
5 Zeroth-Order Variational Principles

In the previous chapter we addressed principles based on the conservation of vector
quantities, specifically translational and angular momentum. In this chapter we will
address principles rooted in the variation of scalar quantities like work and energy.
We will begin with d’Alembert’s Principle of Virtual Work, which is an extension of
Bernoulli’s static principle to dynamics. The principle is based on the notion of virtual
displacement. We will refer to d’Alembert’s Principle as a zeroth-order variational prin-
ciple to denote that it is based on the variation of the zeroth-order derivative of displace-
ment. This is in contrast to higher-order variations related to velocity and acceleration,
which will be discussed in subsequent chapters.

5.1 Virtual Displacements

Virtual displacements refer to all displacements of a system that satisfy the sclero-
nomic constraints of the system. Scleronomic constraints refer to constraints that are not
explicitly dependent on time, as opposed to rheonomic constraints, which are explicitly
dependent on time. In the case of virtual displacements, time is frozen or stationary.

5.2 D’Alembert’s Principle of Virtual Work

principle 5.1 The virtual work of a system is stationary. That is,

δW = 0. (5.1)

Additionally, the constraints of the system perform no virtual work:

δWc = 0. (5.2)

This is known as d’Alembert’s Principle.

It is noted that while d’Alembert’s Principle can be seen as providing an alternate
statement of Newton’s second law, for interacting bodies, a law of action and reaction
(Newton’s third law) is still needed. Therefore, when we use d’Alembert’s Principle to
derive the equations of motion for systems of particles/bodies, we will invoke the law
of action and reaction.
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102 Zeroth-Order Variational Principles

5.2.1 A Single Particle

D’Alembert’s Principle for a single point mass with a discrete set of n f external forces,
{ f1, . . . , fn f }, acting on it is expressed as

δW =
n f∑

i=1

fi · δr − Mgê3 · δr − Ma · δr = 0,

∀δr ∈ R
3,

(5.3)

where δr represents the displacement variations. During these variations time is station-
ary. That is, δt = 0. More concisely, we can express

δW =
( n f∑

i=1

fi − Mgê3 − Ma

)
· δr = 0,

∀δr ∈ R
3,

(5.4)

which implies

n f∑
i=1

fi − Mgê3 − Ma = 0. (5.5)

5.2.2 A Single Rigid Body

D’Alembert’s Principle for a single rigid body with a discrete set of n f external forces,
{ f1, . . . , fn f }, and nϕ external moments, {ϕ1, . . . ,ϕnϕ

}, acting on it is expressed as

δW =
n f∑

i=1

fi · δrPi
+

nϕ∑
i=1

ϕ j · δθ − Mgê3 · δrG − MaG · δrG − (IGα + ω × IGω) · δθ = 0,

∀δrG ∈ R
3, and ∀δθ ∈ R

3, (5.6)

where the δr and δθ terms represent all displacement variations consistent with the
rigid-body constraint. This is depicted in Figure 5.1. During these variations, time is
stationary. That is, δt = 0. D’Alembert’s Principle states that the virtual work associated
with all internal forces and moments consistent with the rigid body constraint is zero
(Wc = 0). We further note that

δrPi
= δrG + δθ × d−→

GPi
. (5.7)

Therefore,

n f∑
i=1

fi · δrPi
=

n f∑
i=1

fi · (δrG + δθ × d−→
GPi

) =
( n f∑

i=1

fi

)
· δrG +

n f∑
i=1

fi · (δθ × d−→
GPi

). (5.8)
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5.2 D’Alembert’s Principle of Virtual Work 103

Figure 5.1 A virtual displacement of a rigid body consisting of a translational, δrG, and rotational,
δθ, displacement. We are concerned with all such displacement variations consistent with the
rigid-body constraint. During these variations, time is stationary.

Since a · (b × c) = (c × a) · b,

n f∑
i=1

fi · (δθ × d−→
GPi

) =
n f∑

i=1

(d−→
GPi

× fi) · δθ =
( n f∑

i=1

d−→
GPi

× fi

)
· δθ. (5.9)

So,

n f∑
i=1

fi · δrPi
=
( n f∑

i=1

fi

)
· δrG +

( n f∑
i=1

d−→
GPi

× fi

)
· δθ. (5.10)

Substituting (5.10) into (5.6), we get

δW =
( n f∑

i=1

fi − Mgê3 − MaG

)
· δrG

+
( n f∑

i=1

d−→
GPi

× fi +
nϕ∑

i=1

ϕ j − IGα − ω × IGω

)
· δθ = 0, (5.11)

or ⎛
⎜⎜⎝

n f∑
i=1

fi − Mgê3 − MaG

n f∑
i=1

d−→
GPi

× fi +
nϕ∑

i=1
ϕ j − IGα − ω × IGω

⎞
⎟⎟⎠ ·
(

δrG

δθ

)
= 0,

∀δrG ∈ R
3, and ∀δθ ∈ R

3,

(5.12)
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104 Zeroth-Order Variational Principles

which implies

n f∑
i=1

fi − Mgê3 − MaG = 0 (5.13)

n f∑
i=1

d−→
GPi

× fi +
nϕ∑

i=1

ϕ j − IGα − ω × IGω = 0. (5.14)

5.2.3 A System of Particles

We now apply d’Alembert’s Principle to a system of np particles with a discrete set of
forces acting on them. The virtual work associated with a given particle i is given by

δWi =
⎛
⎝ np∑

j=0

f j

i

⎞
⎠ · δri − Mi(ai + gê3 ) · δri = 0,

∀δri ∈ R
3,

(5.15)

for i = 1, . . . , np. The term f j
i is the force that particle j exerts on particle i, where f 0

i

is the force exerted by ground (inertial reference frame) on the ith particle. Equation
(5.15) is true for any particle i in the system, under all independent variations, δri.

If we sum (5.15) over all particles, we obtain

δW =
np∑

i=1

δWi =
np∑

i=1

⎛
⎝ np∑

j=0

f j

i

⎞
⎠ · δri −

np∑
i=1

Mi(ai + gê3 ) · δri = 0. (5.16)

The first summation is associated with the virtual work performed by the interparticle
reaction forces. It will be useful to rearrange the summation so as to pair up the equal
and opposite reaction forces, f j

i and f i
j . Doing this, we have

np∑
i=1

⎛
⎝ np∑

j=0

f j

i

⎞
⎠ · δri =

np−1∑
i=0

np∑
j=i+1

( f j

i · δri + f i

j · δr j ) +
np∑

i=1

f i

i · δri −
np∑
j=1

f j

0 · δr0.

(5.17)
Since f i

i = 0 and δr0 = 0, we have

np∑
i=1

⎛
⎝ np∑

j=0

f j

i

⎞
⎠ · δri =

np−1∑
i=0

np∑
j=i+1

( f j

i · δri + f i

j · δr j ). (5.18)

We note that f i
j = − f j

i . Thus,

np∑
i=1

⎛
⎝ np∑

j=0

f j

i

⎞
⎠ · δri =

np−1∑
i=0

np∑
j=i+1

f j

i · (δri − δr j ). (5.19)
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5.2 D’Alembert’s Principle of Virtual Work 105

This reflects the virtual work done by interparticle reaction forces, summed over all
particles.

If we consider that the particles are subject to a set of holonomic constraints, the
positions, ri, are not independent. In this case we will assume that the positions can
be expressed in terms of a set of nq independent generalized coordinates, q. If we now
consider only the variations, δri, that are consistent with the kinematic constraints, then
(5.19) reflects a projection of the interparticle forces on the direction of the interparticle
motion. D’Alembert’s Principle states that the virtual work associated with all forces
orthogonal to the interparticle motion (reaction forces) is zero (Wc = 0) and only the
generalized force acting in the direction of interparticle motion produces virtual work.
Thus,

np−1∑
i=0

np∑
j=i+1

f j

i · (δri − δr j ) =
nq∑

i=1

τi · δqi, (5.20)

and (5.16) can be expressed as

nq∑
i=1

τi · δqi −
np∑

i=0

Mi(ai + gê3 ) · δri = 0 (5.21)

for all variations, δri, that are consistent with the kinematic constraints.
Expressing the variations in terms of variations in the generalized coordinates, we

have

δri = �iδq. (5.22)

So, (5.21) can be expressed as

τ · δq −
np∑

i=1

Mi(ai + gê3 ) · (�iδq) = 0,

∀δq ∈ R
n,

(5.23)

or [
τ −

np∑
i=1

�T
i

(Miai + Migê3 )

]
· δq = 0

∀δq ∈ R
n,

(5.24)

which implies

τ =
np∑

i=1

�T
i

(Miai + Migê3 ). (5.25)

Noting that

ai = �iq̈, (5.26)
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we have

τ =
( np∑

i=1

Mi�
T
i �i

)
q̈ + g

nq∑
i=1

Mi�
T
i ê3. (5.27)

Defining the system mass matrix, M (q), and the vector of generalized gravity forces,
g(q),

M (q) �
np∑

i=1

Mi�
T
i �i (5.28)

g(q) � g

np∑
i=1

Mi�
T
i ê3, (5.29)

we have

τ = M (q)q̈ + g(q). (5.30)

5.2.4 A System of Rigid Bodies

We now apply d’Alembert’s Principle to a system of nb rigid bodies forming a serial
chain, with a discrete set of forces acting on them. The virtual work associated with a
given body i is given by

δWi = f i−1
i · δri−1

i + f i+1
i · δri+1

i − Mi(aGi
+ gê03

) · δrGi
+ ϕi−1

i · δθi

+ϕi+1
i · δθi − (IGi

i αi + ωi × IGi
i ωi) · δθi = 0,

∀δrGi
∈ R

3, and ∀δθi ∈ R
3,

(5.31)

for i = 1, . . . , nb. The term f i−1
i is the force that body i − 1 exerts on body i. Likewise,

ϕi−1
i is the moment that body i − 1 exerts on body i. The term ri−1

i is the point on body i
to which body i − 1 attaches. Equation (5.31) is true for any rigid body i in the system,
under all independent variations, δrGi

and δθi (we note that δri−1
i and δri+1

i are functions
of δrGi

and δθi due to the rigid-body constraint). If we sum (5.31) over all rigid bodies,
we obtain

δW =
nb∑

i=1

δWi =
nb∑

i=1

( f i−1
i · δri−1

i + f i+1
i · δri+1

i )

−
nb∑

i=1

Mi(aGi
+ gê03

) · δrGi
+

nb∑
i=1

(ϕi−1
i · δθi + ϕi+1

i · δθi)

−
nb∑

i=1

(IGi
i αi + ωi × IGi

i ωi) · δθi = 0. (5.32)

The first summation is associated with the virtual work performed by the interlink reac-
tion forces. It will be useful to rearrange the summation so as to pair up the equal
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5.2 D’Alembert’s Principle of Virtual Work 107

and opposite reaction forces, f i−1
i and f i

i−1, acting through each joint i. Doing this, we
have

nb∑
i=1

( f i−1
i · δri−1

i + f i+1
i · δri+1

i ) =
nb∑

i=1

( f i−1
i · δri−1

i + f i

i−1 · δri

i−1 ) + f nb+1
nb

· δrnb+1
nb

− f 1
0 · δr1

0.

