
ar
X

iv
:1

71
2.

05
21

2v
1 

 [
m

at
h.

G
N

] 
 1

4 
D

ec
 2

01
7

Nonmeasurable sets and unions with respect to tree

ideals

Marcin Michalski, Robert Ra lowski and Szymon Żeberski

Abstract. In this paper we consider a notion of nonmeasurablity with respect to Mar-
czewski and Marczewski-like tree ideals s0, m0, l0, and cl0. We show that there exists
a subset A of the Baire space ωω which is s-, l-, and m-nonmeasurable, that forms
dominating m.e.d. family. We introduce and investigate a notion of T-Bernstein sets -
sets that intersect but does not containt any body of a tree from a given family of trees
T. We also acquire some results on I-Luzin sets, namely we prove that there are no
m0-, l0-, and cl0-Luzin sets and that if c is a regular cardinal, then the algebraic sum
(considered on the real line R) of a generalized Luzin set and a generalized Sierpiński
set belongs to s0,m0, l0 and cl0.

1. Introduction and preliminaries

We will use standard set-theoretic notation following e.g. [4]. For a set X , P (X)
denotes the power set of X and |X| denotes the cardinality of X . If κ is a cardinal
number then we denote:

• [X ]κ = {A ⊆ X : |A| = κ},
• [X ]<κ = {A ⊆ X : |A| < κ},
• [X ]≤κ = {A ⊆ X : |A| ≤ κ}.

Let X be an uncountable Polish space and I ⊆ P (X) be a σ-ideal. Let us recall some
cardinal coefficients from Cichoń’s Diagram:

• add(I) = min{|A| : A ⊆ I ∧
⋃

A /∈ I},
• non(I) = min{|A| : A ⊆ X ∧ A /∈ I},
• cov(I) = min{|A| : A ⊆ I ∧

⋃
A = X},

• cof(I) = min{|A| : A ⊆ I ∧ (∀A ∈ I)(∃B ∈ A)(A ⊆ B)},
• b = min{|F| : F ⊆ ωω ∧ (∀x ∈ ωω)(∃f ∈ F)(∃∞n)(x(n) < f(n))},
• d = min{|F| : F ⊆ ωω ∧ (∀x ∈ ωω)(∃f ∈ F)(∀∞n)(x(n) < f(n))}.

We call b a bounding number and d a dominating number. A family F ⊆ ωω is
dominating, if F has a property described in the definition of domintaing number (it
doesn’t have to be of minimal cardinality).
We say that T is a tree on a set A if T ⊆ A<ω and whenever τ ∈ T then τ ↾ n ∈ T for
each natural n.

Definition 1. Let T be a tree on a set A. Then
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• for each t ∈ T succ(t) = {a ∈ A : t⌢a ∈ T};
• split(T ) = {t ∈ T : |succ(t)| ≥ 2};
• ω-split(T ) = {t ∈ T : |succ(t)| = ℵ0};
• for s ∈ T SuccT (s) = {t ∈ split(T ) : s ( t, (∀t′ ∈ T )(s ( t′ ( t −→ t′ /∈
split(T ))};

• for s ∈ T ω-SuccT (s) = {t ∈ ω-split(T ) : s ( t, (∀t′ ∈ T )(s ( t′ ( t −→ t′ /∈ ω-
split(T ))};

• stem(T ) ∈ T is a node τ such that for each s ( τ |succ(s)| = 1 and |succ(τ)| > 1.

Let us now recall definitions of families of trees.

Definition 2. A tree T on ω is called

• Sacks tree or perfect tree, denoted by T ∈ S, if for each node s ∈ T there is t ∈ T
such that s ⊆ t and |succ(t)| ≥ 2;

• Miller tree or superperfect tree, denoted by T ∈ M, if for each node s ∈ T exists
t ∈ T such that s ⊆ t and |succ(t)| = ℵ0;

• Laver tree, denoted by T ∈ L, if for each node t ⊇ stem(T ) we have |succ(t)| =
ℵ0;

• complete Laver tree, denoted by T ∈ CL, if T is Laver and stem(T ) = ∅;
• Hechler tree, denoted by T ∈ H, if for each node t ⊇ stem(T ) we have that a set
{n ∈ ω : t⌢n /∈ T} is finite;

• complete Hechler, denoted by T ∈ CH tree, if T is Hechler and stem(T ) = ∅.

