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Abstract. This article looks at the applications of Turing’s Legacy
in computation, particularly to the theory of algorithmic randomness,
where classical mathematical concepts such as measure could be made
computational. It also traces Turing’s anticipation of this theory in an
early manuscript.

1 Introduction

Beginning with the work of Church, Kleene, Post and particularly Turing, es-
pecially in the magic year of 1936, we know what computation means. Turing’s
theory has substantially developed under the names of recursion theory and
computability theory. Turing’s work can be seen as perhaps the high point in the
confluence of ideas in 1936. This paper, and Turing’s 1939 paper [141] (based on
his PhD Thesis of the same name), laid solid foundations to the pure theory of
computation, now called computability or recursion theory. This article gives a
brief history of some of the main lines of investigation in computability theory,
a major part of Turing’s Legacy.

Computability theory and its tools for classifying computational tasks have
seen applications in many areas such as analysis, algebra, logic, computer science
and the like. Such applications will be discussed in articles in this volume. The
theory even has applications into what is thought of as proof theory in what is
called reverse mathematics. Reverse mathematics attempts to claibrate the logi-
cal strength of theorems of mathematics according to calibrations of comprehen-
sion axioms in second order mathematics. Generally speaking most separations,
that is, proofs that a theorem is true in one system but not another, are per-
formed in normal “w” models rather than nonstandard ones. Hence, egnerally
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such proofs are results in computability theory which yield metamathematical
proof theortical corollaries. Discussing reverse mathematics would take us a bit
far afield, so we chose not to include this development in the present volume. In
the present article, we we will look at the pure theory of computation.

As we later see, computability theory turned out to be the needed mathemat-
ical basis for the formalization of the old concept of randomness of individual
objects. The theory of what we call today algorithmic randomness was antici-
pated by Turing in a manuscript that remained unpublished until its inclusion
in the Collected Works [143]. This article reviews the development of the theory
of algorithmic randomness as part of Turing’s Legacy.

Mathematics has developed many tools to utilize randomness in the develop-
ment of algorithms and in combinatorial (and other) techniques. For instance,
these include Markov Chain Monte Carlo and the Metropolis algorithms, meth-
ods central to modern science, the probabilistic method is central to combi-
natorics. Quantum physics suggests to us that randomness is essential to our
understanding of the universe. Computer science uses randomness in cryptogra-
phy, fast algorithms and proof techniques.

But the key question we need to ask is “What is randomness?”. There are
some in the physics community that suggest that the universe can generate
“true randomness?” which seems a philosophical notion, and this article is not
concerned with this notion. Here we will be interested in what is called algorith-
mic randomness, which is not a philosophical notion, but a collection of precise
mathematical notions.

The underlying idea in this area is that randomness should equate to some
kind of inability to describe/predict/compress the random object using algorith-
mic means. We will use Turing’s clarification of the notion of an algorithm to
make this precise. For example, if I was presented with a very long string bit by
bit, if it was random, then there would seem no way I should be able to predict,
algorithmically, what the n + 1-st bit would be even knowing the first n bits.

The reader should note that this approach abandons the notion of “absolute
randomness” since randomness depends on the algorithmic strength of the (algo-
rithmic) predictor. The more powerful the algorithmic device, the fewer strings
or reals will be random. The last decade has seen some quite dramatic advances
in our understanding of algorithmic randomness. In particular, we have seen
significant clarification as to the mathematical relationship between algorithmic
computational power of infinite random sources and level algorithmic random-
ness. Much of this material has been reported in the short surveys Downey
[41,42], Nies [95] and long surveys [40,47] and long monographs Downey and
Hirschfeldt [46] and Nies [94]. Also the book edited by Hector Zenil [152] has a
lot of discussion of randomness of varying levels of technicality, many aimed at
a general audience.

To give a definition of algorithmic randomness and to understand questions
like: “When is one real more random than another? What can be said about
the algorithmic power of a random real?” we need a theory of computation.
Fortunately this is readily at hand. We know what computation means. The



theory has substantially developed, under the names of recursion theory and
computability theory. As mentioned earlier, in this book, there are articles on the
confluence of ideas in 1936, and the development of the theory at its roots. There
are also articles on generalized computation complexity theory and applications
of computability theory to algebra and model theory, complexity theory and
also to analysis. However, there is none about the pure classical computability
theory, underlying such applications and extensions. Thus this article will begin
with a brief history of some of the main lines of investigation in this part of
Turing’s Legacy.

Having done this, we will return to applying the theory to understanding
algorithmic randomness.

To our knowledge, whilst he did have the notion of a pseudo-random num-
ber generator, Turing himself thought that randomness was a physical phe-
nomenon, and certainly recognized the noncomputable nature of generating ran-
dom strings. For example, from Turing [142], we have the following quote.

“ An interesting variant on the idea of a digital computer is a ”digital
computer with a random element.” These have instructions involving the
throwing of a die or some equivalent electronic process; one such instruc-
tion might for instance be, ” Throw the die and put the-resulting number
into store 1000.” Sometimes such a machine is described as having free
will (though I would not use this phrase myself).”

John von Neumann (e.g. [147]) also recognized the noncomputable nature of
generating randomness.

“Any one who considers arithmetical methods of producing random dig-
its is, of course, in a state of sin.”

Arguably this idea well predated any notion of computation, but the germ
of this can be seen in the following quotation of Joseph Bertrand [11] in 1889.

“How dare we speak of the laws of chance?
Is not chance the antithesis of all law?”

There has been a developing body of work seeking to understand not just the
theory of randomness but how it arises in mathematics; and in physics, biology
and the like.

For example, we have also seen an initiative (whose roots go back to work
of Demuth [38]) towards using these ideas in the understanding of almost ev-
erywhere behaviour and differentiation in analysis (such as Brattka, Miller, Nies
[21]). Also halting probabilities are natural and turn up in places apparently far
removed from such considerations. For instance, as we later discuss, they turned
up naturally in the study of subshifts of finite type (Hochman and Meyerovitch
[70], Simpson [124, 126]), fractals (Braverman and Yampolsky [22,23]). We also
know that algorithmic randomness gives insight into Ergodic theory such as
Avigad [5], Bienvenu et al. [15] and Franklin et al. [56].



2 Classical computability theory

There are already long books devoted to classical computability theory such as
Soare [136], Odifreddi [110, 111], Rogers [117], Griffor [64], and the subject is still
being developed. In this section we aim at giving a “once over lightly” with an
overview of what we believe are some highlights. As discussed by Sieg, Nerode
and Soare in this volume, as well as extensively analysed in Davis [37] and Herken
[69], we have seen how Turing’s work has led to the birth of computation, and
indeed, the digital computer. What about the pure theory of computation after
Turing?

The work of Turing [141] led to the notion of relative computation. We imag-
ine a machine M with an oracle (read only memory) A which can be consulted
during the computation. This give rise to the the fundamental operator called
the jump operator: A’ is the halting problem with oracle A. Then ()’ is the usual
halting problem, and (')’ = §® would be the halting problem given an oracle
for the halting problem.

The use of oracles also gives us a basic calibration of the complexity of
sets (languages) A <r B means that (the characteristic function of) A can
be computed from a machine with oracle access to B. This pre-ordering <r is
called Turing reducibility and the equivalence classes are called (Turing) degrees.

The jump operator is monotone in the sense that if X <7 Y then X' <p Y’.
Due to the work of Kleene and Post [76], as we discuss below, we know that it is
not one to one on the degrees. For example, there are sets X Z¢ ) with X' =, @',
We call such sets low, since we think of them as having low information content
because the jump operator cannot distinguish them from having no oracle at all.
The spine of the degrees is provided by the jump operator: Start with () and give it
degree 0. Form the halting problem ()’ and its degree 0’. Then ((?) has degree 0(2).
Iterate the construction and obtain any finite ordinal jump. Using what are called
effective ordinal notations we can extend this to the transfinite: 0“ is the effective
join of 0™ for all finite n and then ever upwards. Namely, 0“*1) would be the
degree of jump of some representative of 0“. To work with larger ordinals, what is
done is to represent ordinals for o via “notations” which are partial computable
functions specifying sequences of smaller ordinals converging to « in the case
that « is a limit, and the predecessor of « if « is a successor. In some sense this
is the very least one would imagine needed for giving computable representations
of ordinals. Remarkably, it is enough, in that for such representations, any two
representations for the same ordinal allow us to define 0(%) up to Turing degree,
a result of Spector.

