009) trained independent HMMs for each emotion category, and then

performed emotion categorization by comparing the likelihoods of the HMMs. In

(Otsuka & Ohya 1997), the input features are based on velocity vectors computed

using the optical flow algorithm, while the observation probability, correspond-

ing to the hidden states in the HMMs, is modeled using mixtures of Gaussians

in order to account better for variation in facial expressions of different sub-

jects. Likewise, (Shang & Chan 2009) used geometric features (i.e. locations of

facial points) and a non-parametric estimate of the observation probability in

the HMM model. While these methods perform the expression classification of

the pre-segmented image sequences, corresponding to the target emotion cate-

gory, (Cohen et al. 2003) presented a two-level HMM classifier that performs
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expression classification by segmenting sequences of arbitrary length into the

segments, corresponding to different emotion categories. This is accomplished

by learning first the expression-specific HMMs, and then the transitions between

the expression categories using another HMM, taking as an input the predictions

of the expression-specific HMMs. Simultaneous classification of different AUs us-

ing HMMs was addressed in (Khademi et al. 2010) using a Hybrid HMM-ANN

model. In this model, the temporal development of each AU is first modeled using

AU-specific HMMs. Subsequently, the outputs of different HMMs are combined

in the ANN to account for the AU dependencies.

Discriminative models based on CRFs have also been proposed (der Maaten &

Hendriks 2012, Jain et al. 2011, Chang et al. 2009). In (der Maaten & Hendriks

2012), the authors trained one linear-chain CRF per AU. The model’s states

are binary variables indicating the AU activations. (Jain et al. 2011) proposed

a generalization of the linear-chain CRF model, a Hidden Conditional Random

Field (HCRF) (Wang et al. 2006), where additional layer of hidden variables

is used to model temporal dynamics of facial expressions. The training of the

model was performed using image sequences, but classification of the expres-

sions was done by selecting the most likely class (i.e. emotion category) at each

time instance. The authors showed that: (i) having the additional layer of hidden

variables results in the model being more discriminative than the standard linear-

chain CRF, and (ii) that modeling of the temporal unfolding of the facial shapes

is more important for discrimination between different facial expressions than

their spatial variation (based on comparisons with SVMs). Another modification

of HCRF, named partially-observed HCRF, was proposed in (Chang et al. 2009).

In this method, the appearance features based on the Gabor wavelets were ex-

tracted from image sequences, and linked to the facial expressions of the target

emotion category via hidden variables in the model. The hidden variables rep-

resent subsets of AU combinations, encoded using the binary information about

the AU activations in each image frame. In this way, classification of the emo-

tion categories (sequence-based), and the AU combinations (frame-based), was

accomplished simultaneously. This method outperformed the standard HCRF,

which does not use a prior information about the AU combinations. Temporal

consistency of AUs was also modeled in (Simon et al. 2010) using the structured-

output SVM framework for detecting the starting and ending frames of each AU.

More complex graph structures within the DBN framework have been pro-

posed in (Zhang & Ji 2005, Tong et al. 2007) for dynamic classification of facial

expressions. In (Zhang & Ji 2005), the DBN was constructed from interconnected

time slices of static Bayesian networks, where each static network was used to

link the geometric features (i.e. locations of characteristic facial points) to the

target emotion categories via a set of related AUs. Specifically, the relationships

between the neighboring time slices in the DBN were modeled using the first-

order HMMs. (Tong et al. 2007) modeled relationships between different AUs

using another variant of a DBN. In this model, the Adaboost classifiers were

first used for independent classification of AUs to select the AU-specific features.
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These features were then passed as inputs to the DBN, used to model temporal

unfolding of the AUs as well as their co-occurrences.

Finally, some authors attempted modeling of the facial expression dynamics

on the expression-specific manifold (Hu et al. 2004, Shan et al. 2006, Lee &

Elgammal 2005). For instance, (Hu et al. 2004) used a low dimensional Isomap

embedding to build a manifold of shape variation across different subjects, and

then used the I-condensation algorithm to simultaneously track and recognize

target emotion categories within a common probabilistic framework. (Shan et al.