The notion of complete Laver trees was defined and investigated in [11], although
Miller in [10] defines Laver trees de facto as complete Laver trees and Hechler trees as
complete Hechler trees.

For every tree T ⊆ ω<ω let [T ] be the set of all infinite branches of T , i.e.

[T ] = {x ∈ ωω : (∀n ∈ ω) x ↾ n ∈ T}.

Definition 3 (Tree ideal). Let T be a family of trees. We say that A ∈ P (ωω) is in
t0 iff

(∀P ∈ T)(∃Q ∈ T) Q ⊆ P ∧ [Q] ∩A = ∅.

Definition 4 (t-measurability). Let T be a family of trees. We say that A ∈ P (ωω)
is t-measurable iff

(∀P ∈ T)(∃Q ∈ T) Q ⊆ P ∧ ([Q] ⊆ A ∨ [Q] ∩ A = ∅).

s0 tree ideal is simply a classic Marczewski ideal (see [8]).
It is well known due to Judah, Miller, Shelah (see [5]) and Repický (see [12]) that

add(s0) ≤ cov(s0) ≤ cof(c) ≤ non(s0) = c < cof(s0) ≤ 2c. Moreover, in [2] Brendle,
Khomskii and Wohofsky have shown that also c < cof(m0) and c < cof(l0). Clearly
ω1 ≤ add(l0) ≤ cov(l0) ≤ c holds. In [3], Goldstern, Repický, Shelah and Spinas showed
that it is relatively consistent with ZFC that add(l0) < cov(l0).

Let us notice that the families s0, l0, m0 form σ-ideals. On the other hand cl0 is not a
σ-ideal. To see that it is enough to consider sets of the form Cn = {x ∈ ωω : x(0) = n}.
Then Cn ∈ cl0 for each n, but

⋃
nCn = ωω. Using the fact that s0 is a σ-ideal we may

give another proof of the following well known result.

Proposition 5 (Essentially a joke). cf(c) > ℵ0.

Proof. Suppose that cf(c) = ℵ0 and let R =
⋃

n∈ω An, |An| < c for each n∈ ω. Sets
of cardinality lesser than c belong to s0, so R =

⋃
n∈ω An ∈ s0, a contradiction. �
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2. Tree ideals and measurability

In [1] the following result was obtained.

Theorem 6 (Brendle). If i0, j0 ∈ {s0, l0, m0} and i0 6= j0 then i0 6⊆ j0.

First we will compare the ideal cl0 with ideals s0, m0, l0.

Fact 7. cl0 6⊆ (l0 ∪m0 ∪ s0).

Proof. To show the assertion let us take C0 = {x ∈ ωω : x(0) = 0}. By CL ⊆ L ⊆
M ⊆ S, [C0] /∈ l0 ∪m0 ∪ s0. On the other hand [C0] ∈ cl0, which finishes the proof. �

Theorem 8. The following statements are true:

(i) m0 6⊆ cl0.
(ii) s0 6⊆ cl0.

Proof. To prove that m0 \ cl0 6= ∅ we will slightly modify the proof of Theorem 2.1
from [1]. We will use the notions of apple trees and pear trees.
First, let us recall that each Miller tree contains an apple tree and each apple tree is a
special kind of a Miller tree (apple trees forms a dense subfamily in all Miller trees).
Second, each complete Laver tree C contains a pear tree PC . A pear tree is not a
complete Laver tree, it is only a special kind of Sacks tree. Pear trees PC have the
following property: for every apple tree A and pear tree PC |[A] ∩ [PC ]| ≤ 1.
Let us now enumerate all apple trees {Aα : α < c} and all complete Laver trees {Cα :
α < c}. Having the above two propositions we can proceed by induction and construct a
sequence (xα)α<c such that for every α < c:

xα ∈ [PCα
] \

⋃

β<α

[Aβ]

Finally, we set X = {xα : α < c}. Let us notice that X ∈ m0 \ cl0, which finishes the
first part of the proof.

To prove that s0 \ cl0 6= ∅ we use slight modification of the proof of Theorem 2.2 from
[1], which fits a similar pattern from the first case.

�

Question 9. Is it true that l0 6⊆ cl0?

As a consequence we obtain the following result.

Corollary 10. The following statements are true:

(i) There exists a cl-nonmeasurable set which is m-measurable.
(ii) There exists a cl-nonmeasurable set which is s-measurable.

