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2 Referring expression generation in
interaction: A graph-based
perspective

Emiel Krahmer, Martijn Goudbeek and Mariët Theune

2.1 Introduction

Buying new chairs can be complicated. Many constraints have to be kept in

mind, including your financial situation, the style and colour of the furniture

you already own and possibly also the taste of your partner. But once you have

made a tentative choice (say, the chair in Figure 2.1 on the left), there is one

final hurdle: you have to inform the seller of your desire to buy it. Furniture

stores tend to contain many chairs, so somehow you need to refer to your chair

of choice, for example I’d like to buy the wooden chair with the thin legs and solid

seat, the red one with the open back. It is hardly surprising that many people

in this situation resort to pointing (that one). Of course, it would be helpful

to know that salespeople usually refer to this chair as the red Dutch lily chair,

because that would allow you to adapt to their way of referring.

This problem illustrates the importance of reference in everyday interactions:

people can only exchange information about objects when they agree on how to

refer to those objects. How this agreement may arise, and how we can model

this in natural language generation, is the topic of this chapter. We argue that

two possibly competing forces play a role. On the one hand, speakers may have

inherent preferences for certain properties when referring to objects in a given

domain. On the other, they may also have a tendency to adapt to the references

produced by their dialogue partner. We describe how preferences can be deter-

mined, and how they interact with adaptation. We model this trade-off using a

graph-based referring expression generation algorithm (Krahmer et al., 2003).

2.1.1 Referring expression generation

Given the centrality of reference in interaction, it is hardly surprising that one of

the first things that children learn when acquiring language is how to refer to the

objects surrounding them (Matthews et al., 2012). Similarly, when researchers

develop a natural language generation (NLG) application, they typically also

require a module that generates referring expressions (Mellish et al., 2006, Reiter

and Dale, 2000). Such a referring expression generation (REG) module is typi-

cally dedicated to identifying target objects with respect to a set of distractor

objects using natural language, and to do so the module needs to make a series
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d1 d2 d3

Figure 2.1: Three pieces of furniture

of related choices. First, it needs to select the form of reference, for example,

deciding whether to refer to the chair using a deictic pronoun (that one) or a full

description (the chair with the armrests). If the REG module decides to gener-

ate a description, two additional choices need to be made: which properties of

the target should be included in the description, and how the selected property

set can be expressed as a natural language description. These two processes are

often referred to as attribute selection and surface realisation, respectively.

Of these, attribute selection has received by far the most scholarly attention,

perhaps because researchers tend to assume that a standard surface realiser for

a given language can be used to express a set of selected properties.

Attribute selection is a complex balancing act (Reiter and Dale, 2000): we

need to include enough properties that an addressee will be able to determine

the target, but including all known properties of the target may be awkward

or misleading. Hence a selection of properties needs to be made, and this selec-

tion should take as little time as possible. This is especially crucial in NLG for

interactive settings, where a system needs to respond to a user in near real time.

2.1.2 Preferences versus adaptation in reference

Typically, a target can be distinguished using many different properties; for

example, a chair can be referred to as wooden, having armrests, being Dutch,

or facing right. Many REG algorithms, including Dale and Reiter’s well-known

Incremental Algorithm (Dale and Reiter, 1995), assume that some properties or

attributes1 are preferred, and will be selected first by the content determiner.

This heuristic allows REG algorithms to ignore some potential property sets dur-

ing attribute selection. It may also lead to overspecified referring expressions,

i.e. those that contain more properties than are necessary to uniquely identify

1 In this chapter, we use the term attribute to refer to concepts, such as size and colour,
that can be used in referring expressions. When referring to an attribute-value pair, e.g.

colour=blue, we use the term property. As we will see, the distinction is important, because

some REG algorithms operate over attributes while others, in particular the graph-based
algorithm, rank properties.
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the target, but we have considerable evidence that humans also overspecify (e.g.

Dale and Reiter (1995)). So how can we determine a preference ordering over a set

of properties or attributes? Dale and Reiter stress that constructing a preference

ordering is essentially an empirical question, which will differ from one domain to

another, but they do point to psycholinguistic research (especially (Pechmann,

1989)) suggesting that, in general, absolute attributes (such as colour) are pre-

ferred over relative ones (such as size). After all, to determine the colour of an

object we only need to look at the object itself, while to determine whether it is

large or small all domain objects need to be inspected.

Even though the Incremental Algorithm is probably unique in assuming a

complete preference ordering of attributes, many other REG algorithms rely

on preferences as well. This became apparent, for example, during the REG

Challenges (see (Gatt and Belz, 2010) for an overview); virtually all partici-

pating systems relied on training data to determine preferences of one form or

another. However, relevant training data is hard to find. It has been argued

that determining which properties to include in a referring expression requires

a “semantically transparent” corpus (van Deemter et al., 2006): a corpus that

contains the actual properties of all domain objects as well as the properties

that were selected for each referring expression. Obviously, text corpora hardly

ever meet this requirement. The few existing semantically transparent corpora

were collected by the time-consuming exercise of asking human participants to

produce referring expressions in a particular language (typically, English) for

targets in controlled visual scenes for a particular domain (see e.g. (Gatt et al.,

2007, Gorniak and Roy, 2004, Guhe and Bard, 2008, Viethen and Dale, 2006)).

An important question therefore is how many human-produced references are

needed to achieve a certain level of accuracy in preference ordering. One way to

answer this question is by training a REG algorithm on subsets of a (semantically

transparent) corpus of various sizes, and measuring the performance differences.

