Nonmeasurable sets and unions with respect to tree ideals

Marcin Michalski, Robert Rałowski and Szymon Zeberski

ABSTRACT. In this paper we consider a notion of nonmeasurablity with respect to Marczewski and Marczewski-like tree ideals s_0, m_0, l_0 , and cl_0 . We show that there exists a subset A of the Baire space ω^{ω} which is s-, l-, and m-nonmeasurable, that forms dominating m.e.d. family. We introduce and investigate a notion of T-Bernstein sets sets that intersect but does not containt any body of a tree from a given family of trees \mathbb{T} . We also acquire some results on \mathcal{I} -Luzin sets, namely we prove that there are no m_0 -, l_0 -, and cl_0 -Luzin sets and that if \mathfrak{c} is a regular cardinal, then the algebraic sum (considered on the real line \mathbb{R}) of a generalized Luzin set and a generalized Sierpiński set belongs to s_0, m_0, l_0 and cl_0 .

1. Introduction and preliminaries

We will use standard set-theoretic notation following e.g. [4]. For a set X, P(X)denotes the power set of X and |X| denotes the cardinality of X. If κ is a cardinal number then we denote:

Let X be an uncountable Polish space and $\mathcal{I} \subseteq P(X)$ be a σ -ideal. Let us recall some cardinal coefficients from Cichoń's Diagram:

- $\operatorname{add}(\mathcal{I}) = \min\{|\mathcal{A}| : \mathcal{A} \subseteq \mathcal{I} \land \bigcup \mathcal{A} \notin \mathcal{I}\},\$
- $\operatorname{non}(\mathcal{I}) = \min\{|A| : A \subseteq X \land A \notin \mathcal{I}\},\$
- $\operatorname{cov}(\mathcal{I}) = \min\{|\mathcal{A}| : \mathcal{A} \subseteq \mathcal{I} \land \bigcup \mathcal{A} = X\},\$
- $\operatorname{cof}(\mathcal{I}) = \min\{|\mathcal{A}| : \mathcal{A} \subseteq \mathcal{I} \land (\forall A \in \mathcal{I}) (\exists B \in \mathcal{A}) (A \subseteq B)\},\$
- $\mathfrak{b} = \min\{|\mathcal{F}| : \mathcal{F} \subseteq \omega^{\omega} \land (\forall x \in \omega^{\omega}) (\exists f \in \mathcal{F}) (\exists^{\infty} n) (x(n) < f(n))\},\$
- $\mathfrak{d} = \min\{|\mathcal{F}| : \mathcal{F} \subseteq \omega^{\omega} \land (\forall x \in \omega^{\omega}) (\exists f \in \mathcal{F}) (\forall^{\infty} n) (x(n) < f(n))\}.$

We call \mathfrak{b} a bounding number and \mathfrak{d} a dominating number. A family $\mathcal{F} \subseteq \omega^{\omega}$ is dominating, if \mathcal{F} has a property described in the definition of domintaing number (it doesn't have to be of minimal cardinality).

We say that T is a tree on a set A if $T \subseteq A^{<\omega}$ and whenever $\tau \in T$ then $\tau \upharpoonright n \in T$ for each natural n.

DEFINITION 1. Let T be a tree on a set A. Then

AMS Classification: Primary 03E17, 03E50, 03E75; Secondary 28A99

Keywords: Marczewski ideal, Laver tree, Miller tree, m.e.d. family, dominating family, nonmeasurable set, Polish space, Continuum Hypothesis.

The work has been partially financed by grant S50129/K1102 (0401/0086/16) from the Faculty of Fundamental Problems of Technology of Wrocław University of Technology.

- for each $t \in T$ succ $(t) = \{a \in A : t \cap a \in T\};$
- $split(T) = \{t \in T : |succ(t)| \ge 2\};$
- ω -split $(T) = \{t \in T : |succ(t)| = \aleph_0\};$
- for $s \in T$ Succ_T $(s) = \{t \in split(T) : s \subsetneq t, (\forall t' \in T)(s \subsetneq t' \subsetneq t \longrightarrow t' \notin split(T))\};$
- for $s \in T$ ω -Succ_T $(s) = \{t \in \omega$ -split $(T) : s \subsetneq t, (\forall t' \in T) (s \subsetneq t' \subsetneq t \longrightarrow t' \notin \omega$ -split $(T))\};$
- $stem(T) \in T$ is a node τ such that for each $s \subsetneq \tau |succ(s)| = 1$ and $|succ(\tau)| > 1$.

Let us now recall definitions of families of trees.

DEFINITION 2. A tree T on ω is called

- Sacks tree or perfect tree, denoted by $T \in S$, if for each node $s \in T$ there is $t \in T$ such that $s \subseteq t$ and $|succ(t)| \ge 2$;
- Miller tree or superperfect tree, denoted by $T \in \mathbb{M}$, if for each node $s \in T$ exists $t \in T$ such that $s \subseteq t$ and $|succ(t)| = \aleph_0$;
- Laver tree, denoted by $T \in \mathbb{L}$, if for each node $t \supseteq stem(T)$ we have $|succ(t)| = \aleph_0$;
- complete Laver tree, denoted by $T \in \mathbb{CL}$, if T is Laver and stem $(T) = \emptyset$;
- Hechler tree, denoted by $T \in \mathbb{H}$, if for each node $t \supseteq stem(T)$ we have that a set $\{n \in \omega : t \frown n \notin T\}$ is finite;
- complete Hechler, denoted by $T \in \mathbb{CH}$ tree, if T is Hechler and $stem(T) = \emptyset$.

The notion of complete Laver trees was defined and investigated in [11], although Miller in [10] defines Laver trees *de facto* as complete Laver trees and Hechler trees as complete Hechler trees.