Let us introduce a notion of T-Bersntein sets.

Definition 11. Let T a family of trees. We say that a set B is an T-Bernstein set
if for every T ∈ T B ∩ [T ] 6= ∅ and B\[T ] 6= ∅.

Observe that a classic Bernstein set is an S-Bernstein set. If T ⊆ T′ are families
of trees, then T′-Bersntein sets are T-Bernstein sets. No T-Bernstein set is in t0 (or t-
measurable), and if T ⊆ T′ then T′-Bernstein sets don’t belong to t0. Also note that if
T ( T′ then a T-Bernstein set may be not a T′-Bernstein set (e.g. one may fix a tree
from T′\T which body will be always omitted). The following theorem slightly generalizes
Theorems 2.1 and 2.2 from [1].

Theorem 12. The following statements are true:
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(i) There exists an L-Bernstein set which belongs to m0.
(ii) There exists an M-Bernstein set which belongs to s0.

Proof. As in in the proof of Theorem 8 we will use notions established in [1]. To
prove (i) let us enumerate all Laver trees {Lα : α < c} and all apple trees {Aα : α < c}.
Let us construct two sequences: (bα)α<c and (xα)α<c such that for each α < c:

bα ∈[Lα]\(
⋃

β<α

[Aβ] ∪ {xξ : ξ < α}),

xα ∈[Lα]\({bβ : β ≤ α} ∪ {xβ : β < α}).

It can be done, since for each Laver tree Lα there is a pear tree PLα
for which |[PLα

]∩[A]| ≤
1 for every apple tree A, so the set [Lα]\(

⋃
β<α[Aβ] ∪ {xξ : ξ < α}) is nonempty at each

step α. Then B = {bα : α < c} is the desired set.
To prove (ii) we use a similar modification of Theorem 2.2 from [1]. �

Analogously to the Question 9 we may ask the following question.

Question 13. Is there a CL-Bernstein set which belongs to l0?

Let us invoke a theorem by Miller from [10].

Theorem 14 (Miller). Let A ∈ Σ1
1. Either A contains body of some complete Laver

tree or Ac contains a body of some complete Hechler tree.

Theorem 15. The following is true:

(i) B ∩ s0 is an ideal of Borel sets that don’t contain a perfect subset (so it’s an ideal
of countable sets).

(ii) B ∩m0 is an ideal of Borel sets which don’t contain a body of any Miller tree.
(iii) B ∩ l0 is an ideal of Borel sets that don’t contain a body of any Laver tree.

Proof. (i) is evident.
(ii) follows by the fact that any analytic set is either σ - bounded or contains a superperfect
set. If a Borel set contains a superfect set then clearly it’s not in m0. On the other hand, if
for some Miller tree T and σ - bounded Borel a set B [T ]\B didn’t contain a superperfect
set, then [T ] would be σ - bounded too. A contradiction.
(iii): If a Borel set B contains a body of some Laver tree, then clearly B /∈ l0. If it doesn’t
contain a Laver tree, but there is a Laver L for which each body of Laver subtree of L
has a nonempty intersection with B, then let us trim B and L in the following way:

B′ = {x ∈ ωω : stem(L)⌢x ∈ B},

L′ = {x ∈ ωω : stem(L)⌢x ∈ L}.

A function f : ωω → ωω given by the formula f(x) = stem(L)⌢x is continuous. Clearly,
B′ = f−1[B], so B′ is Borel, and [L′] = f−1[[L]] is a body of a complete Laver tree L′. B′

still doesn’t contain a body of any Laver tree, so by Theorem 14 there is a Hechler tree
H which body is contained in B′c. H ∩ L′ contains (in fact - is) a Laver tree, body of
which B′ should intersect - a contradiction. �

Definition 16. We say that a set A is I-nonmeasurable if A /∈ σ(B ∪ I). A is
completely I-nonmeasurable if A ∩ B is I-nonmeasurable for each Borel set B /∈ I, or
equivalently - A intersects each, but doesn’t contain any, Borel I-positive set.