This is precisely what we do in this chapter, in Section 2.3.

Another question is how stable preference orderings are in interactive settings,

e.g. for applications such as spoken dialogue systems or interactive virtual char-

acters. In these cases, it seems likely that referring expressions produced earlier

in the interaction are also important. We know for instance that if one dialogue

partner refers to a couch as a sofa, the other is more likely to use the word sofa

as well (Branigan et al., 2010). This kind of micro-planning or lexical entrain-

ment (Brennan and Clark, 1996) can be seen as a specific form of alignment

(Pickering and Garrod, 2004) in interaction. But what if dialogue partners’ pref-

erence orderings differ? Do they adapt to the other’s preference ordering, or

stick to their own? And what if one dialogue partner’s preference ordering leads

to an overspecified referring expression – will the other partner reproduce this

overspecified form due to alignment? These questions are also addressed in this

chapter, in Section 2.4, where we report on two experimental studies using an
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interactive reference production paradigm and discuss how a REG algorithm

could model our findings.

As our REG model of choice we use the graph-based algorithm, originally pro-

posed by Krahmer, van Erk and Verleg (Krahmer et al., 2003), and described in

Section 2.2. This algorithm models domain information about potential target

objects in a graph structure and treats REG as a graph-search problem, where

a cost function is used to prefer some solutions over others. The graph-based

algorithm is a state-of-the-art REG algorithm; it was among the best scoring

algorithms on attribute selection in the 2008 REG Challenge (Gatt et al., 2008),

and emerged as the best performing algorithm in the most recent REG Gen-

eration Challenge (Gatt et al., 2009). In this chapter we argue that the use of

cost functions makes the algorithm well-suited to deal with the trade-off between

preference orderings and alignment.

2.2 Graph-based referring expression generation

2.2.1 Scene graphs

Figure 2.1 depicts an example domain with three potential referents or objects,

(D = {d1, d2, d3}), a set of properties (Prop = {chair,blue, facing-left, . . .}),
and a set of relations (Rel = {left-of, right-of}). This domain can be modelled

as the labelled directed scene graph shown in Figure 2.2. Properties are mod-

elled as loops, i.e. edges that start and end in the same node, whereas relations

are modelled as edges between nodes.

Figure 2.2: A simple scene graph

Formally, scene graphs are defined as follows. Let D be the domain, and

L = Prop ∪Rel the set of labels. Then, the scene graph G = 〈VG, EG〉 is a

labelled directed graph, where VG ⊆ D is the set of nodes or vertices (the objects)
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and EG ⊆ VG × L× VG is the set of labelled directed edges (in this chapter,

subscripts are omitted whenever this can be done without creating confusion).

2.2.2 Referring graphs

Now imagine that given our example domain we want to generate a distin-

guishing description, i.e. a referring expression that uniquely identifies d1.

We need to select a set of properties and relations that single out the target d1
from the other two domain objects (the distractors). In the graph-based REG

approach, this is done by constructing referring graphs. Each referring graph

includes at a minimum a vertex representing the target. Referring graphs are

defined in exactly the same way as scene graphs, which allows us to view REG

as a graph construction exercise. Informally, a target node v in a referring graph

refers to a node w in a scene graph if the referring graph can be “placed over”

the scene graph in such a way that v can be placed over w, and each edge from

the referring graph labelled with some property or relation can be placed over a

corresponding edge in the scene graph with the same label. If there is only one

way in which a referring graph can be placed over a scene graph, we have found

a distinguishing description.

Figure 2.3: Three referring graphs

Figure 2.3 shows three potential referring graphs for d1, with the target circled.

The first, which could be realised as the chair, can be placed over node d1,

but also over d2, and hence is not distinguishing. The other two, which could

be realised as the red chair and the chair to the left of the chair facing left

respectively, can only be placed over the scene graph in one way, and hence

represent possible distinguishing descriptions for target d1. Clearly, the second

would be a more natural description for d1 than the third; below we shall discuss

how cost functions can be used to rank different descriptions such as these.
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2.2.3 Formalizing reference in terms of subgraph isomorphism

Let us make the “placed over” notion a bit more precise. The informal notion of

one graph being placed over another corresponds to a well-known construct in

graph theory, namely subgraph-isomorphism.

A graph G′ is a subgraph of G if and only if VG′ ⊆ VG and EG′ ⊆ EG. A

subgraph isomorphism between graphs H and G exists, if there is a subgraph

G′ of G such that H is isomorphic to G′. H is isomorphic to G′ if and only if

there exists a bijection π : VH → VG′ , such that for all vertices v, w ∈ VH and all

labels l ∈ L:

(v, l, w) ∈ EH ⇔ (π.v, l, π.w) ∈ EG′ .

Given a graph H and a vertex v in H, and a graph G with a vertex w in G,

we will say that the pair (v,H) refers to the pair (w,G) if and only if (a) H

is a connected graph (that is: each vertex in H has at least one edge that links

it to another vertex in H), and (b) H is mapped to a subgraph of G by an

isomorphism π with π.v = w. A vertex-graph pair (v,H) uniquely refers to

(w,G) if and only if (v,H) refers to (w,G) and there is no other vertex w′ in G

such that (v,H) refers to (w′, G).