(5.33)

Since f nb+1
nb

= 0 and δr1
0 = 0, we have

nb∑
i=1

( f i−1
i · δri−1

i + f i+1
i · δri+1

i ) =
nb∑

i=1

( f i−1
i · δri−1

i + f i

i−1 · δri

i−1 ). (5.34)

We note that f i
i−1 = − f i−1

i . Thus,

nb∑
i=1

( f i−1
i · δri−1

i + f i+1
i · δri+1

i ) =
nb∑

i=1

f i−1
i · (δri−1

i − δri

i−1 ). (5.35)

This reflects the virtual work done by reaction forces at each joint, summed over all
joints.

As with the reaction forces, it will be useful to rearrange the summation associated
with the virtual work performed by the interlink reaction moments so as to pair up the
equal and opposite reaction moments, ϕi−1

i and ϕi
i−1, acting about each joint. Using the

same procedure as with the reaction forces, we have

nb∑
i=1

(ϕi−1
i · δθi + ϕi+1

i · δθi) =
nb∑

i=1

(ϕi−1
i · δθi + ϕi

i−1 · δθi−1 )

=
nb∑

i=1

ϕi−1
i · (δθi − δθi−1 ). (5.36)

This reflects the virtual work done by reaction moments at each joint, summed over all
joints. So, the total virtual work performed by the interlink reaction forces and moments
can be expressed compactly as

nb∑
i=1

( f i−1
i · δri−1

i + f i+1
i · δri+1

i ) +
nb∑

i=1

(ϕi−1
i · δθi + ϕi+1

i · δθi)

=
nb∑

i=1

(
f i−1

i

ϕi−1
i

)
·
(

δri−1
i − δri

i−1

δθi − δθi−1

)
. (5.37)

If we now consider only the variations δri−1
i , δri

i−1, δθi, and δθi−1 that are consistent
with the kinematic constraints, then (5.37) reflects a projection of the interlink forces
and moments on the direction of the joint motion. D’Alembert’s Principle states that
the virtual work associated with all forces and moments orthogonal to the joint motion
(reaction forces/moments) is zero (Wc = 0) and only the generalized force acting in the
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direction of joint motion produces virtual work. Thus,

nb∑
i=1

(
f i−1

i

ϕi−1
i

)
·
(

δri−1
i − δri

i−1

δθi − δθi−1

)
=

nq∑
i=1

τi · δqi, (5.38)

and (5.32) can be expressed as

nq∑
i=1

τi · δqi −
nb∑

i=1

Mi(aGi
+ gê03

) · δrGi
−

nb∑
i=1

(IGi
i αi + ωi × IGi

i ωi) · δθi = 0 (5.39)

for all variations, δrGi
and δθi, that are consistent with the kinematic constraints.

Using d’Alembert’s Principle, we can address a system of nb rigid bodies forming
a branching chain in a similar manner. With a serial chain, the parent/child structure
is implicit to the numbering scheme. Every link i has a single parent link, i − 1, at its
proximal end and a single child link, i + 1, at its distal end (except for the nth link). The
ith joint is at the proximal end of the ith link. With a branching chain the numbering
of links is more arbitrary, without a parent/child structure implicit to the numbering
scheme. We can explicitly capture the parent/child structure, however, by defining three
additional parameters, λi, ci, μi j. The term λi is the parent link number of the ith link,
ci is the number of child links for the ith link, and μi1 · · ·μici are the child link numbers
of the ith link. Given these parameters, the virtual work associated with a given body i
is given by

δWi = f λi
i · δrλi

i +
ci∑

j=1

f
μi j

i · δr
μi j
i − Mi(aGi

+ gê03
) · δrGi

+ ϕλi
i · δθi

+
ci∑

j=1

ϕ
μi j
i · δθi − (IGi

i αi + ωi × IGi
i ωi) · δθi = 0,

∀δrGi
∈ R

3, and ∀δθi ∈ R
3,

(5.40)

for i = 1, . . . , nb. The term rλi
i is the point on body i to which body (parent) λi attaches,

and likewise rμi1
i · · · r

μici
i are the points on body i to which bodies (children) μi1 · · · μici

attach. We note that δrλi
i and δrμi1

i · · · δr
μici
i are functions of δrGi

and δθi due to the rigid-
body constraint. If we sum (5.40) over all rigid bodies, we obtain

δW =
nb∑

i=1

δWi =
nb∑

i=1

⎛
⎝ f λi

i · δrλi
i +

ci∑
j=1

f
μi j

i · δr
μi j
i

⎞
⎠

−
nb∑

i=1

Mi(aGi
+ gê03

) · δrGi
+

nb∑
i=1

⎛
⎝ϕλi

i · δθi +
ci∑

j=1

ϕ
μi j
i · δθi

⎞
⎠

−
nb∑

i=1

(IGi
i αi + ωi × IGi

i ωi) · δθi = 0. (5.41)
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The term associated with the virtual work performed by the interlink reaction forces is

nb∑
i=1

⎛
⎝ f λi

i · δrλi
i +

ci∑
j=1

f
μi j

i · δr
μi j
i

⎞
⎠. (5.42)

It will be useful to rearrange the summation so as to pair up the equal and opposite
reaction forces, f λi

i and f i
λi

, acting through each joint i. We can rewrite the summation
of (5.42) based on considering the virtual work at each joint. The sum over all joints
then gives us

nb∑
i=1

( f λi
i · δrλi

i + f i

λi
· δri

λi
) =

nb∑
i=1

f λi
i · (δrλi

i − δri

λi
). (5.43)

The term associated with the virtual work performed by the interlink reaction moments
is

nb∑
i=1

⎛
⎝ϕλi

i · δθi +
ci∑

j=1

ϕ
μi j
i · δθi

⎞
⎠. (5.44)

In a similar manner as before, we can rewrite this summation based on considering the
virtual work at each joint. The sum over all joints then gives us

nb∑
i=1

(ϕλi
i · δθi + ϕi

λi
· δθλi

) =
nb∑

i=1

ϕλi
i · (δθi − δθλi

). (5.45)

So, the total virtual work performed by the interlink reaction forces and moments can
be expressed compactly as

nb∑
i=1

⎛
⎝ f λi

i · δrλi
i +

ci∑
j=1

f
μi j

i · δr
μi j
i

⎞
⎠+

nb∑
i=1

⎛
⎝ϕλi

i · δθi +
ci∑

j=1

ϕ
μi j
i · δθi

⎞
⎠

=
nb∑

i=1

(
f λi

i

ϕ
λi
i

)
·
(

δrλi
i − δri

λi

δθi − δθλi

)
. (5.46)

If we now consider only the variations δrλi
i , δri

λi
, δθi, and δθλi

that are consistent with
the kinematic constraints, then (5.46) reflects a projection of the interlink forces and
moments on the direction of the joint motion. D’Alembert’s Principle states that the
virtual work associated with all forces and moments orthogonal to the joint motion
(reaction forces/moments) is zero (Wc = 0) and only the generalized force acting in the
direction of joint motion produces virtual work. Thus,

nb∑
i=1

(
f λi

i

ϕ
λi
i

)
·
(

δrλi
i − δri

λi

δθi − δθλi

)
=

nq∑
i=1

τi · δqi, (5.47)

and (5.41) can be expressed as
nq∑

i=1

τi · δqi −
nb∑

i=1

Mi(aGi
+ gê03

) · δrGi
−

nb∑
i=1

(IGi
i αi + ωi × IGi

i ωi) · δθi = 0, (5.48)
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for all variations, δrGi
and δθi, that are consistent with the kinematic constraints.

Expressing the variations in terms of variations in the generalized coordinates, we have

iδrGi
= i�Gi

δq and iδθi = i�iδq, (5.49)

where the terms are expressed in the local link frame i for convenience. So, (5.48) can
be expressed as

τ · δq −
nb∑

i=1

Mi(
iaGi

+ giê03
) · (i�Gi

δq) −
nb∑

i=1

(iIGi
i

iαi + iωi × iIGi
i

iωi) · (i�iδq) = 0,

(5.50)
∀δq ∈ R

n,

or

τ · δq −
nb∑

i=1

[
Mi

i�T
Gi

iaGi
+ Mig

i�T
Gi

iê03
+ i�T

i (iIGi
i

iαi + iωi × iIGi
i

iωi)
]

· δq = 0

(5.51)
∀δq ∈ R

n.

In matrix form we have[
τ −

nb∑
i=1

(
i�T

Gi

i�T
i

)( Mi
iaGi

+ Migiê03

iIGi
i

iαi + iωi × iIGi
i

iωi

)]
· δq = 0,

∀δq ∈ R
n,

(5.52)

which implies

τ =
nb∑

i=1

(
i�T

Gi

i�T
i

)( Mi
iaGi

+ Migiê03

iIGi
i

iαi + i�i
iIGi

i
iωi

)
. (5.53)

Noting that

iωi = i�iq̇, iaGi
= i�Gi

q̈ + (i�̇Gi
+ i�i

i�Gi
)q̇, and iαi = i�iq̈ + i�̇iq̇, (5.54)

we have

τ =
[

nb∑
i=1

(Mi
i�T

Gi

i�Gi
+ i�T

i

iIGi
i

i�i)

]
q̈

+
[

nb∑
i=1

(
Mi

i�T
Gi

(i�̇Gi
+ i�i

i�Gi
) + i�T

i (iIGi
i

i�̇i + i�i
iIGi

i

i�i)
)]

q̇ + g
nb∑

i=1

Mi
i�T

Gi

iê03
.

(5.55)
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Algorithm 3 Second-order method for integrating the equations of motion

1: q0 = qo {initialization}

2: q̇0 = q̇o {initialization}

3: for i = 0 to ns − 1 do

4: q̈i = M−1
i (τi − bi − gi)

5: q̇i+1 = q̇i + q̈i�t

6: qi+1 = qi + q̇i�t + 1
2 q̈i�t2

7: end for

Defining the symmetric positive definite mass matrix, M (q), the centrifugal and Coriolis
force vector, b(q, q̇), and the gravity force vector, g(q),

M (q) �
nb∑

i=1

(Mi
i�T

Gi

i�Gi
+ i�T

i

iIGi
i

i�i), (5.56)

b(q, q̇) �
[

nb∑
i=1

(
Mi

i�T
Gi

(i�̇Gi
+ i�i

i�Gi
) + i�T

i (iIGi
i

i�̇i + i�i
iIGi

i

i�i)
)]

q̇, (5.57)

g(q) � g
nb∑

i=1

Mi
i�T

Gi

iê03
, (5.58)

we have

τ = M (q)q̈ + b(q, q̇) + g(q). (5.59)

Numerical Integration
We can numerically integrate (5.59) using a second-order method. Solving for the gen-
eralized accelerations, we have

q̈ = M−1(τ − b − g). (5.60)

The second-order method for integrating this system can be summarized as shown in
Algorithm 3.