Corollary 17. Let (T, t0) ∈ {(S, s0), (M, m0), (L, l0)}. Then a set B is a T-Bernstein
iff it is completely t0 ∩ B-nonmeasurable.
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Proof. By Theorem 15 a set A is t0∩B-positive Borel set if and only if it contains a
body of some tree from T, so a set B is T-Bernstein if and only if it intersects each each,
but does not contain any, Borel set containing a body of a tree from T. �

3. I-Luzin sets and algebraic properties

Let us recall the notion of I-Luzin sets. Let X be a Polish space and I be an ideal.

Definition 18. We say that a set L is an I-Luzin set if (∀A ∈ I)(|A ∩ L| < |L|).

For classic ideals of Lebesgue measure zero sets N and meager sets M we will call
M-Luzin sets generalized Luzin sets and N -Luzin sets generalized Sierpiński sets.

In [14] the following result was proven.

Theorem 19 (Wohofsky). There is no s0-Luzin set.

We will show that similar results can be obtained for other tree ideals.

Theorem 20. The following statements are true.

(i) There is no l0-Luzin set.
(ii) There is no cl0-Luzin set.
(iii) There is no m0-Luzin set.

Proof. Let us consider l0 case. We will prove that for every set X of cardinality c

there exists a set A ⊆ X such that A ∈ l0 and |A| = c. Indeed, let us assume that X /∈ l0.
Then there exists L ∈ L such that for every L′ ⊆ L, L′ ∈ L we have |[L] ∩X| = c. Let
us now fix a maximal antichain {Lα : α < c} of Laver trees contained in L such that
|[Lα] ∩X| = c. Let us construct a sequence (aα)α<c such that for each α < c:

aα ∈ X \
⋃

ξ<α

[Lα].

Then A = {aα : α < c} is the set. Proofs of the other cases are almost identical. �

Now we will consider I-Luzin sets in a context of algebraic properties and tree ideals.
We will work on the real line R with addition. Since R is σ-compact, it does not contain
even superperfect sets. We will tweak the definition a bit by saying that A ⊆ R belongs to
t0 if h

−1[A] belongs to t0 in ωω, where h is a homeomorphism between ωω and a subspace
of irrational numbers (see [7] for a similar modification in the case of 2ω). Having this in
mind we will usually mean by [τ ], τ ∈ ω<ω, an open interval of rational endpoints on R.

Before we proceed let us define a non-standard kind of fusion of Miller and Laver
trees, that we will use later. Let T be a Miller tree. Let τ∅ ∈ ω-split(T ) and let T0 be
any Miller subtree of T such that τ∅ remains an infinitely splitting node in T0. Suppose
we have a Miller subtree Tn and a set of nodes Bn = {τσ : σ ∈ n≤n} such that

(i) τσ ∈ ω-split(Tn) for every σ ∈ n≤n;
(ii) τσ⌢k ⊇ τσ for every k < n and σ ∈ n<n;
(iii) τσ⌢k ∩ τσ⌢j = τσ for every σ ∈ n<n and distinct k, j < n.

We extend the set of nodes Bn to Bn+1 = {τσ : σ ∈ (n+ 1)≤n+1} in a way that preserves
above conditions, so we gonna have n+1 levels of infinitely splitting nodes with fixed n+1
splits. The only σ ∈ (n + 1)0 is ∅, and τ∅ is an old node. It is ω-splitting in Tn and Tn

is a Miller tree, so we may find τn ⊇ τ∅, which is ω-splitting and τn ∩ τj = τ∅ for j < n.
If we already have τσ’s with desired properties for σ ∈ (n+ 1)≤k, k < n+ 1, then for τσ,
σ ∈ nk (old node), we add τσ⌢n such that conditions (i) - (iii) are still met. For a new
node τσ, σ ∈ (n + 1)k\nk, we find τσ⌢j for each j < n + 1 such that conditions (i) - (iii)
are satisfied too. Then let Tn+1 be any Miller subtree of Tn for which nodes from Bn+1
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are still infinitely splitting.
We will call a sequence of trees (Tn)n∈ω (or, interchangeably, their bodies [Tn]) derived
that way a Miller fusion sequence.
Similarly we define a Laver fusion sequence. The only difference would be that if τσ ⊆
τσ⌢k, then actually τσ⌢k = τσ

⌢j for some j ∈ ω.

Proposition 21. For every Miller (resp. Laver) fusion sequence (Tn)n∈ω a set⋂
n∈ω Tn is a Miller (resp. Laver) tree.