2.2.4 Cost functions

As most REG algorithms, the graph-based algorithm requires a mechanism to

give some solutions preference over others. It does so by using cost functions,

which assign costs to the edges and nodes of a referring graph, and sums these:

cost(G) = Σv∈GV
cost(v) + Σe∈GE

cost(e)

The only a priori assumption that we make is that the cost function should be

monotonic: extending a graph G with an edge e (notation: G+ e) should never

result in a graph which is cheaper than G. Formally,

∀H ⊆ G,∀e ∈ EG : cost(H) ≤ cost(H + e)

As we shall see below, cost functions can be defined in various ways, and this is

one of the attractive properties of the graph-based REG algorithm.

2.2.5 Algorithm

Figure 2.4 contains the sketch of a basic graph-based REG algorithm, called

makeReferringExpression. It takes as input a target v in a scene graph G.

The algorithm constructs a referring graph H, which is initialized as the graph

consisting of only one node: the target v. In addition, a variable bestGraph is
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makeReferringExpression(v,G) {
bestGraph := ⊥
H := 〈{v}, ∅〉
return findGraph(v, bestGraph, H, G)

}

findGraph(v, bestGraph, H, G) {
if [bestGraph 6= ⊥ and cost(bestGraph) ≤ cost(H)]

then return bestGraph

C := {v′ | v′ ∈ VG & (v,H) refers to (v′, G)}
if C = {v} then return H

for each adjacent edge e do

I := findGraph(v, bestGraph, H + e, G)

if [bestGraph = ⊥ or cost(I) ≤ cost(bestGraph)]

then bestGraph := I

rof

return bestGraph;

}

Figure 2.4: Sketch of the main function (makeReferringExpression) and the

subgraph construction function (findGraph), based on Krahmer et al. (2003)

introduced, for the best solution found so far. Since none have been found at this

stage, bestGraph is initialized as the empty graph ⊥. In the findGraph function

the algorithm systematically tries expanding H by adding adjacent edges (i.e,

edges from v, or possibly from any of the other vertices added to the referring

graph H under construction). For each H the algorithm finds the set of nodes

C ⊆ G to which H could refer. A successful distinguishing description is found if

and only if H can only refer to the target (i.e. C = {v}). The first distinguishing

description that is found is stored in bestGraph (best solution found so far). At

that point the algorithm only looks for referring graphs that are cheaper than

the best (cheapest) solution found so far, performing a complete, depth-first

search2. It follows from the monotonicity requirement on cost functions that the

algorithm outputs the cheapest distinguishing description graph, if one exists.

Otherwise it returns the empty graph.

2.2.6 Discussion

The graph-based REG algorithm has a number of attractive properties. For

example, graphs are a well understood mathematical formalism, and there are

2 Naturally, graph-based generation is compatible with different search strategies as well.
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many efficient algorithms for dealing with graph structures (see for instance

(Chartrand and Oellermann, 1993, Gibbons, 1985)). In addition, because rela-

tional properties are handled in the same way as other properties (namely as

edges in a graph), the treatment of relations between objects does not suffer

from some of the problems of earlier REG approaches; there is, for instance, no

need to make any ad hoc stipulations (e.g. that a property can only be attributed

to a given object once per referring expression (Dale and Haddock, 1991)). Rela-

tional properties cause testing for a subgraph isomorphism to have exponential

complexity (Garey and Johnson, 1979), but special cases are known in which

the problem has lower complexity, for example when considering graphs that are

planar (that is, drawable without crossing edges). Krahmer et al. (2003) sketch

a greedy algorithm that can simplify any graph into a planar equivalent.

Variations and extensions

Van Deemter and Krahmer 2007 discuss how the basic graph-based algorithm can

be extended with, for example, plurals (e.g. the chairs) and boolean expressions

(e.g. the blue chairs and the coach that is not red).

Van der Sluis and Krahmer 2007 present an extension of the algorithm which is

capable of generating multimodal referring expressions (e.g. that chair accompa-

nied by a pointing gesture). Their account allows for pointing degrees of various

precisions, where less precise pointing gestures are accompanied by more exten-

sive verbal descriptions (see de Ruiter et al. (2012) for a discussion).

The approach to graphs outlined here offers an attractive account of binary

relations, but not of more complex relations (e.g. the chair given by John to Mary,

the fan in between the chair and the couch). Croitoru and van Deemter (2007)

offer an alternative way of constructing graphs, using insights from conceptual

graph theory, which can account for relations of arbitrary complexity. Their

approach also allows for a logic-based interpretation of reference graphs, which

enables more complex knowledge representation and reasoning.

Computing costs

The use of cost functions is an important ingredient of the graph-based algorithm.

Various alternative ways of computing costs have been considered. Perhaps the

most straightforward option is to assign a cost of 1 to each edge and vertex.

It is easily seen that in this way the cheapest distinguishing graph will also

be the smallest one; this would make the graph-based algorithm equivalent (in

terms of its input-output behaviour) to the well-known Full Brevity algorithm

(Dale, 1989). The Full Brevity algorithm has been criticised, however, for lacking

“humanlikeness”, since human speakers frequently produce overspecified refer-

ring expressions (Arts, 2004, Engelhardt et al., 2006, Olson, 1970, Pechmann,

1989, Sonnenschein, 1984). The graph-based algorithm can model overspecifica-

8
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tion by allowing some properties to be included for free (Viethen et al., 2008)3.