Example: We consider a serial chain robot and parameterize the system using four gen-
eralized coordinates as shown in Figure 5.2. The centers of mass of each link can be
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Figure 5.2 A 4 degree-of-freedom serial chain robot parameterized using four generalized
coordinates.

computed in a straightforward fashion:

rG1
=
(

l1
2 cos(q1)
l1
2 sin(q1)

)
, (5.61)

rG2
=
(

l1 cos(q1) + l2
2 cos(q1 + q2)

l1 sin(q1) + l2
2 sin(q1 + q2)

)
, (5.62)

rG3
=
(

l1 cos(q1) + l2 cos(q1 + q2) + l3
2 cos(q1 + q2 + q3)

l1 sin(q1) + l2 sin(q1 + q2) + l3
2 sin(q1 + q2 + q3)

)
, (5.63)

rG4
=
(

l1 cos(q1) + l2 cos(q1 + q2) + l3 cos(q1 + q2 + q3)

l1 sin(q1) + l2 sin(q1 + q2) + l3 sin(q1 + q2 + q3)
(5.64)

· · · + l4
2 cos(q1 + q2 + q3 + q4)

+ l4
2 sin(q1 + q2 + q3 + q4)

)
. (5.65)

Similarly, the angular velocities of each link can be computed easily:

ω1 = q̇1, (5.66)

ω2 = q̇1 + q̇2, (5.67)

ω3 = q̇1 + q̇2 + q̇3, (5.68)

ω4 = q̇1 + q̇2 + q̇3 + q̇4. (5.69)

The translational Jacobians are computed as

�Gi
= ∂rGi

∂q
, for i = 1, . . . , 3, (5.70)

and the angular velocity Jacobians as

�i = ∂ωi

∂ q̇
, for i = 1, . . . , 3. (5.71)
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Figure 5.3 (Top) Animation frames from the simulation of a serial chain robot. (Bottom) Time
history of the robot generalized coordinates (q1, q2, q3, q4).

The dynamical terms are

M (q) =
4∑

i=1

(Mi�
T
Gi
�Gi

+ �T
i IGi

i �i), (5.72)

b(q, q̇) =
4∑

i=1

Mi�
T
Gi
�̇Gi

q̇, (5.73)

g(q) = g
4∑

i=1

Mi�
T
Gi

ê2, (5.74)
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where we take the rotational inertias to be

IGi
i = Mir2

i

4
+ Mil2

i

12
. (5.75)

The simulation results are displayed in Figure 5.3. The following values were used
for the constants:

r1 = 0.15, r2 = 0.125, r3 = 0.1, r4 = 0.0875,

l1 = 0.7, l2 = 0.6, l3 = 0.5, l4 = 0.4,

M1 = 2.5, M2 = 1.5, M3 = 1.0, M4 = 0.75.

(5.76)

The initial conditions used were qi = −π/24 and q̇i = 0.

5.2.5 Auxiliary Constraints

Holonomic Constraints
The standard taxonomy of multibody systems by kinematic topology consists of branch-
ing or tree-like structures and graph or closed-loop structures. In the case of branching
structures a set of independent generalized coordinates is chosen. The kinematic con-
straints between the bodies are implied by the choice of these generalized coordinates,
as we saw in Section 5.2.4. Since these generalized coordinates are independent (uncon-
strained), we will refer to branching structures as unconstrained with respect to config-
uration space.

Analysis of graph or closed-loop structures typically involves breaking the loop(s)
and deriving the dynamics of the resulting branching structures. The last step involves
the imposition of a set of holonomic constraint equations, φ(q) = 0, to enforce the loop
closures. A closed-loop topology is depicted in Figure 5.4 (left), with the nodes repre-
senting the bodies and the edges representing the joints. Closed-loop structures repre-
sent a subset of the larger class of holonomically constrained multibody systems. Such
systems involve holonomic constraints in the form of general algebraic dependencies
between generalized coordinates, as depicted in Figure 5.4 (right). Again, a set of holo-
nomic constraint equations is imposed in conjunction with the unconstrained equations
of motion. Since the systems of Figure 5.4 involve explicit, or auxilliary, constraints
between the generalized coordinates (in addition to the implicit constraints between
the bodies suggested by the choice of generalized coordinates), we will refer to these
structures as constrained with respect to configuration space. In Section 3.4 we con-
sidered the number of degrees of freedom of holonomically constrained systems. The
number of degrees of freedom, p, is given by

p = n − m, (5.77)

where n is the number of generalized coordinates and m is the number of independent
constraint equations.

The constrained systems described thus far exclusively involve holonomic con-
straints. Nonholonomic systems, which involve nonintegrable constraints on the gener-
alized velocities, will be addressed in the subsequent chapters. They can be handled with
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Figure 5.4 Constrained structures involving closed loops (Left) and general algebraic
dependencies (Right). The dynamics of both systems can be derived from the unconstrained
system dynamics through the imposition of a set of holonomic constraint equations, φ(q) = 0.

higher-order variational principles (Flannery 2005) and methods like Jourdain’s Princi-
ple, Kane’s method, Gauss’s Principle, or the Gibbs-Appell method. Jourdain’s Principle
and Gauss’s Principle deal with the constraints explicitly, while Kane’s method and the
Gibbs-Appell method deal with the costraints implicitly by defining a set of independent
quasi-velocities (generalized speeds) and/or quasi-accelerations.

We now consider the general case of auxiliary holonomic constraints. Given the
multibody system

τ = M (q)q̈ + b(q, q̇) + g(q), (5.78)

subject to the holonomic constraints

φ(q) = 0, (5.79)

we begin by first expressing the zeroth-order variational equation associated with
d’Alembert’s Principle:

τC · δq + (τ − Mq − b − g) · δq = 0, (5.80)

where τC is the vector of generalized constraint forces. The virtual displacements, δq,
refer to all displacement variations which satisfy the constraints, while time is fixed.
With δt = 0 the variation of the constraint equation yields

δφ = ∂φ

∂q
δq = �δq = 0, (5.81)

which implies that δq ∈ ker(�), where � = ∂φ

∂q is the constraint matrix. Under this con-
dition, (5.80) can be restricted to constraint-consistent virtual displacements:

τC · δq + (τ − Mq − b − g) · δq = 0

∀δq ∈ ker(�).
(5.82)
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Figure 5.5 The configuration space constrained-motion manifold, Qp. All constraint-consistent
virtual variations, δq, lie in the tangent space of Qp and are orthogonal to the constraint forces.

We have

τC⊥δq

∀δq ∈ ker(�).
(5.83)

The ker(�) represents the tangent space of the constrained-motion manifold, Qp, at a
point, q, in configuration space. The constraint-consistent virtual displacements, δq, lie
in this tangent space, and the generalized constraint forces, τC , are orthogonal to it. This
is illustrated in Figure 5.5. Based on this, the following is implied:

τC ∈ ker(�)⊥ = im(�T ). (5.84)

Thus, the generalized constraint force, τC , can be represented as a linear combination of
the columns of �T . That is, τC = �T λ, where λ is a vector of unknown Lagrange mul-
tipliers. The term τC · δq vanishes from (5.82) and we have the orthogonality relation

(Mq + b + g − τ) · δq = 0

∀δq ∈ ker(�).
(5.85)

The constrained multibody equations of motion are then

τ = Mq̈ + b + g − �T λ, (5.86)

subject to

φ(q) = 0 ⇒ φ̇ = 0, φ̈ = 0. (5.87)
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Solution of the Constrained Dynamics Problem
We can arrive at an explicit solution of the constrained dynamics problem,

Mq̈ = τ − b − g + �T λ (5.88)

�q̈ = −�̇q̇. (5.89)

It is useful to define the mC × mC constraint space mass matrix, which reflects the sys-
tem inertia projected at the constraint:

H � (�M−1�T )−1. (5.90)

We now express the mass-weighted (right) inverse of �:

�̄ = M−1�T (�M−1�T )−1, (5.91)

where ��̄ = 1 and, equivalently, �̄T �T = 1. Defining the n × n constraint null space
matrix, 
 � 1 − �̄�, we can solve the system. This yields

q̈ = −�̄�̇q̇ + 
M−1(τ − b − g) (5.92)

λ = −�̄T (τ − b − g) − H�̇q̇. (5.93)

It is noted that � and 
 satisfy the condition �
 = 0 and, equivalently, 
T �T = 0.
Furthermore, if we form the projection matrix PT = P which projects any vector in Rn

onto the null space of �, we have

PT = WW T = 1 − �T �+T = 1 − �T (��T )−1�, (5.94)

where W spans the null space of �, and �+ = �T (��T )−1 is the pseudoinverse (right
inverse) of �. The expression for PT in (5.94) has a similar form as the expression


T = 1 − �T �̄T = 1 − �T (�M−1�T )−1�M−1. (5.95)

Consequently PT = WW T can be regarded as a kinematic constraint null space projec-
tion matrix and 
T can be regarded as a mass-weighted constraint null space projection
matrix. The physical and geometric meaning of � and 
 will be discussed further in
Section 8.1.3.

Numerical Integration
In the previous section we solved the constrained dynamical system for the generalized
accelerations and the Lagrange multipliers. In practice the integration of the forward
dynamics would also require constraint stabilization to mitigate drift in the constraints.
Baumgarte stabilization (Baumgarte 1972) involves replacing our original acceleration
constraint equation with a linear combination of acceleration, velocity, and position
constraint terms:

φ̈ + βφ̇ + αφ = 0 (5.96)

or

�q̈ + �̇q̇ + β�q̇ + αφ = 0, (5.97)
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Algorithm 4 Second-order method for integrating the zeroth-order holonomically con-
strained equations of motion

1: q0 = qo {initialization}

2: q̇0 = q̇o {initialization}

3: for i = 0 to ns − 1 do

4: q̈i = −�̄i�̇iq̇i + 
iM
−1
i (τi − bi − gi) − �̄i(αφi + β�iq̇i)

5: λi = −�̄T
i (τi − bi − gi) − Hi�̇iq̇i − Hi(αφi + β�iq̇i)

6: q̇i+1 = q̇i + q̈i�t

7: qi+1 = qi + q̇i�t + 1
2 q̈i�t2

8: end for

where α and β are constant parameters chosen to drive the first- and zeroth-order deriva-
tives of the holonomic constraint equations to zero, thereby compensating for position
and velocity drift in the constraints. The constraint stabilized equations of motion are
then (

M −�T

−� 0

)(
q̈

λ

)
=
(

τ − b − g

�̇q̇ + β�q̇ + αφ

)
, (5.98)

and the solution of this system is

q̈ = −�̄�̇q̇ + 
M−1(τ − b − g) − �̄(αφ + β�q̇) (5.99)

λ = −�̄T (τ − b − g) − H�̇q̇ − H(αφ + β�q̇). (5.100)

The term −H(αφ + β�q̇) in the expression for λ can be physically interpreted as a
corrective constraint force term used to compensate for any drift in the constraints. This
is analogous to a proportional-derivative (PD) control law in a feedback system.