For every tree $T \subseteq \omega^{<\omega}$ let [T] be the set of all infinite branches of T, i.e.

$$[T] = \{ x \in \omega^{\omega} : \ (\forall n \in \omega) \ x \upharpoonright n \in T \}.$$

DEFINITION 3 (Tree ideal). Let \mathbb{T} be a family of trees. We say that $A \in P(\omega^{\omega})$ is in t_0 iff

$$(\forall P \in \mathbb{T})(\exists Q \in \mathbb{T}) \ Q \subseteq P \land [Q] \cap A = \emptyset.$$

DEFINITION 4 (t-measurability). Let \mathbb{T} be a family of trees. We say that $A \in P(\omega^{\omega})$ is t-measurable iff

$$(\forall P \in \mathbb{T})(\exists Q \in \mathbb{T}) \ Q \subseteq P \land ([Q] \subseteq A \lor [Q] \cap A = \emptyset).$$

 s_0 tree ideal is simply a classic Marczewski ideal (see [8]).

It is well known due to Judah, Miller, Shelah (see [5]) and Repický (see [12]) that $add(s_0) \leq cov(s_0) \leq cof(\mathfrak{c}) \leq non(s_0) = \mathfrak{c} < cof(s_0) \leq 2^{\mathfrak{c}}$. Moreover, in [2] Brendle, Khomskii and Wohofsky have shown that also $\mathfrak{c} < cof(m_0)$ and $\mathfrak{c} < cof(l_0)$. Clearly $\omega_1 \leq add(l_0) \leq cov(l_0) \leq \mathfrak{c}$ holds. In [3], Goldstern, Repický, Shelah and Spinas showed that it is relatively consistent with ZFC that $add(l_0) < cov(l_0)$.

Let us notice that the families s_0, l_0, m_0 form σ -ideals. On the other hand cl_0 is not a σ -ideal. To see that it is enough to consider sets of the form $C_n = \{x \in \omega^{\omega} : x(0) = n\}$. Then $C_n \in cl_0$ for each n, but $\bigcup_n C_n = \omega^{\omega}$. Using the fact that s_0 is a σ -ideal we may give another proof of the following well known result.

PROPOSITION 5 (Essentially a joke). $cf(\mathfrak{c}) > \aleph_0$.

PROOF. Suppose that $cf(\mathfrak{c}) = \aleph_0$ and let $\mathbb{R} = \bigcup_{n \in \omega} A_n$, $|A_n| < \mathfrak{c}$ for each $n \in \omega$. Sets of cardinality lesser than \mathfrak{c} belong to s_0 , so $\mathbb{R} = \bigcup_{n \in \omega} A_n \in s_0$, a contradiction.

2. Tree ideals and measurability

In [1] the following result was obtained.

THEOREM 6 (Brendle). If $i_0, j_0 \in \{s_0, l_0, m_0\}$ and $i_0 \neq j_0$ then $i_0 \not\subseteq j_0$.

First we will compare the ideal cl_0 with ideals s_0, m_0, l_0 .

FACT 7. $cl_0 \not\subseteq (l_0 \cup m_0 \cup s_0)$.

PROOF. To show the assertion let us take $C_0 = \{x \in \omega^{\omega} : x(0) = 0\}$. By $\mathbb{CL} \subseteq \mathbb{L} \subseteq \mathbb{M} \subseteq \mathbb{S}, [C_0] \notin l_0 \cup m_0 \cup s_0$. On the other hand $[C_0] \in cl_0$, which finishes the proof. \Box

THEOREM 8. The following statements are true:

(i) $m_0 \not\subseteq cl_0$.

(*ii*) $s_0 \not\subseteq cl_0$.

PROOF. To prove that $m_0 \setminus cl_0 \neq \emptyset$ we will slightly modify the proof of Theorem 2.1 from [1]. We will use the notions of apple trees and pear trees.

First, let us recall that each Miller tree contains an apple tree and each apple tree is a special kind of a Miller tree (apple trees forms a dense subfamily in all Miller trees).

Second, each complete Laver tree C contains a pear tree P_C . A pear tree is not a complete Laver tree, it is only a special kind of Sacks tree. Pear trees P_C have the following property: for every apple tree A and pear tree $P_C |[A] \cap [P_C]| \leq 1$.

Let us now enumerate all apple trees $\{A_{\alpha} : \alpha < \mathfrak{c}\}$ and all complete Laver trees $\{C_{\alpha} : \alpha < \mathfrak{c}\}$. Having the above two propositions we can proceed by induction and construct a sequence $(x_{\alpha})_{\alpha < \mathfrak{c}}$ such that for every $\alpha < \mathfrak{c}$:

$$x_{\alpha} \in [P_{C_{\alpha}}] \setminus \bigcup_{\beta < \alpha} [A_{\beta}]$$

Finally, we set $X = \{x_{\alpha} : \alpha < \mathfrak{c}\}$. Let us notice that $X \in m_0 \setminus cl_0$, which finishes the first part of the proof.

To prove that $s_0 \setminus cl_0 \neq \emptyset$ we use slight modification of the proof of Theorem 2.2 from [1], which fits a similar pattern from the first case.

QUESTION 9. Is it true that $l_0 \not\subseteq cl_0$?

As a consequence we obtain the following result.

COROLLARY 10. The following statements are true:

- (i) There exists a cl-nonmeasurable set which is m-measurable.
- (ii) There exists a cl-nonmeasurable set which is s-measurable.

Let us introduce a notion of T-Bersntein sets.

DEFINITION 11. Let \mathbb{T} a family of trees. We say that a set B is an \mathbb{T} -Bernstein set if for every $T \in \mathbb{T}$ $B \cap [T] \neq \emptyset$ and $B \setminus [T] \neq \emptyset$.

Observe that a classic Bernstein set is an S-Bernstein set. If $\mathbb{T} \subseteq \mathbb{T}'$ are families of trees, then \mathbb{T}' -Bersntein sets are \mathbb{T} -Bernstein sets. No \mathbb{T} -Bernstein set is in t_0 (or *t*measurable), and if $\mathbb{T} \subseteq \mathbb{T}'$ then \mathbb{T}' -Bernstein sets don't belong to t_0 . Also note that if $\mathbb{T} \subsetneq \mathbb{T}'$ then a \mathbb{T} -Bernstein set may be not a \mathbb{T}' -Bernstein set (e.g. one may fix a tree from $\mathbb{T}' \setminus \mathbb{T}$ which body will be always omitted). The following theorem slightly generalizes Theorems 2.1 and 2.2 from [1].

THEOREM 12. The following statements are true:

(i) There exists an \mathbb{L} -Bernstein set which belongs to m_0 .