However, if a graph contains zero-cost edges, the order in which the graph-based

algorithm tries to add properties to a referring expression must be explicitly

controlled, to ensure that “free” distinguishing properties are included (Viethen

et al., 2008).

Which properties should be available for free inclusion? One option is to link

cost to frequency; properties that speakers use often should be cheap, while those

that are less frequent should be more expensive. In other words, if we assume

that p(e) is the probability that an edge (property) will be used in a referring

expression, then we could define cost(e) = − log(p(e)). Properties that are very

cheap (costs below a certain threshold) can manually be set to 0. Explicit control

of property inclusion order can also be tied to frequency; edges can be tried in

order of their corpus frequency.

The probabilities of properties can be estimated by counting frequencies of

occurrence in a semantically transparent corpus such as the TUNA corpus (Gatt

et al., 2007, van Deemter et al., 2012). The TUNA corpus consists of two domains:

one containing pictures of people (all famous mathematicians), the other con-

taining furniture items in different colours depicted from different orientations,

such as those in Figure 2.14. Viethen et al. (2008) compare a cost function where

costs are directly derived from frequencies in the TUNA corpus (in terms of log

probabilities) with a “Free Näıve” one that just assigns three costs based on the

frequencies (with 0 = free, 1 = cheap, 2 = expensive), and found that the lat-

ter results in more human-like referring expressions. The graph-based algorithm

with the Free Näıve cost function, combined with a dedicated linguistic realiser,

was the best performing REG algorithm in the 2009 REG Challenge (Gatt et al.,

2009, Krahmer et al., 2008): the referring expressions this algorithm produced

were overall most similar to the referring expressions in the test set, were subjec-

tively judged to be most adequate and most fluent, and resulted in the highest

identification accuracies (ability of human readers to identify the target referent

given the generated referring expression). Although it is still a matter of some

debate how REG algorithms should best be evaluated (see Chapter ??) and the

test data used in the 2009 REG Challenge contains some idiosyncratic refer-

ring expressions (Gatt and Belz, 2010), it is clear that the graph-based REG

algorithm produces results that are state-of-the-art, and that the cost function,

giving preference to some properties over others, plays an important part in this.

In the next section we will discuss in more detail how these cost functions can

be determined automatically, and how much data is required to obtain accurate

cost functions.

3 Notice that this does not violate the monotonicity assumption.
4 The pictures of furniture items were taken from the Object Databank, developed by Michael

Tarr at Carnegie Mellon University and freely distributed at www.tarrlab.org.
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2.3 Determining preferences and computing costs

In the work of Krahmer et al. (2008) and Viethen et al. (2008), cost functions

for properties for the two TUNA domains were determined in two ways, by: (a)

directly using frequencies from the TUNA corpus of about 450 human-produced

referring expressions; and (b) manually clustering properties into cost clusters

based on the corpus frequencies. This raises two related questions: how can we

achieve an optimal cost clustering, and how much training data is necessary for

accurate cost function estimation? In this section we address these two questions.

Mapping frequencies to cost clusters

One way to identify an optimal clustering of frequencies is to systematically

compare the performance of cost functions derived from various clusterings on a

held out test set. We use k-means clustering (Hartigan and Wong, 1979), which

partitions n data points into k clusters (S1 to Sk), with k ≤ n by assigning each

point to the cluster with the nearest mean. The total intra-cluster variance V is

minimised using the function

V =

k∑
i=1

∑
xj∈Si

(xj − µi)
2

where µi is the centroid of all the points xj ∈ Si. In our case, the points n were

properties, and µi is the average frequency of the properties in Si. The cluster-

based costs were defined as follows:

∀xj ∈ Si, cost(xj) = i− 1

where S1 is the cluster with the most frequent properties, S2 is the cluster with

the next most frequent properties, and so on. Using this approach, properties

from cluster S1 get cost 0 and thus can be added for free to a referring expression.

The training and test data on which we performed our experiment were taken

from the TUNA corpus (Gatt et al., 2007, van Deemter et al., 2012). For training,

we used the -LOC data from the REG Challenge 2009 training data (Gatt et al.,

2009): 165 Furniture referring expressions and 136 People referring expressions5.

For testing, we used the -LOC data from the TUNA 2009 development set: 38

Furniture referring expressions and 38 People referring expressions.

We clustered the training data repeatedly using k = 2 to k = 6. Then we eval-

uated the performance of the graph-based algorithm with the resulting cost func-

tions on the TUNA 2009 development data. We used two metrics: Dice (over-

lap between sets of properties) and Accuracy (perfect match between sets of

5 The -LOC data was collected by explicitly instructing participants not to use locative infor-
mation (e.g. in the top left corner) when referring to targets in the grid.
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Table 2.1: Cost clustering results for 2-means costs and the Free Näıve costs of

Krahmer et al. (2008)

Furniture People
Costs Dice Acc. Dice Acc.

k-means 0.810 0.50 0.733 0.29
Free Näıve 0.829 0.55 0.733 0.29

properties) as evaluation metrics. For comparison, we also ran the graph-based

algorithm on this data set using the Free Näıve cost function of Viethen et al.

(2008). In all our tests, we used decreasing frequency for explicit control of prop-

erty inclusion order to ensure that free properties would be considered, i.e. the

algorithm always examined more frequent properties first.

