Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-wzw2p Total loading time: 0 Render date: 2024-04-30T11:46:47.521Z Has data issue: false hasContentIssue false

13 - Neural Networks and Boolean Functions

from Part IV - Graph Representations and Efficient Computation Models

Published online by Cambridge University Press:  05 June 2013

Martin Anthony
Affiliation:
London School of Economics and Political Science
Yves Crama
Affiliation:
Université de Liège, Belgium
Get access

Summary

Introduction

There has recently been much interest in “artificial neural networks,” machines (or models of computation) based loosely on the ways in which the brain is believed to work. Neurobiologists are interested in using these machines as a means of modeling biological brains, but much of the impetus comes from their applications. For example, engineers wish to create machines that can perform “cognitive” tasks, such as speech recognition, and economists are interested in financial time series prediction using such machines.

In this chapter we focus on individual “artificial neurons” and feed-forward artificial neural networks. We are particularly interested in cases where the neurons are linear threshold neurons, sigmoid neurons, polynomial threshold neurons, and spiking neurons. We investigate the relationships between types of artificial neural network and classes of Boolean function. In particular, we ask questions about the type of Boolean functions a given type of network can compute, and about how extensive or expressive the set of functions so computable is.

Artificial Neural Networks

Introduction

It appears that one reason why the human brain is so powerful is the sheer complexity of connections between neurons. In computer science parlance, the brain exhibits huge parallelism, with each neuron connected to many other neurons. This has been reflected in the design of artificial neural networks. One advantage of such parallelism is that the resulting network is robust: in a serial computer, a single fault can make computation impossible, whereas in a system with a high degree of parallelism and many computation paths, a small number of faults may be tolerated with little or no upset to the computation.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×