Lemma 22. For every sequence of intervals (In)n∈ω and a Miller (resp. Laver) tree
T there is a Miller (resp. Laver) fusion sequence (Tn)n∈ω such that for all n > 0:

λ([Tn] + In) < (1 + Σn−1
k=0(n− 1)k)λ(In).

Proof. Let us focus on a little more complicated ”Miller” case. Let I0 be an interval,
λ(I0) = ǫ0, T a Miller tree. We proceed by induction on n. Let τ∅ ∈ ω-split(T ) such that
λ([τ∅]) < ǫ0. Then λ([τ∅] + I0) = λ([τ∅]) +λ(I0) < 2ǫ0. Let T0 be Miller subtree of T such
that τ∅ = stem(T0) and τ∅ ∈ ω-split(T0). Clearly, we have λ([T0] + I0) < 2ǫ0.
Now assume that we have a tree Tn that is an element of the emerging Miller fusion
sequence, and associated with it set Bn of fixed nodes satisfying conditions (i) - (iii). Let
λ(In+1) = ǫn+1. Let us denote for each σ ∈ ω<ω and interval Iσ a set

N(Iσ) = {τσ
⌢k ∈ Tn : [τσ

⌢k] ⊆ Iσ ∧ (∀j < n)(τσ⌢j 6⊇ τσ
⌢k)}.

At each level k < n for every σ ∈ nk let Iσ be an interval with λ(Iσ) <
ǫn+1

(n+1)n
such that

a set N(Iσ) is infinite and choose τσ⌢n ∈ ω-split(Tn) such that τσ⌢n ⊇ τσ
⌢l for some

τσ
⌢l ∈ N(Iσ). At the level n let us fix an intervals Iσ, λ(Iσ) <

ǫn+1

(n+1)n
, for σ ∈ nn such

that sets N(Iσ) are infinite and pick τσ⌢0, τσ⌢1, ..., τσ⌢n which are extensions of some
nodes τσ

⌢k0, τσ
⌢k1, ..., τσ

⌢kn ∈ N(Iσ) respectively. Finally we pick remaining nodes to
complete a set Bn+1 in the gist of our definition of Miller fusion sequence however we like.
We take as Tn+1 any Miller subtree of Tn for which nodes from Bn+1 are infinitely splitting
and which body is covered by intervals Iσ, σ ∈ n≤n (which is possible by infiniteness of
each N(Iσ)).
Let us approximate λ([Tn+1] + In+1):

λ([Tn+1] + In+1) ≤ λ(
⋃

{Iσ + In+1 : σ ∈ n≤n} ≤ Σσ∈n≤n(λ(Iσ) + λ(In+1)) <

< Σσ∈n≤n(
ǫn+1

(n + 1)n
+ ǫn+1),

and since the count of intervals Iσ is |n≤n| = Σn
k=0n

k ≤ (n+ 1)n, we have:

λ([Tn+1] + In+1) ≤ Σn
k=0n

k(
ǫn+1

(n+ 1)n
+ ǫn+1) ≤ (n+ 1)n

ǫn+1

(n+ 1)n
+ Σn

k=0n
kǫn+1 =

= ǫn+1 + Σn
k=0n

kǫn+1 = (1 + Σn
k=0n

k)ǫn+1.

�

Remark 23. In the above Lemma in the case of a Laver tree we may demand that
stem(T ) = stem(

⋂
n∈ω Tn), if stem(T ) is nonempty.

Proof. The major difference is at the first step of the induction. Instead of picking
a suitable ”far enough” node τ∅ ∈ T such that λ([τ∅] + I0) < 2λ(I0), we already restrict
the choice of nodes at the stem level by picking an interval I∅ of measure λ(I∅) < λ(I0)
such that a set

N(I∅) = {stem(T )⌢k ∈ T : [stem(T )⌢k] ⊆ I∅}
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is infinite. It can be done since stem(T ) 6= ∅, so all clopens [stem(T )⌢k], k ∈ ω, are
contained in an interval. We take a Laver subtree T0 of T for which [T ] ⊆ I∅ and
stem(T ) = stem(T0) (so all nodes extending stem(T0) come from I∅). Then we continue
analogously to the proof of the Lemma 22. �

Lemma 24. There exists a dense Gδ set G such that for each Miller (resp. Laver
or complete Laver) tree T there exists a Miller (resp. Laver or complete Laver) subtree
T ′ ⊆ T such that G+ [T ′] ∈ N .