The best results were achieved with k = 2, for both TUNA domains. Interest-

ingly, this is the coarsest possible k-means function: with only two costs (0 and

1) it is even less fine-grained than the Free Näıve cost functions. The results for

the k-means costs with k = 2 and the Free Näıve costs of (Krahmer et al., 2008)

are shown in Table 2.1. A repeated measures analysis of variance (ANOVA) on

the Dice and Accuracy scores, using cost function as a within-subjects variable

(with levels Free Näıve and 2-means) revealed no statistically significant dif-

ferences between the two cost functions. This suggests that k-means clustering

offers a good and systematic alternative to manual clustering of frequency-based

costs.

Varying training set size

To find out how much training data is required to achieve an acceptable property

selection performance, we derived cost functions and preference orderings from

different sized training sets, and evaluated them on our test data.

For training data, we used randomly selected subsets of the -LOC data from

the REG Challenge 2009 training data (Gatt et al., 2009), with set sizes of 1,

5, 10, 20 and 30 items. Because the accidental composition of a training set

may strongly influence the results, we created 5 different sets of each size. The

training sets were built up in a cumulative fashion: we started with five sets of

size 1, then added 4 items to each of them to create five sets of size 5, etc. This

resulted in five series of increasingly sized training sets. As before, for testing

we used the -LOC data from the TUNA 2009 development set and the Dice and

Accuracy metrics.

We derived cost functions (using k-means clustering with k = 2) and preference

orderings for each of the training sets, following the method outlined earlier in

this chapter. In doing so, we had to deal with missing data: not all properties

were present in all data sets. This problem mostly affected the smaller training

sets. By set size 10 only a few properties were missing, while by set size 20, all

properties were present in all sets. For the cost functions, we simply assigned

11
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the highest cost (1) to the missing properties. For the sake of comparison, we

listed properties with the same frequency (0 for missing properties) always in

alphabetical order.

To determine significance, we calculated the means of the scores of the five

training sets for each set size, so that we could compare them with the scores

of the entire set. We applied repeated measures analyses of variance (ANOVA)

to the Dice and Accuracy scores, using set size (1, 5, 10, 20, 30, entire set) as a

within-subjects variable. The mean results for the different training set sizes are

shown in Table 2.2. The general pattern is that the scores increase with the size

of the training set, but the increase gets smaller as the set sizes become larger.

Table 2.2: Mean results for different training set sizes

Furniture People
Set size Dice Acc. Dice Acc.

1 0.693 0.25 0.560 0.13
5 0.756 0.34 0.620 0.15
10 0.777 0.40 0.686 0.20
20 0.788 0.41 0.719 0.25
30 0.782 0.41 0.718 0.27

Entire set 0.810 0.50 0.733 0.29

In the Furniture domain, we found a main effect of set size (Dice: F(5,185)

= 7.209, p < .001; Accuracy: F(5,185) = 6.140, p < .001). To see which set sizes

performed differently as compared to the entire set, we conducted Tukey’s HSD

post hoc comparisons. For Dice, the scores of set size 10 (p = .141), set size 20

(p = .353), and set size 30 (p = .197) did not differ significantly from the scores of

the entire set of 165 items. The Accuracy scores show a slightly different pattern:

the scores of the entire training set were still significantly higher than those of

set size 30 (p < .05).

In the People domain we also found a main effect of set size (Dice: F(5,185)

= 21.359, p < .001; Accuracy: F(5,185) = 8.074, p < .001). Post hoc pairwise

comparisons showed that the scores of set size 20 (Dice: p = .416; Accuracy:

p = .146) and set size 30 (Dice: p = .238; Accuracy: p = .324) did not significantly

differ from the performance of the full set of 136 items.

The results suggest that small data sets can be sufficient for training the

graph-based REG algorithm. However, domain differences play a role as well in

how much training data is needed: using Dice as an evaluation metric, training

sets of 10 sufficed in the relatively simple Furniture domain, while in the People

domain it took a set size of 20 to achieve similar results as when using the full

training set. Using the full training sets does give numerically higher scores,

but the differences were not statistically significant. Furthermore, the accidental

composition of the training sets may strongly influence the attribute selection

performance. In the Furniture domain, there were clear differences between the

results of specific training sets, with “bad sets” pulling the overall performance
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down. This affected Accuracy but not Dice, perhaps because the latter is a less

strict metric.

Of course, Dice and Accuracy are not the only evaluation metrics. It would

be particularly interesting to see how the use of small training sets affects effec-

tiveness and efficiency of target identification by human subjects; as shown by

Belz and Gatt (Belz and Gatt, 2008), task-performance measures do not neces-

sarily correlate with similarity measures such as Dice (although the graph-based

algorithm scored well on both dimensions).

It is interesting to see which preferences were learned using the graph-based

algorithm with corpus-based cost functions. If we focus on attributes, we find

that generally colour is preferred and orientation and size less so (in the Furni-

ture domain), while having glasses is highly preferred, and for example, wearing

a tie or a suit is not (in the People domain). Colour and glasses are good exam-

ples of attributes that can be added for free. It also interesting to observe that

orientation is far less dispreferred than wearing a tie; in fact, hasTie = 1 is never

used in the TUNA data. Many of these distinctions can already be observed in

set sizes as small as 5.