A second-order method for integrating this system can be summarized as shown in
Algorithm 4.

Example: A Stewart platform parallel mechanism can be described by a set of 24 gener-
alized coordinates, as shown in Figure 5.6.

The constraint equations associated with the loop closures are given by

rli = rpi for i = 1, · · · , 6, (5.101)

where rli is the terminal point of the ith strut subsystem which connects to rpi , the ith
position on the platform subsystem. In vector form we have

φ =

⎛
⎜⎝

rl1
− rp1

...
rl6 − rp6

⎞
⎟⎠ = 0. (5.102)
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Figure 5.6 (Left) Stewart platform actuated by six prismatic struts (remaining joints are passive).
(Right) The closed-loop mechanism is cut at various locations to create serial chains described
by the set of generalized coordinates, q1, . . . , q24.

Taking the derivative yields

φ̇ =

⎛
⎜⎝

ṙl1
− ṙp1

...
ṙl6 − ṙp6

⎞
⎟⎠ = �q̇ = 0, (5.103)

where

ṙli = �li

⎛
⎜⎝

q̇3i−2

q̇3i−1

q̇3i

⎞
⎟⎠ and, ṙpi = �pi

⎛
⎜⎜⎝

q̇19

...

q̇24

⎞
⎟⎟⎠ ,

for i = 1, · · · , 6.

(5.104)

The terms, �li
and �pi

, are the corresponding Jacobians of rli and rpi , respectively. So,

�q̇ =

⎛
⎜⎝

�l1
. . . 0 −�p1

...
. . .

...
...

0 . . . �l6
−�p6

⎞
⎟⎠
⎛
⎜⎝

q̇1
...

q̇24

⎞
⎟⎠ = 0, (5.105)

where

� =

⎛
⎜⎝

�l1
. . . 0 −�p1

...
. . .

...
...

0 . . . �l6
−�p6

⎞
⎟⎠ . (5.106)

The constraint forces, λ, are shown in Figure 5.7.

https://doi.org/10.1017/9781316832301.007 Published online by Cambridge University Press

https://doi.org/10.1017/9781316832301.007


120 Zeroth-Order Variational Principles

Figure 5.7 Constraint forces associated with loop closures. Lagrange multipliers, λ, represent
constraint forces at various locations between the serial chains to enforce the constraints
associated with the loop closures.

The unconstrained equations of motion for the six strut serial subsystems are⎛
⎝ 0

0
τ1

⎞
⎠ = Ml1

⎛
⎝ q̈1

q̈2

q̈3

⎞
⎠+ bl1 (q1, . . . , q̇3) + gl1 (q1, . . . , q3), (5.107)

...⎛
⎝ 0

0
τ6

⎞
⎠ = Ml6

⎛
⎝ q̈16

q̈17

q̈18

⎞
⎠+ bl6 (q16, . . . , q̇18) + gl6 (q16, . . . , q18), (5.108)

and for the platform subsystem we have

0 = Mp

⎛
⎜⎝

q̈19
...

q̈24

⎞
⎟⎠+ bp(q19, . . . , q̇24) + gp(q19, . . . , q24). (5.109)

The entire unconstrained system is described by⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
τ1
...
0
τ6

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎝

Ml1 0 · · · 0

0
. . .

...
... Ml6 0
0 · · · 0 Mp

⎞
⎟⎟⎟⎟⎠
⎛
⎜⎜⎜⎝

q̈1

q̈2
...

q̈24

⎞
⎟⎟⎟⎠+

⎛
⎜⎜⎜⎝

bl1
...

bl6

bp

⎞
⎟⎟⎟⎠+

⎛
⎜⎜⎜⎝

gl1
...

gl6

gp

⎞
⎟⎟⎟⎠ , (5.110)
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and the constrained system is

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
τ1
...
0
τ6

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎝

Ml1 0 · · · 0

0
. . .

...
... Ml6 0
0 · · · 0 Mp

⎞
⎟⎟⎟⎟⎠
⎛
⎜⎜⎜⎝

q̈1

q̈2
...

q̈24

⎞
⎟⎟⎟⎠+

⎛
⎜⎜⎜⎝

bl1
...

bl6

bp

⎞
⎟⎟⎟⎠+

⎛
⎜⎜⎜⎝

gl1
...

gl6

gp

⎞
⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎝

�T
l1

. . . 0
...

. . .
...

0 . . . �T
l6

−�T
p1

· · · −�T
p6

⎞
⎟⎟⎟⎟⎠
⎛
⎜⎝

λ1
...

λ18

⎞
⎟⎠ , (5.111)

where the dimensions of the terms are,

M ∈ R
n×n, b, g, τ ∈ R

n, � ∈ R
m×n, λ ∈ R

m, (5.112)

and n = 24 and m = 18. The constrained system has p = n − m = 6 degrees of
freedom.

Noting that the generalized constraint force τC is given by

τC = �T λ, (5.113)

the virtual work of the constraint forces is given by

τC · δq = τT
C δq = λT �δq. (5.114)

So,

τC · δq = 0

∀δq ∈ δQp,
(5.115)

where δQp = ker(�). Furthermore, we note that

�δq =

⎛
⎜⎝

δrl1 − δrp1

...
δrl6 − δrp6

⎞
⎟⎠ . (5.116)

So,

τC · δq = λT �δq =

⎛
⎜⎝

λ1
...

λ18

⎞
⎟⎠

T ⎛
⎜⎝

δrl1 − δrp1

...
δrl6 − δrp6

⎞
⎟⎠ . (5.117)
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Thus, the virtual work of the constraint forces can also be expressed by

⎛
⎜⎝

λ1
...

λ18

⎞
⎟⎠ ·

⎛
⎜⎜⎜⎝

δrl1 − δrp1

...

δrl6 − δrp6

⎞
⎟⎟⎟⎠ = 0,

∀δrli , δrpi |δrli = δrpi , i = 1, . . . , 6.

(5.118)

Example: A parallel mechanism is depicted in Figure 5.8. The constraint equations
describe the loop closures and are given by

φ(q) =

⎛
⎜⎝

rl1
− rp1

rl2
− rp2

rl3
− rp3

⎞
⎟⎠ , (5.119)

where rli is the terminal point of the ith elbow chain subsystem which connects to rpi ,
the ith position on the platform subsystem. Taking the derivative yields

φ̇ =

⎛
⎜⎝

ṙl1
− ṙp1

ṙl2
− ṙp2

ṙl3
− ṙp3

⎞
⎟⎠ = �q̇ = 0, (5.120)

Figure 5.8 Parallel mechanism consisting of serial chains with loop closures. The three elbow
joints are actuated, while the remaining joints are passive.
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where

ṙli
= �li

(
q̇2i−1

q̇2i

)
and, ṙpi

= �pi

⎛
⎝ q̇7

q̇8

q̇9

⎞
⎠ ,

for i = 1, . . . , 3.

(5.121)

The terms, �li
and �pi

are the corresponding Jacobians of rli
and rpi

, respectively. So,

�q̇ =
⎛
⎝�l1

0 0 −�p1

0 �l2
0 −�p2

0 0 �l3
−�p3

⎞
⎠
⎛
⎜⎝

q̇1
...

q̇9

⎞
⎟⎠ = 0, (5.122)

where

� =
⎛
⎝�l1

0 0 −�p1

0 �l2
0 −�p2

0 0 �l3
−�p3

⎞
⎠ . (5.123)

For the three elbow link chains we compute

�li
=
(

−li1 sin(q2i−1) − li2 sin(q2i−1 + q2i) −li2 sin(q2i−1 + q2i)

li1 cos(q2i−1) + li2 cos(q2i−1 + q2i) li2 cos(q2i−1 + q2i)

)
,

for i = 1, . . . , 3,

(5.124)

and for the platform we compute

�p1
=
(

−1 0 −1.08 sin(0.47 − q9)

0 −1 −1.08 cos(0.47 − q9)

)
, (5.125)

�p2
=
(

−1 0 1.08 sin(1.62 + q9)

0 −1 −1.08 cos(1.62 + q9)

)
, (5.126)

�p3
=
(

−1 0 1.08 sin(3.72 + q9)

0 −1 −1.08 cos(3.72 + q9)

)
, (5.127)

for i = 1, . . . , 3.

For the six elbow link centers of mass (one proximal and one distal link for each
chain) we compute

�Gli1
=
(

− li1
2 sin(q2i−1) 0

li1
2 cos(q2i−1) 0

)
,

for i = 1, . . . , 3,

(5.128)

and

�Gli2
=
(

−li1 sin(q2i−1) − li2
2 sin(q2i−1 + q2i) − li2

2 sin(q2i−1 + q2i)

li1 cos(q2i−1) + li2
2 cos(q2i−1 + q2i)

li2
2 cos(q2i−1 + q2i)

)
,

for i = 1, . . . , 3,

(5.129)

https://doi.org/10.1017/9781316832301.007 Published online by Cambridge University Press

https://doi.org/10.1017/9781316832301.007


124 Zeroth-Order Variational Principles

The terms, �Gli j
and li j, are the center of mass Jacobian and link length, respectively, of

the jth link of the ith elbow chain subsystem. The unconstrained equations of motion
for the three elbow chain subsystems are(

0
τi

)
= Mli

(
q̈2i−1

q̈2i

)
+ bli (q2i−1, . . . , q̇2i) + gl1 (q2i−1, q2i),

for i = 1, . . . , 3,

(5.130)

where, taking the rotational inertia of the individual links to be zero, we have

Mli =
2∑

j=1

Mli j �
T
Gli j

�Gli j
, (5.131)

bli =
⎛
⎝ 2∑

j=1

Mli j �
T
Gli j

�̇Gli j

⎞
⎠ q̇, (5.132)

gli = g
2∑

j=1

Mli j �
T
Gli j

ê2, (5.133)

for i = 1, . . . , 3.

The term, Mli j , is the mass of the jth link of the ith elbow chain subsystem. The terms
are computed as

Mli =
(

1
4 [l2

i2Mli2 + l2
i1(Mli1 + 4Mli2 ) + 4li1li2Mli2 cos(q2i)]

1
4 li2Mli2 [li2 + 2li1 cos(q2i)]

· · ·
1
4 li2Mli2 [li2 + 2li1 cos(q2i)]

1
4 l2

i2Mli2

)
, (5.134)

bli =
(

− 1
2 li1li2Mli2 sin(q2i)q̇2i(2q̇2i−1 + q̇2i)

1
2 li1li2Mli2 sin(q2i)q̇2

2i−1

)
, (5.135)

gli =
(

1
2 g[li1(Mli1 + 2Mli2 ) cos(q2i−1) + li2Mli2 cos(q2i−1 + q2i)]

1
2 gli2Mli2 cos(q2i−1 + q2i)

)
, (5.136)

for i = 1, . . . , 3.