Returning to our story, it is certainly the case that Turing’s original paper
[140] is written very clearly. The same cannot be said about much of the early
work in the theory of computation, particularly that of Kleene and Church. Most
of it was couched in terms of lambda calculus or recursive functions, and it all
seemed forbiddingly formal.

A great paper, following the early era of the 30’s, was due to Emil Post [113],
who returned to Turing’s clear informal style. Whilst Turing [141] did define
the notion of an oracle computation, it is only in Post’s article that the notion



of Turing reducibility was defined, and Post focused attention on recursively
(=computably) enumerable sets. Post also demonstrated the connection between
arithmetical definability and the hierarchies of computability theory, establishing
that the n-th jump of the empty set was X9 complete, etc. That is, he showed
that if A is 22 then A is many-one reducible to 0(”)7 where X <,,, B means that
there is a computable function f with n € X iff f(n) € B. Many-one reducibility
was one of the many refinements of Turing reducibility noted by Post.

Post also suggested the study of the ordering structures generated by Turing
reducibilities and by many other refinements of these reducibility. Myhill [109]
showed that if X and Y are two versions of the halting problem (for different uni-
versal machines) then X =,, Y. Post also noted other reducibilities such as truth
table reducibility and variants such as bounded truth table, weak truth table,
etc. These reducibilities are commonly found in algebra. Truth table reducibility
can me thought of as a reduction procedure which must be total for all oracles.
It is extensively used in algorithmic randomness as it allows for translations of
effective measures. The article of Homer and Selman in this volume discuss how
miniaturizations of these ideas gave rise to computational complexity theory.
The time bounded version of m-reducibility is used extensively in complexity
theory where it is called Karp reducibility.

We concentrate now in describing the work done on Turing reducibilities.
The work on other reducibilities is also vast.

2.1 The global degrees

Until mid 1950, it was consistent with all known facts that the ordering of
the degrees was a linear ordering of length 2“ with the countable predecessor
property consisting of only iterated jumps of . However, Kleene and Post [76]
showed that this was not the case by exhibiting a pair of degrees a,b (< 0')
which were incomparable. (i.e. a € b and a 2 b, which is written as a|rb.) The
method of proof introduced by Kleene and Post is a kind of primitive Cohen
forcing. Thus, the degrees are a nontrivial upper semi-lattice with join induced
by A@B={2n|ne€ AyU{2n+ 1| n € B}. Soon after, Spector [127] proved
that there was a minimal degree a; that is a > 0 and for all c, it is not the
case that a > ¢ > 0. This paper implicitly uses another forcing technique which
uses perfect closed sets as its conditions. In the same paper Spector proved an
“exact pair” theorem showing that all countable ideals could be named by pairs
of degrees as the elements below both, and the proof of this influential result
introduces forcing with infinite conditions. This exact pair method allows us to
show that the degrees are not a lattice.

Each of these two papers had very significant impact on the field. People
showed that the degrees were very complicated indeed. The Kleene-Post method
enabled the proof of the existence of low sets. This was extended by Friedberg
[58] who showed that the range of the jump operator is as big as it can be: the
Friedberg Jump Theorem says that if a > ()’ there is a degree ¢ with cU 0" =
¢ = a. If ¢ = a, we say that a inverts to c. Friedberg observed a similar
result for degrees d > 0. The set C' of degree ¢ that the proof constructs



is called 1-generic, meaning that it is Cohen generic for 1 quantifier arithmetic.
The inversion to 1-generic degrees is not the only kind. Cooper [31] demonstrated
that every degree above 0’ can be inverted to a minimal degree. This result uses
a combination of the kind of coding used by Firedberg and Spector’s methods.
These Friedberg-Kleene-Post methods can also be pushed to the transfinite, as
proven by Macintyre [98], so that given any X > ({(*), there is a set Y with
Y@ @p@ =5 V() =1 X, for a < wEE (the computable ordinals). Applications
of such n-generic sets occur in many places in computability theory and its
applications in, for instance, effective algebra, and randomness.

Spector’s Theorem on minimal degrees was extended by many authors includ-
ing Lachlan, Lerman, Lachlan-Lebeuf proving results on initial segments show-
ing that these can be, respectively, all countable distributive lattices, countable
lattices, and countable upper-semilattices, (see Lerman [88]) culminating in the-
orems like every partial ordering of size 8; with the countable predecessor prop-
erty is an initial segment of the Turing degrees (Abraham-Shore [1]). Later it was
shown that questions about further extensions often have to do with set theory
(Groszek-Slaman [65]). There are still many questions open here. These results
imply that the theory of the degrees is undecidable. There has been work towards
understanding the quantifier level where undecidabilty occurs. The Kleene-Post
theorem and Spector’s exact pair theorem also had numerous extensions, heading
towards definability results in the degrees, as well as combinations to extensions
of embeddings, embeddings with jumps etc. Some noteworthy results here in-
clude Slaman-Woodin’s proof of the definability from parameters of countable
relations in the degrees, this leading to the (parameter-free) definability of the
jump operator in the partial ordering of the degrees by Shore and Slaman [131]
(Also see Slaman [133]). Still open here is the longstanding question of Rogers:
are the Turing degrees rigid?

Related here are results on relativization. Early on it was noted that most
results relativized in the sense that if they were true then relativizing everything
kept them true. For example, there are sets A, B < (' with A|rB. This result
relativized in that the proof shows that for any oracle X, there are sets X <p
AX|rBX < X'. One question was whether “everything relativizes” and, as a
consequence, the cones of degrees above each degree would all be isomorphic,
or perhaps elementary equivalent? The answer turned out to be no. Beginning
with work of Feiner [52] who demonstrated that there were nonisomorphic cones
if you had the jump operator, and culminating with work of Shore [128] who
showed non-isomorphism in the language of partial ordering, and Shore [129]
who demonstrated non-elementary equivalence in the same language.

2.2 Post’s Problem and the priority method

Post observed that much of the work of undecidability proofs was in coding
halting sets. He called sets A which were domains of partial computable func-
tions recursively enumerable and now they are either known by this name or by
the name computably enumerable, as suggested by Soare, since it captures the



intentional meaning, and their degrees similarly. Post asked a very interesting
question: Does there exist a computable enumerable degree a with 0 < a < 0'?

This problem became known as Post’s Problem, and its solution was highly
influential. Post’s problem was solved by two students, Friedberg [57] and Much-
nik [107]. The method took the Kleene-Post method and added backtracking to
give rise to a method known as the priority method.

Here is a brief description of the method applied in the setting of an old
unpublished result of Tennenbaum. We construct a computable ordering of type
w + w* with no infinite computable ascending or descending subsequences. We
will build the ordering by adding two points at a time. We think of the points
in the w-part as blue and the ones in the w* part as red. Thus, if there were
nothing happening, we would start with a blue and a red point xgyg. At the
next stage, we would add a red and a blue point to get xozi1y1y0, etc. Now
we must meet certain requirements, namely R, that W., the e-th computably
enumerable set, is not an infinite ascending sequence and B, that W, is not an
infinite descending sequence. Lets consider R.. This is saying that W, if infinite
is not all red. The way to force this to happen would be as follows. Suppose that
at some stage we see some point x,, occur in W, at stage s in its enumeration.
Then if we changed the colours at this stage so that z,, was put into the blue
section, we would be done since W, would not be all red. That is, if we had at
stage s, g - . - TmYm - - - Yo, we could recolour so that at the next stage we would
have xg ... Tp_1Ts11Yst1Tn - - - TsYs - - - Yo, that is moving the place we build the
sequences to between z,_; and x,. That is, R, seeks to make red things blue,
and in the same spirit, B, seeks to make blue things red. Furthermore, we need
to make sure that from some point on all elements have as stable colour so
that the order type is w + w*. To to this we give each requirement some kind
of priority. Say Ry < By < R; < Bj.... This means that Ry has the highest
priority and is allowed to make red elements blue, and if it does this, that action
is not allowed to be undone. By is allowed to make blue elements red, and this
action cannot be undone by any other requirement ezcept Ry. If it is undone
by Ry then the next element it makes red (which Ry does not care about, as it
has a satisfying element) will not be made blue by anyone. Finally, to make the
order type w+w*, we also ask that R, and B, only are allowed to move elements
x;,y; for i,7 > e.