2006) used a Bayesian temporal model (with Markov property) for the expression

classification on the manifold derived using a supervised version of the Locality

Preserving Projections (LPP) method (He & Niyogi 2004). As with the models

mentioned above, these models account for the context questions how, and im-

plicitly for the context question when, due to their modeling of the temporal dy-

namics. Static modeling using the expression manifold can also be attained using

multi-linear decomposable generative models, as done in (Lee & Elgammal 2005).

The authors used these models to separate the subject identity from the facial

expressions on a manifold, followed by the expression classification. In contrast

to the dynamic manifold-based models mentioned above, this approach accounts

only for the context question how. While it has potential for accounting for the

context question who, as well as the other context questions due to its decom-

posable nature, this has not been explored so far.

1.2.2 Temporal Segmentation of Facial Expressions

Most of the works on facial expression analysis from image sequences implicitly

answer the context question when as they focus only on classification of tar-

get expressions and/or AUs. For instance, in the HMM-based models for facial

expression classification (Shang & Chan 2009, Cohen et al. 2003), the number

of hidden states is set so that they correspond to the temporal segments (neu-

tral/onset/apex/offset) of facial expressions. They do not, however, explicitly

encode these dynamics (i.e. they do not perform classification of the temporal

segments). Yet, both the configuration, in terms of AUs constituting the ob-

served expressions, and their dynamics, in terms of timing and duration of the

temporal segments of facial expressions, are important for categorization of, e.g.,

complex psychological states, such as various types of pain and mood (Pantic

& Bartlett 2007). They also represent a critical factor in interpretation of social

behaviors like social inhibition, embarrassment, amusement, and shame, and are

a key parameter in differentiation between posed and spontaneous facial displays

(Ekman et al. 2002).

The class of models that performs segmentation of the expression sequences

into different temporal segments try to answer the context questions how (e.g.

the information is passed on by the apex of a facial expression of emotion or AU)

and when (i.e. when did it occur in the expression sequence?), thus accounting

explicitly for this context question. For instance, in (Pantic & Patras 2005) and
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(Pantic & Patras 2006), a static rule-based classifier and the geometric features

(i.e. facial points) were used to encode temporal segments of AUs in near-frontal

and profile view faces, respectively. The works in (Koelstra et al. 2010, Valstar

& Pantic 2012) proposed modifications of standard HMMs to encode temporal

evolution of the AU segments. Specifically, (Koelstra et al. 2010) proposed a

combination of discriminative, frame-based GentleBoost ensemble learners, and

HMMs for classification and temporal segmentation of AUs. Similarly, (Valstar

& Pantic 2012) combined SVMs and HMMs in a Hybrid SVM-HMM model

based on the geometric features for the same task. Classification and temporal

segmentation of the emotion categories was also attempted in (Gunes & Piccardi

2009) using HMMs and SVMs.

A variant of the linear-chain CRF, named the Conditional Ordinal Random

Field (CORF), was proposed in (Kim & Pavlovic 2010) for temporal segmenta-

tion of the emotion categories. In this model, the node features of the linear-chain

CRF model are set using the modeling strategy of the standard ordinal regres-

sion models, e.g. (Chu & Ghahramani 2005), in order to enforce the ordering of

the temporal segments (neutral<onset<apex). The authors emphasize the im-

portance of modeling the ordinal constraints, as well as the temporal constraints

imposed by a transition model defined on the segments. On the target task, the

proposed CORF model outperforms the static classifiers for nominal data such

as SVMs, and ordinal data such as Support Vector Ordinal Regression (SVOR)

(Chu & Keerthi 2005), as well as traditional dynamic models for nominal data

such as HMMs and CRFs. An extension of this model was proposed in (Rudovic

et al. 2012b), where the authors combined different emotion-specific CORF mod-

els in the HCRF framework. In contrast to the CORF model, this model performs

simultaneous classification and temporal segmentation of the emotion categories.