For the platform subsystem we have

0 = Mp

⎛
⎝ q̈7

q̈8

q̈9

⎞
⎠+ bp(q7, . . . , q̇9) + gp(q7, q8, q9), (5.137)

where

Mp = Mp�
T
Gp

�Gp + IGp
p �T

p �p, (5.138)

bp =
(

Mp�
T
Gp

�̇Gp + IGp
p �T

p �̇p

)
q̇, (5.139)

gp = gMp�
T
Gp

ê2. (5.140)
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The Jacobians are simply �Gp = 12×2 and �p = 1. The dynamical terms are then com-
puted as

Mp =
⎛
⎝Mp 0 0

0 Mp 0
0 0 IGp

p

⎞
⎠ , (5.141)

bp = 0, (5.142)

gp =
⎛
⎝ 0

Mpg
0

⎞
⎠ . (5.143)

The entire unconstrained system is composed as⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
τ1

0
τ2

0
τ3

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎝

Ml1 0 0 0

0 Ml2 0
...

0 0 Ml3 0
0 0 0 Mp

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎜⎝

q̈1

q̈2
...

q̈9

⎞
⎟⎟⎟⎠+

⎛
⎜⎜⎝

bl1

bl2

bl3

bp

⎞
⎟⎟⎠+

⎛
⎜⎜⎝

gl1

gl2

gl3

gp

⎞
⎟⎟⎠ , (5.144)

and the constrained system is

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
τ1

0
τ2

0
τ3

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎝

Ml1 0 0 0

0 Ml2 0
...

0 0 Ml3 0
0 0 0 Mp

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎜⎝

q̈1

q̈2
...

q̈9

⎞
⎟⎟⎟⎠+

⎛
⎜⎜⎝

bl1

bl2

bl3

bp

⎞
⎟⎟⎠+

⎛
⎜⎜⎝

gl1

gl2

gl3

gp

⎞
⎟⎟⎠

+

⎛
⎜⎜⎜⎝

�T
l1

0 0
0 �T

l2
0

0 0 �T
l3

−�T
p1

−�T
p2

−�T
p3

⎞
⎟⎟⎟⎠
⎛
⎜⎝

λ1
...

λ6

⎞
⎟⎠ , (5.145)

where the dimensions of the terms are

M ∈ R
n×n, b, g, τ ∈ R

n, � ∈ R
m×n, λ ∈ R

m, (5.146)

and n = 9 and m = 6. The constrained system has p = n − m = 3 degrees of freedom.
Results from simulation of the system under gravity are shown in Figures 5.9 and

5.10. All geometric and inertial constants were chosen to be 1:

li j = 1, Mi j = 1, Mp = 1, IGp
p = 1,

for i = 1, . . . , 3, and, j = 1, 2.
(5.147)
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Figure 5.9 (Top) Animation frames from the simulation of the parallel mechanism falling under
gravity. (Bottom) Time history of the motion of the platform (x, y, θ ).

The initial conditions used were

qo = (π/4 π/6 11π/12 π/6 −5π/12 π/6 0 2.165 0
)T

(5.148)

q̇o = (0 0 0 0 0 0 0 0 0
)T

. (5.149)

It can be verified that these satisfy the constraints.
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Figure 5.10 Lagrange multipliers (constraint forces) for the parallel mechanism falling under
gravity.

5.2.6 Generalized Constrained Equation of Motion

Given the explicit solution of the constrained dynamics problem from Section 5.2.5, we
wish to express an alternate form of the constrained dynamical equations of motion. We
begin by recalling (5.93):

λ = −�̄T (τ − b − g) − H�̇q̇. (5.150)

Substituting (5.150) into (5.86) yields

Mq̈ + b + g = −�T H�̇q̇ + (1 − �T �̄T )τ + �T �̄T (b + g). (5.151)

We now define the mC × 1 vector of centrifugal and Coriolis forces projected at the
constraint,

α � �̄T b − H�̇q̇, (5.152)

and the mC × 1 vector of gravity forces projected at the constraint,

ρ � �̄T g. (5.153)

Thus, we have the concise expression, which we will refer to as the generalized con-
strained equation of motion (De Sapio, Khatib, and Delp 2006):


T τ = Mq̈ + b + g − �T (α + ρ). (5.154)

An alternative means of deriving this equation involves directly mapping the config-
uration space equation (5.86) into the constraint null space using 
T ,


T τ = 
T Mq̈ + 
T b + 
T g − 
T �T λ. (5.155)
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Noting that 
T �T = 0 and manipulating, we have


T τ = Mq̈ + b + g − �T �̄T Mq̈ − �T �̄T b − �T �̄T g

= Mq̈ + b + g − �T H�q̈ − �T (p + α) − �T H�̇q̇. (5.156)

Substituting in our constraint condition, �̇q̇ = −�q̈, yields


T τ = Mq̈ + b + g − �T (p + α). (5.157)

5.3 Hamilton’s Principle of Least Action

An alternate way of arriving at the the equations of motion is through a least action
principle. The fundamental theme associated with least action principles is that the evo-
lution of a dynamical system can be revealed by examining the stationary condition for
an appropriately defined action integral.

While least action can refer to a general family of variational principles, perhaps the
most significant among these is Hamilton’s Principle of Least Action. This principle
states that the path, q(t ), of a system in configuration space over an interval, [to, t f ], is
such that the action is stationary under all path variations that vanish at the endpoints,
q(to) and q(t f ). It is noted that this does not strictly imply a minimization of the action,
as the name of the principle suggests, but rather an extremization of the action.

principle 5.2 For scleronomic systems (no explicit time dependence) the path of a
system in configuration space during an interval, [to, t f ], is such that the action

I =
t f∫

to

L(q, q̇)dt (5.158)

is stationary under all path variations. The scalar term, L, is the Lagrangian, defined
as

L � T − V, (5.159)

where T and V are the system kinetic and potential energies, respectively. Furthermore

δI = 0

∀δ|δq(to) = δq(t f ) = 0.
(5.160)

This is known as Hamilton’s Principle of Least Action.

For forced systems the Principle of Least Action is modified such that the variation
in the action is given by

δI = δ

t f∫
to

L dt +
t f∫

to

τ · δq dt. (5.161)
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5.3.1 Euler-Lagrange Equations

It is straightforward to apply calculus of variations to this problem (Goldstein, Poole,
and Safko 2002). We can express the first term in (5.161) as

δ

t f∫
to

L dt =
t f∫

to

(
∂L
∂q

· δq + ∂L
∂ q̇

· δq̇

)
dt =

t f∫
to

∂L
∂q

· δq dt +
t f∫

to

∂L
∂ q̇

· d(δq)

dt
dt.

(5.162)
Noting that

∂L
∂ q̇

· d(δq)

dt
= d

dt

(
∂L
∂ q̇

· δq

)
− d

dt

∂L
∂ q̇

· δq, (5.163)

we have

t f∫
to

(
∂L
∂q

· δq + ∂L
∂ q̇

· d(δq)

dt

)
dt =

t f∫
to

d

dt

(
∂L
∂ q̇

· δq

)
dt

+
t f∫

to

(
∂L
∂q

· δq − d

dt

∂L
∂ q̇

· δq

)
dt. (5.164)

Since the variations, δq, vanish at the endpoints,

t f∫
to

d

dt

(
∂L
∂ q̇

· δq

)
dt = ∂L

∂ q̇
· δq

∣∣∣∣t f

to

= 0. (5.165)

Thus,

δ

t f∫
to

L dt =
t f∫

to

(
∂L
∂q

− d

dt

∂L
∂ q̇

)
· δq dt (5.166)

and

δI =
t f∫

to

(
∂L
∂q

− d

dt

∂L
∂ q̇

+ τ

)
· δq dt. (5.167)

The condition

δI = 0

∀δq,
(5.168)

implies the following Euler-Lagrange equations:

τ = d

dt

∂L
∂ q̇

− ∂L
∂q

. (5.169)
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We can express the Euler-Lagrange equations as

τ = d

dt

∂T

∂ q̇
− ∂T

∂q
+ ∂V

∂q
. (5.170)

5.3.2 A Single Particle

For a single point mass with a discrete set of n f external forces, { f1, . . . , fn f }, acting on
it, the Euler-Lagrange equations are

n f∑
i=1

fi = d

dt

∂T

∂ ṙ
− ∂T

∂r
+ ∂V

∂r
. (5.171)

The kinetic energy, T , is given by

T = 1

2
MvT v = 1

2
M ṙT ṙ. (5.172)

So,

∂T

∂ ṙ
= M ṙ (5.173)

and

d

dt

∂T

∂ ṙ
= M r̈ = Ma. (5.174)

We note that

∂T

∂r
= 0. (5.175)

The potential energy, V , is given by

V = M 〈r, gê3〉 = MgrT ê3. (5.176)

So,

∂V

∂r
= Mgê3. (5.177)

Thus,

n f∑
i=1

fi = Ma + Mgê3. (5.178)
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5.3.3 A Single Rigid Body

For a single rigid body with a discrete set of n f external forces, { f1, . . . , fn f }, and nϕ

external moments, {ϕ1, . . . ,ϕnϕ
}, acting on it, the Euler-Lagrange equations are⎛

⎜⎜⎝
n f∑

i=1
fi

n f∑
i=1

d−→
GPi

× fi +
nϕ∑

i=1
ϕ j

⎞
⎟⎟⎠ = d

dt

∂T

∂ẋ
− ∂T

∂x
+ ∂V

∂x
, (5.179)

where

x =
(

rG

θ

)
and ẋ =

(
vG

ω

)
. (5.180)

The kinetic energy, T , is given by

T = 1

2
(MvT

G vG + ωT IGω). (5.181)

So,

∂T

∂ẋ
=
(

MvG

IGω

)
(5.182)

and

d

dt

∂T

∂ẋ
=
(

MaG

IGα + ω × IGω

)
. (5.183)

The potential energy, V , is given by

V = M 〈r, gê3〉 = MgrT ê3. (5.184)

So,

∂V

∂x
=
(

Mgê3

0

)
. (5.185)

Thus, ⎛
⎜⎜⎝

n f∑
i=1

fi

n f∑
i=1

d−→
GPi

× fi +
nϕ∑

i=1
ϕ j

⎞
⎟⎟⎠ =
(

MaG + Mgê3

IGα + ω × IGω

)
. (5.186)

The Kinetic Energy Ellipsoid
Rotational kinetic energy is given by

T = 1

2
ωT IGω. (5.187)