The finite injury method is a mainstay of the area. It has applications in
descriptive set theory, complexity theory and most other parts of computable
mathematics. One longstanding question here is Sacks’ questions about a degree
1nvariant solution to Post’s Problem. Is there a computably enumerable operator
W such that for all X, X <p WX <p X', and for all X =¢ YV, WX =¢
WY? Lachlan [83] showed that the answer is no if an index for the reductions
witnessing WX =7 WY can be read off from indices for the reductions witnessing
X =7 Y, and Downey and Shore [49] showed that the solution W, if there is one,
needs to be reasonably constrained, lows or high. Martin has conjectured a very
strong negative answer which says more or less that the only degree invariant
operators on the degrees are jumps and their iterates. Slaman and Steel [134]



have the strongest results here, showing, for instance, that there is no order
preserving solution.

Powerful generalizations of the finite injury method came from constructions
where each requirement could act infinitely often, but subsequent requirements
could guess the activity and take it into account. This gave rise to infinite injury
methods. There is no fixed method and these arguments have many classifica-
tions according to “how complex” they are. One method of classification was
suggested by Leo Harrington. He said that priority arguments should be clas-
sified according to how many iterations of the jump are needed to produce an
oracle which could compute how the requirements are satisfied in the construc-
tion. Finite injury arguments typically require one jump, and the easiest infinite
injury arguments require 2 jumps. However, there are arguments requiring ar-
bitrary numbers of jumps in both the pure theory and in applications such as
computable model theory. A significant technical obstacle for such arguments is
simply to find a way to coherently present the argument.

The early incarnations of the infinite injury method enabled the proof that
the computably enumerable degrees are dense as a partial ordering (Sacks [118]),
and that the diamond lattice is embeddable preserving 0 in the computably
enumerable degrees. (Lachlan [81], Yates [151]). Sacks also used the method to
prove the c.e. jump theorem, namely that if X > (' is c.e. relative to ()’ then
there is a c.e. set Y with Y/ =p X. In the c.e. case of jump theorems it is
clearly necessary that “targets” be c.e. relative to ('. Again these results were
pushed a long way. All (necessarily countable) distributive and some, but not all,
finite non-distributive lattices are embeddable into the computably enumerable
degrees (See, for instance, Lachlan [82], Lerman [85], Lempp-Lerman [86], and
Lachlan-Soare [84]). Also, many lattices can be embedded densely, such as all
distributive lattices (Slaman [132]), and some nondistributive lattices (Ambos-
Spies, Hirschfeldt and Shore [2]) but not all embeddable lattices (Downey [39],
Weinstein [150]).

We cannot expect that these embeddings can also jump invert, but as partial
orderings, we can do embeddings with any reasonable expectation about the
jumps consistent with the ordering relationships (Shore [130], building on earlier
work of, for example, Robinson [116]). For example, if a < b are computably
enumerable degrees with jumps ¢ and d respectively, and e < f are degrees
computably enumerable in 0’ with ¢ < e < f < d, then there exist c.e. degrees
g, h with a < g,h < b, and (for example) g/h and g = e and h' = f. Also
many results were proven about the structure of the computably enumerable
degrees, they are not a lattice, they have an undecidable first order theory,
they have algebraic decompositions, etc. There are themes relating definability
to enumerations. For example, any arithmetically definable class of computably
enumerable degrees closed under double jump is definable in the c.e. degrees.
(Nies, Shore and Slaman [96]) There were also a number of results relating the
lattice of computably enumerable sets and the upper semi-lattice of computably
enumerable degrees. For example, it was shown that maximal sets (that is co-
atoms in the quotient structure of the computably enumerable sets modulo finite



sets-a notion from Post’s paper) always have high degrees (meaning A" =7 (")
and include all high degrees; and form an orbit in the automorphism group
of the lattice of computably enumerable sets. (Martin [100] and Soare [135],
respectively.) Harrington and Soare [68] used the infinite injury method and great
ingenuity to show that there is a definable property of the lattice of computably
enumerable sets which solves Post’s problem. Cholak and Harrington [29] proved
a nice definability result for double jump classes in the c.e. degrees. Namely,
suppose that C = {a : a is the Turing degree of a X3 set greater than 0”}. Let
D C C such that D is upward closed. Then there is an non-elementary (L., )
L(A) property ¢p(A) such that D” € D iff there is an A where A = D and
¢p(A). Double jumps are necessary since Rachel Epstein [51] recently showed
that there is a c.e. degree a which is non-low and each of its members are
automorphic to low sets. Cholak, Downey and Harrington [28] recently showed
that determining orbits in the automorphism group of the lattice of computably
enumerable sets is X1 complete.

We refer the reader to Soare [136] for a somewhat dated but well-written
account of results up to 1987.

More complex versions of the infinite injury method allowed for very com-
plex results in involving n-th jumps, partial orderings and embeddings such as
Lerman-Lempp [87], and things about arithmetical definability such as Harring-
ton [67] (See Odifreddi [111] for this). These methods have been applied by
Ash and Knight in effective algebra [3], and model theory (e.g. Marker [99]).
The infinite injury method has also been applied in complexity theory such as
Downey, Flum, Grohe and Weyer [43]. Modern computability theory could not
exist without the infinite injury method.

2.3 Approximation techniques and IT? classes

A recurrent theme in computability theory is to use computable approximations
to complex objects. This can have several forms.

For instance, the Limit Lemma of Shoenfield says that A <r (" iff there is
a computable function f(-,-) such that limg f(z, s) exists for all  and x € A iff
lim, f(x,s) = 1. That is, A is computable from the halting problem iff A has
a computable approximation which changes its mind only finitely often on each
argument.

Another important example of approximation comes in the form of what are
called the hyperimmune-free or computably dominated degrees. Such a degree a
can be noncomputable but is defined to have the property that for all f <t a,
there is a computable g with f(z) < g(x) for all z. That is, we can compute
a finite number of instances {0,...,g(x)} as the possible values of f(x). The
non-computably dominated degrees sort of resemble the ones below 0’ to some
extent, and the class has deep connections with algorithmic randomness. If A
has non-computably dominated degree then there is a f <7 A, which “escapes”
any computable function, meaning that if we run a construction with oracle f,
then for any computable g, we know that there exist infinitely many n with
f(n) > g(n). Thus we run some kind of construction and construct g to measure



when we need to perform some action. Then we will argue that g(n) gives the
relevant information that f(n) encodes.

If something fails to be approximable then this fact of “escaping” can often
be used in constructions. One illustration is the fact that high degrees compute
functions that dominate every computable function. This allows us to show that,
for instance, every high computably enumerable degree bounds a minimal pair of
computably enumerable degrees. (Cooper [32].) Another such example concerns
the non-lows (i.e. a” > 0”) degrees. Following work of Martin we know that
A is non-lows iff A computes a function f which infinitely often escapes any
() computable function. (That is, for all g <g¢ @', 3*°n(f(n) > g(n))). This
fact enables one to show, for instance, that any finite lattice can be embedded
below such degrees preserving 0 and 1, and below and such degree we can find
a l-generic. With some more delicate techniques, such lon-lows methods can be
adapted to the c.e. degrees, allowing lattice embeddings below such degrees, for
instance. (for example, Downey and Shore [50]) Work here is ongoing with new
precise characterizations of what kinds of approximations allow us to embed, for
example, the 5 element modular nondiatributive lattice to be embedded below
it, giving new definability results. (Downey-Greenberg [45])

Another recurrent approximation technique is the use of what are called I19
classes. (Computably bounded) IT{ classes can be thought of as the collections of
paths through an infinite computable binary tree. They occur often in effective
mathematics. For example, if you give me a computable commutative ring then
the ideals can be represented as a IT{ class. The collection of complete extensions
of Peano Arithmetic form a IT{ class.