This is the situation when we look at the level of attributes. The graph-based

REG algorithm, however, operates with preferences on the level of properties (i.e,

attribute-value combinations). The potential advantage of this is that it becomes

possible to prefer some colours (e.g. red) and disprefer other (mauve, taupe); the

intuition is that it may be simpler to describe a mauve chair in terms of its size

(certainly when assuming that the addressee may not know what colour mauve

is). Indeed, if we look at the preferences that were learned from the data, we

see that for instance having glasses (hasGlasses = 1) is strongly preferred (costs

0), while not having glasses (hasGlasses = 0) is not (costs 1). Of course, it can

be conjectured that learning preferred attributes will require less data (fewer

referring expressions) than learning preferred properties.

So far, we have been working on the assumption that some properties are

preferred over others, and we have just shown that a limited set of referring

expressions may be enough to determine these preferences. However, is this basic

assumption tenable when we consider the production of referring expressions in

interaction? Unfortunately, data for this has been lacking. We now describe two

experiments looking at the relation between adaptation and interaction.

2.4 Adaptation and interaction

In this section we report on two experiments that study the trade-off between

domain-dependent preferences and adaptation to referring expressions that have

been used earlier in an interaction. Experiment I studies what speakers do when

referring to a target that can be distinguished in a preferred (e.g. the red chair)

or a dispreferred way (e.g. the left-facing chair), when earlier in the interaction

either the preferred or the dispreferred variant was primed, or used by a dialogue
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partner. Experiment II studies overspecification, where participants were again

asked to refer to a target, which can be distinguished using a minimal referring

expression containing only including a preferred attribute (e.g. the red chair),

while earlier overspecified references (e.g. the red front-facing chair) were primed.

Both studies use a novel interactive reference production paradigm, applied to

the Furniture and People domains of the TUNA corpus, to see to what extent

adaptation may be domain dependent.

2.4.1 Experiment I: adaptation and attribute selection

This experiment studies whether and how adaptation influences attribute selec-

tion in REG in interactive settings.

Figure 2.5: The 4 turns that constitute a trial in experiment I. This figure shows

a Furniture trial; People trials have an identical structure.

Method

Participants Participants were 26 native speakers of Dutch (two males, mean

age 20 years, 11 months) who participated in the experiment in exchange for

partial course credit.

14
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Materials The stimulus pictures were taken from the TUNA corpus (Gatt,

2007). We relied on a Dutch version of the TUNA corpus (Koolen et al., 2009)

to determine which properties our participants would prefer and disprefer (i.e.

which properties they use frequently and infrequently). It was found that Dutch

speakers, like English ones, have a preference for colour in the Furniture domain

and wearing glasses in the People domain, and disprefer orientation of a fur-

niture piece and wearing a tie, respectively. These properties were used as primes.

Procedure Each experimental trial consisted of four turns in an interac-

tive reference understanding and production experiment: a prime, two fillers

and the experimental referring expression (see Figure 2.5 for an example of

an experimental trial). In each trial, the prime and final turns were from one

domain (Furniture or People), while the filler turns were from the other domain.

The two filler turns were intended to prevent a too direct connection between

the prime and the target. In the prime, the participant listened to a referring

expression pre-recorded by a female voice and had to select a referent from three

possibilities in the trial domain. In this turn, referring expressions used either

a preferred or a dispreferred property; each property alone would be enough to

uniquely identify the referent. In the two filler turns, the participant him/herself

first produced a referring expression for a target given three objects in the other

domain, and then had to select, from three possibilities in the other domain, the

referent for a spoken referring expression. Finally, the participant produced a

referring expression for a target object in the trial domain, which could always

be distinguished from its two distractors using a preferred (e.g. The blue fan)

or a dispreferred (e.g. The left-facing fan) property. Note that attributes were

primed, not properties; a participant may have heard front-facing in the prime

turn, while the target referent had a different value for the orientation attribute

in the experimental turn (as in Figure 2.5). In addition, in the Furniture

domain but not in the People domain, the type values could differ; for example,

when primed with a (preferred or dispreferred) referring expression for a chair,

participants did not necessarily have to describe a chair in the experimental

turn.

For each domain, there were 20 preferred and 20 dispreferred trials, resulting

in 2 x (20 + 20) = 80 critical trials. These were presented in counter-balanced

blocks, and within blocks each participant received a different random order. In

addition, there were 80 filler trials (each following the same structure as out-

lined in Figure 2.5); filler trials never involved the attributes of interest. During

debriefing, none of the participants indicated they had been aware of the exper-

iment’s true purpose.

Results and discussion

The proportions of preferred and dispreferred attributes used by participants

as a function of prime and domain are shown in Figure 2.6. The black bars
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indicate use of the preferred attribute and the white bars indicate use of the

dispreferred attribute. In both domains, the preferred attribute is used more

frequently than the dispreferred attribute with the preferred prime, which serves

as a manipulation check (our participants indeed overall preferred the preferred

attributes to the dispreferred ones). The results show a clear effect of prime for

the Furniture domain: participants used the preferred attribute (colour, as in

the red fan) more when they were primed with it, and the dispreferred attribute

(orientation, as in the fan seen from the front) more when it was in the prime.

The results for the People domain reveal a similar picture (when participants

were primed with the dispreferred attribute, they used it more often), but much

less pronounced.