More recently, (Rudovic et al. 2012a) introduced a kernel extension of the CORF

model and applied it to the AU temporal segmentation. Compared to the nom-

inal temporal models such as Hybrid SVM-HMM (Valstar & Pantic 2012) and

the linear CORF/CRF models, this model showed improved performance in the

target task on most the AUs tested, which is mainly attributed to its non-linear

feature functions.

1.2.3 Intensity Estimation of Facial Expressions

Facial expression dynamics can also be described in terms of their intensity. Ex-

plicit analysis of the expression intensity is important for accurate interpretation

of facial expressions, and is also essential for distinguishing between spontaneous

and posed facial expressions (Pantic & Bartlett 2007). For example, a full-blown

smile and a smirk, both coded as AU12 but with different intensities, have very

different meanings (e.g., enjoyment vs. sarcasm). However, discerning different

intensities of facial expressions is a far more challenging task than the expression

classification. This is mainly because the facial muscle contractions are combined

with the individual’s physical characteristics, producing changes in appearance
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that can vary significantly between subjects (Ekman et al. 2002). As a conse-

quence, the methods that work for intense expressions may generalize poorly to

subtle expressions with low intensity.

While FACS (Ekman et al. 2002) provides a 5-point ordinal scale for cod-

ing the intensity AUs, there is no established standard for how to code the

intensity of holistic facial expressions (e.g., those of the six basic emotions).

Primarily for this reason and the observation in (Hess et al. 1997) that the

expression decoding accuracy and the perceived intensity of the underlying af-

fective state vary linearly with the physical intensity of a facial display, the

existing works on intensity estimation of facial expressions of the basic emotions

resort to an unsupervised approach to modeling of the expression intensity (e.g.,

(Amin et al. 2005, Shan 2007, Kimura & Yachida 1997, Lee & Xu 2003, Yang

et al. 2009b)). The main idea in these works is that the variation in facial images

due to the facial expressions can be represented on a manifold, where the image

sequences are embedded as continuous curves. The distances from the origin of

the manifold (corresponding to the embedding of the neutral faces) are then re-

lated to the intensity of the facial expressions. For instance, (Amin et al. 2005)

used an unsupervised Fuzzy-K-Means algorithm to perform clustering of the

Gabor wavelet features, extracted from expressive images, in a 2D eigenspace

defined by the pairs of the features’ principal components chosen so that the

centroids of the clusters lie on a straight line. The cluster memberships are then

mapped to three levels of intensity of a facial expression (e.g. less happy, moder-

ately happy, and very happy). Similarly, (Shan 2007) first applied a supervised

LPP technique (Shan et al. 2005) to learn a manifold of six basic expression

categories. Subsequently, Fuzzy K-Means was used to cluster the embeddings of

each expression category into three fuzzy clusters corresponding to a low, mod-

erate and high intensity of target expressions. (Kimura & Yachida 1997) used a

Potential Net model to extract the motion-flow-based features from images of

facial expressions, which were used to estimate a 2D eigenspace of the expression

intensity. (Lee & Xu 2003) and (Yang et al. 2009b) also performed the intensity

estimation on a manifold of facial expressions. Specifically, (Lee & Xu 2003) used

isometric feature mapping (Isomap) to learn a 1D expression-specific-manifold,

and the distances on the manifold were then mapped into the expression in-

tensity. The mapping of the input features to the expression intensity of three

emotion categories (happiness, anger and sadness) was then modeled using either

Cascade NNs or Support Vector Regression (SVR). On the other hand, (Yang

et al. 2009b) treated the intensity estimation as a ranking problem. The authors

proposed the RankBoost alghorithm for learning the expression-category-specific

ranking functions that assign different scores to each image frame, assumed to

correspond to the expression intensity. These scores are based on the pair-wise

comparisons of the changes in the Haar-like features, extracted over time from

facial images. The main criticism of these works is that the expression intensity

is obtained as a byproduct of the learning method (and the features) used, which

makes the comparison of the different methods difficult.
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Recent release of the pain-intensity coded data (Lucey et al. 2011) has moti-