Proof. Let D = {dn : n ∈ ω} be a countable dense set, G =
⋂

n∈ω

⋃
k>n Ik, where

Ik is an interval with center dk and λ(Ik) <
1

(k)k−12k
. Proofs are almost identical in cases

of Miller and Laver trees so let T be a Miller tree. By the Lemma 22 there is a Miller
fusion sequence (Tn)n∈ω such that

λ([Tn] + In) < (1 + Σn−1
k=0(n− 1)k)λ(In) ≤ nn−1 1

nn−12n
=

1

2n
.

T ′ =
⋂

n∈ω Tn is a Miller tree containing all Tn’s, so we may replace [Tn] with [T ′] in the
above formula and it still holds. Then for fixed n ∈ ω:

λ(
⋃

k>n

Ik + [T ′]) = λ(
⋃

k>n

([T ′] + Ik)) ≤ Σk>nλ([T
′] + Ik) ≤ Σk>n

1

2k
=

1

2n
,

so, given that [T ′] +
⋂

n∈ω

⋃
k>n Ik ⊆

⋂
n∈ω

⋃
k>n([T

′] + Ik), we have:

λ(G+ [T ′]) ≤ λ(
⋂

n∈ω

⋃

k>n

([T ′] + Ik)) ≤ lim
n→∞

1

2n
= 0.

In the case of a complete Laver tree T let us observe that T =
⋃

n∈ω Tn, where Tn =
{σ ∈ T : (n) ⊆ σ ∨ σ ⊆ (n)} is a Laver tree with a nonempty stem. Let us notice that
[T ] =

⋃
n∈ω[Tn]. By the Lemma 22, Remark 23, and using the first part of the proof we

find for each (nonempty) Tn a Laver subtree T ′
n which shares the stem with Tn and for

which we have:
[T ′

n] +G ∈ N .

Then T ′ =
⋃

n∈ω T
′
n is a complete Laver subtree of T and:

[T ′] +G = [
⋃

n∈ω

T ′
n] +G =

⋃

n∈ω

[T ′
n] +G =

⋃

n∈ω

([T ′
n] +G) ∈ N

as a countable union of null sets. �

Before we proceed to the main theorem of this section let us recall a generalized
version of Rothberger’s theorem (see [13]).

Theorem 25. (Essentially Rothberger) Assume that generalized Luzin set L and
generalized Sierpiński set S exist. Then, if κ = max{|L|, |S|} is a regular cardinal,
|L| = |S| = κ.

Proof. Assume that κ = |L| > |S| and κ is a regular cardinal. Let M be a meager
set of full measure (the Marczewski decomposition). Then

κ = |L ∩ R| = |L ∩ (M + S)| = |
⋃

s∈S

(L ∩ (M + s))| < κ,

by regularity of κ. In the case of κ = |S| > |L| the proof is almost the same. �

The following theorem extends the result obtained in [9].

Theorem 26. Let c be a regular cardinal and t0 ∈ {s0, m0, l0, cl0}. Then for every
generalized Luzin set L and generalized Sierpiński set S we have L+ S ∈ t0.
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Proof. Let L and S be a generalized Luzin set and generalized Sierpiński set re-
spectively. If |L| < c and |S| < c, then L + S ∈ t0, since every set of cardinality less
than c belongs to t0. So, without a loss of generality (Theorem 25), let us assume that
|L| = |S| = c.
We will proceed with the proof in the case t0 = m0, the other cases are almost identi-
cal. Let T be a Miller tree. By the virtue of Lemma 24 let G be a dense Gδ set and
T ′ ⊆ T a Miller tree such that [T ′] + G ∈ N . Let A = −G and B = ([T ′] + G)c. Then
[T ′] ⊆ (A+B)c. We will show that there is a Miller tree T ′′ ⊆ T ′ which body is contained
in (L+ S)c. We have:

L+ S = ((L ∩ A) ∪ (L ∩Ac)) + ((S ∩ B) ∪ (S ∩ Bc))

= ((L ∩ A) + (S ∩B)) ∪ ((L ∩ A) + (S ∩ Bc))∪

∪ ((L ∩Ac) + (S ∩ B)) ∪ ((L ∩Ac) + (S ∩ Bc)).