Many basis results can be proven for these useful classes. These assert that
(perhaps under certain conditions) every nonempty II{ class has a member of
a certain type. The classic result is the Low Basis Theorem of Jockusch and
Soare [72] which asserts that every I1{ class has a member of low degree (i.e.
A’ =r (') and the Hyperimmune-free Basis Theorem which says it has one of
computably dominated degree, and the basis theorem from the same paper that
asserts that for every special II{ class P (i.e. with no computable members),
and every S >1 (', there is a a member P € P with P’ =¢ S.

The theory of IT{ classes and algorithmic randomness interact very strongly.
For example, the collection of Martin-Lof random reals (for a fixed constant ¢ of
randomness deficiency-as defined in the next section) forms a I7{ class with no
computable members, and which has positive measure. The basis theorem for
special classes above therefore proves that there are random reals of low Turing
degree and ones of every possible jump. Thus, tools from topology and from
computability theory are simultaneously applicable. ITY classes and things like
reverse mathematics are also intertwined, since ITY classes correspond to what
is called Weak Kénig’s Lemma. For more we refer the reader to [24].



3 Basics of Algorithmic Randomness

3.1 Notation

We will refer to members of {0,1}* = 2<% as strings, and infinite binary se-
quences (members of 2¢ Cantor space) as reals. 2% is endowed with the tree
topology, which has as basic clopen sets

[o] ={X €2¥:0< X},

where o € 2<“. The uniform or Lebesgue measure on 2* is induced by giving each
basic open set [o] measure p([o]) := 2717, This is simply the restatement that
the uniform distribution has all strings of length n equally likely of probability
27,

We identify an element X of 2¥ with the set {n : X(n) = 1}. The space 2* is

measure-theoretically identical (via the usual mapping taking [0] to [0, 1])£ and

[1] to [4,1).) with the real interval [0, 1), although the two are not homeomorphic
as topological spaces, so we can also think of elements of 2¢ as elements of [0, 1].
We will let X | n denote the first n bits of X.

3.2 von Mises

The theory of randomness of an individual sequence actually pre-dates the foun-
dation of probability theory; and, arguably, one of the reasons for the latter was
the unsatisfactory nature of the former until the 60’s. The pioneer was Richard
von Mises [146]. He said a random real should certainly obey the frequency laws
like the law of large numbers for any reasonable sampling of the bits. Thus

lim [{m|m<nAX(m)=1} 1

This property is called normality and was studied by Borel and others. In fact,
any random real clearly should be what is called absolutely normal, meaning it
is normal to any basis (more on this later, when we return to Turing).

Inter alia, we mention that it is here that Turing later enters the picture.
His interest was absolute normality and some of his ideas will anticipate those of
the theory of algorithmic randomness as developed by Martin-Lof, Kolmogorov,
Levin and others. We will return to this development in Section 6.

von Mises’ idea was to consider any possible selection of a subsequence (i.e.
of positions of the given real to sample) and ask that this selection be normal:
Let f : w — w be an increasing injection, a selection function. Then a random
X should satisfy the following.
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von Mises had no canonical choice for “acceptable selection rules”. For example,
if we take any real with infinitely many 1’s, and make the selection the collection



of places where the real is 1, then plainly the real fails to be random relative to
that choice according to this criteria. Clearly that selection fails to realize the
spirit of von Mises idea. What selection functions should be acceptable? Wald
[148,149] showed that for any countable collection of selection functions, there
is a sequence that is random in the sense of von Mises. The problem is that von
Mises work predated the work in the 30’s of Church, Kleene, Post and Turing,
culminating in the classic paper of Turing [140], clarifying the notion of com-
putable function. Church [33] proposed restricting f to computable increasing
functions. This incarnation of von Mises’ idea gives rise to notions now called
computable stochasticity, and, of we use partial computable selections, partial
computable stochasticity.

Unfortunately, von Mises’ approach, even with Church’s reformulation using
computability theory, was fatally injured (or at least seriously hurt) by the work
of Ville [145]. In the following, S(c,n) is the number of 1’s in the first n bits of
o and similarly Sy for the selected places.

Theorem 1 (Ville’s Theorem [145]). Let E be any countable collection of
selection functions. Then there is a sequence o = aay . . . such that the following
hold.
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2. For every f € E that selects infinitely many bits of o, we have lim,, W =
1
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3. For all n, we have 2™

n
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The killer is item 3 which says that there are never situations with more 1’s
than 0’s in the first n bits of a. Suppose you were betting on the outcomes of a
sequence of coin tosses of a biased coin, where there are always fewer tails then
heads. Certainly you could figure out a betting strategy to make a lot of money.
This is the import of item 3.

Ville suggested adding a further statistical law, the law of the iterated loga-
rithm, to von Mises’ definition. However, we might well ask “How we can be sure
that adding this law would be enough?”. Why should we expect there not to be
a further result like Ville’s (which there is, see [46]) exhibiting a sequence that
satisfies both the law of large numbers and the law of the iterated logarithm, yet
clearly fails to have some other basic property that we would naturally associate
with randomness?

We could add more and more statistical laws to our collection of desiderata
for random sequences, but there is no reason to believe we would ever be done,
and we certainly do not want a definition of randomness that changes with time,
if we can avoid it.

3.3 Martin-Lof

One solution to this quandary was provided by the work of Per Martin-Lof [101],
and as we later see somewhat anticipated by Turing. Martin-Lof’s fundamental



idea in [101] was to define an abstract notion of a performable statistical test
for randomness, and require that a random sequence pass all such tests. He did
so by effectivizing the notion of a set of measure 0. The way to think about
Martin-Lof’s definition below is that as we effectively shrink the measure of the
open sets we regard as “tests”, we are specifying reals satisfying them more and
more.

In the below, a XY class is a computably enumerable collection {[o] | 0 € W}
for some computably enumerable (c.e.) set W of strings. Alternatively think of
this as a c.e. set of intervals in the interval [0, 1].

Definition 1 (Martin-Lof [101]).

1. A Martin-Lof test is a sequence {Up }new of uniformly X9 classes such that
w(Uy,) <27 for all n.

2. A class C C 2¥ is Martin-Lof null if there is a Martin-Lof test {Up}new
such that C C (), Un.

3. A set A € 2¢ 4s Martin-Lof random if {A} is not Martin-Lof null.

For example, think of the test that every second bit of the real is 1. It is okay
for a random real to have this for a long time but at some stage it must abandon
having every second bit 1. Thus we could specify this test by U; = {[01]},
U, = {[0001],[0101]}, etc. Even at this point we would like to make the reader
aware of the calibrations of randomness possible. This test consists only of nested
sequences of clopen sets. Thus any randomness notion defined by:

“X is random iff it passes all Martin-Lof tests but restricted to tests where
each level is specified by a computable function giving a canonical index for a
clopen set”

would be enough to pass this test and any “similar” tests. This “clopen”
notion has a name and is called Kurtz or weak randomness. It is equivalent to
saying X is in every X9 class of measure 1.

3.4 Three approaches to algorithmic randomness

The modern viewpoint has three main paradigms for defining algorithmic ran-
domness. Martin-Lof’s above is called the measure-theoretical paradigm.

We briefly discuss the two other main paradigms in algorithmic randomness
as they are crucial to our story. The first is the computational paradigm : Ran-
dom sequences are those whose initial segments are all hard to describe, or,
equivalently, hard to compress.