We will assume this expression is represented in the base frame for convenience.
Since IG is symmetric positive definite, it has positive eigenvalues and an orthogonal
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eigenbasis (principal axes), E . Therefore,

T = 1

2
OωT OIGOω = 1

2
EωT O

EQ
T OIGO

EQ
Eω, (5.188)

where the columns of O
EQ are the eigenvectors, {v1, v2, v3}, of OIG,

O
EQ =
⎛
⎝ ↑ ↑ ↑

v1 v2 v3

↓ ↓ ↓

⎞
⎠. (5.189)

We then have

O
EQ

T OIGO
EQ = EIG, (5.190)

where EIG is a diagonal matrix of eigenvalues, {λ1, λ2, λ3}, of OIG:

EIG =
⎛
⎝λ1 0 0

0 λ2 0
0 0 λ3

⎞
⎠. (5.191)

In terms of the eigenbasis,

T = 1

2
EωT EIGEω. (5.192)

For constant values of the kinetic energy T , this represents an ellipsoid expressed with
respect to the principal axes. In scalar form,

T = 1

2

(
λ1

Eω2
1 + λ2

Eω2
2 + λ3

Eω2
3

)
. (5.193)

The semiaxes of the ellipsoid in frame E are then

ai =
√

2T/λi. (5.194)

Example: We consider the cone addressed in Section 4.1.2. The inertia tensor about the
center of mass is

IG =

⎛
⎜⎝

3
80 M (h2 + 4R2) 0 0

0 3
80 M (h2 + 4R2) 0

0 0 3
10 R2

⎞
⎟⎠ . (5.195)

Specifying M = 1, h = 1, and R = .75, the eigenvalues are λ1 = 0.684, λ2 = 0.684,
and λ3 = 0.169. The ellipsoid associated with a constant kinetic energy, T = 1, has
semiaxes a1 = 1.71, a2 = 1.71, and a3 = 3.443, aligned with the cone axes depicted in
Figure 4.3.
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5.3.4 A System of Particles

For a system of particles with generalized forces, τ, acting on the system the Euler-
Lagrange equations are

τ = d

dt

∂T

∂ q̇
− ∂T

∂q
+ ∂V

∂q
. (5.196)

The kinetic energy, T , is given by

T = 1

2

np∑
i=1

Miv
T
i vi = 1

2
q̇T

( np∑
i=1

Mi�
T
i �i

)
q̇. (5.197)

We note that

∂T

∂ q̇
=
( np∑

i=1

Mi�
T
i �i

)
q̇. (5.198)

So,

d

dt

∂T

∂ q̇
=
( np∑

i=1

Mi�
T
i �i

)
q̈. (5.199)

The potential energy, V , is given by

V =
np∑

i=1

Mi 〈ri, gê3〉 = g

np∑
i=1

Mir
T
i ê3. (5.200)

So

∂V

∂q
= g

np∑
i=1

Mi

(
∂ri

∂q

)T

ê3 = g

np∑
i=1

Mi�
T
i ê3 (5.201)

and

τ =
np∑

i=1

�T
i

(Miai + Migê3 ). (5.202)

Thus,

τ = d

dt

∂T

∂ q̇
− ∂T

∂q
+ ∂V

∂q
=
( np∑

i=1

Mi�
T
i �i

)
q̈ + g

nq∑
i=1

Mi�
T
i ê3. (5.203)

For a system of particles, we had previously defined

M (q) �
np∑

i=1

Mi�
T
i �i (5.204)

g(q) � g

np∑
i=1

Mi�
T
i ê3. (5.205)
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So,

τ = M (q)q̈ + g(q). (5.206)

5.3.5 A System of Rigid Bodies

For a system of rigid bodies with generalized forces, τ, acting on the system, the Euler-
Lagrange equations are

τ = d

dt

∂T

∂ q̇
− ∂T

∂q
+ ∂V

∂q
. (5.207)

The kinetic energy, T , is given by

T = 1

2

nb∑
i=1

(
Mi

ivT
Gi

ivGi
+ iωT

i

iIGi
i

iωi

)

= 1

2
q̇T

[
nb∑

i=1

(
Mi

i�T
Gi

i�Gi
+ i�T

i

iIGi
i

i�i

)]
q̇.

(5.208)

We note that

∂T

∂ q̇
=
[

nb∑
i=1

(
Mi

i�T
Gi

i�Gi
+ i�T

i

iIGi
i

i�i

)]
q̇. (5.209)

For a system of rigid bodies, we had previously defined

M (q) �
nb∑

i=1

(
Mi

i�T
Gi

i�Gi
+ i�T

i

iIGi
i

i�i

)
. (5.210)

So,

d

dt

∂T

∂ q̇
= Mq̈ + Ṁq̇ (5.211)

and

∂T

∂q
= 1

2

⎛
⎜⎜⎝

q̇T ∂M
∂q1

q̇
...

q̇T ∂M
∂qn

q̇

⎞
⎟⎟⎠ . (5.212)

The potential energy, V , is given by

V =
nb∑

i=1

Mi

〈
irGi

, giê03

〉 = g
nb∑

i=1

Mi
irT

Gi

iê03
. (5.213)

So,

∂V

∂q
= g

nb∑
i=1

Mi
i�T

Gi

iê03
. (5.214)
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For a system of rigid bodies, we had previously defined

g(q) � g
nb∑

i=1

Mi
i�T

Gi

iê03
. (5.215)

Thus,

τ = d

dt

∂T

∂ q̇
− ∂T

∂q
+ ∂V

∂q
= Mq̈ + Ṁq̇ − 1

2

⎛
⎜⎜⎝

q̇T ∂M
∂q1

q̇

...

q̇T ∂M
∂qn

q̇

⎞
⎟⎟⎠+ g(q). (5.216)

Defining b(q, q̇) in an alternate, but consistent, manner as previously defined:

b(q, q̇) � Ṁq̇ − 1

2

⎛
⎜⎜⎝

q̇T ∂M
∂q1

q̇

...

q̇T ∂M
∂qn

q̇

⎞
⎟⎟⎠ : (5.217)

we have

τ = M (q)q̈ + b(q, q̇) + g(q). (5.218)

Example: A gimballed gyroscope is depicted in Figure 5.11. The generalized coordi-
nates of the 2-axis gimbal are q1 and q2, while the spin angle of the gyroscope is q3. A

Figure 5.11 A gyroscope supported by a two-axis gimballed frame. The generalized coordinates,
q1 and q2, parameterize the gimbal frame, and q3 is the rotor angle. The rotor diameter is r.
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zyx Euler sequence will be used to represent the orientation of the system. So,

0
1Q = Qz(q1), (5.219)

0
2Q = Qz(q1)Qy(q2), (5.220)

0
3Q = Qz(q1)Qy(q2)Qx(q3). (5.221)

The positions of the proximal ends and centers of mass of the links are given by

0r1 = 0, (5.222)
0rG1

= 0r1 − lG1
ê3, (5.223)

0r2 = 0r1 + 0, (5.224)
0rG2

= 0r2 − lG2

0
2Qê1, (5.225)

0r3 = 0r3 + l3
0
2Qê1, (5.226)

0rG3
= 0r3. (5.227)

We can compute the angular velocity in the local frame by noting that

1�1 = 0
1Q

T 0
1Q̇, (5.228)

2�2 = 0
2Q

T 0
2Q̇, (5.229)

3�3 = 0
3Q

T 0
3Q̇. (5.230)

Carrying this operation out, we determine

1ω1 =
⎛
⎝ 0

0
q̇1

⎞
⎠ (5.231)

and

2ω2 =

⎛
⎜⎝

− sin(q2)q̇1

q̇2

cos(q2)q̇1

⎞
⎟⎠ (5.232)

and

3ω3 =

⎛
⎜⎝

q̇3 − sin(q2)q̇1

cos(q2) sin(q3)q̇1 + cos(q3)q̇2

cos(q2) cos(q3)q̇1 − sin(q3)q̇2

⎞
⎟⎠ (5.233)

Alternately, we could have arrived at the same results by propagating the rotation rates
forward, where

1ω1 = q̇1ê3, (5.234)
2ω2 = QT

y (q2)1ω1 + q̇2ê2, (5.235)
3ω3 = QT

x (q3)2ω2 + q̇3ê1. (5.236)
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The translational velocity Jacobians are given by

0�G1
= ∂ 0rG1

∂q
= 0, (5.237)

0�G2
= ∂ 0rG2

∂q
=
⎛
⎝ lG2

sin(q1) cos(q2) lG2
cos(q1) sin(q2) 0

−lG2
cos(q1) cos(q2) lG2

sin(q1) sin(q2) 0
0 lG2

cos(q2) 0

⎞
⎠ , (5.238)

0�G3
= ∂ 0rG3

∂q
=
⎛
⎝−l3 sin(q1) cos(q2) −l3 cos(q1) sin(q2) 0

l3 cos(q1) cos(q2) −l3 sin(q1) sin(q2) 0
0 −l3 cos(q2) 0

⎞
⎠ , (5.239)

and the angular velocity Jacobians are given by

1�1 = ∂ 1ω1

∂ q̇
=
⎛
⎝ 0 0 0

0 0 0
1 0 0

⎞
⎠ , (5.240)

2�2 = ∂ 2ω2

∂ q̇
=
⎛
⎝− sin(q2) 0 0

0 1 0
cos(q2) 0 0

⎞
⎠ , (5.241)

3�3 = ∂ 3ω3

∂ q̇
=
⎛
⎝ − sin(q2) 0 1

cos(q2) sin(q3) cos(q3) 0
cos(q2) cos(q3) − sin(q3) 0

⎞
⎠ . (5.242)

Our dynamical terms are then

M (q) =
3∑

i=1

(
Mi

0�T
Gi

0�Gi
+ i�T

i

iIG

i

i�i

)
, (5.243)

b(q, q̇) = Ṁq̇ − 1

2

⎛
⎜⎜⎝

q̇T ∂M
∂q1

q̇
...

q̇T ∂M
∂q3

q̇

⎞
⎟⎟⎠ , (5.244)

g(q) = g
3∑

i=1

Mi
0�T

Gi
ê3. (5.245)

The inertia tensors will be taken as

1IG1
1 =
⎛
⎝ 1

3 M1 0 0
0 1

3 M1 0
0 0 1

2 M1

⎞
⎠ , (5.246)

2IG2
2 =
⎛
⎝ 0.125M2 0 0

0 3.0625M2 0
0 0 3.083M2

⎞
⎠ , (5.247)