vated research into automated estimation of the pain intensity levels (Hammal &

Cohn 2012, Kaltwang et al. 2012, Rudovic et al. 2013a). For example, (Hammal

& Cohn 2012) performed estimation of 4 pain intensity levels, with the levels

greater than 3 on the 16-level scale being grouped together. The authors applied

Log-Normal filters to the normalized facial appearance to extract the image fea-

tures, which were then used to train binary SVM classifiers for each pain intensity

level, on a frame-by-frame basis. Instead of quantizing the intensity levels for the

classification, (Kaltwang et al. 2012) treated the pain intensity estimation as a

regression problem. To this end, the authors proposed a feature-fusion approach

based on the Relevance Vector Regression (RVR) model. While these works fo-

cus on static modeling of the pain intensity, (Rudovic et al. 2013a) proposed the

Heteroscedastic CORF model for dynamic intensity estimation of six intensity

levels of pain. In this CRF-like model, the authors model the temporal unfolding

of the pain intensity levels in an image sequence, where the ordering of the image

frames with different intensity levels is enforced. The heteroscedastic variance in

the model also allows it to more easily adapt to different subjects.

AU intensity estimation is a relatively recent problem within the field, and only

a few works have addressed it so far. Based on the modeling approach, these can

be divided into static methods (Mahoor et al. 2009, Mavadati et al. 2013, Savrana

et al. 2012, Kaltwang et al. 2012, Jeni et al. 2013) and dynamic methods (Rudovic

et al. 2013b). The static methods can further be divided into classification-based

methods (e.g., (Mahoor et al. 2009, Mavadati et al. 2013)) and regression-based

(e.g, (Savrana et al. 2012, Kaltwang et al. 2012, Jeni et al. 2013)). The static

classification-based methods (Mahoor et al. 2009, Mavadati et al. 2013) perform

multi-class classification of the intensity of AUs using the SVM classifier. For

example, (Mahoor et al. 2009) performed the intensity estimation of AU6 (cheek

raiser) and AU12 (lip corner puller) from facial images of infants. The input fea-

tures were obtained by concatenation of the geometric and appearance features.

Due to the excessive number of the features, the Spectral Regression (SR) (Cai

et al. 2007) was applied to select the most relevant features for the intensity esti-

mation of each AU. The intensity classification was performed using AU-specific

SVMs. On the other hand, the static regression-based methods model the in-

tensity of AUs on a continuous scale, using either logistic regression (Savrana

et al. 2012), RVM regression (Kaltwang et al. 2012), or Support Vector Regres-

sion (SVR) (Jeni et al. 2013). For instance, (Savrana et al. 2012) used Logistic

Regression for AU intensity estimation, where the input features were selected

by applying an AdaBoost-based method to the Gabor wavelet magnitudes of

2D luminance and 3D geometry extracted from the target images. (Kaltwang

et al. 2012) used the RVM model for intensity estimation of 11 AUs using im-

age features such as Local Binary Patterns (LBPs), Discrete Cosine Transform

(DCT) and the geometric features (i.e. facial points), as well as their fusion. (Jeni

et al. 2013) proposed a sparse representation of the facial appearance obtained

by applying Non-negative Matrix Factorization (NMF) filters to gray-scale im-
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age patches extracted around facial points from the AU coded facial images,

thus answering the context question who indirectly, in addition to the context

question how, which is also answered in the other models mentioned above.

The image patches were then processed by applying the personal mean texture

normalization, and used as input to the SVR model for the intensity estimation.

SVMs were also used to analyze the AU intensities in (Bartlett et al. 2006, Reilly

et al. 2006, Delannoy & McDonald 2008), however, these works did not report

any quantitative results.

Figure 1.1 The cs-CORF model (Rudovic et al. 2013b) simultaneously accounts for the
context questions who, how and when. x are the feature measurements, and the latent
variable z is non-linearly related to the ordinal labels y via the ordinal probit
function, used to define the node features in the cs-CORF model. For more details,
see (Rudovic et al. 2013b).