We think of Turing machines U with input 7 giving a string 0. We regard 7 as
a description of ¢ and the shortest such is regarded as the intrinsic information
in 0. Kolmogorov [77] defined plain U-Kolmogorov complezity Cy (o) of o as the
length of the shortest 7 with U(7) = ¢. Turing machines can be enumerated
Up, Uy, ... and hence we can remove the machine dependence by defining a new
(universal) machine

U((0°l7) = Ue(7),



so that we can define for this machine M, C(c) = Cjs(c) and for all e, C(c) <
Cuy, (o) + e+ 1. We will use the notation <* to dispense with explicit mention
of absolute additive constants in inequalities. For example, this inequlaity would
be written as C'(c) < Cyp, (o).

A simple counting argument due to Kolmogorov [77] shows that as C(o) <*
|o| (using the identity machine), there must be strings of length n with C(o) > n.
We call such strings C-random. The intuition here is that the only way to describe
o would be to hardwire ¢ into the program. ¢ is incompressible and, in particular,
has no regularities to allow for compression.

We would like to define a real, an infinite sequence, to be random by saying
for all n, C(a | n) > n. Unfortunately, there are no such random reals due
to a phenomenon called complexity oscillations, which (in a quantitative way)
say that in very long strings o there must be segments with C(o | n) < n. This
oscillation really due to the fact that on input 7, we don’t just get the bits of T
as information but the length of T as well.

Specifically, imagine a sufficiently long string «. Now each initial segment o
of a has some shortest programme say o*. Now this program can be interpreted
as a number n* = ¢*. Consider 7 the next segment of « after o (i.e. o7 <X «)
with 7 having length n*. Then the program that has input a string p and does
the following. First it looks at its length and interprets this as a string. Taking
that strings v it computes U(v) and if this halts outputs U (v)p.

Now assume we run this algorithm on 7. Then it computes U(c*) = o first,
and then outputs o7. This shows that C(o7) =" || = C(c¢). For long enough
o this is a compression. The key here is that we are using the length as well
as the bits of 7. Thus we are losing the intentional meaning that the bits of
7 are processed by U to produce o. To get around this first Levin [89,90] and
later Chaitin [25] suggested using prefiz-free machines to capture this intentional
meaning that the bits of the input encode the information of the output.

One way is to use prefiz-free complexity via machines whose domains are
prefix-free sets of strings. That is, prefix free machines work like telephone num-
bers. If U(7) | (i.e. halts) then for all 7 # 7 comparable with 7, U(7) 1.

Already we see a theme that there is not one but perhaps many notions
of computational compressibility of relevance to understanding randomness. In
the case of prefix-free complexity, in some sense we know we are on the correct
track, due to the following theorem which can be interpreted as saying (for
discrete spaces) that Occam’s razor and Bayes’ Theorem give the same result
(in that the shortest description is essentially the probability that the string is
output).

Theorem 2 (Coding Theorem-Levin [89,90], Chaitin [25]). For all o,
K(o) =" —log(Q(c)) where Q(o) is p({7 | U(7) = c}), and of course, logs here
are base 2.

Using this notion, and noticing that the universal machine above would be
prefix-free if all the U, were prefix free, we can define the prefix-free Kolmogorov
complexity K (o).



Definition 2 (Levin [90], Chaitin [25]). 4 set A is 1-random if K(A | n) >7
n.

Schnorr proved that we are on the right track here:
Theorem 3 (Schnorr). A real A is Martin-Léf random iff it is 1-random.

It is not difficult to show that almost all reals are random, but Schnorr’s
Theorem give no explicit example. The oft-quoted example of a 1-random real
is Chaitin’s halting probability (for a universal prefix-free machine U):

0= ¥ aw
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the measure of the domain of U (which is well-defined as the domain of U is a
prefix free set of strings).

An easy proof of this fact is reminiscent of the fact that the halting problem
is undecidable. We can use the Recursion Theorem to build part of the universal
prefix-free machine U, via a prefix-free machine M with (known) coding constant
e in U. Imagine we are monitoring {2, = >, 1/(,);;[s]- Suppose that we see some
o <X 25 | s we see Ks(0) < |o| — e — 1. (That is, this segment does not look
random.) This means that some v of length K,(o) has been enumerated into
the domain of U describing ¢. Then what we do is enumerate the same v into
the M,41 describing o also. Then, it follows that 2541 > 25 + 2=l and in
particular o A £2,41. The fact that (2 has a prefix-free domain means that M
does too as we are simply recycling what U does.

The summary is “if the opponent says here’s a short description of an initial
segment of (25, we act to show that it is not an initial segment after all.”

It would seem that the definition of {2 is thoroughly machine dependent, but
in the same spirit as Myhill’s Theorem (showing that there is only one halting
problem up to m-degree), we can define a reducibility on halting probabilities
we call Solovay reducibility. X <g Y means there is a constant ¢ and partial
computable f such that for all rationals ¢ < Y, f(¢q) < X and ¢(Y —¢q) >
(X — f(q)). To wit, a good approximation for Y yields one for X. There is
essentially one {2: The approximation {2 = limg {25 is monotone from below, and
(2 is what is called a left c.e.-real. Every left c.e. real is a halting probability in
the same way that each c.e. set is a the domain of a Turing machine. Clearly
<g is well-defined on left c.e. reals. The culmination of a series of papers is
the Kucera-Slaman Theorem which states that there is really only one left-c.e.
random real.

Theorem 4 (Kucera-Slaman Theorem [79]). A left c.e. real o is 1-random
iff for all left c.e.-reals B, § <g a.

3.5 Martingales

The final randomness paradigm is the one based on prediction. The unpredictabil-
ity paradigm is that we should not be able to predict the next bit of a random



sequence even if we know all preceding bits, in the same way that a coin toss is
unpredictable even given the results of previous coin tosses.

Definition 3 (Levy [92]). A function d : 2<% — RZ° is a martingale! if for
all o,
d(o0) + d(ol
d(o) = d(00) + d(a1)
2
d is a supermartingale if for all o,

d(o0) + d(crl).

d(o) > 5

A (super)martingale d succeeds on a set A if limsup, d(A | n) = oco. The
collection of all sets on which d succeeds is called the success set of d, and is
denoted by S[d].

The idea is that a martingale d(o) represents the capital that we have af-
ter betting on the bits of o while following a particular betting strategy (d(\)
being our starting capital). The martingale condition d(o) = w is a
fairness condition, ensuring that the expected value of our capital after a bet is
equal to our capital before the bet. Ville [145] proved that the success sets of
(super)martingales correspond precisely to the sets of measure 0.

Now again we will need a notion of effective betting strategy. We will say
that the martingale is computable if d is a computable function (with range Q,
without loss of generality), and we will say that d is c.e. iff d is given by an
effective approximation d(c) = lim, ds(o) where dyy1(0) > ds(o). This means
that we are allowed to bet more as we become more confident of the fact that o
is the more likely outcome in the betting, as time goes on. The following result
was anticipated in Ray Solomonoff’s approach to randomness as discussed in e.g.
Downey-Hirschfeldt [46].

Theorem 5 (Schnorr [119,120]). A set is 1-random iff no c.e. (super)martingale
succeeds on it.

Schnorr argued that Theorem 5 showed that perhaps the notion of Martin-
Lof randomness was not really capturing the notion of effective randomness as
it was intrinsically computably enumerable. Schnorr argued that it seems strange
that to define randomness we use c.e. martingales and not computable ones.
Based on this possible defect, Schnorr defined two other notions of randomness,
computable randomness (where the martingales are all computable) and Schnorr
randomness (where we use the Martin-Lof definition but insist that u(Uy) = 27%
rather than < 27% so, in particular, we know precisely the [¢] in U}, uniformly
in k£ and [0]) meaning in each case that the randomness notion is a computable
rather than a computably enumerable one. We know that Martin-Lof randomness

! A more complex notion of martingales (which are called martingale processes) is
used in probability theory. We refer the reader to [46], where it is discussed how
computable martingale processes can be used to characterize 1-random reals.



implies computable randomness which implies Schnorr randomness, and none of
these implications are reversible.