3IG3
3 =
⎛
⎝ 1

2 M3r2 0 0
0 1

12 h2M3 + 1
4 M3r2 0

0 0 1
12 h2M3 + 1

4 M3r2

⎞
⎠ . (5.248)
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We then have

M (q) =

⎛
⎜⎝ M11 0 − 1

2 M3r2 sin(q2)

0 M22 − 1
2 M3r2 sin(q2)

− 1
2 M3r2 sin(q2) 0 1

2 M3r2

⎞
⎟⎠ ,

M11 = 0.5M1 + 1.604M2 + 0.5l2
G2

M2 + 0.042h2M3 + 0.5l2
3 M3 + 0.375M3r2

+ [(1.479 + 0.5l2
G2

)M2 + M3(0.042h2 + 0.5l2
3 − 0.125r2)] cos(2q2),

M22 = (3.0625 + l2
G2

)M2 + M3(0.083h2 + l2
3 + 0.25r2), (5.249)

b(q, q̇) =
⎛
⎝ b1

b2

− 1
2 M3r2 cos(q2)q̇1q̇2

⎞
⎠ ,

b1 = −2 cos(q2)q̇2([(2.958 + l2
G2

)M2

+ M3(0.083h2 + l2
3 − 0.25r2)] sin(q2)q̇1 + 0.25M3r2q̇3),

b2 = cos(q2)q̇1([(2.958 + l2
G2

)M2

+ M3(0.083h2 + l2
3 − 0.25r2)] sin(q2)q̇1 + 0.5M3r2q̇3), (5.250)

g(q) =
⎛
⎝ 0

g(lG2
M2 − l3M3) cos(q2)

0

⎞
⎠ . (5.251)

The simulation results are displayed in Figure 5.12. The values of the constants were
M1 = M2 = M3 = 1, lG1

= lG2
= 1, l3 = 3, r = 1, and h = 1. The initial conditions used

were

qo = (0 −π/6 0
)T

(5.252)

q̇o = (0 0 2π/8
)T

. (5.253)

The kinetic energy of the system is

T = 1

2
q̇T

[
3∑

i=1

(
Mi

0�T
Gi

0�Gi
+ i�T

i

iIG

i

i�i

)]
q̇ = 1

2
q̇T M (q̇),

= 1

2
[0.5M1 + 1.604M2 + 0.5l2

G2
M2 + 0.042h2M3 + 0.5l2

3 M3 + 0.375M3r2

+ (1.479M2 + 0.5l2
G2

M2 + 0.042h2M3 + 0.5l2
3 M3 − 0.125M3r2) cos(2q2)]q̇2

1

+ (3.063M2 + l2
G2

M2 + 0.083h2M3 + l2
3 M3 + 0.25M3r2)q̇2

2

− M3r2 sin(q2)q̇1q̇3 + 0.5M3r2q̇2
3. (5.254)
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Figure 5.12 (Top) Animation frames from the simulation of the gimballed gyroscope. (Bottom)
Time history of the gimbal angles, q1 and q2. The rotor of the gyroscope is spun up to 2π/8
rad/s. Precession of the gyroscope can be observed.
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Figure 5.13 Fluctuations of kinetic and potential energy and conservation of total energy.

The potential energy (relative to z = −2.5) of the system is

V = g
nb∑

i=1

Mi
0rT

Gi
ê3 = g[(2.5 − lG1

)M1 + 2.5M2 + 2.5M3 + (lG2
M2 − l3M3) sin(q2)],

(5.255)
and the total energy is

E = T + V. (5.256)

The Lagrangian is

L = T − V. (5.257)

Figure 5.13 shows the fluctuations of kinetic and potential energy and the conservation
of total energy for the gyroscope.

5.3.6 Constrained Least Action

Least action can be applied to multibody systems with auxiliary holonomic constraint
equations. We introduce a set of m holonomic (and scleronomic) constraint equations,
φ(q) = 0. The zeroth-order variation of the constraint equations is δφ = �δq = 0,
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where the matrix �(q) = ∂φ/∂q ∈ RmC×n is the constraint Jacobian. In this case, the
Principle of Least Action can be stated as

δI = 0,

∀δ|δq(to) = δq(t f ) = 0, and �δq = 0.
(5.258)

Thus, least action seeks the path, q(t ), in configuration space that results in a stationary
value of action, I , under all path variations, δq, that vanish at the endpoints and satisfy
the constraints.

We recall the Euler-Lagrange equations for unconstrained systems:

δI =
t f∫

to

(
∂L
∂q

− d

dt

∂L
∂ q̇

+ τ

)
· δq dt. (5.259)

This makes use of the condition that the path variations vanish at the endpoints. The
condition

δI = 0

∀δq|�δq = 0
(5.260)

applied to (5.259) implies the following orthogonality relation at any instant:(
d

dt

∂L
∂ q̇

− ∂L
∂q

− τ

)
· δq = 0

∀δq ∈ ker(�).

(5.261)

Thus, (
d

dt

∂L
∂ q̇

− ∂L
∂q

− τ

)
∈ ker(�)⊥ = im(�T ). (5.262)

This implies the familiar constrained Euler-Lagrange equations:

d

dt

∂L
∂ q̇

− ∂L
∂q

= τ + �T λ. (5.263)

Identical equations could have been obtained by embedding the constraints directly
in the Lagrangian. In this case the Lagrangian in (5.259) would be replaced by the
augmented Lagrangian with the constraints adjoined,

Laug(q, q̇,λ) � L(q, q̇) + λT φ(q), (5.264)

and the stationary value of I would be sought for all variations that vanish at the end-
points. We note that

δLaug = δL + λT δφ = δL + λT �δq (5.265)

and

d

dt

∂Laug

∂ q̇
− ∂Laug

∂q
= d

dt

∂L
∂ q̇

− ∂L
∂q

− �T λ = τ. (5.266)
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In standard matrix form we have

M (q)q̈ + b(q, q̇) + g(q) = τ + �T λ, (5.267)

subject to φ(q) = 0. For the stationary value of I to correspond to a minimum requires
that the first-order variation of I be greater than or equal to zero. This condition is shown
to be satisfied (Vujanovic and Atanackovic 2004) for sufficiently small time intervals,
[to, t f ], if the following is satisfied:

t f∫
to

δq̇T Mδq̇ dt ≥ 0, (5.268)

which corresponds to M being positive definite over the actual path. For classical
Lagrangian systems this condition is met.

Since (5.267) forms a set of second-order differential equations, it is appropriate to
complement it with the second derivative of the constraint equations,

φ̈ = �q̈ + �̇q̇ = 0. (5.269)

5.4 Canonical Hamiltonian Formulation

5.4.1 Unconstrained Case

We can express a set of so-called canonical equations of motion by defining an addi-
tional set of states, the generalized momenta,

p(q, q̇) � ∂L
∂ q̇

. (5.270)

In principle, we can invert this expression to represent the generalized velocities in
terms of the generalized coordinates and the generalized momenta. With (5.270) we can
express (5.169) as

τ = ṗ − ∂L
∂q

. (5.271)

Thus,

∂L
∂q

= ṗ − τ. (5.272)

Given that L = L(q, q̇), the total differential of the Lagrangian is

dL = ∂L
∂q

· dq + ∂L
∂ q̇

· dq̇. (5.273)

Substituting (5.270) and (5.272) into (5.273), we have

dL = ( ṗ − τ) · dq + p · dq̇. (5.274)
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Defining the Hamiltonian, H, as

H � p · q̇ − L, (5.275)

we note that the total differential of the Hamiltonian is

dH = d(p · q̇ − L) = d(p · q̇) − dL = (τ − ṗ) · dq + q̇ · d p. (5.276)

Given that we can express H = H(q, p) by replacing the generalized velocities in
(5.275) with expressions in terms of the generalized momenta, we have

dH = ∂H
∂q

· dq + ∂H
∂ p

· d p. (5.277)

Comparing this with (5.276), we note that

∂H
∂q

= τ − ṗ and
∂H
∂ p

= q̇. (5.278)

The canonical equations are thus the 2n first-order differential equations

q̇ = ∂H
∂ p

(5.279)

ṗ = τ − ∂H
∂q

. (5.280)

where the state vector is ( q p )T .
It is noted that, in practice, computing the Hamiltonian from the Lagrangian will

result in an expression for the Hamiltonian in terms of the generalized coordinates,
velocities, and momenta rather than just the generalized coordinates and momenta
(canonical states). The procedure for expressing the Hamiltonian exclusively in terms
of the generalized coordinates and momenta as follows:

1. Express the generalized momenta, p, as a function of the generalized coordinates, q,
and the generalized velocities, q̇, using

p(q, q̇) = ∂L
∂ q̇

.

2. Invert this expression to represent the generalized velocities as a function of the gen-
eralized coordinates and the generalized momenta. That is, determine q̇ = f (q, p).

3. Compute the Hamiltonian, H, using the Lagrangian

H(q, q̇, p) = p · q̇ − L(q, q̇).

4. Express the Hamiltonian as a function of the generalized coordinates and the gener-
alized momenta by replacing the generalized velocities with expressions in terms of
the generalized momenta using q̇ = f (q, p).

Numerical Integration
A first-order method for integrating Hamilton’s equations can be summarized as shown
in Algorithm 5.
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Algorithm 5 First-order method for integrating Hamilton’s equations

1: q0 = qo {initialization}

2: p0 = po {initialization}

3: for i = 0 to ns − 1 do

4: q̇i = ∂H
∂ p |i

5: ṗi = − ∂H
∂q |i

6: pi+1 = pi + ṗi�t

7: qi+1 = qi + q̇i�t

8: end for

5.4.2 Auxiliary Constraints

As in the unconstrained case, we can express a set of canonical equations of motion.
Beginning with the constrained Euler-Lagrange equations,

τ = d

dt

∂L
∂ q̇

− ∂L
∂q

− �T λ, (5.281)

and following the same procedure as for the unconstrained case, we have the 2n first-
order differential equations

q̇ = ∂H
∂ p

(5.282)

ṗ = τ + �T λ − ∂H
∂q

, (5.283)

complemented by the m constraint equations �q̇ = 0. This yields a set of 2n + m first-
order differential equations. In practice the integration of the forward dynamics would
also require constraint stabilization to mitigate drift in the constraints. Unlike second-
order systems, where drift occurs at the position and velocity levels, we only need to
be concerned with drift at the position level (Naudet et al. 2003). We can replace our
original differential constraint equation with

φ̇ + αφ = 0, (5.284)

or

�q̇ + αφ = 0. (5.285)

Thus, the constraint stabilized canonical equations of motion in compact form are⎛
⎝ 1 0 0

0 1 −�T

� 0 0

⎞
⎠
⎛
⎝ q̇

ṗ
λ

⎞
⎠ =

⎛
⎜⎝

∂H
∂ p

τ − ∂H
∂q

−αφ

⎞
⎟⎠ . (5.286)

Dirac generalized the handling of constraints in Hamiltonian dynamics (Dirac 1958).
If we consider the constraints to be a function of the generalized momenta as well as the
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generalized coordinates, we have

φ(q, p) = 0. (5.287)

We can define the augmented Hamiltonian as

Haug(q, p,λ) � H(q, p) − λT φ(q, p). (5.288)

