Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-27T09:23:35.196Z Has data issue: false hasContentIssue false

2 - Second-generation sparse modeling: structured and collaborative signal analysis

Published online by Cambridge University Press:  05 November 2012

Alexey Castrodad
Affiliation:
University of Minnesota, Minneapolis, USA
Ignacio Ramirez
Affiliation:
University of Minnesota, Minneapolis, USA
Guillermo Sapiro
Affiliation:
University of Minnesota, Minneapolis, USA
Pablo Sprechmann
Affiliation:
University of Minnesota, Minneapolis, USA
Guoshen Yu
Affiliation:
University of Minnesota, Minneapolis, USA
Yonina C. Eldar
Affiliation:
Weizmann Institute of Science, Israel
Gitta Kutyniok
Affiliation:
Technische Universität Berlin
Get access

Summary

In this chapter the authors go beyond traditional sparse modeling, and address collaborative structured sparsity to add stability and prior information to the representation. In structured sparse modeling, instead of considering the dictionary atoms as singletons, the atoms are partitioned in groups, and a few groups are selected at a time for the signal encoding. A complementary way of adding structure, stability, and prior information to a model is via collaboration. Here, multiple signals, which are known to follow the same model, are allowed to collaborate in the coding. The first studied framework connects sparse modeling with Gaussian Mixture Models and leads to state-of-the-art image restoration. The second framework derives a hierarchical structure on top of the collaboration and is well fitted for source separation. Both models enjoy very important theoretical virtues as well.

Introduction

In traditional sparse modeling, it is assumed that a signal can be accurately represented by a sparse linear combination of atoms from a (learned) dictionary. A large class of signals, including most natural images and sounds, is well described by this model, as demonstrated by numerous state-of-the-art results in various signal processing applications.

From a data modeling point of view, sparsity can be seen as a form of regularization, that is, as a device to restrict or control the set of coefficient values which are allowed in the model to produce an estimate of the data.

Type
Chapter
Information
Compressed Sensing
Theory and Applications
, pp. 65 - 87
Publisher: Cambridge University Press
Print publication year: 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×