For our statistical analysis, we use the proportion of attribute alignment

as the dependent measure. Alignment occurs when a participant uses the same

attribute in the target as occurred in the prime. Table 2.3 displays the align-

ment mean and standard deviation per prime (preferred versus dispreferred)

for the Furniture and People domains. We conducted a 2 x 2 repeated mea-

sures analysis of variance (ANOVA) with alignment as the dependent variable,

and domain (Furniture versus People) and prime (preferred versus dispreferred)

as independent variables. A statistically significant main effect was found for

prime (F (1, 25) = 6.43, p < .05), showing that the prime influenced the selection

of attributes in the experimental turn: when primed with dispreferred attributes,

our participants used the dispreferred attributes more often than when they were

primed with preferred attributes. A statistically significant main effect was found

for domain (F (1, 25) = 10.88, p < .01), confirming that there is significantly more

alignment in the Furniture domain. Finally, a statistically significant interaction

was found (F (1, 25) = 5.74, p < .05), confirming our observation that the effect

of the prime was less pronounced in the People domain. Interestingly, this is very

much in line with the observations made in the previous section, where we saw

that orientation is less dispreferred than wearing a tie.

Table 2.3: Alignment means (and standard deviations) as a function of domain

(Furniture and People) and prime (preferred and dispreferred)

Domain Prime Alignment mean (SD)

Furniture Preferred 0.89 (0.32)
Dispreferred 0.60 (0.49)

People Preferred 0.97 (0.16)
Dispreferred 0.25 (0.43)

2.4.2 Experiment II: Adaptation and overspecification

This experiment looks at overspecification: participants were primed with over-

specified referring expressions that included both preferred and dispreferred

attributes, and were then asked to produce a referring expression for a target
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Figure 2.6: Proportions of preferred and dispreferred attributes in the Furniture

(left) and People (right) domains

which could be distinguished using a minimal referring expression including only

a preferred attribute.

Method

Participants Particpants were 28 native speakers of Dutch (8 males, mean age

20 years, six months) who participated in exchange for partial course credit.

None had participated in experiment I.

Materials and procedure The materials and procedure were identical to

those in experiment I, with the exception of the referring expressions in the

prime turn (see Figure 2.5). In experiment II, the referring expressions in

the prime turn were always overspecified. Thus, in the Furniture domain

participants heard referring expressions such as the red chair seen from the front

and in the People domain they heard referring expressions such as the man with

the glasses and the tie. All these referring expressions were overspecified in that

they use two attributes (in addition to the type attribute), including a preferred

and a dispreferred one, while either attribute would be sufficient to uniquely

identify the referent. All referring expressions in the prime turns were produced

by the same speaker as in experiment I.

Results and discussion

Figure 2.7 and Table 2.4 show the proportions of overspecified references in exper-

iment I (“single prime”) and experiment II (“dual prime”) for both domains. A

referring expression was considered overspecified when both the preferred and

the dispreferred attribute were used. The results show that when participants

were primed with both the preferred and the dispreferred attribute, 52% of the
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Furniture trials and 57% of the People trials were produced with both attributes,

even though the preferred attribute would be sufficient to distinguish the target.

By contrast, in experiment I speakers produced overspecified referring expres-

sions in only 11% to 15% of the experimental turns.

To analyse these results, we combined the data for experiment I (single prime)

and experiment II (dual prime) and conducted a mixed effects ANOVA with

proportion of overspecification as the dependent variable, domain (Furniture

versus People) as a within-subjects variable, and prime (single prime versus dual

prime) as a between-subjects variable. The results show a statistically significant

effect for prime (F (1, 52) = 32.50, p < 0.001); the dual primes result in more over-

specified referring expressions (and thus a more frequent use of the dispreferred

property) than the single primes. There was no statistically significant effect for

domain, and no statistically significant interaction between domain and prime.

Figure 2.7: Proportions of overspecification with single (the chair seen from the

front / the man with the tie) and dual primes (the blue chair seen from the front

/ the man with the glasses and the tie) in the People and Furniture domains

Table 2.4: Overspecification means (and standard deviations) for experiment

I (selection) and experiment II (overspecification) per domain (Furniture and

People) and prime (preferred and dispreferred).

Experiment I Experiment II
Preferred Dispreferred

Furniture 0.13 (0.34) 0.11 (0.31) 0.52 (0.37)
People 0.15 (0.36) 0.13 (0.33) 0.57 (0.34)
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2.5 General Discussion

In this chapter we showed that REG in interactive settings is a balancing act

between relatively stable domain-dependent preferences and relatively dynamic

interactive factors. We first asked how much data is required to determine the

preference ordering for a domain. Our experiment in Section 2.3 showed that

with 20 or fewer training instances, acceptable attribute selection results can be

achieved; that is, results that do not differ significantly from those obtained using

many more training instances. This is good news, because collecting such small

amounts of training data should not take too much time and effort, making it

relatively easy to apply the graph-based REG algorithm for new domains and lan-

guages. Next, we examined on the relation between preferences and adaptation,

describing two experiments in Section 2.4. Experiment I (looking at attribute

selection) showed that speakers were more likely to include a (preferred or dis-

preferred) attribute in a referring expression when this attribute was primed.

Experiment II (looking at referential overspecification) revealed that alignment

and overspecification are closely related. While some participants were reluctant

to select a dispreferred attribute in experiment I, participants in experiment II

aligned frequently with an overspecified referring expression that contained both

a preferred and a dispreferred attribute, even though including only the preferred

one would have been sufficient to produce a distinguishing description.

It could be argued that the interactive nature of our experimental paradigm in

Section 2.4 is limited, in that participants did not truly interact with the speaker

of the referring expressions they had to comprehend. Rather, participants inter-

acted with an imaginary dialogue partner, which allowed us to guarantee that all

participants were primed in exactly the same way. Using an imaginary audience

is a standard experimental procedure to study interactive communication, and

recent studies have shown that the differences between a real audience and an

imagined audience are small (Van Der Wege, 2009, Ferreira et al., 2005).