(L ∩ A) + (S ∩ B) ⊆ A + B and sets (L ∩ A) + (S ∩ Bc), (L ∩ Ac) + (S ∩ B) and
(L ∩Ac) + (S ∩ Bc) are generalized Luzin, generalized Sierpiński and of size less than c,
so their intersection with [T ′] has a cardinality less than c. It follows that indeed there
exists a Miller tree T ′′ ⊆ T ′ such that (L+ S) ∩ [T ′′] = ∅ and therefore L+ S belongs to
m0. �

Let us remark that the assumption that c is regular cannot be omitted due to the
following result ([9]).

Theorem 27. It is consistent that there exist generalized Luzin set L and generalized
Sierpiński set S such that L+ S = Rn, and c = ℵω1

.

4. Eventually different families and t-measurablity

Two members f, g ∈ ωω of the Baire space are eventually different (briefly: e.d.) iff
f ∩ g is a finite subset of ω × ω. Maximal eventually different families with respect to
inclusion are called m.e.d. families.

Every e.d. family is a meager subset of the Baire space. It is natural to ask whether
the existence of m.e.d. families that are either s-measurable or s-nonmeasurable can be
proven in ZFC. It is relatively consistent with ZFC that there is a m.e.d. family A of
cardinality smaller then c (see [6]). In such a case A ∈ s0. On the other hand there exists
a perfect e.d. family and therefore not all m.e.d. families are in s0. The following two
theorems answer this question positively.

Theorem 28. There exists an s-nonmeasurable m.e.d. family in the Baire space.

Proof. Let us fix a perfect tree T ⊆ ω<ω such that [T ] is e.d. in ωω. Let {Tα : α < c}
be an enumeration of S(T ) - a family of all perfect subtrees of T . By transfinite reccursion
we define:

{(aα, dα, xα) ∈ [T ]× [T ]× ωω : α < c}

such that for any α < c we have:

(1) aα, dα ∈ [Tα],
(2) {aξ : ξ < α} ∩ {dξ : ξ < α} = ∅,
(3) {aξ : ξ < α} ∪ {xξ : ξ < α} is e.d. ,
(4) ∀∞n xα(n) = dα(n) but xα 6= dα.

Assume that we are at the step α < c of the construction and we have already defined
the sequence:

{(aξ, dξ, xξ) ∈ [T ]2 × ωω : ξ < α}.



NONMEASURABLE SETS AND UNIONS 9

We can choose aα, dα ∈ [Tα] ([Tα] has cardinality c) which fulfills conditions (1), (2). Then
choose any xα ∈ ωω distinct from dα but (∀∞n)dα(n) = xα(n). Then xα ∈ ωω \ [T ] and

{aξ : ξ < α} ∪ {xξ : ξ < α}

forms an e.d. family in ωω. This completes the construction.
Now let us set A0 = {aα : α < c} ∪ {xα : α < c} and let us extend it to m.e.d. family A.
It is easy to check that A is the desired s-nonmeasurable m.e.d. family. �

In [11] it was shown that if d = ω1 then there exists a s-nonmeasurable m.e.d. family
A and A′ ∈ [A]ω1 which is dominating in ωω. Here s-nonmeasurability can be replaced
by l-, m- or cl-nonmeasurability.

In the same paper it was proved that the following statement is relatively consistent
with ZFC: ”ω1 < d and there exists cl-nonmeasurable m.e.d. family A and a dominating
family A′ ⊆ A of the cardinality equal to d”.

The next theorem generalizes the result obtained in [11].

Theorem 29. There exists a m.e.d. family A ⊆ ωω such that A is not s-, l- and
m-measurable, with a dominating subfamily D ∈ [A]≤d.

Proof. By definition there is a dominating family D0 ⊆ ωω of size d. We will show
that there is an a.d. dominating family D of the same size. Let P = {Am ∈ [ω]ω :
m ∈ ω} be a partition of ω into infinite subsets. Let us construct a tree as follows:
T−1 = {∅}, next T0 = {(0, n) : n ∈ ω}. Now assume that we have defined Tn for a
fixed n ∈ ω and let us enumerate Tn = {sk : k ∈ ω} then for every m ∈ ω let us set
Am = {km,i : i ∈ ω} as an increasing sequence with i running through ω and m fixed.
Define Tn+1,m = {sm ∪ {(n + 1, km,i)} : i ∈ ω} and then let Tn+1 =

⋃
m∈ω Tn+1,m and

finally T =
⋃

n∈ω∪{−1} Tn. It is easy to observe that [T ] forms an a.d. family in ωω.