(ii) There exists an \mathbb{M} -Bernstein set which belongs to s_0 .

PROOF. As in in the proof of Theorem 8 we will use notions established in [1]. To prove (i) let us enumerate all Laver trees $\{L_{\alpha} : \alpha < \mathfrak{c}\}$ and all apple trees $\{A_{\alpha} : \alpha < \mathfrak{c}\}$. Let us construct two sequences: $(b_{\alpha})_{\alpha < \mathfrak{c}}$ and $(x_{\alpha})_{\alpha < \mathfrak{c}}$ such that for each $\alpha < \mathfrak{c}$:

$$b_{\alpha} \in [L_{\alpha}] \setminus (\bigcup_{\beta < \alpha} [A_{\beta}] \cup \{x_{\xi} : \xi < \alpha\}),$$
$$x_{\alpha} \in [L_{\alpha}] \setminus (\{b_{\beta} : \beta \le \alpha\} \cup \{x_{\beta} : \beta < \alpha\}).$$

It can be done, since for each Laver tree L_{α} there is a pear tree $P_{L_{\alpha}}$ for which $|[P_{L_{\alpha}}] \cap [A]| \leq 1$ for every apple tree A, so the set $[L_{\alpha}] \setminus (\bigcup_{\beta < \alpha} [A_{\beta}] \cup \{x_{\xi} : \xi < \alpha\})$ is nonempty at each step α . Then $B = \{b_{\alpha} : \alpha < \mathfrak{c}\}$ is the desired set.

To prove (ii) we use a similar modification of Theorem 2.2 from [1].

Analogously to the Question 9 we may ask the following question.

QUESTION 13. Is there a \mathbb{CL} -Bernstein set which belongs to l_0 ?

Let us invoke a theorem by Miller from [10].

THEOREM 14 (Miller). Let $A \in \Sigma_1^1$. Either A contains body of some complete Laver tree or A^c contains a body of some complete Hechler tree.

THEOREM 15. The following is true:

- (i) $\mathcal{B} \cap s_0$ is an ideal of Borel sets that don't contain a perfect subset (so it's an ideal of countable sets).
- (ii) $\mathcal{B} \cap m_0$ is an ideal of Borel sets which don't contain a body of any Miller tree.
- (iii) $\mathcal{B} \cap l_0$ is an ideal of Borel sets that don't contain a body of any Laver tree.

PROOF. (i) is evident.

(ii) follows by the fact that any analytic set is either σ - bounded or contains a superperfect set. If a Borel set contains a superfect set then clearly it's not in m_0 . On the other hand, if for some Miller tree T and σ - bounded Borel a set $B[T] \setminus B$ didn't contain a superperfect set, then [T] would be σ - bounded too. A contradiction.

(iii): If a Borel set B contains a body of some Laver tree, then clearly $B \notin l_0$. If it doesn't contain a Laver tree, but there is a Laver L for which each body of Laver subtree of L has a nonempty intersection with B, then let us trim B and L in the following way:

$$B' = \{x \in \omega^{\omega} : stem(L) \cap x \in B\},\$$

$$L' = \{x \in \omega^{\omega} : stem(L) \cap x \in L\}.$$

A function $f: \omega^{\omega} \to \omega^{\omega}$ given by the formula $f(x) = stem(L) \frown x$ is continuous. Clearly, $B' = f^{-1}[B]$, so B' is Borel, and $[L'] = f^{-1}[[L]]$ is a body of a complete Laver tree L'. B'still doesn't contain a body of any Laver tree, so by Theorem 14 there is a Hechler tree H which body is contained in B'^c . $H \cap L'$ contains (in fact - is) a Laver tree, body of which B' should intersect - a contradiction.

DEFINITION 16. We say that a set A is \mathcal{I} -nonmeasurable if $A \notin \sigma(\mathcal{B} \cup \mathcal{I})$. A is completely \mathcal{I} -nonmeasurable if $A \cap B$ is \mathcal{I} -nonmeasurable for each Borel set $B \notin \mathcal{I}$, or equivalently - A intersects each, but doesn't contain any, Borel \mathcal{I} -positive set.

COROLLARY 17. Let $(\mathbb{T}, t_0) \in \{(\mathbb{S}, s_0), (\mathbb{M}, m_0), (\mathbb{L}, l_0)\}$. Then a set B is a \mathbb{T} -Bernstein iff it is completely $t_0 \cap \mathcal{B}$ -nonmeasurable.

PROOF. By Theorem 15 a set A is $t_0 \cap \mathcal{B}$ -positive Borel set if and only if it contains a body of some tree from \mathbb{T} , so a set B is \mathbb{T} -Bernstein if and only if it intersects each each, but does not contain any, Borel set containing a body of a tree from \mathbb{T} . \Box

3. \mathcal{I} -Luzin sets and algebraic properties

Let us recall the notion of \mathcal{I} -Luzin sets. Let X be a Polish space and \mathcal{I} be an ideal.

DEFINITION 18. We say that a set L is an \mathcal{I} -Luzin set if $(\forall A \in \mathcal{I})(|A \cap L| < |L|)$.

For classic ideals of Lebesgue measure zero sets \mathcal{N} and meager sets \mathcal{M} we will call \mathcal{M} -Luzin sets generalized Luzin sets and \mathcal{N} -Luzin sets generalized Sierpiński sets.

In [14] the following result was proven.

THEOREM 19 (Wohofsky). There is no s_0 -Luzin set.

We will show that similar results can be obtained for other tree ideals.

THEOREM 20. The following statements are true.

- (i) There is no l_0 -Luzin set.
- (ii) There is no cl_0 -Luzin set.
- (iii) There is no m_0 -Luzin set.