It is also worth emphasizing that our experimental results in Section 2.4 can-

not readily be explained in terms of well-understood phenomena such as lexical

or syntactic alignment. In experiment I, what is primed are not lexical items,

but attributes. A prime in the Furniture domain may be the front-facing chair,

where front-facing is the relevant value of the orientation attribute, while in the

experimental turn participants should produce a referent for, say, a fan whose

orientation is to the left. Arguably, what is being primed is a way to look at an

object, thereby making certain attributes of the object more salient.

The graph-based algorithm, as described in Section 2.2, does not yet capture

the alignment effects we found in experiments I and II (and the same applies

to other state-of-the-art REG algorithms such as the Incremental Algorithm

(Dale and Reiter, 1995)). The graph-based algorithm, as it stands, predicts that

a dispreferred property would never be used if a preferred property would be

sufficient to uniquely characterise a target. And while the algorithm can account
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for some amount of overspecification (by allowing some properties to be included

for free), it would never redundantly use a dispreferred (expensive) property, even

though our participants did this in over half of the cases in experiment II.

What is missing in the algorithm is a sensitivity to the references produced

during an earlier interaction. In fact, the use of cost functions offers an elegant

way to account for this. In interactive settings, costs could be thought of as a com-

position of relatively stable domain-dependent preferences (as formalized above)

combined with relatively dynamic costs, modelling the activation of properties

in the preceding interaction. The latter costs can be derived from Buschmeier

et al. (2010) who study alignment in micro-planning. Inspired by Buschmeier

and colleagues, we can make the costs of an attribute a much (cheaper) when it

is mentioned repeatedly, after which the costs gradually increase as the activa-

tion of a decays. The net result is that dispreferred properties become relatively

cheap when they have been used in the previous interaction, and hence are more

likely to be selected by the graph-based algorithm.

Gatt et al. (2011) go one step further than we have here, proposing a new

model for alignment in referring expression production that integrates alignment

and preference-based attribute selection. This model consists of two parallel pro-

cesses: a preference-based search process, and an alignment-based process. These

two processes run concurrently and compete to contribute attributes to a limited

capacity working memory buffer that will produce the referring expression. This

model was tested against the data of experiment II and showed a similar amount

of overspecification as the human participants produced.

Use of the graph-based algorithm in an interactive setting has a number of

other theoretical and practical advantages. First of all, alignment may reduce

the search space for the algorithm; not all alternatives need to be explored,

because the search process can be driven by the edges that were used previously

in the interaction. In addition, as we have seen, preference orders need to be

empirically determined for each new domain. But what to do when your REG

algorithm is applied in a domain for which the preference order is unknown? Our

experiments suggest that a good strategy might be to simply model alignment.

Various studies have demonstrated both the existence of and the benefits of

alignment in human-computer interaction (for a recent survey, see Branigan et al.

(2010)). Branigan et al. (2010) argue that a lot is to be gained from computers

that align: “Speakers should also feel more positive affect when interacting with

a computer that aligns with them than with one that does not.”

The approach outlined in this chapter is limited to generation of distinguishing

descriptions, which have identification of a target as their main function. Even

though this kind of referring expression has received the most attention in the

REG literature, they are certainly not the only kind of referring expression that

occur. Various studies (Di Eugenio et al., 2000, Gupta and Stent, 2005, Jordan

and Walker, 2005, Passonneau, 1996) confirm that references in interactive set-

tings may serve other functions besides identification. The Coconut corpus (Di
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Eugenio et al., 2000), for example, is a set of task-oriented dialogues in which

participants negotiate the furniture items they want to buy on a fixed, shared

budget. Referring expressions in this corpus (e.g. a yellow rug for 150 dollars)

not only identify a particular piece of furniture, but also include properties that

directly pertain to the task (e.g. the amount of money that is still available and

the state of agreement between the negotiators). More recently, other researchers

have started exploring the generation of referring expressions in interactive set-

tings as well. Stoia et al. (2006), for example, presented a system that generates

referring expressions in situated dialogue, taking into account both the dialogue

history and the visual context (defined in terms of which distractors are in the

current field of vision of the speakers and how distant they are from the target).

Janarthanam and Lemon (2010) present an REG algorithm that automatically

adapts to the expertise level of the intended addressee (for example, using the

router when communicating with an expert user, and the black block with the

lights when communicating with a novice). These lines of research fit in well

with another, more general, strand of research concentrating on choice optimi-

sation during NLG based on user data (Walker et al., 2007, White et al., 2009).

2.6 Conclusion

When speakers want to identify a target, such as a chair in a furniture shop,

using a distinguishing description, they tend to prefer certain properties over

others. We have shown that only a limited number of (semantically transpar-

ent) example descriptions is required to be able to determine these preferences,

although this also depends on the size and complexity of the domain. In inter-

active settings, however, the generation of distinguishing descriptions not only

depends on preferences, but also on the descriptions that were produced earlier in

the interaction, as we have shown in two experiments, one dedicated to attribute

selection and the other to overspecification. We argue that the graph-based REG

algorithm is a suitable candidate to model this balancing act, since its use of cost

functions enables us to weigh the different factors in a dynamic way.
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