So far, all the methods for intensity estimation of AUs, except that in (Jeni

et al. 2013), account only for the context question how. Recently, (Rudovic

et al. 2013b) proposed the Context-sensitive Conditional Ordinal Random Filed

(cs-CORF) model for dynamic estimation of intensity of AUs, and facial ex-

pressions of pain. This model is a generalization of the CORF models (Kim &

Pavlovic 2010, Rudovic et al. 2012b), proposed for expression classification and

temporal segmentation. The cs-CORF provides means of accounting for all six

context questions from the W5+ context model. In (Rudovic et al. 2013b), the

authors demonstrate the influence of context on intensity estimation of facial

expressions by modeling the context questions who (the observed person), how

(the AU intensity-related changes in facial expressions), and when (the timing

of the AU intensities). The context questions who and how are modeled by

means of the newly introduced context and context-free covariate effects, while

the context question when is modeled in terms of temporal correlation between

the ordinal outputs, i.e., the AU intensity levels. To deal with skewed distri-

butions of the AU intensity levels, the model parameters are adapted using a

weighted softmax-margin learning approach. All these effects are summarized in

the graphical representation of the cs-CORF model shown in Fig.1.1. In their ex-

periments on spontaneously displayed facial expressions, the authors show that

modeling of the ordinal relationships between the intensity levels, and their tem-

poral unfolding, improves the estimation compared to that attained by static

classification/regression models as well as the traditional nominal models for se-
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quence classification (i.e. CRFs). More importantly, they show that the modeling

of the context question who improves significantly the ability of the model to

discriminate between the expression intensity levels of different subjects.

1.3 Annotations in Social Signal Processing

The urgency for obtaining meaningful annotations is crucial for any field which

intersects with machine learning. Usually, the labelling task is performed man-

ually, involving the cost of manual labour, where a set of experts or simple

annotators is employed. This cost has though increased heavily during the past

years, since the vast explosion of information in the so-called ”Big Data“ era led

to the gathering of massive amounts of data to be annotated.

As an descriptive example, one can simply juxtapose Paul Ekman’s sem-

inal work on the six universal emotions (Pictures of Facial Affect) (Ekman

et al. 1975), to one of the modern databases on affect, the SEMAINE database

(McKeown et al. 2012). Ekman’s work contained 110 black and white images,

while approximately 2 seconds from one of the 959 sessions in SEMAINE contain

approximately 100 color frames, accompanied with audio. It is no less than a fact

that the task of annotating hours of audio-visual data is much more demanding

than merely annotating 100 images.

The exponential increase of data availability functioned as a catalyst for the

adoption of a new direction in Social Signal Processing (SSP). Since a large

amount of audiovisual material was now available, instead of assigning one class

label to a set of pre-defined episodes, researchers started to adopt continuous

annotations in terms of the temporal dimension, i.e. instead of labelling a set of

frames as ”happy“, now we can have one label per frame. Furthermore, if the label

is a real number indicating the “magnitude” of happiness, the labels are contin-

uous in both space and time. Most related research is based on the seminal work

of Russel (Posner et al. 2005), where affect is described via a set of latent dimen-

sions, which capture the emotional state of the subject beyond the basic, discrete

classes of emotion introduced by Ekman (anger, disgust, fear, happiness, sadness

and surprise). The most commonly used dimensions are valence, indicating the

emotional state as positive or negative) and arousal, indicating the emotion in-

tensity, while continuous annotations have been employed for other social signals

such as pain and conflict. The shift from discrete classes of emotion to continu-

ous annotations is part of an ongoing change in the field of affective computing

and SSP, where the locus of attention was changing to more real-world prob-

lems, outside heavily controlled laboratory conditions, focusing on spontaneous

emotion expressions instead of posed. By adopting a dimensional description

of emotions, we are now able to represent emotional states that are commonly

found in everyday life, e.g., being bored or interested (Gunes et al. 2008).
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1.3.1 Challenges

The challenges arising from the recent focus of SSP on spontaneous, naturalistic

data, along with the adoption of continuous annotations and the exponential

increase in to-be-annotated data are many. Firstly, an issue inherent to annota-

tion tasks related to SSP is label subjectivity. When measuring quantities such

as subject interest or emotion dimensions such as valence, it is natural for some

ambiguity to arise, especially when utilising spontaneous data in naturalistic,

interactive scenarios (as in most state-of-the-art databases such as SEMAINE).