It seemed that Ville’s Theorem was a fatal blow to von Mises’ program.
However, there seems to be a possible resurrection. Can we define 1-randomness
using computable martingales somehow? The answer is “possibly” if we allow
non-monotonicity. The idea is to use a computable but non-monotonic notion of
randomness, where we have a betting strategy which bets on bits one at a time,
but instead of being increasing, we can bet in some arbitrary order, and need
not bet on all bits. The order is determined by what has happened so far. This
gives a notion called Kolmogorov-Loveland (or non-monotonic) randomness and
the following question has been open for quite a while.

Question 1 (Muchnik, Semenov, and Uspensky [108]). Is every non-monotonically
random sequence 1-random?

4 Developments

The theory of algorithmic randomness has been widely developed. First many
variations of the notions of a random real or string have been introduced. We
have already seen three, Kurtz, Schnorr and computable randomness. Each of
these notions has its own applications and gives its own insight into the level of
randomness needed for measuring the randomness of some process.

4.1 Randomness is the same as differentiability

There has been quite a bit of recent work relating “almost everywhere” behaviour
in analysis to levels of randomness. This is a program going back to the work of
Oswald Demuth, a constructivist from Prague.

Here we will be working in computable analysis, a subject going back to
Turing’s original paper [140]. This area will be discussed in detail in the article by
Avigad and Brattka in this volume. Briefly, if we are doing computable analysis,
then we need some representation of the individual objects we will be analysing.
For example a computable real is essnetially a computablely convergent Cauchy
sequence. That is, we have {¢, | n € w} with limit a and for all j, we can
effectively compute g(j) such that |a—gg(;)| < 277. In a function space, we would
have a set of effectively described functions, such as polynomials with rational
coeflicients, effectively converging to the function in the sense of the appropriate
norm. Then a typical definition of a computable function on such a space is
that if I can approximate x in the input to within 277, then I can compute
a similar approximation to f(z). When formalized this is implicit in Turing’s
orginal paper, and now usually called “type 2” computability. An alternative
and weaker notion of computable function is that it takes computable reals to
computable reals. This is referrred to as Markov computability. The reader is
referred to the Avigad-Brattka paper for more details and the history of the
development of the area.



Using such a setting, as an example of the relationship between randomness
and differntiability, recall that the Denjoy upper and lower derivatives for a
function f are defined as follows.

Df(z) = limsup flo) = flz+h) and Df(z) = liminf fl@) = fle+h)
h—0 h h—0 h

The Denjoy derivative exists iff both of the above quantities exist and are
finite. The idea in this is that slopes like those in the definitions can be considered
to be martingales. Using this for one direction, various notions of randomness
can be characterized by (i) varying the strength of the notion of computable real
valued function (e.g. Markov computable, type 2 computable etc) (ii) varying
the theorem.

For an illustration, we have the following.

Theorem 6 (Brattka, Miller and Nies [21]). z is computably random iff
every computable (in the type two sense) increasing function f[0,1] — R is
Denjoy differentiable at z.

There are similar results relating 1-randomness of z to the differentiability of
functions of bounded variation at z. There is still a lot of activity here, and classes
like Lipschitz functions and many other classical almost everywhere behaviour
in analysis are found to correlate to various notions of randomness. The paper
[21] is an excellent introduction to this material.

Other almost everywhere classical behaviour comes from ergodic theory.
There is a great deal of current work exploring the relationship between ergodic
theory and algorithmic randomness. The simplest example is an old theorem of
Kuéera which says that if C is a II{ class of measure 1, then for any 1-random
X there must be a Y € C with the “tail” of X in Y. By this we mean that there
is some n which that for all m > n, X(n) = Y(n). This is related to ergodic
theory as can be seen by an analysis of the the Poincaré Ergodic Theorem. To
wit, let (X, u) be a probability space, and 7' : X — X measure preserving so
that for measurable A C X, u(T~1A) = u(A). Such a map is called T-invariant
if T71A = A except on a measure 0 set. Finally the map is ergodic if every
T-invariant subset is either null or co-null. The shift operator on Cantor space
is the mapping T'(aga; ...) = ajag... is an ergodic action with the Bernoulli
product measure. The “tail” map above can be thought of as a statement of a
statement about the shift operator.

A classic theorem of Poincaré is that if T is ergodic on (X, i), then for all
E C X of positive measure and almost all x € X, T"(x) € E for infinitely
many n. For a set E of measurable subsets of X, we call an x a Poincaré point
if T"(z) € @ for all @ € E of positive measure. Restating the theorem Kucera
[78] we see the following: X is 1-random iff X is a Poincaré point for the shift
operator with respect to the collection of effectively closed subsets of 2.

Bienvenu et al. proved the following extension of this result.



Theorem 7 (Bienvenu, et al. [15]). Let T be computable ergodic on a com-
putable probability space (X, ). Then x € X is I-random iff x is a Poincaré
point for all effectively closed subsets of X.

Again there is a lot of ongoing work here. For instance, one exciting develop-
ment has seen the applications of algorithmic randomness to symbolic dynamics
a sub-area of ergodic theory, with well-known applications in additive number
theory and analysis. A d-dimensional shift of finite type is a collection of colour-
ings of Z? defined by local rules and a shift action (basically saying certain
colourings are illegal). Its (Shannon) entropy is the asymptotic growth in the
number of legal colourings. More formally, consider G = (N?, +) or (Z%, +), and
A a finite set of symbols. We give A the discrete topology and A® the product
topology. The shift action of G on A% is

(892)(h) = z(h + g), for g,h € G Az € AC.

A subshift is X C A% such that x € X implies S92 € X (i.e. shift invariant).
Symbolic Dynamics studies subshifts usually of “finite type.” The following is a
recent theorem showing that (2 occurs naturally in this setting.

Theorem 8 (Hochman and Meyerovitch, [70]). The values of entropies of
subshifts of finite type over Z for d > 2 are exactly the complements of halting
probabilities.

In this area, Jan Reimann [114] gave a new and simpler proof of a classi-
cal theorem called Frostman’s Lemma. An even more notable example is due
to Simpson [126]. Simpson studies topological entropy for subshifts X and the
relationship with Hausdorff dimension.

Here we pause to mention that, in the same way that we can suggest that
an individual sequence can be thought to be random, the theory of effective
Hausdorff dimension allows us to give an individual sequence effective dimension.

After effectivizing the the whole theory of Hausdorff using effective versions
of “weighted” inner and outer “measures,” it turns out that there are simple
characterizations of these notions in terms of Kolmogorov complexity.

Mayordomo [102] proves that effective Hausdorff dimension of X is equal to
w. Athreya, Hitchcock, Lutz, and Mayordomo [4] proved that

K(X[n) (C can replace K in both

n

liminf,, oo

the effective packing dimension is lim sup,,_, .,
cases).

Again, there has been a long line of development seeking to understand al-
gorithmic dimension. An easy way to make something of effective Hausdorff
dimension % is to take a 1-random real and “thin it out’ by inserting a 0 in every
second position. A longstanding question was whether in some sense this was
necessary: could randomness be extracted from any a real of nonzero effective
Hausdorff dimension? Miller [105] showed that the answer is no. A strong neg-
ative answer to this question could also be obtained by constructing a real of
minimal Turing degree and of effective Hausdorff dimension 1, but this remains



an open question. For packing dimension, either a Turing degree has only ele-
ments of effective packing dimension 0, or the sup of the packing dimensions of
the members is 1 (Fortnow, Hitchcock, Aduri, Vinochandran, and Wang [53]).
However, Conidis [30] showed that the degree did not need to have a real of effec-
tive packing domension 1. In the case of effective Hausdorff dimension, Zimand
[153] proved that domension 1 can be extracted from two independent sources
of nonzero Hausdorff entropy.