PROOF. Let us consider l_0 case. We will prove that for every set X of cardinality \mathfrak{c} there exists a set $A \subseteq X$ such that $A \in l_0$ and $|A| = \mathfrak{c}$. Indeed, let us assume that $X \notin l_0$. Then there exists $L \in \mathbb{L}$ such that for every $L' \subseteq L$, $L' \in \mathbb{L}$ we have $|[L] \cap X| = \mathfrak{c}$. Let us now fix a maximal antichain $\{L_\alpha : \alpha < \mathfrak{c}\}$ of Laver trees contained in L such that $|[L_\alpha] \cap X| = \mathfrak{c}$. Let us construct a sequence $(a_\alpha)_{\alpha < \mathfrak{c}}$ such that for each $\alpha < \mathfrak{c}$:

$$a_{\alpha} \in X \setminus \bigcup_{\xi < \alpha} [L_{\alpha}].$$

Then $A = \{a_{\alpha} : \alpha < \mathfrak{c}\}$ is the set. Proofs of the other cases are almost identical.

Now we will consider \mathcal{I} -Luzin sets in a context of algebraic properties and tree ideals. We will work on the real line \mathbb{R} with addition. Since \mathbb{R} is σ -compact, it does not contain even superperfect sets. We will tweak the definition a bit by saying that $A \subseteq \mathbb{R}$ belongs to t_0 if $h^{-1}[A]$ belongs to t_0 in ω^{ω} , where h is a homeomorphism between ω^{ω} and a subspace of irrational numbers (see [7] for a similar modification in the case of 2^{ω}). Having this in mind we will usually mean by $[\tau], \tau \in \omega^{<\omega}$, an open interval of rational endpoints on \mathbb{R} .

Before we proceed let us define a non-standard kind of fusion of Miller and Laver trees, that we will use later. Let T be a Miller tree. Let $\tau_{\emptyset} \in \omega$ -split(T) and let T_0 be any Miller subtree of T such that τ_{\emptyset} remains an infinitely splitting node in T_0 . Suppose we have a Miller subtree T_n and a set of nodes $B_n = \{\tau_{\sigma} : \sigma \in n^{\leq n}\}$ such that

- (i) $\tau_{\sigma} \in \omega$ -split (T_n) for every $\sigma \in n^{\leq n}$;
- (ii) $\tau_{\sigma \frown k} \supseteq \tau_{\sigma}$ for every k < n and $\sigma \in n^{< n}$;

(iii) $\tau_{\sigma \frown k} \cap \tau_{\sigma \frown j} = \tau_{\sigma}$ for every $\sigma \in n^{< n}$ and distinct k, j < n.

We extend the set of nodes B_n to $B_{n+1} = \{\tau_{\sigma} : \sigma \in (n+1)^{\leq n+1}\}$ in a way that preserves above conditions, so we gonna have n+1 levels of infinitely splitting nodes with fixed n+1splits. The only $\sigma \in (n+1)^0$ is \emptyset , and τ_{\emptyset} is an old node. It is ω -splitting in T_n and T_n is a Miller tree, so we may find $\tau_n \supseteq \tau_{\emptyset}$, which is ω -splitting and $\tau_n \cap \tau_j = \tau_{\emptyset}$ for j < n. If we already have τ_{σ} 's with desired properties for $\sigma \in (n+1)^{\leq k}$, k < n+1, then for τ_{σ} , $\sigma \in n^k$ (old node), we add $\tau_{\sigma \frown n}$ such that conditions (i) - (iii) are still met. For a new node $\tau_{\sigma}, \sigma \in (n+1)^k \setminus n^k$, we find $\tau_{\sigma \frown j}$ for each j < n+1 such that conditions (i) - (iii) are satisfied too. Then let T_{n+1} be any Miller subtree of T_n for which nodes from B_{n+1} are still infinitely splitting.

We will call a sequence of trees $(T_n)_{n \in \omega}$ (or, interchangeably, their bodies $[T_n]$) derived that way a *Miller fusion sequence*.

Similarly we define a *Laver fusion sequence*. The only difference would be that if $\tau_{\sigma} \subseteq \tau_{\sigma \frown k}$, then actually $\tau_{\sigma \frown k} = \tau_{\sigma} \frown j$ for some $j \in \omega$.

PROPOSITION 21. For every Miller (resp. Laver) fusion sequence $(T_n)_{n\in\omega}$ a set $\bigcap_{n\in\omega} T_n$ is a Miller (resp. Laver) tree.

LEMMA 22. For every sequence of intervals $(I_n)_{n\in\omega}$ and a Miller (resp. Laver) tree T there is a Miller (resp. Laver) fusion sequence $(T_n)_{n\in\omega}$ such that for all n > 0:

$$\lambda([T_n] + I_n) < (1 + \sum_{k=0}^{n-1} (n-1)^k)\lambda(I_n).$$

PROOF. Let us focus on a little more complicated "Miller" case. Let I_0 be an interval, $\lambda(I_0) = \epsilon_0$, T a Miller tree. We proceed by induction on n. Let $\tau_{\emptyset} \in \omega$ -split(T) such that $\lambda([\tau_{\emptyset}]) < \epsilon_0$. Then $\lambda([\tau_{\emptyset}] + I_0) = \lambda([\tau_{\emptyset}]) + \lambda(I_0) < 2\epsilon_0$. Let T_0 be Miller subtree of T such that that $\tau_{\emptyset} = stem(T_0)$ and $\tau_{\emptyset} \in \omega$ -split(T_0). Clearly, we have $\lambda([T_0] + I_0) < 2\epsilon_0$.

Now assume that we have a tree T_n that is an element of the emerging Miller fusion sequence, and associated with it set B_n of fixed nodes satisfying conditions (i) - (iii). Let $\lambda(I_{n+1}) = \epsilon_{n+1}$. Let us denote for each $\sigma \in \omega^{<\omega}$ and interval I_{σ} a set

$$N(I_{\sigma}) = \{ \tau_{\sigma} \widehat{k} \in T_n : [\tau_{\sigma} \widehat{k}] \subseteq I_{\sigma} \land (\forall j < n) (\tau_{\sigma} \widehat{j} \not\supseteq \tau_{\sigma} \widehat{k}) \}$$