While this issue manifests regardless of the label type, be it continuous, discrete

or ordinal, the most tricky scenario is when dealing with continuous in space

annotations. This is mostly due to the fact that instead of pre-defined classes

(e.g., happy, neutral, sad), the annotation is in terms of the magnitude of e.g.,

happiness, leading to essentially infinite (upto machine/input device accuracy)

classes. Essentially, this is a trade-off situation, since capturing a larger spectrum

of expressions leads to increased label ambiguity.

As aforementioned, many modern databases such as SEMAINE1 adopt con-

tinuous annotations in time. This entails that the annotation task is performed

on-line, i.e. while each annotator is watching/listening to the audio/visual data,

he or she is also moving the input device, usually a mouse (Cowie et al. 2000)

or a joystick, according to his or her understanding of the emotional state of the

subject. A prominent implication of the latter is that each annotator will demon-

strate a time-varying, person-specific lag. Although one can claim that, due to

the efficacy of the human brain, the realisation of the emotional state of the sub-

ject can be near-instant, the lag can be due to the time it takes for the annotator

to actually perform the annotation (e.g., move the mouse), or can even depend

on the input device itself or on how alert the annotator is at the time (e.g., the

annotator can become tired and less responsive when annotating large amounts

of data). Furthermore, the annotator is called to make an on-the-spot decision

regarding the annotation, i.e. the annotation is no longer per-frame/per-image,

making the processes more prone to errors.

In an effort to minimize person-specific bias, databases such as SEMAINE are

annotated by multiple expert psychologists, who were trained in annotating such

behaviour. Still, as one can easily verify by examining the provided annotations

(Fig. 1.2), the subjectivity bias, annotator lag and other issues are still promi-

nent. Other issues, which we do not comment on extensively here, can arise from

weaknesses of physical input device which affect the accuracy of the annotation

(e.g., moving the mouse can be highly inaccurate and can cause the appearance

of spikes and other artefacts in the annotation). Some of the issues mentioned

in this section are illustrated in Fig. 1.2.

1 Besides SEMAINE, other examples of databases which incorporate continuous annotations

include the Belfast Naturalistic Database, the Sensitive Artificial Listener (Douglas-Cowie

et al. 2003), (Cowie et al. 2005) as well as the CreativeIT database (Metallinou et al. 2010).
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Figure 1.2 Example valence annotations from multiple annotators.

1.3.2 The sub-optimality of Majority Voting and Averaging

Due to the challenges discussed (Sec. 1.3.1), it is clear that the task of obtaining a

“gold standard” (i.e. the “true” annotation, given a set of possibly noisy annota-

tions), is a quite tedious task, and researchers in the field have not been agnostic

regarding this in previous work (Metallinou et al. 2011, Nicolaou et al. 2012).

In the majority of past research related to SSP though, the average annotation

is usually used as an estimation of the underlying true annotation, either in the

form of a weighted average by e.g., the correlations of each annotator to the rest

(Nicolaou et al. 2011) or a simple, unweighted average (Wöllmer et al. 2008).

Majority voting (for discrete labels) or averaging (for continuous in space an-

notations) makes a set of explicit assumptions, namely that all annotators are

equally good, and that the majority of the annotators will identify the correct

label eliminating any ambiguity/subjectivity. Nevertheless, in most in real-world

problems these assumptions typically do not hold. So far in our discussion we

have assumed that all annotators are considered experts2, a common case for

labels related to SSP. In many cases though, annotators can be inexperienced,

naive or even uninterested in the annotation task. This phenomenon has been

amplified by the recent trend of crowdsourcing annotations (via services such

as Mechanical Turk), which allows gathering labels from large groups of people,

who usually have no formal training in the task-at-hand, shifting the annotation

processes from a small group of experts to a massive but weak-annotator scale.