Looking at one use of these notions, we return to Simpson’s work. If X ¢ A%
use the standard metric p(x,y) = 2= 1Fnl where n is as large as possible with
x| F,=ul|F,and F,, ={-n,... ,n}d. In discussions with co-workers, Simpson
proved that the classical dimension equals the entropy (generalizing a difficult
result of Furstenburg 1967) using effective methods, which were much simpler.

Theorem 9 (Simpson [126]). If X is a subshift (closed and shift invariant),
then the effective Hausdorff dimension of X is equal to the classical Hausdorff
dimension of X is equal to the entropy, moreover there are calculable relation-
ships between the effective and classical quantities. (See Simpson’s home page for
his recent talks and more precise details.)

There are many other investigations looking into other Kolmogorov complex-
ities, resource bounded versions such as polynomial time randomness, and the
like, and randomness in other spaces than Cantor space. We will finish with a
short section exploring the work of the last decade which seeks to understand
how computability and randomness relate.

5 Computability and Randomness

Interactions of measure, randomness and computability go back to the early
years of the study of degrees of unsolvability. The classical paper was de Leeuw
et al. [35] where, amongst other things, it is proven that a set X is computably
enumerable from a set of oracles of positive measure iff X is computably enu-
merable. As a consequence, we get a result later rediscovered by Sacks that if
a real X is computable from a collection of sources of positive measure, then
X must be computable. Nevertheless, another classical result is the following
saying that 1-random sources can have computational power.

Theorem 10 (Kuéera [78], Gacs [61]). For every set X, there is a 1-random
Y such that X <yu Y, where <. is Turing reducibility with use bounded by a
computable function.

Theorem 10 argues that 1-random reals are not random enough to correlate to
the thesis that random reals should have no computational power. This intuition
was clarified by Stephan who proved the following?.

2 Interpreted by Hirschfeldt as saying that there are two methods of passing a stupidity
test. One is the be the genuine article. The other is to be like {2 and be so smart
that you know what a stupid person would say.



Theorem 11 (Stephan [137]). Suppose a random real is powerful enough to
compute a {0, 1}-valued function f such that for allm, f(n) # pn(n) (i.e. of PA
degree). Then ' <7 X, so that it is a “false random.”

There is a lot of material on Chaitin’s Omega suggesting that it is the “num-
ber of knowledge” and this has something to do with randomness. The result
above more or less says that if you are a knowledgeable random then you are
essentially code such an Omega. A remarkable theorem here is the following,
demonstrating a deep relationship between PA degrees and random degrees (i.e.
degrees containing randoms).

Theorem 12 (Barmpalias, Lewis, and Ng [6]). Every PA degree is the
join of two 1-random degrees.

We can strengthen the idea of randomness by giving the computational de-
vices more compression power via Turing’s notion of an oracle. Then if (™
denotes the n-th iterate of the halting problem, we say that X is n 4+ l-random
iff K0 (X | n) >* n for all n. A pretty result proven by Miller and Yu [106] is
that if X <7 Y are both l-random and X is n-random, so is Y.

We can similarly do this with other notions of randomness with a little care.
For notions like Schnorr randomness we need stronger reducibilities reflecting
the “totality” of the tests.

There are also many results concerning the relationships between the ran-
domness notions and Turing (and other) degrees. For example, it can be shown
that X is weakly 2-random (i.e. in every X9 class of measure 1) iff X is I-random
and its degree forms a minimal pair with (/' (Downey, Nies, Weber, and Yu [48]
plus Hirschfeldt and Miller (in [48]) for the hard direction). Hence no (weakly)
2-random real can bound a PA degree.

It is a surprising fact that for all n, n-randomness can be defined purely in
terms of K with no oracle. This follows by the next result.

Theorem 13 (Bienvenu, Muchnik, Shen, and Vereschagin [14]). K" (¢) =
limsup,,, K (o | m) £ O(1).

Hence A is 2-random iff for all n, limsup,, K(A [ n | m) >* n. For a small
number of n, we know of “natural” definitions of n-randomness. For instance,
we have seen that it is impossible for a real to have C(X | n) >* n for all
n, but Martin-Lof showed in his original paper [101] that there are reals X
with C(X | n) >% n for infinitely many n, and that these are all 1-random.
Joe Miller [103] and later Nies, Stephan and Terwijn [97] showed that such
randoms are precisely the 2-randoms, and later Miller [104] showed that the 2-
randoms are exactly those that achieve maximal prefix-free complexity (which is
n + K (n)) infinitely often. Also Becher and Gregorieff [10] have a kind of index
set characterizations of higher notions of randomness. I know of no other natural
definitions, such as for the 3-randoms. There has been a huge amount of work
concerning the interplay between things like PA degrees and weakenings of the
notion of fixed point free functions (that is, functions with f(n) # ¢, (n) for all



n). For example, you can show that this ability corresponds to traceing, and the
speed of growth of the initial segment complexity of a real. As an illustration,
A is h-complex if C(A | n) > h(n) for all n. A is autocomplex if there is an A-
computable order h such that A is h-complex, where an order is a nondecreasing
unbounded function with f(0) > 1..

Theorem 14 (Kjos-Hanssen, Merkle, and Stephan [73]). A set is auto-
complez iff it is of DNC' degree.

Another illustration of the interplay of notions of randomness and Turing
degrees is the following theorem.

Theorem 15 (Nies, Stephan, and Terwijn [97]). If a nonhigh set (i.e.
A" #7 0@)) is Schnorr random then it is 1-random.

On the other hand, it is possible to show that within the high degrees the
separations between computable, Schnorr, and Martin-Lof randomness all occuri
([97]). In the hyperimmune-free degrees, weak randomness coincides with all of
these as well as weak 2-randomness. So the degree can have great effect on what
a notion of randomness means.

One long sequence of results concerns lowness and randomness. For any rea-
sonable property P we say that X is low for P if PX = P. For example, being
low for the Turing jump means that X’ =7 (. A set A is low for 1-randomness
iff A does not make any 1-randoms nonrandom. That is, if Y is 1-random then
Y4 is A — 1-random. Normally we would expect an oracle A would enable us
to compress some intital segment of Y for some Y allowing us to derandomize
it. You can also have a notion of lowness for tests, meaning that every (effective
nullset)? can be covered by an effective nullset. In all cases the lowness notion
for randomness and for tests have turned out to coincide with a single recent ex-
ception of “difference randomness” found by Diamondstone and Franklin (paper
in preparation).

Now it is not altogether clear that noncomputable sets low for 1-randomness
should exist. But they do and form a remarkable class called the K-trivials
which had earlier and independently been defined purely in terms of their initial
segment complexity. That is, the reals low for Martin-Lof randomness coincide
with the class of reals A such that for alln, K(A | n) <t K(n). (In fact Bienvenu
and Downey [12] showed that it is enough to put a Solovay function® in place
of K(n).) Many properties of this class have been shown. The coincidence of
these two concepts lowness and triviality is one of the jewels of the area. It
was Andre Nies who proved the deep result that A is K-trivial iff A is low
for Martin-Lof randomness iff A is useless as a compressor, meaning that for
all o, K4(o) =% K(o). (Nies [93]). A good account of this material can be
found in Nies [94, 95], but things are constantly changing, with perhaps seventeen

3 That is a computable function f with f(m) > K(m) for all m and f(n) =" K(n)
infinitely many n. See also Beinvenu and Merkle [13] and Hélzl, Kriling, and Merkle
[71].



characterizations of this class at present. We also refer to [46] for the situation
up to mid-2010.

Other randomness notions give quite different lowness notions. For example,
X is low for C, meaning C* =* O, iff X is computable (essentially Chaitin
[26]), and similarly Y is low for computable randomness iff ¥ is computable
(Nies [93]). reals which are low for C' nor any low for computable randomness.
On the other hand, lowness for Schnorr and Kurtz randomness give interesting
subclasses of the hyperimmune-free degrees characterized by notions of being
computably dominated, and fixed point free functions in the case of Kurtz. (This
is a detailed story with many references, begining with the beautiful paper of
Terwijn and Zambella [139], seee Downey and Hirschfeldt [46]) Work here is
still ongoing and many results have been proven, but the pattern remains very
opaque. Even for a fixed real like 2 (i.e. when does 2% remain random?) results
are quite interesting. In the case of {2, X is low for {2 and X is computable from
the halting problem, then X is K-trivial, but there are random reals low for (2.
In fact, X is 1-random and low for (2, iff X is 2-random. (Result of Joe Miller,
see [46].)