At each level k < n for every $\sigma \in n^k$ let I_{σ} be an interval with $\lambda(I_{\sigma}) < \frac{\epsilon_{n+1}}{(n+1)^n}$ such that a set $N(I_{\sigma})$ is infinite and choose $\tau_{\sigma \frown n} \in \omega$ -split (T_n) such that $\tau_{\sigma \frown n} \supseteq \tau_{\sigma} \frown l$ for some $\tau_{\sigma} \frown l \in N(I_{\sigma})$. At the level n let us fix an intervals $I_{\sigma}, \lambda(I_{\sigma}) < \frac{\epsilon_{n+1}}{(n+1)^n}$, for $\sigma \in n^n$ such that sets $N(I_{\sigma})$ are infinite and pick $\tau_{\sigma \frown 0}, \tau_{\sigma \frown 1}, ..., \tau_{\sigma \frown n}$ which are extensions of some nodes $\tau_{\sigma} \frown k_0, \tau_{\sigma} \frown k_1, ..., \tau_{\sigma} \frown k_n \in N(I_{\sigma})$ respectively. Finally we pick remaining nodes to complete a set B_{n+1} in the gist of our definition of Miller fusion sequence however we like. We take as T_{n+1} any Miller subtree of T_n for which nodes from B_{n+1} are infinitely splitting and which body is covered by intervals $I_{\sigma}, \sigma \in n^{\leq n}$ (which is possible by infiniteness of each $N(I_{\sigma})$).

Let us approximate $\lambda([T_{n+1}] + I_{n+1})$:

$$\lambda([T_{n+1}] + I_{n+1}) \leq \lambda(\bigcup \{I_{\sigma} + I_{n+1} : \sigma \in n^{\leq n}\} \leq \Sigma_{\sigma \in n^{\leq n}}(\lambda(I_{\sigma}) + \lambda(I_{n+1})) <$$

$$< \Sigma_{\sigma \in n^{\leq n}}(\frac{\epsilon_{n+1}}{(n+1)^n} + \epsilon_{n+1}),$$

and since the count of intervals I_{σ} is $|n^{\leq n}| = \sum_{k=0}^{n} n^k \leq (n+1)^n$, we have:

$$\lambda([T_{n+1}] + I_{n+1}) \le \sum_{k=0}^{n} n^k (\frac{\epsilon_{n+1}}{(n+1)^n} + \epsilon_{n+1}) \le (n+1)^n \frac{\epsilon_{n+1}}{(n+1)^n} + \sum_{k=0}^{n} n^k \epsilon_{n+1} = \epsilon_{n+1} + \sum_{k=0}^{n} n^k \epsilon_{n+1} = (1 + \sum_{k=0}^{n} n^k) \epsilon_{n+1}.$$

REMARK 23. In the above Lemma in the case of a Laver tree we may demand that $stem(T) = stem(\bigcap_{n \in \omega} T_n)$, if stem(T) is nonempty.

PROOF. The major difference is at the first step of the induction. Instead of picking a suitable "far enough" node $\tau_{\emptyset} \in T$ such that $\lambda([\tau_{\emptyset}] + I_0) < 2\lambda(I_0)$, we already restrict the choice of nodes at the stem level by picking an interval I_{\emptyset} of measure $\lambda(I_{\emptyset}) < \lambda(I_0)$ such that a set

$$N(I_{\emptyset}) = \{stem(T)^{\frown}k \in T : [stem(T)^{\frown}k] \subseteq I_{\emptyset}\}$$

7

is infinite. It can be done since $stem(T) \neq \emptyset$, so all clopens $[stem(T)^{k}], k \in \omega$, are contained in an interval. We take a Laver subtree T_0 of T for which $[T] \subseteq I_{\emptyset}$ and $stem(T) = stem(T_0)$ (so all nodes extending $stem(T_0)$ come from I_{\emptyset}). Then we continue analogously to the proof of the Lemma 22.

LEMMA 24. There exists a dense G_{δ} set G such that for each Miller (resp. Laver or complete Laver) tree T there exists a Miller (resp. Laver or complete Laver) subtree $T' \subseteq T$ such that $G + [T'] \in \mathcal{N}$.

PROOF. Let $D = \{d_n : n \in \omega\}$ be a countable dense set, $G = \bigcap_{n \in \omega} \bigcup_{k > n} I_k$, where I_k is an interval with center d_k and $\lambda(I_k) < \frac{1}{(k)^{k-1}2^k}$. Proofs are almost identical in cases of Miller and Laver trees so let T be a Miller tree. By the Lemma 22 there is a Miller fusion sequence $(T_n)_{n \in \omega}$ such that

$$\lambda([T_n] + I_n) < (1 + \sum_{k=0}^{n-1} (n-1)^k)\lambda(I_n) \le n^{n-1} \frac{1}{n^{n-1}2^n} = \frac{1}{2^n}.$$

 $T' = \bigcap_{n \in \omega} T_n$ is a Miller tree containing all T_n 's, so we may replace $[T_n]$ with [T'] in the above formula and it still holds. Then for fixed $n \in \omega$:

$$\lambda(\bigcup_{k>n} I_k + [T']) = \lambda(\bigcup_{k>n} ([T'] + I_k)) \le \Sigma_{k>n} \lambda([T'] + I_k) \le \Sigma_{k>n} \frac{1}{2^k} = \frac{1}{2^n},$$

so, given that $[T'] + \bigcap_{n \in \omega} \bigcup_{k > n} I_k \subseteq \bigcap_{n \in \omega} \bigcup_{k > n} ([T'] + I_k)$, we have:

$$\lambda(G + [T']) \le \lambda(\bigcap_{n \in \omega} \bigcup_{k > n} ([T'] + I_k)) \le \lim_{n \to \infty} \frac{1}{2^n} = 0.$$

In the case of a complete Laver tree T let us observe that $T = \bigcup_{n \in \omega} T_n$, where $T_n = \{\sigma \in T : (n) \subseteq \sigma \lor \sigma \subseteq (n)\}$ is a Laver tree with a nonempty stem. Let us notice that $[T] = \bigcup_{n \in \omega} [T_n]$. By the Lemma 22, Remark 23, and using the first part of the proof we find for each (nonempty) T_n a Laver subtree T'_n which shares the stem with T_n and for which we have:

$$[T'_n] + G \in \mathcal{N}.$$

Then $T' = \bigcup_{n \in \omega} T'_n$ is a complete Laver subtree of T and:

$$[T'] + G = [\bigcup_{n \in \omega} T'_n] + G = \bigcup_{n \in \omega} [T'_n] + G = \bigcup_{n \in \omega} ([T'_n] + G) \in \mathcal{N}$$

as a countable union of null sets.