In general, besides experts, we can consider that annotators can be assigned to

classes such as naive which commonly make mistakes, adversarial or malicious

annotators, that provide erroneous annotations on purpose, or spammers that

do not even pay attention at the sequence they are annotating. It should be clear

that if e.g., the majority of annotators are adversarial then majority voting will

always obtain the wrong label. This is also the case if the majority of annota-

tors are naive, and on a difficult/subjective data all make the same mistake. This

phenomenon led to particular interest manifesting in modelling annotator perfor-

mance, c.f.(Dai et al. 2010, Dai et al. 2011, Raykar et al. 2010, Yan et al. 2012).

It is important to note that the case of fusing continuous in time annota-

tions comes with particular difficulties, since as discussed in Sec. 1.3.1, there is

increased ambiguity and, most importantly, an annotator-specific lag, which in

2 but not infallible when it comes to a subjective, online annotation process (Sec. 1.3.1).
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turn leads to the misalignment of samples, as can be seen in Fig. 1.2. By sim-

ply averaging, we are essentially integrating these temporal discrepancies into

the estimated ground truth, possibly giving rise to both phase and magnitude

errors (e.g., false peaks). The idea of shifting the annotations in time in order

to attain maximal agreement has been touched upon in (Nicolaou et al. 2010)

and (Mariooryad & Busso 2013). Nevertheless, these works refer to a constant

time-shift, which assumes that the annotator-lag is constant. This does not ap-

pear to be the case, as the annotator-lag depends on time-varying conditions

(Sec. 1.3.1). The work of Nicolaou et al. (2012) is the first approach in the field

which formally introduces a time alignment component into the ground truth es-

timation in order to tackle this issue. We will discuss the work of Nicolaou et al.

(2012) along with other works on fusing multiple annotations in what follows.

1.3.3 Beyond Majority Voting & Averaging: Fusing Multiple Annotations

As mentioned in the previous section, the sub-optimality of majority voting given

the challenges mentioned led to much interest in designing models to better fuse

labels. In (Raykar et al. 2009), an attempt is made to model the performance

of annotators, who assign a possibly noisy label. The latent “true” (binary) an-

notation is not known, and should be discovered in the estimation process. By

assuming independence of all annotators and futhermore, assuming that anno-

tator performance does not intrinsically depend on the annotated sample, each

annotator can be characterised by his/her sensitivity and specificity. In this naive

Bayes scenario, the annotator scores are essentially used as weights for a weighted

majority rule, where if all annotators have the same annotator characteristics it

collapses to the majority rule3. Note that the more general approach of (Raykar

et al. 2009) indicates that, in the presence of data that is being labeled, neither

simple nor weighted majority voting is optimal. In fact majority voting can be

seen only as a first guess aimed at assigning an uncertain consensus “true” la-

bel, which is then further refined using an iterative EM process, where both the

“true” label and the annotator performance are recursively estimated.

Spatio-temporal Fusion of Continuous Annotations
In general, Canonical Correlation Analysis (CCA) is a fitting paradigm for fus-

ing annotations. CCA can find maximally correlating projections for the set of

variables involved, and in a way, this can translate to the goal of fusing multiple

annotations: find maximally correlating projections for the fused annotations, in

order to minimise subject-dependent bias. CCA has been extended to a prob-

abilistic formulation in (Bach & Jordan 2005), while Klami & Kaski (2008)4

have extended Probabilistic CCA (PCCA) to a private-shared space model. In

3 Detailed analysis of majority voting, including its weighted version, can be found in (Lam

& Suen 1997, Ruta & Gabrys 2005).
4 This formulation is closely related to (Tucker 1958), while the model of (Raykar et al. 2010)

for fusing continuous annotations can considered a special case of (Bach & Jordan 2005).
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Figure 1.3 (a) Graphical model of (Nicolaou et al. 2012). The shared space Z
generates all annotations Xi, while also modelling the individual factors Zi, specific
only to annotation i. The time-warping process ∆i temporally aligns the shared space
given each annotation in time. (b) Applying the model of (Nicolaou et al. 2012) on a
set of annotations. From top to bottom: original annotations, aligned shared space,
derived annotation.