Now let us define an embedding f : D0 → [T ] as follows: pick an arbitrary element
d ∈ D0 which is an union

⋃
{d ↾ n : n ∈ ω} then assign to d ↾ 0 = ∅ ∈ T−1 and

to d ↾ 1 t0 = d ↾ 1 = {(0, d(0))}. Now let us assume that we have assigned for a
fixed d ↾ n tn ∈ Tn for n ∈ ω. Then there is unique m ∈ ω such that tn ∈ Tn,m but
Am = {km,i : i ∈ ω} is represented by the increasing sequence (km,i)i∈ω ∈ ωω then d ↾ n+1
is assigned to tn+1 = tn∪{(n+1, w)} where w = km,d(n+1) which is a greater than d(n+1).
From the construction we see that tn+1 ∈ Tn+1 and for any n ∈ ω tn ⊆ tn+1. Now let
f(d) =

⋃
{tn ∈ Tn : n ∈ ω :} ∈ [T ]. It easy to see that this ensures that f is one to one

mapping and for any d ∈ D0 d ≤ f(d). Now let D = {4f(d) : d ∈ D0} ⊆ (4N)ω which
forms a dominating family in ωω of size equal to d = |D0|.

Now let us choose a.d. trees S ⊆ (4N + 1)<ω, M ⊆ (4N + 2)<ω and L ⊆ (4N + 3)<ω

where S is a perfect tree, M is Miller and L is Laver.
Let us enumerate S(S) = {Sα : α < c} - a family of all perfect subtrees of S,

analogously M(M) = {Mα : α < c}, and L(L) = {Lα : α < c}. By transfinite reccursion
let us define

{wα ∈ [S]2 × ωω × [M ]2 × ωω × [L]2 × ωω : α < c}

where wα = (asξ, d
s
ξ, x

s
ξ, a

m
ξ , d

m
ξ , x

m
ξ , a

l
ξ, d

l
ξ, x

l
ξ, ) for any α < c, and such that for any α < c

we have:

(1) asα, d
s
α ∈ [Sα],

(2) {asξ : ξ < α} ∩ {dsξ : ξ < α} = ∅,
(3) {asξ : ξ < α} ∪ {xs

ξ : ξ < α} is e.d.,
(4) ∀∞n xs

α(n) = dsα(n) but x
s
α 6= dsα.

(5) amα , d
m
α ∈ [Mα],

(6) {amξ : ξ < α} ∩ {dmξ : ξ < α} = ∅,
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(7) {amξ : ξ < α} ∪ {xm
ξ : ξ < α} is e.d.,

(8) ∀∞n xm
α (n) = dmα (n) but x

m
α 6= dmα .

(9) alα, d
l
α ∈ [Lα],

(10) {alξ : ξ < α} ∩ {dlξ : ξ < α} = ∅,

(11) {alξ : ξ < α} ∪ {xl
ξ : ξ < α} is e.d.,

(12) ∀∞n xl
α(n) = dlα(n) but x

l
α 6= dlα.

Now assume that we are at the step α < c of the construction and we have a partial
sequence:

{wα : ξ < α}

which has a length at most ω · |α| < c. In the case of the perfect part we can choose in
[Sα] (of size c) asα, d

s
α ∈ [Sα] which fulfills the first condition. Then choose any xs

α ∈ ωω

different than dsα but (∀∞n)dα(n) = xα(n) then xs
α ∈ ωω \ [S] and

{aξ : ξ ≤ α} ∪ {xξ : ξ ≤ α}

forms an e.d. family in ωω. In the same way we can choose other points of our tuple for
Miller and Laver trees. The construction is complete. Now let us set:

As = D ∪ {asα : α < c} ∪ {xs
α : α < c},

Am = D ∪ {amα : α < c} ∪ {xm
α : α < c}

and

Al = D ∪ {alα : α < c} ∪ {xl
α : α < c}.

Let us extend the family D ∪ As ∪ Am ∪ Al to any m.e.d. family A. It is easy to check
that A is required s-, m- and l-nonmeasurable m.e.d. family in ωω with a dominating
subfamily of size d, which completes the proof. �
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d’ensembles, Fund. Math. 24 (1935), 17–34.
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