Before we proceed to the main theorem of this section let us recall a generalized version of Rothberger's theorem (see [13]).

THEOREM 25. (Essentially Rothberger) Assume that generalized Luzin set L and generalized Sierpiński set S exist. Then, if $\kappa = \max\{|L|, |S|\}$ is a regular cardinal, $|L| = |S| = \kappa$.

PROOF. Assume that $\kappa = |L| > |S|$ and κ is a regular cardinal. Let M be a meager set of full measure (the Marczewski decomposition). Then

$$\kappa = |L \cap \mathbb{R}| = |L \cap (M + S)| = |\bigcup_{s \in S} (L \cap (M + s))| < \kappa,$$

by regularity of κ . In the case of $\kappa = |S| > |L|$ the proof is almost the same.

The following theorem extends the result obtained in [9].

THEOREM 26. Let \mathfrak{c} be a regular cardinal and $t_0 \in \{s_0, m_0, l_0, cl_0\}$. Then for every generalized Luzin set L and generalized Sierpiński set S we have $L + S \in t_0$.

PROOF. Let L and S be a generalized Luzin set and generalized Sierpiński set respectively. If $|L| < \mathfrak{c}$ and $|S| < \mathfrak{c}$, then $L + S \in t_0$, since every set of cardinality less than \mathfrak{c} belongs to t_0 . So, without a loss of generality (Theorem 25), let us assume that $|L| = |S| = \mathfrak{c}$.

We will proceed with the proof in the case $t_0 = m_0$, the other cases are almost identical. Let T be a Miller tree. By the virtue of Lemma 24 let G be a dense G_{δ} set and $T' \subseteq T$ a Miller tree such that $[T'] + G \in \mathcal{N}$. Let A = -G and $B = ([T'] + G)^c$. Then $[T'] \subseteq (A+B)^c$. We will show that there is a Miller tree $T'' \subseteq T'$ which body is contained in $(L+S)^c$. We have:

$$L + S = ((L \cap A) \cup (L \cap A^{c})) + ((S \cap B) \cup (S \cap B^{c}))$$

= $((L \cap A) + (S \cap B)) \cup ((L \cap A) + (S \cap B^{c})) \cup$
 $\cup ((L \cap A^{c}) + (S \cap B)) \cup ((L \cap A^{c}) + (S \cap B^{c})).$

 $(L \cap A) + (S \cap B) \subseteq A + B$ and sets $(L \cap A) + (S \cap B^c)$, $(L \cap A^c) + (S \cap B)$ and $(L \cap A^c) + (S \cap B^c)$ are generalized Luzin, generalized Sierpiński and of size less than \mathfrak{c} , so their intersection with [T'] has a cardinality less than \mathfrak{c} . It follows that indeed there exists a Miller tree $T'' \subseteq T'$ such that $(L + S) \cap [T''] = \emptyset$ and therefore L + S belongs to m_0 .

Let us remark that the assumption that \mathfrak{c} is regular cannot be omitted due to the following result ([9]).

THEOREM 27. It is consistent that there exist generalized Luzin set L and generalized Sierpiński set S such that $L + S = \mathbb{R}^n$, and $\mathfrak{c} = \aleph_{\omega_1}$.

4. Eventually different families and t-measurablity

Two members $f, g \in \omega^{\omega}$ of the Baire space are *eventually different* (briefly: e.d.) iff $f \cap g$ is a finite subset of $\omega \times \omega$. Maximal eventually different families with respect to inclusion are called *m.e.d. families*.

Every e.d. family is a meager subset of the Baire space. It is natural to ask whether the existence of m.e.d. families that are either s-measurable or s-nonmeasurable can be proven in ZFC. It is relatively consistent with ZFC that there is a m.e.d. family \mathcal{A} of cardinality smaller then \mathfrak{c} (see [6]). In such a case $\mathcal{A} \in s_0$. On the other hand there exists a perfect e.d. family and therefore not all m.e.d. families are in s_0 . The following two theorems answer this question positively.

THEOREM 28. There exists an s-nonmeasurable m.e.d. family in the Baire space.

PROOF. Let us fix a perfect tree $T \subseteq \omega^{<\omega}$ such that [T] is e.d. in ω^{ω} . Let $\{T_{\alpha} : \alpha < \mathfrak{c}\}$ be an enumeration of $\mathbb{S}(T)$ - a family of all perfect subtrees of T. By transfinite reccursion we define:

$$\{(a_{\alpha}, d_{\alpha}, x_{\alpha}) \in [T] \times [T] \times \omega^{\omega} : \alpha < \mathfrak{c}\}$$

such that for any $\alpha < \mathfrak{c}$ we have:

(1) $a_{\alpha}, d_{\alpha} \in [T_{\alpha}],$ (2) $\{a_{\xi} : \xi < \alpha\} \cap \{d_{\xi} : \xi < \alpha\} = \emptyset,$ (3) $\{a_{\xi} : \xi < \alpha\} \cup \{x_{\xi} : \xi < \alpha\}$ is e.d., (4) $\forall^{\infty}n \ x_{\alpha}(n) = d_{\alpha}(n)$ but $x_{\alpha} \neq d_{\alpha}.$

Assume that we are at the step $\alpha < \mathfrak{c}$ of the construction and we have already defined the sequence:

$$\{(a_{\xi}, d_{\xi}, x_{\xi}) \in [T]^2 \times \omega^{\omega} : \xi < \alpha\}.$$

We can choose $a_{\alpha}, d_{\alpha} \in [T_{\alpha}]$ ($[T_{\alpha}]$ has cardinality \mathfrak{c}) which fulfills conditions (1), (2). Then choose any $x_{\alpha} \in \omega^{\omega}$ distinct from d_{α} but $(\forall^{\infty} n)d_{\alpha}(n) = x_{\alpha}(n)$. Then $x_{\alpha} \in \omega^{\omega} \setminus [T]$ and

$$\{a_{\xi}:\xi<\alpha\}\cup\{x_{\xi}:\xi<\alpha\}$$

forms an e.d. family in ω^{ω} . This completes the construction. Now let us set $A_0 = \{a_{\alpha} : \alpha < \mathfrak{c}\} \cup \{x_{\alpha} : \alpha < \mathfrak{c}\}$ and let us extend it to m.e.d. family A. It is easy to check that A is the desired *s*-nonmeasurable m.e.d. family.