These classes again relate to various refinements of the jump and to “tra-
ceing” which means giving an effective collection of possibilities for (partial)
functions computable from the degree at hand. Again this idea has taken on a
life of its own, and such notions have been used to solve questions from classical
computability theory. For instance, Downey and Greenberg [44] used “strong
jump traceability” to solve a longstanding question of Jockusch and Shore on
pseudo-jump operators and cone avoidance. Strongly jump traceable reals have
their own techniques and theory and form a fascinating class, see e.g. [27].

We should also mention the the deep results of Reimann and Slaman who
were looking at the question (first discussed by Levin):

“Given X Zr (), is there a measure relative to which X is random?”

Clearly we can trivially answer Levin’s question: every real is, we can con-
centrate a measure on a real. But clearly what is asked is for the situation where
we are not allowed to do this concentration. If we allow atoms, then the answer
is still that that every noncomputable real can be made random. On the other
hand, if we ask that there are no atoms in the measure, the situation is very
different. We get a nonempty class of never continuously n-random reals. For
each n this class is countable, but the proof of this requires magical things like
big fragments of Borel determinacy, provably. This metamathematical aspect of
the answer seems strange in that the definitions of Martin-Lof randomness only
needs a couple of quantifiers and hence we would expect a low level answer. But
no. So algorithmic randomness not only interacts strongly with computability
theory but also even with set theory. Reimann and Slaman’s results use tech-
niques involving models of ZFC and “master codes”. The reader should look at
Reimann and Slaman [115].



6 Turing

What has this got to do with Turing? What was the anticipation we alluded
to? Certainly, the very notion of algorithmic randomness needs the notion of
algorithm and arguably there is this weak connection: Turing clarified the notion
of algorithm. However, there is something rather more remarkable than that.

We return to the notion of (absolute) normality. Recall that X is Borel normal
to base n if we represent X in base n, then for all 0 <i<n —1,

o X =il k<s) 1

s S n

This notion was defined by Emil Borel in 1909. We have seen that variations
of the notion of normality were the basis of von Mises approach to defining
randomness.

Interestingly, normality precisely defines an algorithmic randomness notion.
To give a machine (randomness) definition of normality, we change the compu-
tational device to that of a finite automaton. A real number is normal to a base b
if, and only if, no finite state gambler can make infinite winnings when betting
on its base b expansion, as we see more explicitly in Theorem 18 below. (See
[121, 36, 18].)

Borel demonstrated that almost every real is absolutely normal, but asked
the questions “How can we construct an explicit absolutely normal number?”
and “Can a real be normal relative to one base and not another?”

Normality is a longstanding area of research in number theory. It is also yet
another area of number theoretical research where the questions rapidly outrun
our ability to prove theorems. For example, it is unknown if familiar reals like e
and 7 and the like are normal to any base.

Returning to Borel’s questions, how should we interpret “explicit construc-
tion of a normal number”? With the machinery of computability theory devel-
oped by Turing, Church, Kleene and others, we have at least one interpretation.
From the material of the previous sections, it is obvious that {2 is normal. How-
ever, in some sense, this is cheating since it is not a computable, but a c.e. object
so is hardly an ezplicit construction.

In an unpublished manuscript, Turing attacked the question of an explicit
construction of an absolutely normal number by interpreting “explicit” to mean
computable. His manuscript entitled “A note on normal numbers”, presumably
written in 1938, presents the best answer to date to Borel’s first question: an
algorithm that produces absolutely normal numbers. This early proof of exis-
tence of computable normal numbers remained largely unknown because Tur-
ing’s manuscript was only published in 1997 in his Collected Works, edited by
J. L. Britton [143]. The editorial notes say that the proof given by Turing is in-
adequate and speculate that the theorem could be false. In [8] Becher, Figueira
and Picci reconstructed and completed Turing’s manuscript, trying to preserve
his ideas as accurately as possible and correcting minor errors.



As Becher [7] remarks, the very first examples of normal numbers were in-
dependently given by Henri Lebesgue and Waclaw Sierpiriski* in 1917 [80, 123].
They also lead to computable instances by giving a computable reformulation
of the original constructions [9]. Together with Turing’s algorithm these are the
only known constructions of computable normal numbers. It is pretty clear that
Turing was unaware of the limiting constructions given in [80,123].

What does Turing’s construction do? His paper says the following:

Although it is known that almost all numbers are [absolutely] normal
no example of [an absolutely] normal number has ever been given. I pro-
pose to show how [absolutely] normal numbers may be constructed and
to prove that almost all numbers are [absolutely] normal constructively.

I won’t reproduce Turing’s construction, save to say that it makes an inge-
nious extension of the law of large numbers to blocks, and basically makes a
low complexity Martin-Lof type test. The details can be found in Becher [7], for
instance.

What Turing actually does is something very modern. He develops an ef-
fective version of measure theory (sound familiar?) and demonstrates that the
reals which are not absolutely normal have computable measure 0. Therefore,
there must be a computable real which is absolutely normal. Here is what Jack
Lutz said of this in a lecture at the conference Computability, Complexity and
Randomness, 2012 at Cambridge:

Placing computability constraints on a nonconstructive theory like
Lebesgue measure seems a priori to weaken the theory, but it may
strengthen the theory for some purposes This vision is crucial for present-
day investigations of

— individual random sequences,
— dimensions of individual sequences,
— measure and category in complexity classes, etc.

7 From a modern perspective

How have investigations into normality played out? Using polynomial martin-
gales and hence a polynomial notion of randomness, we have the following.

Theorem 16 (Strauss [138]). There are absolutely normal numbers computable
in exponential time.

Using a more delicate construction, Elvira Mayordomo brought the complex-
ity of an explicit computable absolutely normal real down as follows.

Theorem 17 (Mayordomo). We can construct an absolutely normal number
in time O(nlogn).

4 Both published their works in the same journal issue, but Lebesgue’s dates back
to 1909, immediately after Borel’s question.



As mentioned earlier, this is all related to the theory of finite state compressors
and the corresponding notion of dimension.

Definition 4 (Schnorr and Stimm [121]).

1. A finite state gambler is a quadruple G = (Q, 9, qo, B) where (Q,4,qo) is a
finite state automaton, and B : Q — Ag(X) is a betting function, where
Ag(X) is the collection of rational-valued probability measures on X.

2. A martingale is a function dg : X* — [0,00) with dg(X\) =1 (Here X is the
empty string), and again the fairness condition:

da(wa) = |Xlde(w)B(0(w))(a).
3. for s € [0,00) the s-gale of G is d(cf) (w) = 26 DIvlgg (w).

As usual, we say that d succeeds on X if limsup,,_,. d(X [ n) = co and that d
succeeds strongly if liminf,, ., d(X [ n) = co. Then the finite state dimension
of a real X is

dimpS(X) = inf{s € [0,00) | 3 finite state G s.t. d(GS) succeeds on X }.

By a theorem of Dai, Lathrop, Lutz and Moyordomo [36], this quantity equals
the infimum over all finite state compressors F' of

lim inf 7CF(X [ )

nsco nlogXk

aligning with the definition met before for effective Hausdorff dimension, with a
similar formula holding for effective string dimension below. There is a similar
definition for strong dimension and strong success.

The theorem is the following.

Theorem 18 (Schnorr and Stimm [121]). X is normal base b iff the base b
finite state dimension of X is 1.

There is a very active program concerned with the analysis of finite state dimen-
sions. Many modern text compressors such as ZIP are examples of finite state
compressors so this theory seems quite pertinent to applications. We refer the
reader to Dai et al. [36] and to Lutz’s home page for much more on this topic,
and its relationship to things like DNA self-assembly.
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