effect, by applying the model of Klami & Kaski (2008) on a set of signals, we ob-

tain an estimation of the common characteristics of the signal (projected onto a

maximally correlated space), while also isolating uninteresting factors which are

signal-specific. Practically, this model is computationally efficient as it can lead

to a closed-form SVD-based solution for a simple Gaussian noise model. Never-

theless, in order to apply this model on annotations, it is highly desirable that

(i) the model takes dynamics into account, since temporally continuous annota-

tions are rich in dynamics, and (ii) somehow alleviate temporal discrepancies,

which appear due to e.g., annotator-specific lags. These extensions are proposed

and implemented in (Nicolaou et al. 2012), where Markovian dependencies are

imposed on both the shared and private latent spaces, while annotations are

temporally aligned in order to alleviate for lags by introducing a time-warping

process based on Dynamic Time Warping (DTW) on the sampled shared space

of each annotation. Thus, the model is able to isolate uninteresting parts of the

annotation (which are defined, in this context, as factors specific to an annota-

tion and not shared) and learn a latent representation of the common, underlying

signal which should express the “true annotation”, ideally being free of all nui-

sances such as annotator bias and spike noise. The graphical model of (Nicolaou

et al. 2012) is illustrated in Fig. 1.3, along with an example application. We

note that both the model of (Nicolaou et al. 2012) and (Raykar et al. 2010) are

able to incorporate data points (to which the annotations correspond) in the

learning process. Furthermore, the application of CCA-related models to handle

discrete/categorical annotations is still an open issue. This would require using

similar methodologies such as (De Leeuw 2006, Niitsuma & Okada 2005), the
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CCA model described in (Hamid et al. 2011) or by modifying the generative

model used in (Klami & Kaski 2008, Nicolaou et al. 2012).

1.4 Future Directions

In this chapter we identified two key challenges in data-driven SSP, the joint

signal-context and the annotation-annotator modeling. While modeling of the

signal context and W5+ is crucial, few approaches to date have focused on

this task and none have solved it in a satisfactory manner. The key difficulty

is the lack of models for W5+ and the corresponding learning algorithms that

are robust and scalable enough to produce models that generalize from posed

or even real-world training datasets to arbitrary real-world, spontaneous query

instances. Models that explicitly encode W5+ factors, such as the cs-CORF

(Rudovic et al. 2013b) have the potential to generalize beyond training sets,

but face difficulty in estimation. Related approaches based on tensor/multilinear

decomposition (Lu et al. 2011) provide one avenue but face similar algorithmic

and modeling (in particular, out-of-sample prediction) challenges. One practical

direction to address the generalization problem has been to use the so-called

domain-adaptation or transfer learning techniques (Pan & Yang 2010). These

methods work well on simpler models but may face difficulty on full blown W5+.

How to effectively integrate multifactor W5+ modeling, temporal information,

and generalization ability remains a significant challenge.

Another related difficulty is the lack of sufficiently comprehensive spontaneous

affect labeled datasets that can be used to estimate W5+ models. Databases

such as MAHNOB http://mahnob-db.eu or SEMAINE are initial efforts in

this direction. Nevertheless, providing comprehensive labeled data is challenging.

Most current SSP models take into account neither the stimulus itself (a part of

W5+) nor the annotators, including the errors and bias they may be imposing

in the annotation process. We have described some initial approaches in the SSP

domain that attempt to model the annotation process, annotator performance,

bias, and temporal lag. However, many challenges continue to exist, including

how to couple the predictive model estimation with the annotator modeling, how

to track changes in annotator performance over time, how to select new or avoid

underperforming experts, etc. Some of these and related problems are already

being addressed in the domain of crowdsourcing (Quinn & Bederson 2011) and

data-driven SSP can leverage those efforts. Related efforts have ensued in the

context of multi-label learning(Tsoumakas et al. 2010), that focuses on learning

a model that partitions the set of labels into relevant and irrelevant with respect

to a query instance or orders the class labels according to their relevance to

a query. Multi-label learning approaches have not yet been directly applied to

problems in SSP, although they carry great potential.

http://mahnob-db.eu
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