In [11] it was shown that if $\mathfrak{d} = \omega_1$ then there exists a *s*-nonmeasurable m.e.d. family \mathcal{A} and $\mathcal{A}' \in [\mathcal{A}]^{\omega_1}$ which is dominating in ω^{ω} . Here *s*-nonmeasurability can be replaced by *l*-, *m*- or *cl*-nonmeasurability.

In the same paper it was proved that the following statement is relatively consistent with ZFC: " $\omega_1 < \mathfrak{d}$ and there exists *cl*-nonmeasurable m.e.d. family \mathcal{A} and a dominating family $\mathcal{A}' \subseteq \mathcal{A}$ of the cardinality equal to \mathfrak{d} ".

The next theorem generalizes the result obtained in [11].

THEOREM 29. There exists a m.e.d. family $\mathcal{A} \subseteq \omega^{\omega}$ such that \mathcal{A} is not s-, l- and m-measurable, with a dominating subfamily $\mathcal{D} \in [\mathcal{A}]^{\leq \mathfrak{d}}$.

PROOF. By definition there is a dominating family $\mathcal{D}_0 \subseteq \omega^{\omega}$ of size \mathfrak{d} . We will show that there is an a.d. dominating family \mathcal{D} of the same size. Let $\mathcal{P} = \{A_m \in [\omega]^{\omega} : m \in \omega\}$ be a partition of ω into infinite subsets. Let us construct a tree as follows: $T_{-1} = \{\emptyset\}$, next $T_0 = \{(0,n) : n \in \omega\}$. Now assume that we have defined T_n for a fixed $n \in \omega$ and let us enumerate $T_n = \{s_k : k \in \omega\}$ then for every $m \in \omega$ let us set $A_m = \{k_{m,i} : i \in \omega\}$ as an increasing sequence with *i* running through ω and *m* fixed. Define $T_{n+1,m} = \{s_m \cup \{(n+1, k_{m,i})\} : i \in \omega\}$ and then let $T_{n+1} = \bigcup_{m \in \omega} T_{n+1,m}$ and finally $T = \bigcup_{n \in \omega \cup \{-1\}} T_n$. It is easy to observe that [T] forms an a.d. family in ω^{ω} .

Now let us define an embedding $f: \mathcal{D}_0 \to [T]$ as follows: pick an arbitrary element $d \in \mathcal{D}_0$ which is an union $\bigcup \{d \upharpoonright n : n \in \omega\}$ then assign to $d \upharpoonright 0 = \emptyset \in T_{-1}$ and to $d \upharpoonright 1 t_0 = d \upharpoonright 1 = \{(0, d(0))\}$. Now let us assume that we have assigned for a fixed $d \upharpoonright n t_n \in T_n$ for $n \in \omega$. Then there is unique $m \in \omega$ such that $t_n \in T_{n,m}$ but $A_m = \{k_{m,i} : i \in \omega\}$ is represented by the increasing sequence $(k_{m,i})_{i\in\omega} \in \omega^{\omega}$ then $d \upharpoonright n+1$ is assigned to $t_{n+1} = t_n \cup \{(n+1,w)\}$ where $w = k_{m,d(n+1)}$ which is a greater than d(n+1). From the construction we see that $t_{n+1} \in T_{n+1}$ and for any $n \in \omega t_n \subseteq t_{n+1}$. Now let $f(d) = \bigcup \{t_n \in T_n : n \in \omega :\} \in [T]$. It easy to see that this ensures that f is one to one mapping and for any $d \in \mathcal{D}_0 d \leq f(d)$. Now let $\mathcal{D} = \{4f(d) : d \in \mathcal{D}_0\} \subseteq (4\mathbb{N})^{\omega}$ which forms a dominating family in ω^{ω} of size equal to $\mathfrak{d} = |\mathcal{D}_0|$.

Now let us choose a.d. trees $S \subseteq (4\mathbb{N}+1)^{<\omega}$, $M \subseteq (4\mathbb{N}+2)^{<\omega}$ and $L \subseteq (4\mathbb{N}+3)^{<\omega}$ where S is a perfect tree, M is Miller and L is Laver.

Let us enumerate $S(S) = \{S_{\alpha} : \alpha < \mathfrak{c}\}$ - a family of all perfect subtrees of S, analogously $\mathbb{M}(M) = \{M_{\alpha} : \alpha < \mathfrak{c}\}$, and $\mathbb{L}(L) = \{L_{\alpha} : \alpha < \mathfrak{c}\}$. By transfinite recursion let us define

$$\{w_{\alpha} \in [S]^{2} \times \omega^{\omega} \times [M]^{2} \times \omega^{\omega} \times [L]^{2} \times \omega^{\omega} : \alpha < \mathfrak{c}\}$$

where $w_{\alpha} = (a_{\xi}^{s}, d_{\xi}^{s}, x_{\xi}^{s}, a_{\xi}^{m}, d_{\xi}^{m}, x_{\xi}^{m}, a_{\xi}^{l}, d_{\xi}^{l}, x_{\xi}^{l})$ for any $\alpha < \mathfrak{c}$, and such that for any $\alpha < \mathfrak{c}$ we have:

 $(1) \ a_{\alpha}^{s}, d_{\alpha}^{s} \in [S_{\alpha}],$ $(2) \ \{a_{\xi}^{s}:\xi < \alpha\} \cap \{d_{\xi}^{s}:\xi < \alpha\} = \emptyset,$ $(3) \ \{a_{\xi}^{s}:\xi < \alpha\} \cup \{x_{\xi}^{s}:\xi < \alpha\} \text{ is e.d.},$ $(4) \ \forall^{\infty}n \ x_{\alpha}^{s}(n) = d_{\alpha}^{s}(n) \text{ but } x_{\alpha}^{s} \neq d_{\alpha}^{s}.$ $(5) \ a_{\alpha}^{m}, d_{\alpha}^{m} \in [M_{\alpha}],$ $(6) \ \{a_{\xi}^{m}:\xi < \alpha\} \cap \{d_{\xi}^{m}:\xi < \alpha\} = \emptyset,$

$$\begin{array}{l} (7) \ \left\{a_{\xi}^{m}:\xi<\alpha\right\}\cup\left\{x_{\xi}^{m}:\xi<\alpha\right\} \text{ is e.d.,}\\ (8) \ \forall^{\infty}n\ x_{\alpha}^{m}(n)=d_{\alpha}^{m}(n) \ \text{but}\ x_{\alpha}^{m}\neq d_{\alpha}^{m}.\\ (9) \ a_{\alpha}^{l},d_{\alpha}^{l}\in[L_{\alpha}],\\ (10) \ \left\{a_{\xi}^{l}:\xi<\alpha\right\}\cap\left\{d_{\xi}^{l}:\xi<\alpha\right\}=\emptyset,\\ (11) \ \left\{a_{\xi}^{l}:\xi<\alpha\right\}\cup\left\{x_{\xi}^{l}:\xi<\alpha\right\} \text{ is e.d.,}\\ (12) \ \forall^{\infty}n\ x_{\alpha}^{l}(n)=d_{\alpha}^{l}(n) \ \text{but}\ x_{\alpha}^{l}\neq d_{\alpha}^{l}. \end{array}$$

Now assume that we are at the step $\alpha < \mathfrak{c}$ of the construction and we have a partial sequence:

 $\{w_{\alpha}: \xi < \alpha\}$

which has a length at most $\omega \cdot |\alpha| < \mathfrak{c}$. In the case of the perfect part we can choose in $[S_{\alpha}]$ (of size \mathfrak{c}) $a^s_{\alpha}, d^s_{\alpha} \in [S_{\alpha}]$ which fulfills the first condition. Then choose any $x^s_{\alpha} \in \omega^{\omega}$ different than d^s_{α} but $(\forall^{\infty}n)d_{\alpha}(n) = x_{\alpha}(n)$ then $x^s_{\alpha} \in \omega^{\omega} \setminus [S]$ and

$$\{a_{\xi}:\xi\leq\alpha\}\cup\{x_{\xi}:\xi\leq\alpha\}$$

forms an e.d. family in ω^{ω} . In the same way we can choose other points of our tuple for Miller and Laver trees. The construction is complete. Now let us set:

$$\mathcal{A}_{s} = \mathcal{D} \cup \{a_{\alpha}^{s} : \alpha < \mathfrak{c}\} \cup \{x_{\alpha}^{s} : \alpha < \mathfrak{c}\},\$$
$$\mathcal{A}_{m} = \mathcal{D} \cup \{a_{\alpha}^{m} : \alpha < \mathfrak{c}\} \cup \{x_{\alpha}^{m} : \alpha < \mathfrak{c}\}$$

and

$$\mathcal{A}_l = \mathcal{D} \cup \{a_\alpha^l : \alpha < \mathfrak{c}\} \cup \{x_\alpha^l : \alpha < \mathfrak{c}\}.$$

Let us extend the family $\mathcal{D} \cup \mathcal{A}_s \cup \mathcal{A}_m \cup \mathcal{A}_l$ to any m.e.d. family \mathcal{A} . It is easy to check that \mathcal{A} is required *s*-, *m*- and *l*-nonmeasurable m.e.d. family in ω^{ω} with a dominating subfamily of size \mathfrak{d} , which completes the proof.

References

- [1] Brendle J., Strolling trough paradise, Fund. Math. 148 (1995), pp. 1-25.
- [2] Brendle J., Khomskii Y., Wohofsky W., Cofinalities of Marczewski-like ideals, Colloquium Mathematicum, 150 (2017), pp. 269-279.
- [3] Goldstern M., Repický M., Shelah S., Spinas O., On Tree Ideals, Proc. of the Amer. Math. Soc. vol. 123 no. 5, (1995). pp. 1573-1581.
- [4] Jech T., Set theory, millenium edition, Springer Monographs in Mathematics, Springer-Verlag, (2003).
- [5] Judah H., Miller A., Shelah S., Sacks forcing, Laver forcing and Martin's Axiom, Archive for Math Logic 31 (1992) 145-161.
- [6] Kunen, K., Set Theory. An Introduction to Independence Proofs, North Holland, Amsterdamm, New York, Oxford 1980.
- [7] Kysiak M., Weiss T., Small subsets of the reals and tree forcing notions, Proceedings of American Mathematical Society, vol. 132, nr 1, pp. 251-259, 2003.
- [8] Marczewski (Szpilrajn) E., Sur une classe de fonctions de W. Sierpiński et la classe correspondante d'ensembles, Fund. Math. 24 (1935), 17–34.
- [9] Michalski M., Zeberski Sz., Some properties of I-Luzin, Topology and its Applications, 189 (2015), pp. 122-135,
- [10] Miller A. W., Hechler and Laver Trees, arXiv:1204.5198, 2012.
- [11] Rałowski R., Families of sets with nonmeasurable unions with respect to ideals defined by trees, Arch. Math. Logic, 54 (2015), no. 5-6, 649-658.
- [12] Repický M., Perfect sets and collapsing continuum, Comment. Math. Univ. Carolin. 44,2 (2003) 315–327.
- [13] Rothberger F., Eine Äquivalenz zwischen der Kontinuumhypothese und der Existenz der Lusinschen und Sierpińskischen Mengen, Fund. Math. 30 (1938), pp. 215–217.
- [14] Wohofsky W., There are no large sets which can be translated away from every Marczewski null set, WS2016 Hejnice, http://www.winterschool.eu/files/937...

DEPARTMENT OF COMPUTER SCIENCE, FACULTY OF FUNDAMENTAL PROBLEMS OF TECHNOLOGY, WROCŁAW UNIVERSITY OF SCIENCE AND TECHNOLOGY, WYBRZEŻE WYSPIAŃSKIEGO 27, 50-370 WROCŁAW, POLAND

E-mail address, Marcin Michalski: marcin.k.michalski@pwr.edu.pl *E-mail address*, Robert Rałowski: robert.ralowski@pwr.edu.pl *E-mail address*, Szymon Żeberski: szymon.zeberski@pwr.edu.pl