The constrained canonical equations are then

q̇ = ∂Haug

∂ p
(5.289)

ṗ = τ − ∂Haug

∂q
(5.290)

or

q̇ = ∂H
∂ p

− ∂φ

∂ p
λ (5.291)

ṗ = τ − ∂H
∂q

+ ∂φ

∂q
λ. (5.292)

The stabilized differential constraint equation is

φ̇ + αφ = 0, (5.293)

or

∂φ

∂q
q̇ + ∂φ

∂ p
ṗ + αφ = 0. (5.294)

The generalized constraint stabilized canonical equations of motion in compact form
are ⎛

⎜⎜⎝
1 0 ∂φ

∂ p

0 1 − ∂φ

∂q
∂φ

∂q
∂φ

∂ p 0

⎞
⎟⎟⎠
⎛
⎝ q̇

ṗ
λ

⎞
⎠ =

⎛
⎜⎝

∂H
∂ p

τ − ∂H
∂q

−αφ

⎞
⎟⎠ . (5.295)

5.5 Elimination of Multipliers

The Lagrange multipliers can be eliminated from (5.86) by first expressing the zeroth-
order variational equation:

τC · δq + (τ − Mq̈ − b − g) · δq = 0. (5.296)

By restricting the variations to constraint-consistent virtual displacements, we have

τC · δq + (τ − Mq̈ − b − g) · δq = 0

∀δq ∈ ker(�).
(5.297)

Recalling (5.83) we note that the generalized constraint forces produce no virtual work
under virtual displacements that are consistent with the constraints. Thus, the term
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τC · δq vanishes from (5.297), and we have the orthogonality relation

(Mq̈ + b + g − τ) · δq = 0

∀δq ∈ ker(�).
(5.298)

We now define a matrix, W ∈ Rn×p, whose columns span the null space of �. This
implies that im(W ) = ker(�). Thus, �W = 0 and W T �T = 0. In this manner, W
orthogonally complements �. That is,

im(W ) = ker(�) = im(�T )⊥. (5.299)

Geometrically, im(W ) represents the tangent space of the constrained-motion manifold,
Qp (see Figure 5.5). These geometric properties are discussed in further detail in Blajer
(1997) and Jungnickel (1994). While not required for the subsequent analysis, we spec-
ify that the columns of W be mutually orthogonal and thus form an orthogonal basis, C,
for the null space of �. The constraint-consistent virtual displacements, δq ∈ ker(�),
can then be expressed in terms of the virtual displacements of a minimal set of p inde-
pendent coordinates, qp:

δq = W δqp. (5.300)

Using this relationship, we can express (5.298) over all possible variations of a minimal
set of coordinates:

(W T Mq̈ + W T b + W T g − W T τ) · δqp = 0,

∀δqp ∈ R
p,

⇓
W T τ = W T Mq̈ + W T b + W T g.

(5.301)

Noting that q̇ = W q̇p and q̈ = W q̈p + Ẇ q̇p, we can express (5.301) as

τp = Mp(q)q̈p + bp(q, q̇p) + gp(q), (5.302)

where

Mp(q) = W T MW , (5.303)

bp(q, q̇p) = W T b + W T MẆ q̇p, (5.304)

gp(q) = W T g, (5.305)

τp = W T τ. (5.306)

The approach outlined here is consistent with the projection method of Blajer (1997).
This approach was also used by Russakow et al. for application to serial-to-parallel
chain manipulators (Russakow, Khatib, and Rock 1995). We note that (5.302) includes
a mix of our initial set of n generalized coordinates, q, as well as the minimal set of
p independent coordinates, qp. Since the constraints are holonomic, we would expect
there to be a mapping, in principle, which could be derived from the constraints that
would yield q = q(qp). In this case W could be computed explicitly from the mapping
rather than computing the null space of �; that is, W = ∂q/∂qp. Additionally, the terms
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in (5.302) could be expressed as functions of qp rather than q. Since qp are indepen-
dent coordinates, the constraints would be implicitly addressed and the resulting sys-
tem would be unconstrained with respect to configuration space. However, finding the
mapping q = q(qp) would be difficult in general. In such cases a null space method or
a coordinate partitioning method (Wehage and Haug 1982) would need to be used to
compute W .

Additionally, the generalized coordinates, qp, and the generalized forces, τp, do not
necessarily have a natural and physically intuitive meaning, making it difficult to stan-
dardize their use in a numerical algorithm. This is in contrast to the coordinates, q,
which are chosen specifically to describe the system in the most natural and physically
intuitive manner. It is usually desirable to select q in a manner that preserves the physical
meaning of the generalized forces as torques about individual joints. Often when using
a minimal set of coordinates, this is not the case, since a single generalized coordinate
may influence multiple joint displacements. Therefore, from an algorithmic perspective,
it is often preferable to deal with a nonminimal but standardized set of generalized coor-
dinates (like joint angles) that are amenable to numerical formulation and to compute
the dynamical terms corresponding to that kinematic parametrization.

5.6 Exercises

1. Consider the serial chain robot from Section 4.2, Exercise 3 (shown in Figure 5.14).
Recall that link lengths are l1 and l2. The link radii are r1 and r2, the link masses are
M1 and M2, and the link inertia tensors are

iIGi
i =
⎛
⎝ 1

2 Mir2
i 0 0

0 1
12 l2

i Mi + 1
4 Mir2

i 0
0 0 1

12 l2
i Mi + 1

4 Mir2
i

⎞
⎠

Figure 5.14 A 2 degree-of-freedom serial chain robot parameterized by the generalized
coordinates, q1 and q2, with generalized forces, τ1 and τ2 (Exercises 1, 5, and 7). The link
lengths are l1 and l2. The centers of mass are at the geometric centers of the links. The link radii
are r1 and r2, the link masses are M1 and M2, and the link principal inertia components are
iIGi

i11
= 1

2 Mir2
i and iIGi

i22
= iIGi

i33
= 1

12 l2
i Mi + 1

4 Mir2
i for links i = 1, 2.
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Figure 5.15 A two-link planar slider-crank mechanism (Exercises 2, 6, and 8). The unconstrained
system is parameterized by the generalized coordinates, q1 and q2, with generalized forces, τ1

and τ2. The link lengths are each l and the link masses are each M . The centers of mass are at the
geometric centers of the links. The link rotational inertias are taken to be zero. Link 2 is
constrained from translating in the ŷ direction.

for links i = 1, 2.
(a) Compute the mass matrix, M (q).
(b) Compute the vector of centrifugal and Coriolis forces, b(q, q̇).
(c) Compute the vector of gravity forces, g(q).

2. Consider the two-link planar slider-crank mechanism shown in Figure 5.15. The link
lengths are each l and the link masses are each M . The link rotational inertias are
taken to be zero.
(a) How many degrees of freedom does the constrained system have?
(b) Compute the mass matrix, M (q), for the unconstrained system.
(c) Compute the vector of centrifugal and Coriolis forces, b(q, q̇), for the uncon-

strained system.
(d) Compute the vector of gravity forces, g(q), for the unconstrained system.
(e) Express the constraint equations, φ(q), for the loop closure.
(f) Compute the constraint matrix, �(q).

3. Consider the planar four-bar linkage shown in Figure 5.16. The link lengths are each
l and the link masses are each M . The link rotational inertias are taken to be zero.
(a) How many degrees of freedom does the constrained system have?
(b) Compute the mass matrix, M (q), for the unconstrained system.
(c) Compute the vector of centrifugal and Coriolis forces, b(q, q̇), for the uncon-

strained system.
(d) Compute the vector of gravity forces, g(q), for the unconstrained system.
(e) Express the constraint equations, φ(q) for the loop closure.
(f) Compute the constraint matrix, �(q).

4. Consider the three-link planar slider-crank mechanism shown in Figure 5.17. The
unconstrained system is identical to the four-bar linkage of Exercise 3.
(a) How many degrees of freedom does the constrained system have?
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Figure 5.16 A planar four-bar linkage (Exercise 3). The unconstrained system is parameterized by
the generalized coordinates, q1, q2, and q3, with generalized forces, τ1, τ2, and τ3. The link
lengths are each l and the link masses are each M . The centers of mass are at the geometric
centers of the links. The link rotational inertias are taken to be zero. The link 3 endpoint is
constrained from translating.

(b) If not already completed, compute the mass matrix, M (q), the vector of cen-
trifugal and Coriolis forces, b(q, q̇), and the gravity forces, g(q), for the uncon-
strained system.

(c) Express the constraint equations, φ(q) for the loop closure.
(d) Compute the constraint matrix, �(q).

5. Consider the serial chain robot from Exercise 1.
(a) Compute the kinetic energy, T , of the system.
(b) Compute the potential energy, V , of the system.

Figure 5.17 A three-link planar slider-crank mechanism (Exercise 4). The unconstrained system is
parameterized by the generalized coordinates, q1, q2, and q3, with generalized forces, τ1, τ2, and
τ3. The link lengths are each l and the link masses are each M . The centers of mass are at the
geometric centers of the links. The link rotational inertias are taken to be zero. Link 3 is
constrained from rotating as well as translating in the ŷ direction.
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(c) Compute the Lagrangian, L, of the system.
(d) Generate the equations of motion, directly from the Lagrangian, using the Euler-

Lagrange equations.
6. Consider the two-link planar slider-crank mechanism from Exercise 2.

(a) Compute the kinetic energy, T , of the system.
(b) Compute the potential energy, V , of the system.
(c) Compute the Lagrangian, L, of the system.
(d) Generate the equations of motion, directly from the Lagrangian, using the Euler-

Lagrange equations.
(e) Express the constrained equations of motion.

7. Consider the serial chain robot from Exercise 1.
(a) Express the generalized momenta, p, as a function of the generalized coordi-

nates, q, and the generalized velocities, q̇. Invert this expression to represent the
generalized velocities as a function of the generalized coordinates and the gen-
eralized momenta.

(b) Compute the Hamiltonian, H, using the Lagrangian. Express the Hamiltonian
as a function of the generalized coordinates and the generalized momenta by
replacing the generalized velocities with expressions in terms of the generalized
momenta.

(c) Generate the equations of motion, directly from the Hamiltonian, using Hamil-
ton’s canonical equations.

8. Consider the two-link planar slider-crank mechanism from Exercise 2.
(a) Express the generalized momenta, p, as a function of the generalized coordi-

nates, q, and the generalized velocities, q̇. Invert this expression to represent the
generalized velocities as a function of the generalized coordinates and the gen-
eralized momenta.

(b) Compute the Hamiltonian, H, using the Lagrangian. Express the Hamiltonian
as a function of the generalized coordinates and the generalized momenta by
replacing the generalized velocities with expressions in terms of the generalized
momenta.

(c) Generate the equations of motion, directly from the Hamiltonian, using Hamil-
ton’s canonical equations.

(d) Express the constrained equations of motion.
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